
Natlog: Embedding Logic Programming into the
Python Deep-Learning Ecosystem

Paul Tarau

University of North Texas

July 11, 2023

ICLP’2023

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 1 / 17



Motivation

there are deep family resemblances between Prolog and Python
they suggest and enable a smooth embedding in Python of a
lightweight Prolog dialect ⇒ Natlog1
the resulting symbiosis:

Prolog benefits from the much wider Python deep learning ecosystem
a Logic Programming language enables neuro-symbolic inference and
better deep learning system orchestration
Natlog’s simplified syntax brings an easy to learn logic programming
language to the ML practitioners

1https://github.com/ptarau/natlog, install: “pip3 install natlog”

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 2 / 17

https://github.com/ptarau/natlog


Our focus on the Python ⇔ Prolog family resemblances

Python’s generators ⇔ Prolog’s backtracking
Python’s nested tuples ⇔ Prolog’s terms
Python’s coroutines ⇔ Prolog’s first-class logic engines
Python’s reflection ⇔ Prolog’s meta-interpretation
other, more minor:

list, set, dict comprehensions ⇐⇒ findall, setof, bagof
list and tuple syntax similarity
hight-level I/O for compound objects
interactive REPLs
automatic memory management (including symbol GC)

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 3 / 17



Natlog: a Prolog with a lightweight syntax, embedded in
Python

sibling of X S: parent of X P, parent of S P, distinct S X.

grand parent of X GP: parent of X P, parent of P GP.

ancestor of X A : parent of X P, parent or ancestor P A.

parent or ancestor P P.
parent or ancestor P A : ancestor of P A.

terms are represented as nested tuples, all Python datatypes are
directly reflected
except variables: a lightweight class Var with a single value slot
Natlog benefits from Python’s memory management and no data
conversion is needed
Natlog is not slow: 227K LIPS when running under pypy3

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 4 / 17



High-level, intuitive data exchanges

all “callables” (functions, classes, instances defining a __call__
method in Python) are invoked from Natlog as in:
?- `len (a b c) L.
ANSWER: {'L': 3}

generators are reflected in Natlog as alternative answers on
backtracking.
?- ` r̀ange 1 4 X.
ANSWER: {'X': 1}
ANSWER: {'X': 2}
ANSWER: {'X': 3}

when Natlog is called from Python, variable assignments are yielded
as Python dict objects

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 5 / 17



Reflecting metaprogramming constructs

to conveniently access object and class attributes, Natlog implements
setprop and getprop
setprop O K V : #setattr O K V.
getprop O K V : g̀etattr O K V.

elegant metaprogramming constructs on the two sides make language
interoperation unusually easy
def meth_call(o, f, xs):

m = getattr(o, f)
return m(*xs)

method calls are supported via the Python function meth_call as
in the following stack manipulation API:
stack S : l̀ist S. % note the use of the callable empty list constructor
push S X : #meth_call S append (X).
pop S X : m̀eth_call S pop () X.

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 6 / 17



Coroutining with yield and first-class logic engines

A first class logic engine is a language processor reflected through an API
that allows its computations to be controlled interactively from another
logic engine.

this is very much the same thing as a programmer controlling
Prolog’s interactive toplevel loop: launch a new goal, ask for a new
answer, interpret it, react to it
the exception is that it is not the programmer, but it is the program
that does it!
first class logic engines ensure the full meta-level reflection of the
execution algorithm
in Natlog, we implement first class logic engines by exposing the
interpreter to itself as a Python coroutine that transfers its answers
one at a time via Python’s yield operation

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 7 / 17



Natlog’s First Class Logic Engines API

eng AnswerPattern Goal Engine:
creates a new instance of the Natlog interpreter,returned as Engine
shares code with the currently running program
it is initialized with Goal as a starting point, but not started
AnswerPattern ensures that answers returned by the engine will be
instances of the pattern.

ask Engine AnswerInstance:
tries to harvest the answer computed from Goal, as an instance of
AnswerPattern
if an answer is found, it is returned as (the AnswerInstance),
otherwise the atom no is returned
it retrieves successive answers generated by an Engine, on demand
it is responsible for actually triggering computations in the engine

stop Engine:
stops the Engine, reclaiming the resources it has used
ensures that no is returned for all future queries

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 8 / 17



The ˆ operation: “ejecting” answers from infinite loops

like in a non-strict functional language, one can create an infinite
recursive loop from which values are yielded as the computation
advances:
fibo N Xs : eng X (slide_fibo 1 1) E, take N E Xs.

slide_fibo X Y : with X + Y as Z, ^X, slide_fibo Y Z.

the infinite loop’s results, when seen from the outside, show up as a
stream of answers as if produced on backtracking
with help of the library predicate take, we extract the first 5:
?- fibo 5 Xs?
ANSWER: {'Xs': (1, (1, (2, (3, (5, ())))))}

note that answers of an Engine can be “ejected” at any point in the
computation (here with the “^X” notation in slide_fibo)

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 9 / 17



The trust Engine operation

when the special atom trust is yielded, the goal that follows it
replaces the goal of the engine, with all backtracking below that point
discarded and all memory consumed so far made recoverable
⇒ infinite loops can work in constant space, even in the absence of
last call optimization
loop/2 shows how to generate an infinite sequence of natural
numbers:
loop N N.
loop N X : with N + 1 as M, t̂rust loop M X.

? - loop 0 X?
ANSWER: {'X': 0}
ANSWER: {'X': 1}
...

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 10 / 17



Natlog as an Orchestrator for Deep Learning Systems
(JAX and Pytorch)

a JAX example: deep xor in Natlog
xor 0 0 0.
xor 0 1 1.
xor 1 0 1.
xor 1 1 0.

iter recurses N times over the truth table of xor to obtain the
truth table of size 2N of X1 xor X2 xor ...Xn that we will use as our
synthetic dataset for an MLP network
iter N Op X Y: iter_op N Op () E 0 Y, to_tuple E X.

iter_op 0 _Op E E R R.
iter_op I Op E1 E2 R1 R3 :

when I > 0, with I - 1 as J,
Op X R1 R2,
with X + X as XX, % x->2x-1 maps {0,1} into {-1,1} to facilitate
with XX - 1 as X1, % the work of the network's Linear Layers
iter_op J Op (X1 E1) E2 R2 R3.

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 11 / 17



Logic Grammars as Prompt Generators

we will use here Natlog’s syntactically lighter Definite Clause
Grammars, with one or more terminal symbols prefixed by “@” and
“=>” replacing Prolog’s “-->”
a prompt generator with ability to be specialized for several “kinds” of
prompts is described by the DCG rule:
prompt Kind QuestText => prefix Kind, sent QuestText, suffix Kind.

sent takes a question sentence and maps it into a DCG non-terminal
by transforming cons-list Ws1 into cons-list Ws2:
sent QuestText Ws1 Ws2 :

s̀plit QuestText List, to_cons_list List Ws, append Ws Ws2 Ws1.

query takes the DCG-generated prompt derived from user question
Q and converts it back to a string passed to GPT’3 completion API
query Kind Q A: prompt Kind Q Ps (),to_list Ps List, j̀oin List P, c̀omplete P A.

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 12 / 17



Examples

?- query question 'how are transformers used in GPT' R?
ANSWER: {'R': 'transformers are used in GPT (Generative Pre-trained Transformer)
models to generate text from a given prompt. The transformer architecture is
used to learn the context of the input text and generate a response based on the
context. GPT models are used in many natural language processing tasks such as
question answering, machine translation, summarization, and text generation.'}

?- query relation 'the quick brown fox jumps over the lazy dog' R.
ANSWER: {'R': '"quick brown fox", verb is "jumps" and object is "lazy dog".'}

?- query relation 'high interest rates try to desperately contain inflation' R.
ANSWER: {'R': '"high interest rates", verb is "try to desperately contain",
and object is "inflation".'}

?- analogy car wheel bird A?
ANSWER: {'A': 'wing by analogy. This is because both car and wheel are used for
transportation, while bird and wing are used for flight.'}

?- analogy car driver airplane A?
ANSWER: {'A': 'pilot by analogy. The pilot is responsible for the safe operation
of the airplane, just as the driver is responsible for the safe operation
of the car.'}

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 13 / 17



Text-to-image with DALL.E

image => style, subject, verb, object.

style => @photorealistic rendering.
style => @a dreamy 'Marc' 'Chagall' style picture.
style => @an action video game graphics style image.

subject => @of, adjective, noun.
noun => @robot.
verb => @walking.
adjective => @shiny.

object => location, @with, instrument.

location => @on planet 'Mars'.
instrument => @high hills and a blue purse.
instrument => @a sombrero hat.

API:
?- paint '<text description of intended image>'.

and the image pops-up in the user’s browser.
Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 14 / 17



Two pictures, with the usual bias, even for robots

Figure: paint photorealistic rendering of shiny robot walking on planet Mars:
1) with a sombrero hat and 2) with high hills and a blue purse

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 15 / 17



The same two, but with a shift in style

Figure: paint a dreamy Marc Chagall style picture of shiny robot walking on
planet Mars: 1) with a sombrero hat and 2) with high hills and a blue purse

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 16 / 17



Conclusion

Natlog is built taking advantage of “family resemblances” between
elegant language constructs shared by Python and Prolog:

generators and backtracking,
nested tuples and terms
reflection and meta-interpretation
coroutines and first-class logic engines

Natlog enables logic-based language constructs to access the full
power of the Python ecosystem:

a logic-base language is a good orchestrator for deep-learning
applications
there are synergies in “prompt engineering” for text-to-text and
’text-to-image’ Generative AI

next in line: Full Automation of Goal-driven LLM Dialog Threads with And-Or Recursors and Refiner Oracles

turning GPT-4 and friends into “virtual logic engines”:
paper at https://arxiv.org/abs/2306.14077
code at https://github.com/ptarau/recursors

Paul Tarau University of North Texas Natlog: LP in a Deep-Learning Ecosystem July 11, 2023 17 / 17

https://arxiv.org/abs/2306.14077
https://github.com/ptarau/recursors

