Advanced topics

Contents
1 Overview 1
2 Running The Sleeping Lion on Linux 1
3 In depth study of the GML format 2
3.1 Opverall structure and syntax 2
3.2 General class properties oL 3
3.3 Creating cards 4
3.4 Adding your own aliases 4
4 Pixel coordinates to hexagon coordinates 6
4.1 Three sets of coordinates, 6
4.2 Computing a clicked hexagon’s hexagon coordinates 7
4.3 Computing clicked hexagon’s column 7
4.3.1 Special case: r, > @ 8
4.4 Computing clicked hexagon’s line 9
441 Specialcase: Ty >a 9

1 Overview

This document goes into more advanced notions. It is intended for those wanting
to understand what is happening behind the scenes, or who want to contribute
to the project. It is not intended for end-users.

2 Running The Sleeping Lion on Linux

The general way of using The Sleeping Lion on Linux is by running the command
thesleepinglion. This will show the graphical interface.

However, one can also bypass the user interface by specifying a GML file to
parse. Additionnaly, one can also give a target path to which the PDF file will
be saved (if this path is not given, the resulting PDF will be placed at the same
location as the GML file). For example, one can run:

thesleepinglion Spellweaver.gml (will create the ”Spellweaver.pdf” file)

thesleepinglion path/to/gml path/to/pdf

3 In depth study of the GML format

3.1 Overall structure and syntax

A GML file can essentially be divided into three parts:

e a part where you will be defining a few general properties about the custom
class you are creating, such as the background color used for the cards or
the class’s symbol

e a part where you will be defining each card separatly. For each card,
you will be filling out fields corresponding to the name of the card, the
initiative, the actions in the top part of the card...

e shortcuts to make writing a GML file even easier (aliases).

Whenever writing a GML file, you will often be assigning values to certain
fields: if you already know YAML, JSON, Ansible or RAML, then this should
feel familiar: in fact, the GML format is built on YAML. The general way to
do this is by using the following syntax: field: value. For example, when
writing down the properties of a card, you will have to write initiative: 14 if
you want the card to display an initiative of 14. Note that the fields must have
a specific name: The Sleeping Lion will not recognise the words initiativ,
initiatve or any other word which hasn’t been thought of when designing the
parser. Finally, note that no field is mandatory in GML. The cards may be
a bit ugly, but there is no field that you must write down for the parser to work
properly.

In GML, indentation matters. The identation in itself should always be the
same and should be of 2 blank spaces: its presence or absence matters. Writing
the following

initiative: 14
level: 1

or

initiative: 14
level: 1

does not mean the same thing, and can generate errors.

Note: When using the graphical interface, The Sleeping Lion replaces every
tab by two white spaces. When editing manually a GML file, take care to add
only white spaces (two white spaces per level on indentation) and not tabs.

Overall, your GML file should have the following structure.

class:
fieldl: valuel
field2: value2

card_namel:
fieldl: valuel
field2: value2

card_name2:
fieldl: valuel
field2: value2

aliases:
fieldl: valuel
field2: value2

Note the indentation, and the colons. Detailed information about each part
(class, cards and aliases) is given in the following sections.

3.2 General class properties

The first part allows you to define a few class-defining parameters such as the
background color for cards. Here is how you would write those properties for
the Spellweaver.

class :
name: Spellweaver
color: 125,0,125
path_to_icon: path/to/icon/

Let’s break down each line in this example:

e class means you are defining the global properties for this class. Note
that every other value in this part is indented one level compared to the
keyword class.

e name is the name of your class.

e color is the background color used for every card for your class. You
should write three values between 0 and 255, separated by comas. These
values correspond to the RGB (red, blue, green) color used for your card.

e path_to_icon is the path to an image (preferably a .svg file, but you can
also put a .png) which will be used as an icon for your class and will be

3.3

displayed at the bottom of every card. The path should be a relative path
from the gml file (something like ../../Gloomhaven/icon.svg).

Creating cards

You may now create as many cards as you want. Each card should have the
following syntax:

Fire Orbs:
level: 1
initiative: 69
ID: 061
top: |2

\attack{3}

bottom: |2
\move{3}

Note that the names of the cards must be at the same indentation level as
the keyword class, defined in the section above.
Let’s break down each line in this example:

3.4

Fire Orbs is the name of the card we are currently creating. Note that
every other value in this part is indented one level compared to the name
of card.

level corresponds to the level of the card and will be shown at the top,
in a small crown. You may also give letters, such that level: X is valid.

initiative corresponds to the initiative of the card and will show in the
middle. You may also give letters or numbers with more than two digits,
although it may look ugly on the card.

ID corresponds to the card ID and will be shown in small at the bottom
of the card. You may also give letters or numbers, such that S001 is valid.

top must be followed by the "pipe” symbol | as well as the number
2. Also note that the text is again indented one level compared to the
keyword top. This is where you will be describing everything the top part
of the card does. The syntax for describing the top (or bottom) half of a
card is described in the tutorial.

bottom is the same as top only the actions listed here will be displayed
on the bottom of the card.

Adding your own aliases

The Sleeping Lion allows you to define your own aliases to write down simply
your custom actions. To do this, simply add a new part to your GML file called
aliases, as such:

aliases: |
custom_aliasl = something

Note the ”pipe” symbol | after the keyword aliases. You may define as
many aliases as you wish: each alias should be on its own line.

Note: to allow a better understanding of your cards to someone reading your
GML file, it is highly recommended to put the aliases section at the top of
your GML file.

4 Pixel coordinates to hexagon coordinates

This section describes some conventions used by the HexagonalGrid class to
draw a hexagonal grid and allow users to select a specific hex. Hexagons are
regular, so the only parameter is a the length of a side of a hexagon.

4.1 Three sets of coordinates

The HexagonalGrid class draws hexagons using the pointy-top orientation. Fur-
thermore, we use offset coordinates with an ”even-r” layout meaning even rows
are shoved right.

There are three sets of coordinates which we will be using:

e hexagonal coordinates, two integers encoding columns and rows follow-
ing the above conventions. In this document, hexagonal coordinates are
represented in italics, for example (0,0).

e internal pixel coordinates, spanning from the orthonormal basis of the
plane represented in red in the figure below. The origin (0,0) corresponds
to the top left vertex of the hexagon with hexagonal coordinates (0,0).
Note that the y-axis is pointing downwards, following cairo’s conventions.
In this document, internal pixel coordinates are represented using the
default font, for example (0,0).

e item coordinates, spanning from the same basis as internal pixel coordi-
nates, but shifted. This basis is represented in blue in the figure below.
The Sleeping Lion sees items as rectangular boxes: when drawing a box
totally encompassing an AOE, the top left corner of the box does not cor-
respond to the the origin of the internal pixel coordinates basis. Note that
just like the previous basis, the y-axis is pointing downwards.

(—e _g)

The three sets of coordinates used

Note that converting coordinates between the two basis of the plane is quite
simple, as it is simply a translation: hence we will be working in the internal pixel
coordinates (in red in the figure above). The get_origin_pixel_coordinates
function computes this translation.

4.2 Computing a clicked hexagon’s hexagon coordinates

Say the user clicks on a point (z,y): how can we find the correspond clicked
hexagon’s coordinates?
We define ¢, and r, as

x:qI*L\/?:aJ—krm

. Similarly, we define ¢, and r, as
3a
y=ayx 5 l+my

Defining 7, and r, shifts the problem back into the hexagon (0,0), which
makes reasoning easier.

Remember that by cairo’s convention, the y-axis is pointing down-
wards.

4.3 Computing clicked hexagon’s column

Given the position of a point (z,y), how can we compute the clicked hexagon’s
column? First, let’s split the hexagonal grid as shown in the figure below.

Notice that:

e if x is in the column labeled 717,
then it must be in column 0.

e if z is in the column labeled 727, it
can be in column 0 or 1.

e if x is in the column labeled 73", it
must be in column 1.

We can also note that each column has the same width, which is @
Therefore,

o ifr, < \/Ea, then point (x,y) is in column g,.

o if r, > \/Ea, then point (z,y) is in column ¢, or ¢, + 1.

4.3.1 Special case: r, > @

Once again, there are two possibilities according to the parity of g,, illustrated
in the figures below.

(Y32) (av/3,0) (Y32) (a+/3,0)
Qa ¢z +1
(av3a) (%22, a)
(e,) W T (v)
Case 1: g, is even. Case 2: g, is odd.

Case 1: g, is even

Note that if r, < a, then the resulting column is g, since the point is located
in the rectangle with coordinates (@,O) - (aV/3,0) - (aV/3,a) - (@, a).

We now assume that ry > a.

First, we translate all points by (av/3,a). In this shifted basis, the problem
can be summarized as:

= =1
1y— \/gx
e
(-%2.3)

Therefore, in the shifted basis, if y > \’/—%x, the column is ¢, + 1. Remember
that cairo’s convention is to have the y-axis pointing downwards.

Case 2: g, is odd

Note that if r, < a, then the resulting column is g, + 1, since the point is
located in the rectangle with coordinates (@, 0) - (av/3,0) - (aV/3, a) - (‘/an ,a).

We now assume that ry > a.

Here, we translate all points by (@, a). In this shifted basis, the problem

can be summarized as:

Therefore, if y < %x, the column is ¢, + 1.

4.4 Computing clicked hexagon’s line

Like before, let’s split the hexagonal grid as follow:
Notice that:

e if y is in the line labeled ”0”, then it
must be in line 0.

e if y is in the line labeled 17, it can
be in line 0 or 1.

e if y is in the line labeled 727, it must

))] be in line 1.
Line have alternating width a and 5. Therefore,

e if r, < a, then point (z,y) is in line g,.

e if vy, > a, then point (z,y) is in line g, or ¢, + 1.

4.4.1 Special case: 7, > a

Like before, there are two possibilities, according to the parity of g,:

(0,a) i (av/3,a) (Y32 q)
: qy qy
qy +1 qy + 1
3a 3a 3a 4 +1 9 3a
(3.%) (0,%) ’ (av/3,5%)
Case 1: g, is even. Case 2: g, is odd.

Case 1: g, is even

It is easier to split the problem again and to reason according to r,. More
precisely, we can split the above shape into two vertically, such that we treat
the cases r; < \/2‘3’“, and r, > @ separately.

Like before, we then perform a translation so that we simply need to check

on which side of a line the point (x,y) lies.

o, < @: we translate by (0,a). The result is ¢, + 1 if in this shifted
basis, y > %m

° Ty > @: we translate by (av/3,a). The result is ¢, + 1 if in this shifted

i _ 1
basis, y > e

Case 2: g, is odd

As previously, we split the problem in two vertically, then perform a trans-
lation.

o1, < @: we translate by (@, a). The result is g, + 1 if in this shifted

- 1
basis, y > — 5T

oy > @: we translate by (@, a). The result is g, + 1 if in this shifted
basis, y > %m

