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Abstract

Chemists can be skeptical in using deep learning (DL) in decision making, due to

the lack of interpretability in “black-box” models. Explainable artificial intelligence

(XAI) is a branch of AI which addresses this drawback by providing tools to interpret

DL models and their predictions. We review the principles of XAI in the domain of

chemistry and emerging methods for creating and evaluating explanations. Then we

focus on methods developed by our group and their applications in predicting solubil-

ity, blood-brain barrier permeability, and the scent of molecules. We show that XAI

methods like chemical counterfactuals and descriptor explanations can explain DL pre-

dictions while giving insight into structure-property relationships. Finally, we discuss

how a two-step process of developing a black-box model and explaining predictions can

uncover structure-property relationships.
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Introduction

Deep learning (DL) is advancing the boundaries of computational chemistry because it can

accurately model non-linear structure-function relationships.1–3 Applications of DL can be

found in a broad spectrum spanning from quantum computing4,5 to drug discovery6–10 to

materials design.11,12 According to Kre 13 , DL models can contribute to scientific discovery

in three “dimensions” - 1) as a ‘computational microscope’ to gain insight which are not

attainable through experiments 2) as a ‘resource of inspiration’ to motivate scientific thinking

3) as an ‘agent of understanding’ to uncover new observations. However, the rationale of

a DL prediction is not always apparent due to the model architecture consisting a large

parameter count.14,15 DL models are thus often termed“black box” models. We can only

reason about the input and output of an DL model, not the underlying cause that leads to

a specific prediction.

It is routine in chemistry now for DL to exceed human level performance — humans are

not good at predicting solubility from structure for example161 — and so understanding how

a model makes predictions can guide hypotheses. This is in contrast to a topic like finding

a stop sign in an image, where there is little new to be learned about visual perception

by explaining a DL model. However, the black box nature of DL has its own limitations.

Users are more likely to trust and use predictions from a model if they can understand why

the prediction was made.17 Explaining predictions can help developers of DL models ensure

the model is not learning spurious correlations.18,19 Two infamous examples are, 1)neural

networks that learned to recognize horses by looking for a photographer’s watermark20 and,

2) neural networks that predicted a COVID-19 diagnoses by looking at the font choice

on medical images.21 As a result, there is an emerging regulatory framework for when any

computer algorithms impact humans.22–24 Although we know of no examples yet in chemistry,

one can assume the use of AI in predicting toxicity, carcinogenicity, and environmental

persistence will require rationale for the predictions due to regulatory consequences.

1there does happen to be one human solubility savant, participant 11, who matched machine performance
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EXplainable Artificial Intelligence (XAI) is a field of growing importance that aims to

provide model interpretations of DL predictions Three terms highly associated with XAI are,

interpretability, justifications and explainability. Miller 25 defines that interpretability of a

model refers to the degree of human understandability intrinsic within the model. Murdoch

et al. 26 clarify that interpretability can be perceived as “knowledge” which provide insight

to a particular problem. Justifications are quantitative metrics tell the users “why the

model should be trusted,” like test error.27 Justifications are evidence which defend why a

prediction is trustworthy.25 An “explanation” is a description on why a certain prediction was

made.9,28 Interpretability and explanation are often used interchangeably. Arrieta et al. 14

distinguish that interpretability is a passive characteristic of a model, whereas explainability

is an active characteristic which is used to clarify the internal decision-making process.

Namely, an explanation is extra information that gives the context and a cause for one or

more predictions.29 We adopt the same nomenclature in this perspective.

Accuracy and interpretability are two attractive characteristics of DL models. However,

DL models are often highly accurate and less interpretable.28,30 XAI provides a way to avoid

that trade-off in chemical property prediction. XAI can be viewed as a two-step process.

First, we develop an accurate but uninterpretable DL model. Next, we add explanations to

predictions. Ideally, if the DL model has correctly learned the input-output relations, then

the explanations should give insight into the underlying mechanism.

In the remainder of this article, we review recent approaches for XAI of chemical property

prediction while drawing specific examples from our recent XAI work.9,10,31 We show how

in various systems these methods yield explanations that are consistent with known and

mechanisms in structure-property relationships.
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Theory

In this work, we aim to assemble a common taxonomy for the landscape of XAI while

providing our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify

XAI. According to their classification, interpretations can be categorized as global or local

interpretations on the basis of “what is being explained?”. For example, counterfactuals are

local interpretations, as these can explain only a given instance. The second classification is

based on the relation between the model and the interpretation – is interpretability post-hoc

(extrinsic) or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model

and is self-explanatory32 These are also referred to as white-box models to contrast them

with non-interpretable black box models.28 An extrinsic method is one that can be applied

post-training to any model.33 Post-hoc methods found in the literature focus on interpreting

models through 1) training data34 and feature attribution,35 2) surrogate models10 and, 3)

counterfactual9 or contrastive explanations.36

Often, what is a “good” explanation and what are the required components of an ex-

planation are debated.32,37,38 Palacio et al. 29 state that the lack of a standard framework

has caused the inability to evaluate the interpretability of a model. In physical sciences,

we may instead consider if the explanations somehow reflect and expand our understanding

of physical phenomena. For example, Oviedo et al. 39 propose that a model explanation

can be evaluated by considering its agreement with physical observations, which they term

“correctness.” For example, if an explanation suggests that polarity affects solubility of a

molecule, and the experimental evidence strengthen the hypothesis, then the explanation

is assumed “correct”. In instances where such mechanistic knowledge is sparse, expert bi-

ases and subjectivity can be used to measure the correctness.40 Other similar metrics of

correctness such as “explanation satisfaction scale” can be found in the literature.41,42 In a

recent study, Humer et al. 43 introduced CIME an interactive web-based tool that allows the

users to inspect model explanations. The aim of this study is to bridge the gap between

analysis of XAI methods. Based on the above discussion, we identify that an agreed upon
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evaluation metric is necessary in XAI. We suggest the following attributes can be used to

evaluate explanations. However, the relative importance of each attribute may depend on

the application - actionability may not be as important as faithfulness when evaluating the

interpretability of a static physics based model. Therefore, one can select relative importance

of each attribute based on the application.

• Actionable. Is it clear how we could change the input features to modify the output?

• Complete. Does the explanation completely account for the prediction? Did features

not included in the explanation really contribute zero effect to the prediction?44

• Correct. Does the explanation agree with hypothesized or known underlying physical

mechanism?39

• Domain Applicable. Does the explanation use language and concepts of domain ex-

perts?

• Fidelity/Faithful. Does the explanation agree with the black box model?

• Robust. Does the explanation change significantly with small changes to the model or

instance being explained?

• Sparse/Succinct. Is the explanation succinct?

We present an example evaluation of the SHAP explanation method based on the above

attributes.44 Shapley values were proposed as a local explanation method based on feature

attribution, as they offer a complete explanation - each feature is assigned a fraction of

the prediction value.44,45 Completeness is a clearly measurable and well-defined metric, but

yields explanations with many components. Yet Shapley values are not actionable nor sparse.

They are non-sparse as every feature has a non-zero attribution and not-actionable because

they do not provide a set of features which changes the outcome.46 Ribeiro et al. 35 proposed

a surrogate model method that aims to provide sparse/succinct explanations that have high
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fidelity to the original model. In Wellawatte et al. 9 we argue that counterfactuals are “bet-

ter” explanations because they are actionable and sparse. We highlight that, evaluation of

explanations is a difficult task because explanations are fundamentally for and by humans.

Therefore, these evaluations are subjective, as they depend on “complex human factors and

application scenarios.”37

Self-explaining models

A self-explanatory model is one that is intrinsically interpretable to an expert.47 Two com-

mon examples found in the literature are linear regression models and decision trees (DT).

Intrinsic models can be found in other XAI applications acting as surrogate models (proxy

models) due to their transparent nature.48,49 A linear model is described by the equation

1 where, W ’s are the weight parameters and x’s are the input features associated with the

prediction ŷ. Therefore, we observe that the weights can be used to derive a complete expla-

nation of the model - trained weights quantify the importance of each feature.47 DT models

are another type of self-explaining models which have been used in classification and high-

throughput screening tasks. Gajewicz et al. 50 used DT models to classify nanomaterials

that identify structural features responsible for surface activity. In another study by Han

et al. 51 , a DT model was developed to filter compounds by their bioactivity based on the

chemical fingerprints.

ŷ = ΣiWixi (1)

Regularization techniques such as EXPO52 and RRR53 are designed to enhance the black-

box model interpretability.54 Although one can argue that “simplicity” of models are posi-

tively correlated with interpretability, this is based on how the interpretability is evaluated.

For example, Lipton 55 argue that, from the notion of “simulatability” (the degree to which a

human can predict the outcome based on inputs), self-explanatory linear models, rule-based
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systems, and DT’s can be claimed uninterpretable. A human can predict the outcome given

the inputs only if the input features are interpretable. Therefore, a linear model which takes

in non-descriptive inputs may not be as transparent. On the other hand, a linear model

is not innately accurate as they fail to capture non-linear relationships in data, limiting is

applicability. Similarly, a DT is a rule-based model and lacks physics informed knowledge.

Therefore, an existing drawback is the trade-off between the degree of understandability and

the accuracy of a model. For example, an intrinsic model (linear regression or decision trees)

can be described through the trainable parameters, but it may fail to “correctly” capture

non-linear relations in the data.

Attribution methods

Feature attribution methods explain black box predictions by assigning each input feature

a numerical value, which indicates its importance or contribution to the prediction. Feature

attributions provide local explanations, but can be averaged or combined to explain multi-

ple instances. Atom-based numerical assignments are commonly referred to as heatmaps.56

Sheridan 57 describes an atom-wise attribution method for interpreting QSAR models. Re-

cently, Rasmussen et al. 58 showed that Crippen logP models serve as a benchmark for

heatmap approaches. Other most widely used feature attribution approaches in the litera-

ture are gradient based methods,59,60 Shapley Additive exPlanations (SHAP),44 and layer-

wise relevance prorogation.61

Gradient based approaches are based on the hypothesis that gradients for neural net-

works are analogous to coefficients for regression models.62 Class activation maps (CAM),63

gradCAM,64 smoothGrad,,65 and integrated gradients62 are examples of this method. The

main idea behind feature attributions with gradients can be represented with equation 2.

∆f̂(x⃗)

∆xi

≈ ∂f̂(x⃗)

∂xi

(2)
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where f̂(x) is the black-box model and ∆f̂(x⃗)
∆xi

are used as our attributions. The left-

hand side of equation 2 says that we attribute each input feature xi by how much one unit

change in it would affect the output of f̂(x). If f̂(x) is a linear surrogate model, then this

method reconciles with LIME.35 In DL models, ∇xf(x), suffers from the shattered gradients

problem.62 This means directly computing the quantity leads to numeric problems. The

different gradient based approaches are mostly distinguishable based on how the gradient is

approximated.

Gradient based explanations have been widely used to interpret chemistry predictions.60,66–70

McCloskey et al. 60 used graph convolutional networks (GCNs) to predict protein-ligand

binding and explained the binding logic for these predictions using integrated gradients.

Pope et al. 66 and Jiménez-Luna et al. 67 show application of gradCAM and integrated gradi-

ents to explain molecular property predictions from trained graph neural networks (GNNs).

Sanchez-Lengeling et al. 68 present comprehensive, open-source XAI benchmarks to explain

GNNs and other graph based models. They compare the performance of class activation

maps (CAM),63 gradCAM,64 smoothGrad,,65 integrated gradients62 and attention mecha-

nisms for explaining outcomes of classification as well as regression tasks. They concluded

that CAM and integrated gradients perform well for graph based models. Another attempt

at creating XAI benchmarks for graph models was made by Rao et al. 70 . They compared

these gradient based methods to find subgraph importance when predicting activity cliffs

and concluded that gradCAM and integrated gradients provided the most interpretability

for GNNs. The GNNExplainer69 is an approach for generating explanations (local and

global) for graph based models. This method focuses on identifying which sub-graphs con-

tribute most to the prediction by maximizing mutual information between the prediction

and distribution of all possible sub-graphs. Ying et al. 69 show that GNNExplainer can be

used to obtain model-agnostic explanations. SubgraphX is a similar method that explains

GNN predictions by identifying important subgraphs.71

Another set of approaches like DeepLIFT72 and Layerwise Relevance backPropagation73
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(LRP) are based on backpropagation of the prediction scores through each layer of the neu-

ral network. The specific backpropagation logic across various activation functions differs

in these approaches, which means each layer must have its own implementation. Baldas-

sarre and Azizpour 74 showed application of LRP to explain aqueous solubility prediction for

molecules.

SHAP is a model-agnostic feature attribution method that is inspired from the game

theory concept of Shapley values.44,46 SHAP has been popularly used in explaining molecular

prediction models.75–78 It’s an additive feature contribution approach, which assumes that

an explanation model is a linear combination of binary variables z. If the Shapley value

for the ith feature is ϕi, then the explanation is f̂(x⃗) =
∑

i ϕi(x⃗)zi(x⃗). Shapley values for

features are computed using Equation 3.79,80

ϕi(x⃗) =
1

M

M∑
f̂ (z⃗+i)− f̂ (z⃗−i) (3)

Here z⃗ is a fabricated example created from the original x⃗ and a random perturbation x⃗′.

z⃗+i has the feature i from x⃗ and z⃗−i has the ith feature from x⃗′. Some care should be taken

in constructing z⃗ when working with molecular descriptors to ensure that an impossible z⃗ is

not sampled (e.g., high count of acid groups but no hydrogen bond donors). M is the sample

size of perturbations around x⃗. Shapley value computation is expensive, hence M is chosen

accordingly. Equation 3 is an approximation and gives contributions with an expectation

term as ϕ0 +
∑

i=1 ϕi(x⃗) = f̂(x⃗).

Visualization based feature attribution has also been used for molecular data. In com-

puter science, saliency maps are a way to measure spatial feature contribution.81 Simply put,

saliency maps draw a connection between the model’s neural fingerprint components (trained

weights) and input features. Weber et al. 82 used saliency maps to build an explainable GCN

architecture that gives subgraph importance for small molecule activity prediction. On the

other hand, similarity maps compare model predictions for two or more molecules based on

their chemical fingerprints.83 Similarity maps provide atomic weights or predicted probabil-
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ity difference between the molecules by removing one atom at a time. These weights can

then be used to color the molecular graph and give a visual presentation. ChemInformatics

Model Explorer (CIME) is an interactive web based toolkit which allows visualization and

comparison of different explanation methods for molecular property prediction models.84

Surrogate models

One approach to explain black box predictions is to fit a self-explaining or interpretable

model to the black box model, in the vicinity of one or a few specific examples. These are

known as surrogate models. Generally, one model per explanation is trained. However, if we

could find one surrogate model that explained the whole DL model, then we would simply

have a globally accurate interpretable model. This means that the black-box model is no

longer needed.79 In the work by White 79 , a weighted least squares linear model is used as

the surrogate model. This model provides natural language based descriptor explanations by

replacing input features with chemically interpretable descriptors. This approach is similar

to the concept-based explanations approach used by McGrath et al. 85 , where human under-

standable concepts were used in place of input features in acquisition of chess knowledge in

AlphaZero. Any of the self-explaining models detailed in the Self-explaining models section

can be used as a surrogate model.

The most commonly used surrogate model based method is Locally Interpretable Model

Explanations (LIME).35 LIME creates perturbations around the example of interest and fits

an interpretable model to these local perturbations. Ribeiro et al. 35 mathematically define

an explanation ξ for an example x⃗ using Equation 4.

ξ(x⃗) = argmin
g∈G

L(f, g, πx) + Ω(g) (4)

Here f is the black box model and g ∈ G is the interpretable explanation model. G is

a class of potential interpretable models (e.g.: linear models). πx is a similarity measure

10



between original input x⃗ and it’s perturbed input x⃗′. In context of molecular data, this can

be a chemical similarity metric like Tanimoto86 similarity between fingerprints. The goal for

LIME is to minimize the loss, L, such that f is closely approximated by g. Ω is a parameter

that controls the complexity (sparsity) of g. Ribeiro et al. 35 termed the agreement (how low

the loss is) between f and g as the “fidelity”.

GraphLIME87 and LIMEtree88 are modifications to LIME as applicable to graph neural

networks and regression trees, respectively. LIME has been used in chemistry previously,

such as Whitmore et al. 89 who used LIME to explain octane number predictions of molecules

from a random forest classifier. Mehdi and Tiwary 90 used LIME to explain thermodynamic

contributions of features. Gandhi and White 10 use an approach similar to GraphLIME,

but use chemistry specific fragmentation and descriptors to explain molecular property pre-

diction. Some examples are highlighted in the Applications section. In recent work by

Mehdi and Tiwary 90 , a thermodynamic-based surrogate model approach was used to inter-

pret black-box models. The authors define an “interpretation free energy” which can be

achieved by minimizing the surrogate model’s uncertainty and maximizing simplicity.

Counterfactual explanations

Counterfactual explanations can be found in many fields such as statistics, mathematics and

philosophy.91–94 According to Woodward and Hitchcock 92 , a counterfactual is an example

with minimum deviation from the initial instance but with a contrasting outcome. They

can be used to answer the question, “which smallest change could alter the outcome of an

instance of interest?” While the difference between the two instances is based on the exis-

tence of similar worlds in philosophy,95 a distance metric based on molecular similarity is

employed in XAI for chemistry. For example, in the work by Wellawatte et al. 9 distance

between two molecules is defined as the Tanimoto distance96 between ECFP4 fingerprints.97

Additionally, Mohapatra et al. 98 introduced a chemistry-informed graph representation for

computing macromolecular similarity. Contrastive explanations are peripheral to counterfac-
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tual explanations. Unlike the counterfactual approach, contrastive approach employ a dual

optimization method, which works by generating a similar and a dissimilar (counterfactuals)

example. Contrastive explanations can interpret the model by identifying contribution of

presence and absence of subsets of features towards a certain prediction.36,99

A counterfactual x′ of an instance x is one with a dissimilar prediction f̂(x) in classi-

fication tasks. As shown in equation 5, counterfactual generation can be thought of as a

constrained optimization problem which minimizes the vector distance d(x, x′) between the

features.9,100

minimize d(x, x′)

such that f̂(x) ̸= f̂(x′)

(5)

For regression tasks, equation 6 adapted from equation 5 can be used. Here, a counter-

factual is one with a defined increase or decrease in the prediction.

minimize d(x, x′)

such that
∣∣∣f̂(x)− f̂(x′)

∣∣∣ ≥ ∆
(6)

Counterfactuals explanations have become a useful tool for XAI in chemistry, as they

provide intuitive understanding of predictions and are able to uncover spurious relationships

in training data.101 Counterfactuals create local (instance-level), actionable explanations.

Actionability of an explanation suggest which features can be altered to change the outcome.

For example, changing a hydrophobic functional group in a molecule to a hydrophilic group

to increase solubility.

Counterfactual generation is a demanding task as it requires gradient optimization over

discrete features that represents a molecule. Recent work by Fu et al. 102 and Shen et al. 103

present two techniques which allow continuous gradient-based optimization. Although, these

methodologies are shown to circumvent the issue of discrete molecular optimization, counter-

factual explanation based model interpretation still remains unexplored compared to other
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post-hoc methods.

CF-GNNExplainer104 is a counterfactual explanation generating method based on GN-

NExplainer69 for graph data. This method generate counterfactuals by perturbing the input

data (removing edges in the graph), and keeping account of perturbations which lead to

changes in the output. However, this method is only applicable to graph-based models

and can generate infeasible molecular structures. Another related work by Numeroso and

Bacciu 105 focus on generating counterfactual explanations for deep graph networks. Their

method MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-

ing based generator to create molecular counterfactuals (molecular graphs). While this

method is able to generate counterfactuals through a multi-objective reinforcement learner,

this is not a universal approach and requires training the generator for each task.

Work by Wellawatte et al. 9 present a model agnostic counterfactual generator MMACE

(Molecular Model Agnostic Counterfactual Explanations) which does not require training

or computing gradients. This method firstly populates a local chemical space through ran-

dom string mutations of SELFIES106 molecular representations using the STONED algo-

rithm.107 Next, the labels (predictions) of the molecules in the local space are generated

using the model that needs to be explained. Finally, the counterfactuals are identified and

sorted by their similarities – Tanimoto distance96 between ECFP4 fingerprints.97 Unlike the

CF-GNNExplainer104 and MEG105 methods, the MMACE algorithm ensures that generated

molecules are valid, owing to the surjective property of SELFIES. Additionally, the MMACE

method can be applied to both regression and classification models. However, like most XAI

methods for molecular prediction, MMACE does not account for the chemical stability of

predicted counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-

other approach, which identift counterfactuals through a similarity search on the PubChem

database.108
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Similarity to adjacent fields

Tangential examples to counterfactual explanations are adversarial training and matched

molecular pairs. Adversarial perturbations are used during training to deceive the model

to expose the vulnerabilities of a model109,110 whereas counterfactuals are applied post-hoc.

Therefore, the main difference between adversarial and counterfactual examples are in the

application, although both are derived from the same optimization problem.100 Grabocka

et al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)

which improves model robustness via exposure to adversarial examples. While there are

conceptual disparities, we note that the counterfactual and adversarial explanations are

equivalent mathematical objects.

Matched molecular pairs (MMPs) are pairs of molecules that differ structurally at only

one site by a known transformation.112,113 MMPs are widely used in drug discovery and

medicinal chemistry as these facilitate fast and easy understanding of structure-activity re-

lationships.114–116 Counterfactuals and MMP examples intersect if the structural change is

associated with a significant change in the properties. In the case the associated changes in

the properties are non-significant, the two molecules are known as bioisosteres.117,118 The con-

nection between MMPs and adversarial training examples has been explored by van Tilborg

et al. 119 . MMPs which belong to the counterfactual category are commonly used in outlier

and activity cliff detection.113 This approach is analogous to counterfactual explanations,

as the common objective is to uncover learned knowledge pertaining to structure-property

relationships.70

Applications

Model interpretation is certainly not new and a common step in ML in chemistry, but XAI for

DL models is becoming more important60,66–69,73,88,104,105 Here we illustrate some practical

examples drawn from our published work on how model-agnostic XAI can be utilized to
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interpret black-box models and connect the explanations to structure-property relationships.

The methods are “Molecular Model Agnostic Counterfactual Explanations” (MMACE)9

and “Explaining molecular properties with natural language”.10 Then we demonstrate how

counterfactuals and descriptor explanations can propose structure-property relationships in

the domain of molecular scent.31

Blood-brain barrier permeation prediction

The passive diffusion of drugs from the blood stream to the brain is a critical aspect in drug

development and discovery.120 Small molecule blood-brain barrier (BBB) permeation is a

classification problem routinely assessed with DL models.121,122 To explain why DL models

work, we trained two models a random forest (RF) model123 and a Gated Recurrent Unit

Recurrent Neural Network (GRU-RNN). Then we explained the RF model with generated

counterfactuals explanations using the MMACE9 and the GRU-RNN with descriptor expla-

nations.10 Both the models were trained on the dataset developed by Martins et al. 124 . The

RF model was implemented in Scikit-learn125 using Mordred molecular descriptors126 as the

input features. The GRU-RNN model was implemented in Keras.127 See Wellawatte et al. 9

and Gandhi and White 10 for more details.

According to the counterfactuals of the instance molecule in figure 1, we observe that the

modifications to the carboxylic acid group enable the negative example molecule to permeate

the BBB. Experimental findings by Fischer et al. 120 show that the BBB permeation of

molecules are governed by hydrophobic interactions and surface area. The carboxylic group is

a hydrophilic functional group which hinders hydrophobic interactions and addition of atoms

enhances the surface area. This proves the advantage of using counterfactual explanations,

as they suggest actionable modification to the molecule to make it cross the BBB.

In Figure 2 we show descriptor explanations generated for Alprozolam, a molecule that

permeates the BBB, using the method described by Gandhi and White 10 . We see that

predicted permeability is positively correlated with the aromaticity of the molecule, while
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negatively correlated with the number of hydrogen bonds donors and acceptors. A similar

structure-property relationship for BBB permeability is proposed in more mechanistic stud-

ies.128–130 The substructure attributions indicates a reduction in hydrogen bond donors and

acceptors. These descriptor explanations are quantitative and interpretable by chemists.

Finally, we can use a natural language model to summarize the findings into a written

explanation, as shown in the printed text in Figure 2.

Figure 1: Counterfactuals of a molecule which cannot permeate the blood-brain barrier.
Similarity is the Tanimoto similarity of ECFP4 fingerprints.131 Red indicates deletions and
green indicates substitutions and addition of atoms. Republished from Ref.9 with permission
from the Royal Society of Chemistry.

Solubility prediction

Small molecule solubility prediction is a classic cheminformatics regression challenge and is

important for chemical process design, drug design and crystallization.133–136 In our previous

works,9,10 we implemented and trained an RNN model in Keras to predict solubilities (log

molarity) of small molecules.127 The AqSolDB curated database137 was used to train the

RNN model.

In this task, counterfactuals are based on equation 6. Figure 3 illustrates the generated

local chemical space and the top four counterfactuals. Based on the counterfactuals, we ob-

serve that the modifications to the ester group and other heteroatoms play an important role

in solubility. These findings align with known experimental and basic chemical intuition.134

Figure 4 shows a quantitative measurement of how substructures are contributing to the pre-
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Figure 2: Descriptor explanations along with natural language explanation obtained for BBB
permeability of Alprozolam molecule. The green and red bars show descriptors that influ-
ence predictions positively and negatively, respectively. Dotted yellow lines show significance
threshold (α = 0.05) for the t-statistic. Molecular descriptors show molecule-level proper-
ties that are important for the prediction. ECFP and MACCS descriptors indicate which
substructures influence model predictions. MACCS explanations lead to text explanations
as shown. Republished from Ref.10 with permission from authors. SMARTS annotations for
MACCS descriptors were created using SMARTSviewer (smartsview.zbh.uni-hamburg.de,
Copyright: ZBH, Center for Bioinformatics Hamburg) developed by Schomburg et al. 132 .
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diction. For example, we see that adding acidic and basic groups as well as hydrogen bond

acceptors, increases solubility. Substructure importance from ECFP97 and MACCS138 de-

scriptors indicate that adding heteroatoms increases solubility, while adding rings structures

makes the molecule less soluble. Although these are established hypotheses, it is interesting

to see they can be derived purely from the data via DL and XAI.

Figure 3: Generated chemical space for solubility prediction using the RNN model. The
chemical space is a 2D projection of the pairwise Tanimoto similarities of the local coun-
terfactuals. Each data point is colored by solubility. Top 4 counterfactuals are shown here.
Republished from Ref.9 with permission from the Royal Society of Chemistry.

Generalizing XAI – interpreting scent-structure relationships

In this example, we show how non-local structure-property relationships can be learned with

XAI across multiple molecules. Molecular scent prediction is a multi-label classification task

because a molecule can be described by more than one scent. For example, the molecule

jasmone can be described as having ‘jasmine,’ ‘woody,’ ‘floral,’ and ’herbal’ scents.139 The

scent-structure relationship is not very well understood,140 although some relationships are

known. For example, molecules with an ester functional group are often associated with
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Figure 4: Descriptor explanations for solubility prediction model. The green and red bars
show descriptors that influence predictions positively and negatively, respectively. Dotted
yellow lines show significance threshold (α = 0.05) for the t-statistic. The MACCS and
ECFP descriptors indicate which substructures influence model predictions. MACCS sub-
structures may either be present in the molecule as is or may represent a modification. ECFP
fingerprints are substructures in the molecule that affect the prediction. MACCS descriptor
are used to obtain text explanations as shown. Republished from Ref.10 with permission from
authors. SMARTS annotations for MACCS descriptors were created using SMARTSviewer
(smartsview.zbh.uni-hamburg.de, Copyright: ZBH, Center for Bioinformatics Hamburg) de-
veloped by Schomburg et al. 132 .
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the ‘fruity’ scent. There are some exceptions though, like tert-amyl acetate which has a

‘camphoraceous’ rather than ‘fruity’ scent.140,141

In Seshadri et al. 31 , we trained a GNN model to predict the scent of molecules and utilized

counterfactuals9 and descriptor explanations10 to quantify scent-structure relationships. The

MMACE method was modified to account for the multi-label aspect of scent prediction. This

modification defines molecules that differed from the instance molecule by only the selected

scent as counterfactuals. For instance, counterfactuals of the jasmone molecule would be false

for the ‘jasmine’ scent but would still be positive for ‘woody,’ ‘floral’ and ‘herbal’ scents.

Figure 5: Counterfactual for the 2,4 decadienal molecule. The counterfactual indicates
structural changes to ethyl benzoate that would result in the model predicting the molecule
to not contain the ‘fruity’ scent. The Tanimoto96 similarity between the counterfactual and
2,4 decadienal is also provided. Republished with permission from authors.31

The molecule 2,4-decadienal, which is known to have a ‘fatty’ scent, is analyzed in Fig-

ure 5.142,143 The resulting counterfactual, which has a shorter carbon chain and no carbonyl

groups, highlights the influence of these structural features on the ‘fatty’ scent of 2,4 deca-

dienal. To generalize to other molecules, Seshadri et al. 31 applied the descriptor attribution

method to obtain global explanations for the scents. The global explanation for the ‘fatty’

scent was generated by gathering chemical spaces around many ‘fatty’ scented molecules.

The resulting natural language explanation is: “The molecular property “fatty scent” can

be explained by the presence of a heptanyl fragment, two CH2 groups separated by four
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bonds, and a C=O double bond, as well as the lack of more than one or two O atoms.”31

The importance of a heptanyl fragment aligns with that reported in the literature, as ‘fatty’

molecules often have a long carbon chain.144 Furthermore, the importance of a C=O dou-

ble bond is supported by the findings reported by Licon et al. 145 , where in addition to a

“larger carbon-chain skeleton”, they found that ‘fatty’ molecules also had “aldehyde or acid

functions”.145 For the ‘pineapple’ scent, the following natural language explanation was ob-

tained: “The molecular property “pineapple scent” can be explained by the presence of ester,

ethyl/ether O group, alkene/ether O group, and C=O double bond, as well as the absence of

an Aromatic atom.”31 Esters, such as ethyl 2-methylbutyrate, are present in many pineap-

ple volatile compounds.146,147 The combination of a C=O double bond with an ether could

also correspond to an ester group. Additionally, aldehydes and ketones, which contain C=O

double bonds, are also common in pineapple volatile compounds.146,148

Discussion

We have shown two post-hoc XAI applications based on molecular counterfactual expla-

nations9 and descriptor explanations.10 These methods can be used to explain black-box

models whose input is a molecule. These two methods can be applied for both classification

and regression tasks. Note that the “correctness” of the explanations strongly depends on

the accuracy of the black-box model.

A molecular counterfactual is one with a minimal distance from a base molecular, but

with contrasting chemical properties. In the above examples, we used Tanimoto similar-

ity96 of ECFP4 fingreprints97 as distance, although this should be explored in the future.

Counterfactual explanations are useful because they are represented as chemical structures

(familiar to domain experts), sparse, and are actionable. A few other popular examples of

counterfactual on graph methods are GNNExplainer, MEG and CF-GNNExplainer.69,104,105

The descriptor explanation method developed by Gandhi andWhite 10 fits a self-explaining
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surrogate model to explain the black-box model. This is similar to the GraphLIME87 method,

although we have the flexibility to use explanation features other than subgraphs. Futher-

more, we show that natural language combined with chemical descriptor attributions can

create explanations useful for chemists, thus enhancing the accessibility of DL in chemistry.

Lastly, we examined if XAI can be used beyond interpretation. Work by Seshadri et al. 31 use

MMACE and surrogate model explanations to analyze the structure-property relationships

of scent. They recovered known structure-property relationships for molecular scent purely

from explanations, demonstrating the usefulness of a two step process: fit an accurate model

and then explain it.

Choosing among the plethora of XAI methods described here is still an open question.

It remains to be seen if there will ever be a consensus benchmark, since this field sits on

the intersection of human-machine interaction, machine learning, and philosophy (i.e., what

constitutes an explanation?). Our current advice is to consider first the audience – domain

experts or ML experts or non-experts – and what the explanations should accomplish. Are

they meant to inform data selection or model building, how a prediction is used, or how the

features can be changed to affect the outcome. The second consideration is what access you

have to the underlying model. The ability to have model derivatives or propagate gradients

to the input to models informs the XAI method.

Conclusion and outlook

We should seek to explain molecular property prediction models because users are more

likely to trust explained predictions, and explanations can help assess if the model is learning

the correct underlying chemical principles. We also showed that black-box modeling first,

followed by XAI, is a path to structure-property relationships without needing to trade

between accuracy and interpretability. However, XAI in chemistry has some major open

questions, that are also related to the black-box nature of the deep learning. Some are
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highlighted below:

• Explanation representation: How is an explanation presented – text, a molecule, attri-

butions, a concept, etc?

• Molecular distance: in XAI approaches such as counterfactual generation, the “dis-

tance” between two molecules is minimized. Molecular distance is subjective. Possibil-

ities are distance based on molecular properties, synthesis routes, and direct structure

comparisons.

• Regulations : As black-box models move from research to industry, healthcare, and

environmental settings, we expect XAI to become more important to explain decisions

to chemists or non-experts and possibly be legally required. Explanations may need

to be tuned for be for doctors instead of chemists or to satisfy a legal requirement.

• Chemical space: Chemical space is the set of molecules that are realizable; “realiz-

able” can be defined from purchasable to synthesizable to satisfied valences. What is

most useful? Can an explanation consider nearby impossible molecules? How can we

generate local chemical spaces centered around a specific molecule for finding counter-

factuals or other instance explanations? Similarly, can “activity cliffs” be connected

to explanations and the local chemical space.149

• Evaluating XAI : there is a lack of a systematic framework (quantitative or qualitative)

to evaluate correctness and applicability of an explanation. Can there be a universal

framework, or should explanations be chosen and evaluated based on the audience and

domain? For example, work by Rasmussen et al. 58 attempts to focus on comparing

feature attribution XAI methods via Crippen’s logP scores.
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