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Introduction

NaMaster is a C library, python module and standalone program to compute the pseudo-C, estimator
of the angular power spectrum between two masked and contaminated fields (this is also the so-called
“MASTER” algorithm). The contents of this scientific documentation describe the algorithm, drawing
heavily from the methods presented by [1] and [2], extending their results to arbitrary cross-correlations
between spin-0 and spin-2 fields (see also [3]).



Generalities and SHTs

Let a(f1) be a spin-s, quantity defined on the sphere. Then we define its spherical harmonic coefficients
as:

aym = SHT (a(n));2, = /dﬁ YE;‘J(ﬁ) a(n), a(i)=SHT (as,) = Z Yoo (D) agm,. (1)

m

Note that here we will use a vector notation, such that for a complex spin-s, field a we form the vector
a = (Re(a),Im(a)). The harmonic coefficients above are decomposed in a similar manner into £ and B
modes: ag, = (af, ,al ). The spherical harmonic operators Y* are therefore matrix that we define in
the following subsection.

Spin-weighed spherical harmonics

Let d and 9 be the following complex differential operators defined on the sphere when acting on a spin-s
quantity fs:

0fs = —(sin6)’ <89 +1i O > (sin@)~* f4(0,0), Ofs;=—(sinf)"* (89 —1 O > (sin @)’ f5(0, ). (2)

sin 6 sin 0
The following properties can be easily derived for the action of these operators:

* is a spin-(—s) quantity.

o If f, is a spin-s quantity, (fs)
e Of, is a spin-(s + 1) quantity, and df, is a spin-(s — 1) quantity.
o (0"f) =0"(f)"

* 9(fg) = fOg+g0f

o 3%(fg) = f0%g + g0°f + 00y

We start by defining the spin-weighed spherical harmonics with spin s > 0:

. = {—s)!
snm = af,saénnu 75Y7Zm = aZ,s(_l)égbnm7 s = EK‘FS;“ (3)

which have the property: (sYgm)* = (—1)5T" _;Yy_,,. We then define the E-mode and B-mode spherical
harmonic vectors as:

E E — _0[&3 0° + 88_ — _1 S}/Zm + (*1)8 —s}/Zm

Yiem =D Yem = =5 ( —i(* — 5 )Ym =3 ( —i(sYem = (=1)° ~Yim) ®
B _ 1B — _ae,s Z(as _55) — _1 Z(s}/@m - (_1)5 —snnL)

SY@m - Ds Ykm - 2 ( 65 + 65 )/Zm — 2 snm + (71)5 —snm bl (5)

which also defines the differential operators DB, These functions, for s = 0 are simply DF = (Y;,,,0)
and DF = (0, Yy,,).

The matrix operator \A(jm is then defined as having SYZ’LB as columns:

1 ( szfm + (_1)5 7SYYEm Z(snm - (_1)8 75Y—£m) >

Vs — E B _ -
Yem - (sY£m7s Yémﬂ) - _i<sY€m _ (_ )s 75Y€m) sYZm + (_1)3 75}/&%

: (6)



The matrices ?jm satisfy the following relations:
Vi = ()Y, (7)
/ daY;, Vel = 1600 mme (8)
Bie, = [ i (V710 ¥, ) Y500 o)

:(_1)s+m\/(2£+1)(2€1+1)(2£2+1)( 2 RS )(z 01ty

d
47 —-m mi M s —s 0) b+l

(10)
o L[ 1+(=1)" —il—(=1)"
=z (a0 G, -

where we have abbreviated the pair (¢, m) as 1.
Finally, the following orthogonality relation for the Wigner 35 symbols is useful:

Z /¢ 61 62 / 21 [3 _ 522Z35m2m3 (12)
moomyp Mo m mp ms 205 + 1

mmy

E and B mode purification

We define a field f to be a B (F) mode if (D;E(B))Tf = 0. At the same time, and under the definition of
the dot product:

(f,g) = /dﬁng, (13)

we define a pure B (F) mode as a field that is orthogonal to all E' (B) modes.

Since DPID? = 0, one can always generate a B (E) mode by applying D§(E) to a scalar field. It is
then possible to show that F and B modes thus defined are orthogonal in the full sky:

(D, DBy) = / 45 (DF o) DEY = 0 (14)

This can be done by integrating by parts and noting that the celestial sphere has no boundaries. On a
cut sky, however, and for s = 2, this is only true if the fields satisfy Neumann and Dirichlet boundary
conditions simultaneously (i.e. vanishing value and first derivative on the boundary of the cut sky region).

Let w(f) be a sky window function defining the sky region to be analyzed (and the weight to be
applied in each pixel). The standard pseudo B-mode of a field P is then given by

B = /dﬁw(ﬁ) (Y2, 0) P = /dﬁw(ﬁ)(Dfnm)TP(ﬁ), (15)

Now, since Df Yem is a B-mode, in the absence of w this expresion would correspond to a projection
that filters out all the E-modes from P. However, w(i)D?Yy,, is not a B-mode, and therefore By,
receives contributions from ambiguous E modes (which then propagate into the variance of the pseudo-
Cy estimator of the power spectrum).

The idea behind B-mode purification is to move w to the right of D, defining the field:

BY = /dﬁ (D (wYem)) P(a). (16)

Since DZ(wY;,,) is a B-mode quantity, BY  should receive contributions only from B-modes.
Expanding D (wY,,,), we can write B} = as:

- 5 B ary (= \B _\B
ém:<2) 42 (Pl) +ag,2(P2) : (17)

Im Qy 1 m m

where (f)7 stands for the B-mode of field f, and we have defined the fields P, = (32~ "w)*(Q + iU),
where Q and U are the real and imaginary parts of the field P.
Note that the derivatives of w can be computed as:

W = Wy, = SHT(w) — {nwfm = (—1)H1Ugm/044,n, nwfm = O} — 0"w = SHT_l({ anEm, nwfm}) (18)



Contaminant cleaning

Let a be a random field defined on the sphere, let v(fi) a mask for a and let f* be a set of N, contaminants
of a such that the observed version of a be:

Na

d,(h) = a"(h) + > a;f'(h), (19)

i=1

where a¥(n) = v(h)a(f) (note that we have implicitly applied the same mask to f?). The best-fit value
for the coefficients «; assuming the same weights for all points in d, can be found as

: :ZMij/dﬁij(ﬁ)da(ﬁ% (M_l)ijz/dnf”( ) £ (). (20)

Thus we can find a cleaned version of a as:

a(n) = d,(n) — f'(a) M;; / di'f77(d’)d, (A')

= a’(n) — £ (n) M;; /dnf” q’), (21)

where there is an implicit summation sign over i and j (we will omit these from now on).
The harmonic coefficients of the cleaned and masked field are:

éfm = azm — f;mMU E fJ,Tm,az,m,. (22)

'm’

From now on we will simplify the notation by abbreviating the pair fm as 1, so that the previous equation
reads: ' .
a =af —f{M; > flaj. (23)

The harmonic coefficients for the masked field can be related to those of the unmasked one and the
mask v (understood as a spin-0 field) as:

aj = Z Diglallzall U1, - (24)

112

Pseudo-C/; estimators with mode deprojection

In what follows, for two fields a and b we will define their observed power spectrum as:

~ 1
ab __ E T
Cz = m - a(mbem. (25)

This must not be confused with the true power spectrum defined as an ensemble average for isotropic
fields: R
(aybl,) = CE000: 8- (26)

Now, let & and b be the contaminant-cleaned versions of two random fields a and b with contaminants
f* and g’ and masks v and w respectively, and let us define

(N, = /dﬁg“(ﬁ) &/ (4). (27)

The observed power spectrum of the contaminant-cleaned maps can be written as:

- 1 o

ab — v pwt ij vpwt g it

=501 2 imPim MlZZa by el gl -
2e+1ZZf1f”ai’/bi"*+ %H 1SS b (28)

m 11



In order to compute the bias of C?B with respect to C?b, we need to compute the ensemble average
of the former, which we will write as:

(CP) =FL—FF—F+ P, (29)
where:
C 1 v w &2 1
F%EWZ@mbeJJv Fi = ; ZZ ajby'el g (30)
P= LSS g gy, Fl= L M N* NS (i apby gl gl (31)
2£+1 — 2£+1 — L rersl

We will now compute the ensemble average of each of these terms.

7
c1 1 sut
Fl= o > v,y Dity, (e, bl DY,
mly 234
1 s
= 21 Z Ulgw13D181112C Dllbjls
mly 2.3
1 L (204 1)(200+ 1) L b Ly 2 SR
T 2+1 Zl: ot 4m V@l +1)(26 +1) Sa —Sa 0 s, —sp 0
112,3
a spT 12 El 62 / El 63
d5+51+ézc dei@1+€3 Z ( —-m mi Mms > < —-m mi ms3
mmi
(200 4+ 1) (202 + 1) sy [ £ €1 Uy e b Ay . abjset
B Z Arr Ct, Sa —Sa O sy —sp 0 70y 10, VA 1, (32)
Zlez
For v = w = 1 this reduces to C'Z“’ = 476y and:
. l l L by b su s
Fi= (201 4 1)(262 + 1)dp,0 ( ;a 02 > ( sy —sp O >d£+21+zgc AU
Zlég
Y4 61 0 4 61 0 Sa absut
_Z 201+ 1) ( sy —s. O>( s ())dEHlC@ dg%y,
Dy, C0 2 e
= Z 201 + 1)6¢, dye, Codee,
- V20 + V2041 v
= d3; Ci*dyy’
=g
f

e [ s gt o ot .
%=%/mm>gﬁ#WMWﬂw%%><>w<g&%%mmmw>

= N} = 2@+1 {/dnv )YieT(q) élzm:l Yo (a)Ceb (/dﬁ’\?i”(ﬁ’)gj(ﬁ’)w(ﬁ’)>] g;‘T}
— N, %Zm SHT{ (A)SHT [C‘;bSHT (wg'); ] }1 glt (33)



For v = w = 1 this reduces to:

F2= N, Mzm SHT {SHT " [C¢'SHT (gj)fl”rﬁ“}:“ gl
Al

— N* Cabw
20+ 1

_ A7 (abFrg’g’
= N;; € ¢y

i
~ ~ 1A Zml’llr i pitNss A INNTS . /A O] Sp ~
F} = M / didi’ =g Y @)Y () (b, ) Vi (0)Y5 (), wf, Vi, ()Y ()
Z ~ ~ ~ Sa(a ~ab\ys ~ ' Sb (A
=ty ] ) | S ( [ ety m) ) v )] V)
Zlml
. s 186 SuT
— M, %m £ SHT{ (A1) SHT ! [c;fTSHT (ufﬂ);jﬁ”}lb (34)
For v = w = 1 this reduces to:
b3 Z _ abt y by Sut
P = Myt SHT{SHT [CirsHT (£7), L}l
Zm fém Im Cab
EANDYES|
= M, ¢
Fi
ea  MigNpg [, it sat (Vs (a byt (an sy Pty o x v (VY (A
Fo= o7 + 1 dndn Z i Yy (n)Yll'( n)(ay, b;. >Y13 (n )Yl”( n')g}, g v, wi, Y, (B) YY) (8)

ml’l"1y 2 3,4

+
M;;N* . .
=9 P ff{/dﬁv(ﬁ) £71(n)

20+1

> Vi @)Cy ( / dir ﬁf*(ﬁ')g%ﬁvw(ﬁw)] }gf’*

£1my

— MyN;, {/dnv )£9t () SHT™ [cabSHT (wg? )ﬂ } ¢l (35)
For v = w = 1 this reduces to:

i fane s epmens] e

= MyN;, { [ G0 YV el } ¢

I

* pJ igP
= MiijqflJlTCgfgiz Cf 7

— My;N;, lZ(% +1)Tr (Cgfégffj)] Lo
£y



Final form of the estimator

Putting together the results from Equations 32, 33, 34 and 35, we can write down an unbiased estimator
for the pseudo-Cy of the cut-sky maps free from contamination from f and g:

Cob b | N7, Dom SHT{ (A)SHT ! [C‘;f’SHT (ng)lsf]z }1 Bt

00y

Yom —1 [pabt b oot
My g fISHT{ () SHT [c SHT(va)l]n}l -
—MijN;q{/dnv( ) £91 () SHT ! [cabSHT wg) } }C{ig” (36)

Once C* is calculated, it can be corrected for the effects of masking by inverting the linear transfor-
mation in Eq 32. This transformation can be written explicitly by first transforming the power spectrum
matrices into vectors ,C. E.g. for s, = s, = 2 we transform:

CEaE
4
CEaEb CEaBb N CEaBb
b — : b —
C? = ( CjBaEb CjBaBb into ’UC? = CEB‘IE” . (37)
CEBaBb
We can then write, in general:
ZMW (38)
where:
20" 41 y o (0O 0N
Me,—T;(% +DCE 4 0 o (39)
R 20 + 1 T T
0+ 0+ _ 1 VW
Mep = Myi i, Mgh=—— ;(26 +1)Cpt <0 0 0 )(2 5 0 ) (40)
Mt 0 0 M,
0 ML" -M,” 0
e . (41)
M,,~ 0 0 MF
20 +1 A AN T o )
++ 1" vw
Mg = = >+ e (2 P ) — (42)

o

If either the B or E modes of a spin-2 field has been purified, the equations above must be modified
by carrying out the following modification in the equations above:

(15 5)- “
e C+DIE=2 "+ (¢ ¢ o =2 +2)! (¢ ¢ 0
<2 —2 0 )*2\/(4_1)!(“2)1(@"_1)!(1 —2 1 )+ (£+2)'(é—2)'(0 -2 2 )

/ 1
This change must be applied to the corresponding factors of ( 5 voL )

Beam

Adding the effect of a beam amounts to redefining:
Moy — M b, (44)

where b3° is the product of the harmonic transform of the beams for maps a and b.



Computing (C])

Consider the case where the window function is just a flat top-hat multiplied by the inverse variance of
the noise:

W (h) = O(h) U;f ?’ﬁ), (45)
N

where 03 (1) is the variance per sterad at each point and &3 is its sky-averaged value.
For uncorrelated noise, we can write N (1) as

N(n) =wu(n)oy(n) (46)

where u(n) is a white GRF with power spectrum C}* = 1. In this case, the noise pseudo-C; can be
estimated theoretically:

~ =2
/anN YW2(5) /dQ@ (f) ) = foky O (Uév) (47)
N

Binning into bandpowers

Given the loss of information implicit in masking the originally full-sky field, it is in general not possible
to invert Eq. 38 directly. De usual approach to doing so is by binning the pseudo-CY into bandpowers. A
bandpower b is defined by a set of N, multipoles £, = (£}, ..., ;") and a set of weights @, = (wf, ..., wp")

normalized such that Z =1 wb = 1. The b—th bandpower for the coupled pseudo-Cy is then defined as:

Nz, Nb
By = Zwé UC% = Zwb Z I\/IZ“;}’ .Co. (48)
i=1 i=1 v

One then proceeds by assuming that the true power spectrum is a step-wise function, taking constant
values over the multipoles corresponding to each bandpower: ,C; = >, ,ByO(£ € £;,) (where O is a
binary step function). The previous equation then reads:

By, = ZMbb/ uébb/ = Z Z Z ngZE’ 'uéb’a (49)
b

b N\eet, ety

which defines the binned coupling matrix My, . The decoupled bandpowers are then estimated by
inverting M:

By = (M) B (50)

b/
Note that, since this procedure is based on the assumption that the true power spectrum is step-

wise constant, the bandpowers computed this way should be compared with the theoretical prediction
subjected to the same type of transformation. I.e. the theoretical prediction for the bandpowers is:

va = Z (M)I;)} Z wf;: Z My grr ng//, (51)

b’ Z’Efb/ Y

where we the overline ~ denotes theoretical predictions.

Gaussian covariance matrices

For three scalar fields a, b, ¢ and d, with masks w®, w®, w® and w?, the covariance matrix element

between the coupled pseudo-Cy for (a,b) and (c,d) is given by:

(ACEACH) = 3 3 (CoeChiwi, Wik, Wi, Wil, + CEachews, wih, i, Wil,) (52)

mm/’ 1115



Under the approximation Cngé’j — C’&CC%I, where X(,Yy) = (X.Ys + X3Ya)/2, this gets simplified to:

<AégbAég,d> & O CH B (w0, whw) + CHOY Zpp (win?, whu®). (53)
Here: )
_ =20+ 6N e
HZZ’(Q ¢) = [Z Ar < 0O 0 0 ) Cll . (54)

Finally, we can compute the covariance of the coupled bandpowers by averaging within each band-
power:
Covig? "V = (A, BPABY ) =30 3 wiwf (ACACH), (55)
tek ek’

and the covariance of the uncoupled bandpowers is given by the linear transformation:

<(Avéab) (AvéCd)T> _ (Mab)_1COV(ab)’(Cd) ((Mcd)_l)T (56)

Flat-sky

Fourier transforms

In the flat sky we will write the directional vector n as x. Let a(x) be a spin-s, quantity. Under the
approximation sinf ~ 1, Af — —Axz, Ap — Ay, the differential operator 0 now takes the form:

3= (0, —id,), 8=(0,+id,), (57)

and acts on a plane wave e’

kx ag:
8seikx _ (ik)seii SPL eikx’ éeikx _ (Z'k)sei SPL 6ikx (58)
Let us define the basis functions:

syk(X) = k—s5seikx — 4 e—isgakeikx, —syk<x) = (_k/,)—séseikx _ (—Z) 6is<pkeikx’ (59>

and the spin-s Fourier coefficients:

0= [ o, @)= [ 5 ie) (60)
al\x) = 27T_slxsal7 a (X) = 2ﬂ_—slx—sal>
dx? _, dx* Sl
sa) = / o sV (X)a(x), _sa = /ﬁ _s Y (x)a* (x). (61)
The E and B-mode coefficients are then defined as:
1 _ 1 .
= ~5 [sa1 + (-1)° _sa1], isB1= ~5 [sa1 — (—1)° _sa] . (62)

Note the preceding (—) sign. For scalar fields (s = 0) the F and B modes are defined omitting that sign.
Let us now write a as a vector such that in real space a(x) = (Re(a),Im(a)), and in Fourier space
a) = (sF), +B1). We can rewrite the equations above in vectorial form:

a(x) = / ﬂsEl(x)al, a; = / dx Ef (x)a(x), (63)

2 o ®

1The approximation made by e.g. [5, 6] is CglcCé’;l — 4 /Cgccg,ccgdcgﬂ, however this is not possible for possibly-negative
cross-correlations, which motivates the arithmetic rather than geometrical mean used here.



where we have defined the matrix basis functions:

— 1 sy + (_]-)S 75:)) Z( sy - (_1)8 753))
sBilx) = 2 ( —i( 33)1 —(=1)° 753}1) sy]1+ (=1)° 753711 ) (64)
1 0°+0°  i(0°—0°) \ ix
s ( —i(0° —9°) 0°40° ) e’ (65)
o costsp)  sin(sp) )
( —sin(sg;)  cos(sy;) ) (66)
_ 77:SRT(S()0[)67;1X, (67)
where R(¢) is a rotation matrix.
Thus:
Q(x) \ i d712 cos(syy)  sin(sy;) <1 ol
( U(x) ) o /27r ( —sin(sp;) cos(sgy) ) ( <B1 > : (68)
B\ e cos(sg;) —sin(spy) o
( sBi ) =-(=9 ( sin(sg;)  cos(syp) > ( Uy >’ (69)

where Q) and Uj are the standard Fourier transforms of @ and U.
The functions Ej(x) satisfy the following orthogonality and completeness relations:

x2 2
/ éﬁsE‘(X%E“X)”(ll’)v / % E1(x),E] (x) = 15(x — x'). (70)

Pseudo-C; estimator - continuum limit

The Fourier coefficients of the masked field are:

= [ [ [ el Bl 0l @
Z/CS{;R(%(W—%)) akvl—k, (72)

which, for instance, in the case of a spin-2 field, read:
EP N\ dfk2 cos2A¢ —sin2Ap Ex (73)
BY )7 ) 2x R\ sin2A¢p  cos2Ap By )

where Ay = ¢y — . Then, the covariance of the Fourier coefficients of two masked fields is:

<ai’ b'{"T> = // %R(sa(w - ©r)) <akbf1> RT(sb(apg — gpq))vl_kwffq (74)
2
_ / %R(saAgo)CszT(sbAgo)vl,kwiik. (75)

The pseudo-CYy is defined as the nomalized angular average of alblT :

ab — (27T)2 @ v pwt
€' =" /27r <al by > (76)
kdk qdq [ (27)? [ de i} o
:/ (2r)? { 5] ax v / dprdpiR(sa D) R (s:89)0(a — 1+ k)|, (77)

where S is the observed sky area (in sterad), and where we have eliminated the dependence on 1 — k by
introducing an additional integral over dg®§(q — 1 + k).
As shown in [4], these expressions can be simplified through the following steps:

1. Substitute 9
[ - r
S(g—1+k)— / (7 d]r)ze (a—1+k) (78)

10



2. Integrate over the angular parts of r, 1 and k using the following relation:
2w
/ dpe!® 5%t = o™ ], (x), (79)
0

where J,, is the cylindrical Bessel function of order n.

3. Integrate over the angular part of q, defining the pseudo-power spectrum of the masks:

~vw 2m > *
cv = %/dgpqvqwq (80)
4. Solve the last isolated integral over the radial part of r by using the following relation:
e cosnb
drr J Jn(kr) Jp(br) = ———— 81
| drrdan 1) 200 = S5 (81)
where 6 is the angle between sides ¢ and k of the triangle formed by three sides of length ¢, £ and
k.
5. Make the change of variables ¢2(¢, k,0) = (> + k? — 2kl cos 6 to simplify the integral over the radial
part of q.
This yields the following relation analogous to Eq. 38:
/ dk Mgz ., Cab, (82)
where:
kE [Tdf -
00 __ vw
My = %/O - Cq(e,k,a) (83)
0+ 3 0+ _ T db o
Myt = My 1, My! = P C a(t,k,0) €08 20 (84)
MY 0 0 M~
0 MpE —My,m 0 ko [™do - 1 = cos 46
M22, — ML, o’ \ Mi/i — 7/ hadl me = 85
Y24 0 _MZZ/ M[;;/Jr 0 y74 27_[_ 0 T q(&k,e) 2 ( )
M.~ 0 0 ML"
These can also be expressed as integrals over g:
k d
M = o 1 qC”“’F(E k,q) (36)
7r
ot qdq o €4+k4+q4_2k2q2_2£2q2
Mzk_—/ C R (e, k, ) o (87)
k qdq Ok 4 gt 2k — 20242
Mt =— C““’F 0k, 88
A= (tha) | o )
2
L qdq = 0k gt — 2K2¢% — 20%¢?
M, = ——CYF(lk
ek 277/ Cy ) ( { 91202 , (89)
where
[ AQPE? 4222 42202 — 1 — Kt — g TV? iflk—ql <l <k+q
(€ k,q) = { 0 otherwise (90)

Since in the flat-sky limit ¢ is a continuous variable, we define bandpowers ,B;, as averages over a
given interval in ¢, [£}, £9]:

3 o

+By = Nb/ ——Ce (91)

o by =4

The binned coupling matrix is therefore given by:

ef o f

al b
My = / / dl' My 92
" I Ef 0 i " 52)

11



Pseudo-C, estimator - discrete formalism

The main complication in using the pseudo-Cy formalism in the continuum limit is the need to compute
the angle-averaged mask pseudo power spectrum Cy*. Flat fields are most easily analyzed when pixelized
in a Cartesian grid, and under this setup the mask power spectrum is not a well defined quantity for
infinitesitally small intervals of ¢. This leads to non-negligible biases and poor performance [4] due
to the need to use highly resolved finite intervals to compute the integrals presented in the previous
section. This motivates the discrete formalism described here, which connects directy with the data
storage format of flat-sky maps.

We will discuss the flat-sky pseudo-Cy algorithm starting from a pixelized representation of the sky
map. Let the patch of sky under inspection be contained by a rectangle of sides L, and L, (in units
of radians), and let us discretize this rectangle by dividing it into an N, x N, grid with pixels of
area Ax?> = AzAy = (L,/N,)(L,/N,). Each pixel in this grid is then labelled by a pair of integers
n = (ng,n,), and is assigned coordinates x, = (n;Az,n,Ay). The each component of the pixelized
map a(x) is therefore defined for n, € [0, N, — 1], n, € [0, N, — 1].

In this scenario, the spin Fourier transform of the pixelized field can be computed as its discrete

Fourier transform: Ax?
so x
ax = DFT (a)," = Z o s Ex(x)ax, (93)

where the wavenumber k is now discretized as k = (j, Ak, j, Aky), the integers j(, . run from —N(g /2
tof N(z,y)/2 — 1% and the pixel size is Ak, ) = 27/ Ly ).
The following properties of the DFT are worth remembering:

e Periodicity: ak, k,) = Ak, + NoAky ky) = Bk ky+NyAky) = A(ky+NoAky ky+NyAky)

e The power spectrum of the DFT is defined as:

5
(ajbl) = A‘Ii; cpb (94)

e For a real-valued scalar a, its DFT satisfies aj, = ) (where N = (Ng, Ny)).

e The orthogonality relation of the basis functions now takes the form:

> B (%) sBi(x) = NoNyopd (95)

X

Using the properties above one can prove that the Fourier coefficients of a masked field are:

af = ((x)al0), = Y0 2 R(sa (o1 — erawin (96)
k

and we can easily find the following relation for the covariance of two masked fields at the same wavenum-
ber:

VW Ak2 a *
<al b, T> = Z on)? R(54A¢0)CERT (5, A) v1_1cw;_y (97)
Kk

At this stage it is natural to connect directly with the final bandpowers (since there is no natural
minimal binning as in the case of the full-sky multipoles). In this case we will define a bandpower By,
indexed by an integer b as the average of the covariance above over a set of 1 values Sj:

By == aibl, (98)
b 1es,
where Nj is the number of Fourier-space pixels covered by S,. The bandpowers are related to the true

power spectrum through:
(,Bf") =D N, 1ZMSa e (99)
1€S,

2This is the valid domain when N(, . is even. For odd N(, , the interval becomes [—(N(z ) — 1)/2, (N(y ) — 1)/2]
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where the un-binned mode-coupling matrix is:

(27)?
M = VKW, (100)
LZL2
02 _ (27)? . cos2Ap  —sin2A¢p
My = L2L2 Uk | g 2Ap  cos2A¢p (101)
cos? 2Ap —cos2Apsin2Ap  — cos2Apsin 2Ap sin? 2A¢
M22 = (27T)2 — cos 2Apsin 2Ap cos? 2A¢p — sin® 2Ap —cos2Apsin 2Ap
e ™ L2 PRIk cos 2A¢sin 2A¢ —sin? 2A¢ cos? 2A ¢ —cos 2Apsin 2Ap
sin? 2A¢p cos 2Apsin 2Ap cos 2Apsin 2Ap cos? 2Ap
(102)

The mode-coupling matrix for the bandpowers is therefore given by:

M =3 Nt Y M, (103)

1€S, ke Sb/
Contaminant cleaning

Using the same notation as in Section 3, the contaminant-cleaned version of a is (c.f. Egs. 21 23):

a(x) = a¥(x) — f'(x) M, Z AX*f1(x)a"(x'), & =af —ffM; Yy AK*flay, (104)
k
and the unbiased pseudo-Cy estimator takes the form (c.f. Eq. 36):

(ab) = (aiby’") + N DFT {0o(x)DFT ™! [C/DFT (wg'),’] }la g+
spt

+ M8 DET {a(x) DFT [EDFT (07)30] 7} -

—MijN;q{ZAX v(x) £ (x) DFT {C;}fDFT(wgq)f} }fl v (105)

E and B purification

The analogue equations for the pure B mode component in the flat-sky approximation are:
-\ B - \B - \B
Bf = (P2)1 +20™ (Pl)l +e (Po)l ’ (106)

(and a similar relation for the pure E component), where P, = (8% "w)*(Q + iU), and w is the sky
mask. The derivatives of w can be taken by using the following relation:

6nw(x) = / Céljan lewl == / d12 nyk< )( 1) — W = E"wl (107)
n =N d12 npn

(0" w(x))* = Tw(x) = / 5 GO (FD"wn) > = (1) 0wy (108)

((0"w(x))”, (0"w(x))") = (~€"wy,0) (109)

Note that a mathematically simpler relation for the pure components is:

dk? k2
Bf) :/ o Bkwl kEQ (110)

(and similarly for EY). Comparing with Eq. 73, we see that the key to work out the expressions for
the pure-E and B coupling matrices is to substitute all factors of cos 2A¢p for k2 /%, and all factors of
sin 2A¢p for 0.
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Gaussian covariance

Using approximations similar to those described in the full-sky case (see previous section), we can prove
that the Gaussian covariance matrix for the coupled bandpowers of 4 scalar fields a, b, ¢ and d is given
by:

(ABIPABY) = B{sBY, Egg (ww®, whw?) + BB Zgq (ww, whw®), (111)
where (2m)?
_ _ _12m "
o (6:0) = D NT D NG s vt (112)
1€S, res, Ty
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