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Overview  

Installation  

ExplainAI works in Python 2.7 and Python 3.4+. Currently it requires scikit-learn 1.14+. You can install
ExplainAI using pip:

In order to use the ExplainAI successfully, the following site-packages are required:

pip install ExplainAI
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pandas
numpy
lime
six
sklearn
scipy
seaborn
shap
datetime
matplotlib

 

Features  

ExplainAI is a Python package which helps to visualize black-box machine learning and explain their
predictions. It provides support for the following machine learning frameworks and functions:

scikit-learn. Currently ExplainAI allows to explain predictions of scikit-learn regressors including
DecisionTreeRegressor, LinearRegression, svm.SVR, KNeighborsRegressor, RandomForestRegressor,
AdaBoostRegressor, GradientBoostingRegressor, BaggingRegressor, ExtraTreeRegressor，in order to
show feature importances and feature effects.
Post-hoc interpretation. Currently, ExplainAI integrated the following post-hoc methods: partial
dependence plot (PDP), mean squared error (MSE)-based feature importance (MFI), permutation
importance (PI), accumulated local effect (ALE), individual conditional expectation (ICE), local nd Shapley
values. Details about each methods are given in the Feature effects section of the tutorial.
Data preview. You can visualize observation and prediction distribution of feature or feature interaction,
which are displayed in a figure of console.
Two formats of explanation. You can upload your raw data (better in a csv) and after interpretation, you
can get plot-based and text-based explanation in the console.
Feature selection. The sequence backward selection (SBS) is provided. And some feature selection
procedures specific for FLUXNET data also are available.

Basic usage  

The design of ExplainAI obeys OOP(object-oriented programming). The basic usage involves following
procedures:

1. upload your raw data and conduct data cleaning.
2. choose whether feature selection by sequential backward selection, if yes, a new input data is obtained,

if no, you can use contrived work to select the features.
3. prediction, using sklearn model to train model and get prediction.
4. check the prediction and observation distribution.
5. interpretation. The trained model, input data matrix as input, the interpretation methods can be

objectified.
6. display the results of interpretation (plot or text).

We recommend the users to accomplish step 1 to 3 due to their own requirements, and use the
functions of step 4,5 provided in the ExpalinAI toolbox.
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There are two main ways to interpret a black-box model:

1. inspect all the model predctions together and try to figure out how the model works globally;

2. inspect an individual prediction of a model, try to figure out why the model makes the decision it makes.

For (1), ALE, PDP, MFI and PI, are all the avaliable "global" tools.

For (2), ICE, Shapley values and LIME are all the avaliable "local" tools.

The interpretation are formatting in several ways, including figures, text, and a pandas Dataframe object. For
example, a global interpretation are given as follows.

#1.Prediction 

#m:trained model, a sklearn object

#d:input data, a pandas dataframe

#r2:r-squared precision, float

#da:features matrix, a pandas dataframe

m,d,r2 = randomforest()

da = d.drop("SWC", axis=1)

#2.PDP interpretation

#pdp_obj:PDP object

#TS:a feature of interest

pdp_obj=pdp.pdp_isolate(model=m, dataset=da, model_features=da.columns, feature="TS")

#2.1.Plot

fig, axes =pdp.pdp_plot(pdp_obj,"TS")

plt.show()

#2.2.Dataframe

df=pdp_obj.count_data

df.to_csv("df.csv")

import pandas as pd

# ----1.input data, you can use your dataset if you change the file path.

# file="./flx_data/dataset.csv"

# # d=pd.read_csv(file)

# # print(d)

# here, we use example dataset (after data processing).

from flx_data.input import input_dataset

d=input_dataset(flag=0)

# print(d)

# ----2.get training set and testing set

from data_processing.split_data import split_data

xtr,ytr,xte,yte=split_data(d,target="SWC").split()

# print(xtr)

# ----3.modelling with machine learning

from model.make_model import make_model

m,res,y_predict=make_model(modeltype='GradientBoosting',

                             x_train=xtr,

                             y_train=ytr,

                             x_test=xte,

                             y_test=yte)



Why use ExplainAI?  

At present, the post-hoc tools are widely used in many fields. However, it is not convenient to use different
methods from different packages. Particularly, it leads to compatibility issues. To address this, ALE, PDP, ICE,
Shapley, LIME, PI, MFI are integrated to one practical tool for ML developers and the decision-makers. Using
ExplainAI, you can have a better experiences:

you can call a ready-made function from ExplainAI and get a nicely formatted result immediately;
formatting code can be reused between machine learning frameworks;
algorithms like LIME try to explain a black-box model through a locally-fit simple, interpretable model. It
means that with additional “simple” model supported algorithms like LIME will get more options
automatically.

Tutorials  
In this turoial, we will show how to use the ExplainAI using an example data set from a FLUXNET site (http:....)
or other two fixed format csv files. Users who want to build their own machine learning model can just jump
to the feature effects section for the functions available to interpret and visualize the model.

print(res)

# ----4.check the prediction and observation distribution

from preview import info_plots

import matplotlib.pyplot as plt

# show distribution with feature of interest ("TS")

fig1, axes, summary_df = info_plots.actual_plot(model=m, X=xte, feature="TS", 

feature_name="TS")

fig2, axes, summary_df = info_plots.target_plot(df=d, target="SWC", feature="TS", 

feature_name="TS")

# show distribution under two features' interaction

fig3, axes, summary_df = info_plots.actual_plot_interact(model=m, X=xte, features=["DOY", 

"TS"], feature_names=["DOY", "TS"])

fig4, axes, summary_df = info_plots.target_plot_interact(df=d, target="SWC", features=

["DOY", "TS"], feature_names=["DOY", "TS"])

# plt.show()

# ----5.permutation inmportance

from utils import get_x,get_features

x=get_x(d,target="SWC")

f=get_features(x)

from explainers.pi.pi import pi_trans,pi_plot

p = pi_trans(model=m, feature_names=list(da.columns), preserve=False)

# ----6.plot-based or text-based interpretation

print(p)

pi_plot(p)
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Filename Content  

FLX_CN-
Ha2_FLUXNET2015_FULLSET_DD_2003-
2005_1-4.csv

Raw site data downloaded
from FLUXNET

data=input_dataset(flag=2)

dataset_process.csv
Data after entire data
processing

data=input_dataset(flag=1)

dataset.csv
Data after data processing
and contrived work

data=input_dataset(flag=0)

Task  

With the increasing demand for machine learning application in hydrometeorological forecast, we face the
urge to demystify the black-box of machine learning as the lack of interpretability hampers adaptation of
machine learning.

Here, taking soil moisture (SM) prediction of one FLUXNET site (Haibei,China, named as CH-Ha2) as an
example, we used air forcing variables, timekeeping, energy processing, net ecosystem exchange and
partitioning, and sundown as input data. We aimed to predict the daily SM via historial dataset. We aimed to
interpret the model via ExplainAI toolbox.

Dataset  

All dataset used in this tutorial is in the flx_data" dictionary of ExplainAI toolbox. The meta data of FLUXNET
site data is available at http: \fluxnet.org\data\fluxnet2015-dataset\fullset-data-product.

If users want to change the dataset, please modify the flag value of input_dataset(flag).

Data processing  

Since the FLUXNET raw data can not be used directly used in modeling, the data processing offers a feasible
way to process the raw data.

Certainly, if the users have other time-relating and lagged-relating variables, the functions can be modified.
And the dataset can be replaced.

Read data and add time-relating variables  

The original FLUXNET data with time series only has time-relating variable "TIMESTAMP", whose formation is
year%month%day%. It can not be used as a time-series variable.

Via the time_add function, the DAY (day sequence of whole time) and DOY (day of year) are added.
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Add lagged-relating variables  

In this example, the soil moisture has time "memory" and the lagged precipitation also has impact on soil
moisture prediction, the 1 to 7 days lagged values of these two variables are added in the dataset.

Data cleaning and feature selection  

data_cleaning() offers several data cleaning functions:

Eliminate the observation without target values
Eliminate irrelevant records in FLUXNET, like percentiles, quality index, RANDUNC, se, sd...
Eliminate the features with too many (30%) Nan.

 

feature_selection() provides sequential backward selection (SBS) which based on random forest.

data_processing_main() integrates data cleaning and feature selection.

from data_processing.add_variables import time_add

file='.\\flx_data\\FLX_CN-Ha2_FLUXNET2015_FULLSET_DD_2003-2005_1-4.csv'

data=pd.read_csv(file,header=0)

new_data=time_add(data)

from data_processing.add_variables import lag_add

new_data=lag_add(data,sm_lag=7,p_lag=7)

#sm_lag and p_lag are the days of lagged soil moisture and precipitation. Defaults are 7.

from data_processing.data_cleaning import data_cleaning

c1=data_cleaning(data)

d1=c1.elim_SM_nan()

c2=data_cleaning(d1)

d2=c2.drop_ir()

c3=data_cleaning(d2)

d3=c3.drop_nan_feature()

from data_processing.feature_selection import feature_selection

fs=feature_selection(data=data,target="SWC_F_MDS_1")

new_data=fs.sbs_rf(n_estimators=100)

from data_processing.data_processing_main import data_processing_main

#drop_ir: eliminate data of irrelevant records in FLUXNET,like percentiles, quality index, 

RANDUNC, se, sd...

#drop_nan_feature:Eliminate the features with too many(30%) Nan.

#part:part of split_data

#n_estimator:sequential backward selection using random forest, n_estimator of random 

forest

#sbs:whether use sbs 

d=data_processing_main(data=data,
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Split dataset  

split_data offers a way to split dataset into training set and testing set, according to the time-sequence (using
data of time-ahead to predict feature data).

 

Black-box machine learning  

For this version, sklean models are available.

Preview  

Data preview. You can visualize observation and prediction distribution of feature or feature interaction, which
are displayed in a figure of console.

                      time_add=True,

                       lag_add=True,

                      elim_SM_nan=True, #eliminate data of SM Nan

                      drop_ir=True, 

                      drop_nan_feature=True,

                      part=0.7,

                      n_estimator=10,

                      sbs=True)

dd,ss=d.total()

dd.to_csv("dd.csv")

#dd is new_dataset after data processing

ss.to_csv('ss.csv')

#ss is sbs result 

from data_processing.split_data import split_data

xtr,ytr,xte,yte=split_data(data,target="SWC",part=0.7).split()

#Or validating set is required.

xtr,ytr,xvl,yvl,xte,yte=split_data(data,target="SWC",part3=[0.7,0.2,0.1]).split3()

from model.make_model import make_model

model_list = ['DecisionTree', 'Linear', 'KNeighbors',

                  'RandomForest', 'AdaBoost',

                  'GradientBoosting', 'Bagging',

                  'BayesianRidge', 'SVR']

m,res,y_predict=make_model(modeltype='GradientBoosting',

                             x_train=xtr,

                             y_train=ytr,

                             x_test=xte,

                             y_test=yte)

print(res)

#res:R2,MSE,MAE,RMSE

#model:trained model object

#y_predction:series, precdiction of testing set
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Feature effects  

MSE-based Feature importance  

Being one of the most pragmatic methods to quantify the feature importance, the Python package named as
sklearn provides a specified importance evaluation for RF model. Note that R package named as
randomForest also provides similar functions (Breiman, 2001). This method computes the importance from
permuting out-of-bag data. First, for each tree, the MSE from prediction model on the out-of-bag portion of
the training data is recorded. Next, this procedure is repeated for each feature.

Noted that, this method is specific-based, only for random forest.

 

Permutation importance  

The PI of the observed importance provides a corrected measure of feature importance. PI computed with
permutation importance are very helpful for deciding the significance of variables, and therefore improve
model interpretability.

# from preview import info_plots

# import matplotlib.pyplot as plt

from preview import info_plots

import matplotlib.pyplot as plt

# show distribution with feature of interest ("TS")

fig1, axes, summary_df = info_plots.actual_plot(model=m, X=xte, feature="TS", 

feature_name="TS")

fig2, axes, summary_df = info_plots.target_plot(df=d, target="SWC", feature="TS", 

feature_name="TS")

# show distribution under two features' interaction

fig3, axes, summary_df = info_plots.actual_plot_interact(model=m, X=xte, features=["DOY", 

"TS"], feature_names=["DOY", "TS"])

fig4, axes, summary_df = info_plots.target_plot_interact(df=d, target="SWC", features=

["DOY", "TS"], feature_names=["DOY", "TS"])

#

plt.show()

from model.randomforest_gv import randomforest

from explainers.mfi.mfi import mse_feature_importance,mse_feature_importance_plot

m,res,y_predict=make_model(modeltype='RandomForest',

                             x_train=xtr,

                             y_train=ytr,

                             x_test=xte,

                             y_test=yte)

mfii=mse_feature_importance(model=m, data=data, preserve=True) 

print(mfii)

mse_feature_importance_plot(mfii)
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pi_trans() offers an approach of PI storage in a dataframe.

pi_plot() supports plot of ranking features.

 

Partial dependence plot  

The PDP demonstrates the relationships between the features and predicted variable (Friedman, 2001). The
PDP for regression is defined as:

where x(s,j) is the set of the feature of interest (as j-th feature) for which the partial dependence function should be
plotted, p(x(s,j) ) is the partial dependence value of j-th feature, n is the number of elements in x_s, and x_c is subset
of other actual features values. PDP estimates the average marginal effect of predictors on the predicted SM, which
can be a determined value in regression.

 

#get feature names list

from utils import get_x,get_features

f=get_features(x)

from explainers.pi.pi import pi_trans,pi_plot

p = pi_trans(model=m, feature_names=f, preserve=True)

pi_plot(p)

from explainers.pdp import pdp

from utils import get_x,get_features

x=get_x(d,target="SWC") # feature matrix

f=get_features(x) # feature names list

#1.one-dimentional PDP object

pdp1=pdp.pdp_isolate(model=m,

                     dataset=x,

                     model_features=f,

                     feature="TS")

#2.PDP plot

fig3, axes =pdp.pdp_plot(pdp1,"TS")

plt.show()

#3.obtain PDP result as dataframe

print(pdp1.count_data)

#4.two-dimentional PDP object

pdp2=pdp.pdp_interact(model=m,

                      dataset=x,

                      model_features=f,

                      features=["TS","DOY"])

# 5.PDP plot

fig4, axes = pdp.pdp_interact_plot(
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    pdp_interact_out=pdp2,

    feature_names=["TS","DOY"],

    plot_pdp='contour')

#6.obtain PDP result as dataframe

print(pdp2.pdp)

plt.show()

   x      xticklabels  count  count_norm

0  0  [-10.64, -7.01)    122    0.111314

1  1   [-7.01, -4.98)    122    0.111314

2  2   [-4.98, -1.19)    121    0.110401

3  3    [-1.19, 0.44)    122    0.111314

4  4     [0.44, 3.74)    122    0.111314

5  5      [3.74, 6.5)    121    0.110401

6  6       [6.5, 9.7)    122    0.111314

7  7     [9.7, 11.64)    122    0.111314

8  8   [11.64, 16.49]    122    0.111314



 

Individual conditional expectation  

ICE was proposed by Goldstein et al. (2015). The ICE concept is given by:
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For a feature of interest, ICE plots highlight the variation in the fitted values across the range of covariate. In
other words, the ICE provides the plots of dependence of the predicted response on a feature for each
instance separately.

 

Accumulated Local Effect  

The ALE is a more sophisticated method to evaluate the feature effects, owing to averaging the differences in
the prediction model for conditional distribution (Apley et al., 2019). One-dimensional ALE (1D ALE) shows the
dominate effects with the feature of interest variation.

from explainers.ice import ice

ice_obj=ice.ice(data=x,column="TS",predict=m.predict)

icep=ice.ice_plot(ice_obj,

                      column="TS",

                      plot_points=True,

                      color_by=None,

                      plot_pdp=True)

plt.show()
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And the constant c is calculated to make sure the following equation:

where fj donates the ALE values and it visualizes the main effect dependence of modelling on x_j, x(i,\j)=(x(i,l):l=1,
…,d;l≠j), where the subscript \j means all feature but the j-th. Similarly, Nj (k)=(z(k-1,j),z(k,j);k=1,2,…,K) donates a
sufficiently fine partition of the sample range of x(i,j) into K intervals.

from explainers.ale.ale import ale_plot

import matplotlib.pyplot as plt

from explainers.ale.ale_output import ale_output,ale_plot_total

#1.one-dimentional ale

ale_plot(model=m, train_set=x, features='TS',plot=True)

#2.two-dimentional ale

ale_plot(m, train_set=x, features=tuple(['TS', 'DOY']), plot=True, bins=40, 

monte_carlo=False)

#3.one-dimentional ale plots of all features

#plot

ale_plot_total(model=m, data=x)

#data_frame in csv

ale_output(model=m, data=x,preserve=True)



All one-dimensional ALE plots can be presented by ale_plot_total().

(C:\Users\Acer\AppData\Roaming\Typora\typora-user-images\1643785450077.png)

 

Two-dimensional ALE (2D ALE) solely displays the additional effect of an interaction between two features,
which does not contain the main effect of each feature.

 



Shapley values  

Considering the all-possible interactions and redundancies between features, all combinations of features are
tested. Apart from the evaluation for the training set, the Shapley values method can be applied on any data
subset or even a single instance (Shapley and Roth, 1988). The Shapley values of a feature value is its
contribution to the predicted result, weighted and summed over all possible feature value combinations
(Štrumbelj and Kononenko, 2013):

where S is a subset of the features used in an alliance, x_i is the vector of feature value of interest of instance j, p
donates the number of features, and val is the prediction for feature values in subset S that are marginalized over
features that are not included in subset S.

At first, the Shapley values function is treated as a vessel.

record_shap() can export calculated shapley values in "shap.csv".

from model.randomforest_gv import randomforest

from explainers.shap_func.shap_func import shap_func

ss=shap_func(m,x)

ss.record_shap()
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single_shap() offers shapley values for an individual instance.

feature_value_shap() provides shapley values distribution with feature values.

ss.single_shap(nth=6)

#nth donates sequence of instance of interest.

ss.feature_value_shap()



time_shap() provides Shapley values distribution with time series.

 

depend_shap() provides Shapley values distribution with TS variation.

 

mean_shap() provides averaged Shapley values of features.

ss.time_shap()

ss.depend_shap(depend_feature='TS')

ss.mean_shap()



intera_shap() provides averaged Shapley values under two features' interaction.

ss.intera_shap()



 

Local Interpretable Model-Agnostic Explanations  

Local Interpretable Model-Agnostic Explanations (LIME) is an attempt to make these complex models at least
partly understandable (Ribeiro, et al., 2016). Generally, the surrogate model after training, aims to
approximate the predictions of the underlying black box model.

 

from explainers.lime_func.lime_output import lime_func,lime_output

import numpy as np

exp = lime_func(model=m, 

                train_data=np.array(x), 

                feature_names=f, 

                target_feature="TS", 

                instance=x[0])#number 0 is the sequence of instance.

ins, out = lime_output(exp, plot=True)
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Contributing  
ExplainAI uses MIT license; contributions are welcome!

Source code: <https://github.com/HuangFeini/xai

ExplainAI supports Python 2.7 and Python 3.4+ .
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