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ABSTRACT
Software is an important tool for scholarly work, but software pro-
duced for research is inmany cases not easily identifiable or discov-
erable. A potential first step in linking research and software is soft-
ware identification. In this paper we present two datasets to study
the identification and production of research software. The first
dataset contains almost 1000 human labeled annotations of soft-
ware production fromNational Science Foundation (NSF) awarded
research projects. We use this dataset to train models that predict
software production. Our second dataset is created by applying
the trained predictive models across the abstracts and project out-
comes reports for all NSF funded projects between the years of
2010 and 2023. The result is an inferred dataset of software produc-
tion for over 150,000 NSF awards. We release the NSF-Soft-Search
dataset to aid in identifying and understanding research software
production: https://github.com/redacted-for-submission
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1 INTRODUCTION
Software production, use, and reuse is an increasingly crucial part
of scholarly work [1, 10]. While historically underutilized, citing
and referencing software used during the course of research is be-
coming common with new standards for software citation [2, 6]
and work in extracting software references in existing literature
[5]. However, records of software production are not readily iden-
tifiable or available at scale in the way that peer-reviewed publica-
tions or other scholarly outputs are [8]. To make progress on this
problem, we introduce two related datasets for studying and infer-
ring software produced as a part of research, which we refer to as
the NSF-Soft-Search dataset.

The NSF-Soft-Search dataset is aimed at identifying research
projects which are likely to have produced software while funded
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by a federal grant. We start by identifying GitHub repositories that
acknowledge funding from at least one National Science Founda-
tion (NSF) award. We then annotate each GitHub repository found
with a binary decision for its contents: software or not-software
(e.g. not all github repositories contain software, they might in-
clude research notes, course materials, etc.). We then link each an-
notated GitHub repository to the specific NSF award ID(s) refer-
enced in its README.md file. Finally, we compile the NSF-Soft-
Search Training dataset using the annotations for each GitHub
repository, and the text from the linked NSF award abstract and
the project outcomes report.

Using the NSF-Soft-Search Training dataset, we train a variety
ofmodels to predict software production using either theNSF award
abstract or project outcomes report text as input. We use the best
performing models to then infer software production against all
awards funded by the National Science Foundation from 2010 to
2023 (additional details are offered in Section 2). The predictions
and metadata for each NSF award between the 2010 and 2023 pe-
riod are compiled to form the NSF-Soft-Search Inferred dataset.

In total, our newNSF-Soft-Search dataset includes the following
contributions:

1. NSF-Soft-Search Training: A ground truth dataset compiled
using linked NSF awards and GitHub repositories which
have been annotated for software production.

2. Multiple classifiers which infer software production from ei-
ther the text of an NSF award’s abstract or project outcomes
report.

3. NSF-Soft-Search Inferred: A dataset of more than 150,000
NSF funded awards frombetween 2010 and 2023. Each award
has two predictions for software production: one from pre-
diction using the abstract text and the other from prediction
using the project outcomes report text.

The rest of the paper proceeds as follows. In Section 2 we detail
the data collection and annotation process used for creating the
NSF-Soft-Search Training dataset. In Section 3 we briefly describe
the model training process and report results. In Section 4 we pro-
vide summary statistics for the NSF-Soft-Search Inferred dataset
and observe trends in software production over time. We conclude
with discussion regarding the limitations of our approach and op-
portunities for future work.

2 DATA COLLECTION AND ANNOTATION
2.1 Finding Software Produced by NSF Awards
The first step in our data collection process was to find software
outputs from National Science Foundation (NSF) funded research.
This step has two potential approaches. The first approach is a
manual search for references and promises of software production
within NSF award abstracts, project outcome reports, and papers
supported by each award. This first approach is labor intensive
and may be prone to labeling errors because while there may be
a promise of software production in these documents, it may not
be possible to verify such software was ultimately produced. The
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other approach is to predict software production using a trained
model. We pursue this approach with the caveat that there are also
potential label errors.

To gather examples of verifiable software production, we cre-
ated a Python script which used the GitHubAPI to search for repos-
itories which included reference to financial support from an NSF
award in the repositories README.md file. Specifically our script
queried for README.md files which contained any of the follow-
ing text snippets: ‘National Science Foundation’, ‘NSFAward’, ‘NSF
Grant’, ‘Supported by NSF’, or ‘Supported by the NSF’. GitHub was
selected as the basis for our search because of its widespread adop-
tion and mention in scholarly publication [3]. This search found
1520 unique repositories which contained a reference to the NSF
in the repository’s README.md file.

2.2 Software Production Annotation
The next step in our data collection process was to annotate each
of the GitHub repositories found as either “software” or “not soft-
ware.” In our initial review of the repositories we had collected, we
found that the content of repositories ranged from documentation,
experimental notes, course materials, collections of one-off scripts
written during a research project, tomore typical software libraries
with installation instructions, testing, and community support and
use.

Using existing definitions of what constitutes research software
to form the basis of our annotation criteria [7, 9], we conducted
multiple rounds of trial coding on samples of the data. Fleiss’ kappa
was used to determine if there was agreement between our re-
search team on whether ten GitHub repositories contained ‘soft-
ware’ or not. On each round of trial coding ten GitHub repositories
were randomly selected from our dataset for each member of our
research team to annotate independently. When assessing a repos-
itory, members of the research team were allowed to use any in-
formation in the repository to determine their annotation (i.e. the
content of the README.md file, the repository activity, documen-
tation availability, etc.)

Our final round of trial coding showed that there was near per-
fect agreement between the research team (K=0.892) [11].

Our final annotation criteria was generally inclusive of labeling
repositories as software, rather there were specific exclusion crite-
ria that resulted in a repository being labeled as “not software”.
Specifically repositories were labeled as “not software” when a
repository primarily consisted of:

1. project documentation or research notes
2. teaching materials for a workshop or course
3. the source code for a project or research lab website
4. collections of scripts specific to the analysis of a single ex-

periment without regard to further generalizability
5. utility functions for accessing data without providing any

additional processing capacity
We then annotated all GitHub repositories in our dataset as ei-

ther “software” or “not software” according to our agreed upon
annotation criteria.

Table 1: Predictive Model Results (Trained with Abstract
Text)

model accuracy precision recall f1
0 tfidf-logit 0.674 0.674 0.674 0.673
1 transformer 0.636 0.608 0.697 0.649
2 semantic-logit 0.630 0.630 0.630 0.630
3 regex 0.516 0.515 0.516 0.514

2.3 Linking GitHub Repositories to NSF
Awards

Our final step in the data collection process was to link the anno-
tated GitHub repositories back to specific NSF awards. To do so, we
created a script which would load the webpage for each GitHub
repository, scrape the content of the repository’s README and
find the specific NSF award ID number(s) referenced. While anno-
tating the dataset, andwith this script, our dataset sizewas reduced
as we found some repositories were returned in the initial search
because of the “NSF” acronym being used by other, non-United-
States governmental agencies which also fund research.

When processing each repository, our Python script would load
the README content, search for NSF Award ID patterns with regu-
lar expressions, and then verify that each NSF award ID found was
valid by requesting metadata for the award from the NSF award
API.

We then retrieved the text for each award’s abstract and project
outcomes report. This was the final step of our data collection pro-
cess and allowed us to create a dataset of 446 unique NSF awards
labeled as ‘produced software’ and 471 unique NSF awards labeled
as ‘did not produce software’.

3 PREDICTIVE MODELS
Using the compiled NSF-Soft-Search Training dataset, we trained
three different models using the text from either the award ab-
stract or project outcomes report. The models trained include a
logistic regression model trained with TF-IDF word embeddings
(tfidf-logit), a logistic regression model trained with seman-
tic embeddings (semantic-logit), and a fine-tuned transformer
(transformer).The semantic embeddings and the basemodel from
whichwe fine-tuned our own transformermodelwas the ‘distilbert-
base-uncased-finetuned-sst-2-english’ model [4]. Each model was
trained with 80% of the NSF-Soft-Search Training dataset. We then
test each of the models and use F1 to rank each model’s perfor-
mance.

Table 1 reports the results from training using the abstract text
as input. The best performing model was the tfidf-logit which
achieved an F1 of 0.673.

Table 2 reports the results from training using the project out-
comes reports as input.The best performingmodelwas the tfidf-logit
which achieved an F1 of 0.745.

While the models trained with the project outcomes reports
were trained with less data, the best model of the group achieved a
higher F1 than any of the models trained with the abstracts. While
we have not investigated further, we believe this to be because the
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Table 2: PredictiveModel Results (Trained with Project Out-
comes Report Text)

model accuracy precision recall f1
0 tfidf-logit 0.745 0.745 0.745 0.745
1 transformer 0.673 0.638 0.771 0.698
2 semantic-logit 0.633 0.633 0.633 0.632
3 regex 0.510 0.507 0.510 0.482

Table 3: Composition of the NSF Soft Search Dataset

Program # Awards # Software % Software
0 MPS 32885 19178 0.583184
1 CISE 24633 13274 0.538871
2 ENG 22900 11242 0.490917
3 GEO 17822 5142 0.288520
4 BIO 16990 6013 0.353914
5 EHR 13703 575 0.041962
6 SBE 13318 1966 0.147620
7 TIP 8597 4501 0.523555
8 OISE 2329 636 0.273079
9 OIA 498 123 0.246988

project outcomes reports contain more direct citation of produced
software rather than an abstract’s promise of software production.

The data used for training, and functions to reproduce these
models, are made available via our Python package: redacted.

4 THE NSF-SOFT-SEARCH DATASET
Using the predictive models, we compile the NSF-Soft-Search In-
ferred datasetwhich contains themetadata, abstract text, and project
outcomes report text, for all NSF awarded projects during the 2010-
2023 period.TheNSF-Soft-Search Inferred dataset additionally con-
tains our predictions for software production using both texts re-
spectively.

4.1 Trends and Observations
Using the NSF-Soft-Search Inferred dataset we can observe trends
in software production over time. Figure 1 plots the percent of
awards which we predict to have produced software (using the
award’s abstract) over time. While there are minor year-to-year
deviations in predicted software production, we observe the “Math
and Physical Sciences” (MPS) funding program as funding themost
awardswhichwe predict to produce software, with “Computer and
Information Science and Engineering” (CISE), and “Engineering”
(ENG) close behind.

We can additionally observe trends in software production as
award duration increases. Figure 2 plots the percent of awards
which we predict to have produced software (using the award’s
abstract) grouped by the award duration in years. We note that
as award duration increases, the percentage of awards which are
predicted to have produced software also tends to increase.
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Figure 1: Software Production Over Time (Using Predictions
from Abstracts)
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Figure 2: Software Production Grouped By Award Duration
(Using Predictions from Abstracts)

5 CONCLUSION
We introduce NSF-Soft-Search, a pair of novel datasets for study-
ing software production from NSF funded projects. The NSF-Soft-
Search Training dataset is a human-labeled dataset with almost
1000 examples used to train models which predict software pro-
duction from either the NSF award abstract text or the project
outcomes report text. We used these models to generate the NSF-
Soft-Search Inferred dataset. The NSF-Soft-Search Inferred dataset
includes project metadata, the awards abstract and project out-
comes report, and predictions of software production for each NSF
funded project between 2010 and 2023. We hope that NSF-Soft-
Search helps further new studies and findings in understanding
the role software development plays in scholarly publication.

All datasets and predictive models produced by this work are
available from our GitHub repository: redacted.
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5.1 Limitations
As discussed in Section 2, the NSF-Soft-Search Training dataset
was entirely composed of NSF awards which ultimately released
or hosted software (and other research products) on GitHub. Due
to our data collection strategy, it is possible that each of the pre-
dictive models learned not to predict if an NSF award would pro-
duce software, but rather, if an NSF award would produce software
hosted on GitHub.

5.2 Future Work
As discussed in Section 2.1, our initial method for attempting to
find research software produced from NSF supported awards was
to search for references and promises of software production in
the abstract, project outcomes report, and attached papers of each
award. While attempting this approach to create the dataset, we
found that many awards and papers that reference computational
methods do not provide a reference web link to their code reposi-
tories or websites. In some cases, we found repositories related to
an award or paper via Google and GitHub search ourselves. While
we support including references to code repositories in award ab-
stracts, outcomes reports, and papers, future research should be
conducted on how to enable automatic reconnection of papers and
their software outputs.

6 ACKNOWLEDGEMENTS
Redacted for anonymous submission.

REFERENCES
[1] Prajjwal Bhattarai, MohammedGhassemi, and TukaAlhanai. 2022. Open-Source

Code Repository Attributes Predict Impact of Computer Science Research. In
Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries (Cologne,
Germany) (JCDL ’22). Association for Computing Machinery, New York, NY,
USA, Article 16, 7 pages. https://doi.org/10.1145/3529372.3530927

[2] Cai Fan Du, Johanna Cohoon, Patrice Lopez, and James Howison. 2022. Un-
derstanding progress in software citation: a study of software citation in the
CORD-19 corpus. PeerJ Computer Science 8 (2022).

[3] Emily Escamilla, Martin Klein, Talya Cooper, Vicky Rampin, Michele C. Weigle,
andMichael L. Nelson. 2022. The Rise of GitHub in Scholarly Publications. https:
//doi.org/10.48550/ARXIV.2208.04895

[4] HF Canonical Model Maintainers. 2022. distilbert-base-uncased-finetuned-sst-
2-english (Revision bfdd146). https://doi.org/10.57967/hf/0181

[5] Ana-Maria Istrate, Donghui Li, Dario Taraborelli, Michaela Torkar, Boris Veyts-
man, and Ivana Williams. 2022. A large dataset of software mentions in the
biomedical literature. https://doi.org/10.48550/ARXIV.2209.00693

[6] Daniel S. Katz, Neil P. Chue Hong, Tim Clark, August Muench, Shelley Stall,
Daina R. Bouquin, Matthew Cannon, Scott C. Edmunds, Telli Faez, Patricia
Feeney, Martin Fenner, Michael Friedman, Gerry Grenier, Melissa Harrison, Jo-
erg Heber, Adam Leary, Catriona J. MacCallum, Hollydawn Murray, Erika Pas-
trana, Kath Perry, Douglas C. Schuster, Martina Stockhause, and Jake S. Yeston.
2021. Recognizing the value of software: a software citation guide. F1000Research
9 (2021).

[7] Carlos Martinez-Ortiz, Paula Martinez Lavanchy, Laurents Sesink, Brett G.
Olivier, James Meakin, Maaike de Jong, and Maria Cruz. 2022. Practical guide to
Software Management Plans. https://doi.org/10.5281/zenodo.7185371

[8] David Schindler, Felix Bensmann, StefanDietze, and FrankKrüger. 2022. The role
of software in science: a knowledge graph-based analysis of software mentions
in PubMed Central. PeerJ Computer Science 8 (2022).

[9] Vanessa Sochat, Nicholas May, Ian Cosden, Carlos Martinez-Ortiz, and Sadie
Bartholomew. 2022. The Research Software Encyclopedia: a community frame-
work to define research software. Journal of Open Research Software (2022).

[10] Ana Trisovic, Matthew K. Lau, Thomas Pasquier, and Mercè Crosas. 2021. A
large-scale study on research code quality and execution. Scientific Data 9
(2021).

[11] Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver
agreement: the kappa statistic. Fam med 37, 5 (2005), 360–363.

https://doi.org/10.1145/3529372.3530927
https://doi.org/10.48550/ARXIV.2208.04895
https://doi.org/10.48550/ARXIV.2208.04895
https://doi.org/10.57967/hf/0181
https://doi.org/10.48550/ARXIV.2209.00693
https://doi.org/10.5281/zenodo.7185371

	Abstract
	1 Introduction
	2 Data Collection and Annotation
	2.1 Finding Software Produced by NSF Awards
	2.2 Software Production Annotation
	2.3 Linking GitHub Repositories to NSF Awards

	3 Predictive Models
	4 The NSF-Soft-Search Dataset
	4.1 Trends and Observations

	5 Conclusion
	5.1 Limitations
	5.2 Future Work

	6 Acknowledgements
	References

