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Abstract— Recent self-supervised learning approaches focus
on using a few thousand data points to learn policies for
high-level, low-dimensional action spaces. However, scaling
this framework for higher-dimensional control requires either
scaling up the data collection efforts or using a clever sam-
pling strategy for training. We present a novel approach -
Curriculum Accelerated Self-Supervised Learning (CASSL) -
to train policies that map visual information to high-level,
higher-dimensional action spaces. CASSL orders the sampling
of training data based on control dimensions: the learning and
sampling are focused on few control parameters before other
parameters. The right curriculum for learning is suggested
by variance-based global sensitivity analysis of the control
space. We apply our CASSL framework to learning how to
grasp using an adaptive, underactuated multi-fingered gripper,
a challenging system to control. Our experimental results
indicate that CASSL provides significant improvement and
generalization compared to baseline methods such as staged
curriculum learning (8% increase) and complete end-to-end
learning with random exploration (14% improvement) tested
on a set of novel objects.

I. INTRODUCTION

With the advent of big data in robotics [1]–[4], there has

been an increasing interest in self-supervised learning for

planning and control. The core idea behind these approaches

is to collect large-scale datasets where each data-point has the

current state (e.g. image of the environment), action/motor-

command applied, and the outcome (success/failure/reward)

of the action. This large-scale dataset is then used to learn

policies, typically parameterized by high-capacity functions

such as Convolutional Neural Networks (CNNs) that predict

the actions of the agent from input images/observations. But

what is the right way to collect this dataset for self-supervised

learning?

Most self-supervised learning approaches use random ex-

ploration. That is, first a set of random objects is placed

on the table-top followed by a random selection of actions.

However, is random sampling the right manner for training

a self-supervised system? Random exploration with few

thousand data points will only work when the output action

space is low-dimensional. In fact, the recent successes in

self-supervised learning which shown experiments on real

robots (not just simulation) use a search space of only 3-6

dimensions 1 for output action space. Random exploration is

also sub-optimal since it leads to a very sparse sampling of

the action-space.

In this paper, we focus on the problem of sampling

and self-supervised learning for high-level, high-dimensional

1[1]–[3] use 3,4,5-dim search space respectively

CL1 - Mode (MG) CL2 – Height (hG) CL3 – Grasp Angle ( )

Fig. 1. Given a table-top scene, our robot learns to grasp objects
by Curriculum Accelerated Self-Supervised Learning (CASSL). Given the
various control dimensions, such as mode, height, grasp angle, etc., our
robot focuses on learning to predict the easier dimensions earlier. We used
a Fetch-robot with an adaptive 3-fingered gripper from Robotiq.

control. One possible approach is to collect and sample

training data using staged-training [1] or on-policy search [5].

In both these approaches, random sampling is first used to

train an initial policy. This policy is then used to sample

the next set of training points for learning. However, such

approaches are hugely biased due to initial learning from

random samples and often sample points from a small search

space. Therefore, recent papers have investigated other ex-

ploration strategies, such as curiosity-driven exploration [6].

However, data sparsity in high-dimensional action space still

remains a concern.

Let’s take a step back and think how do humans deal

with high-dimensional control. We note that the action space

of human control grows continually with experience: the
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search does not start in high-dimensions but rather in a

small slice of the high-dimensional space. For example,

in the early stages of human development, when hand-eye

coordination is learned, a single mode of grasping (palmar-

grasp) is used, and we gradually acquire more complex,

multi-fingered grasping modalities [7]. Inspired by this ob-

servation, we propose a similar strategy: order the learning in

control parameter space by fixing few dimensions of control

parameters and sampling in the remaining dimensions. We

call this strategy curriculum learning in control space, where

the curriculum decides which control dimensions to learn

first 2. We use a sensitivity analysis based approach to define

the curriculum over control dimensions. We note that our

framework is designed to infer high-level control commands

and use planners/low-level controllers to achieve desired

commands. In future work, the curriculum learning of low-

level control primitives, such as actuator torques, could be

explored.

We demonstrate the effectiveness of our approach for the

task of adaptive multi-fingered grasping (See Fig I). Our

search space is 8-dimensional and we sample the training

points for learning control in 6-dimensions (x, y is done

via region-proposal sampling, as explained later). We show

how a robust model for grasping can be learnt with very

few examples. Specifically, we illustrate that defining a

curriculum over the control space improves overall grasping

rate compared to that of random sampling and staged-

training strategy by a significant margin. To the best of our

knowledge, this is the first work applications of curriculum

learning on a physical robotic task.

II. RELATED WORK

Curriculum Learning: For biological agents, concepts

are easier to learn when provided in a structured manner

instead of an arbitrary order [8]. This idea has been formal-

ized for machine learning algorithms by Elman et al. [9] and

Bengio et al. [10]. Under the name of Curriculum Learning

(CL) [10], the core idea is to learn easier aspects of the

problem earlier while gradually increasing the difficulty.

Most curriculum learning frameworks focus on the ordering

of training data: first train the model on easy examples and

then on more complex data points. Curriculum over data

has been shown to improve generalization and speed up

convergence [11], [12]. In our work, we propose curriculum

learning over the control space for robotic tasks. The key idea

in our method is that in higher dimensional control spaces,

some modalities are easier to learn and are uncorrelated

with other modalities. Our variance-based sensitivity analysis

exposes these easy to learn modalities which are learnt earlier

while focusing on harder modalities later.

Intrinsic Motivation: Given the challenges for rein-

forcement learning in tasks with sparse extrinsic reward,

there have been several works that have utilized intrinsic

2Note our curriculum is defined in control space as opposed to standard
usage where easy examples are used first followed by hard examples
for training. In our case, the objects being explored, though diverse and
numerous, remain fixed.

motivation for exploration and learning. Recently, Pathak

et. al. learned a policy for a challenging visual-navigation

task by optimizing with intrinsic rewards extracted from

self-supervized future image/state prediction error [13].

Sukhbaatar et al. proposed a asymmetric self-play scheme

between two agents to improve data efficiency and incre-

mental exploration of the environment [14]. In our work, the

curriculum is defined over the control space to incrementally

explore parts of the high-dimensional action space.

Ranking Functions: An essential challenge in CL is to

construct a ranking function, which assigns the priority for

each training datapoint. In situations with human experts, a

stationary ranking function can be hand defined. In Bengio et

al. [10], the ranking function is specified by the variability in

object shape. Some other methods like Self-Paced Learning

[15] and Self-Paced Curriculum Learning [16] dynamically

update the curriculum based on how well the agent is

performing. In our method, we use a stationary ranking

that is learned from performing sensitivity analysis [17]

on some data collected by sampling the control values

from a quasi-random sequence. This stationary ranking gives

priority ordering on control parameters. Most formulations

of curriculum training use a linear curriculum ordering. A

recent work by Svetlik et al. generated a directed acyclic

graph of curriculum ordering and showed improved data

efficiency for training an agent to play Atari games with

reinforcement learning [18].

Grasping: We demonstrate data-efficiency of CASSL on

the grasping problem. Refer to [19], [20] for surveys of prior

work. Classical foundational approaches focus on physics-

based analysis of stability [21]. However, these methods

usually require explicit 3D models of the objects and do

not generalize well to unseen objects. To perform grasp-

ing in complex unstructured environments, several data-

driven methods have been proposed [1], [2], [22]. For large-

scale data collection both simulation [22] and real-world

robots [1], [2] have been used. However, these large scale

methods operate on lower dimensional control spaces (planar

grasps are often 3 dimensional in output space) since high-

dimensional grasping requires significantly more amount of

data. In our work, we hypothesize and show that CASSL

requires lesser data and can also learn on higher dimensional

grasping configurations.

Robot Learning: The proposed method of Curriculum

Accelerated Self-Supervised Learning (CASSL) is not spe-

cific to the task of grasping and can be applied to a wide

variety of robot learning, manipulation and self-supervised

learning tasks. The ideas of self-supervised learning have

been used to push and poke objects [3], [23]. Nevertheless,

a common criticism of self-supervised approaches is their

dependency on large scale data. While reducing the amount

of data for training is an active area for research [24],

CASSL may help in reducing this data dependency. Deep

reinforcement learning [25]–[27] methods have empirically

shown the ability of neural networks to learn complex

policies and general agents. Unfortunately, these model-free

methods often need data in the order of millions to learn
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their perception-based control policies.

III. CURRICULUM ACCELERATED SELF-SUPERVISED

LEARNING (CASSL)

We now describe our curriculum learning approach for

high-level control. First, we discuss how to obtain priority

ordering of control parameters followed by how to use the

curriculum for learning.

A. CASSL Framework

Our goal is to learn a policy v = π(I) and scoring function

y = F(I, v), which given the current state represented by

image I and action v predicts the likelihood of success

y for the task. Note that in the case of high-dimensional

control v = v1, v2....vK where K is the dimensionality of

the action space. For the task of grasping an object, y can be

the grasp success probability given the image of object (I)

and control parameters of the grasp configuration (v). The

high-level control dimensions for grasping are the grasping

configuration, gripper pose, force, grasping mode, etc. as

explained later.

The core idea is that instead of randomly sampling the

training points in the original K-dim space and learning a

policy, we want to focus learning on specific dimensions first.

So, we will sample more uniformly (high exploration) in the

dimensions we are trying to learn; and for the other dimen-

sions we use the current model predictions (low exploration).

Consequently, the problem is reduced to the challenge of

finding the right ordering of the control dimensions. One way

of determining this ranking is with expert human labeling.

However, for the tasks we care about, the output function

F(I, v) is often too complex for a human to infer rankings

due to the complex space of grasping solutions. Instead,

we use global sensitivity analysis on a dataset of physical

robotic grasping interactions to determine this ranking. The

key intuition is to sequentially select the dimension that is

the most independent and interacts the least with all other

dimensions, hence is easier to learn.

B. Sensitivity Analysis

For defining a curriculum over control dimensions, we use

variance-based global sensitivity analysis. Mathematically,

for a model of the form y = F(I, v = {v1, v2, · · · , vK}),
global sensitivity analysis aims to numerically quantify how

uncertainty in the scalar output (e.g. grasp success probability

in this paper) can be expressed in terms of uncertainty in

the input variables (i.e. the control dimensions) [28]. The

first order index, denoted by S
(1)
j , is the most preliminary

metric of sensitivity and represents the uncertainty in y that

comes from vj alone. Another metric of interest is the total

sensitivity index S
(T )
j , which is the sum of all sensitivity

indices (first and higher order terms) involving the variable

vj . As a result, it captures the interactions (pairwise, tertiary,

etc.) of vj with other variables. Detailed description on

monte carlo estimators for the indices and proofs can be

found in [28]. Obtaining the sensitivity metrics requires the

model F or an approximate version of it. Instead, we use

Sobol sensitivity analysis [29] implementation in SAlib and

propose a data-driven method for estimating the sensitivity

metrics. In Sobol sensitivity analysis, the control input is

sampled from a quasi-random sequence, as it provides a

better coverage/exploration of the control space compared

to a uniform random distribution.

C. Determining the Curriculum Ranking

Given a large control space, an intuitive curriculum would

be to learn control dimensions in the descending order of

their sensitivity. However, when designing a curriculum, we

also care about the interactions between a control dimension

and others. Hence, we need to optimize on getting dimen-

sions that have high sensitivity and low correlation with other

dimensions. One way to do this is to minimize higher order

(>1) terms (i.e. S
(T )
i − S

(1)
i ) and the pairwise interactions

between variables S
(2)
i . Given sensitivity values for each

control dimension, we choose the subset of dimensions Ψ
which minimize the heuristic Eqn 1 below:

min
Ψ

E(Ψ) =
∑
i∈Ψ

(S
(T )
i − S

(1)
i ) +

∑
i∈Ψ

∑
j∈(Ω−Ψ)

|S(2)
ij | (1)

Here Ω is the set of all control dimensions (i.e. Ω =

{v1, v2, · · · , vK}), and Ψ is a subset of dimensions. We

evaluate all possible 2K − 1 subsets and choose the subset

with the minimum value as the first set of control dimensions

in the curriculum. We then recompute the term for subsets of

remaining control dimensions and iteratively choose the next

subset (as seen in Algorithm 1). The intuition behind Eqn 1

is that we want to choose the subset of control dimensions on

which the output y depends the most and is least correlated

with the remaining dimensions.

D. Modeling the Policy

The policy function v = π(I) takes the image as input I
and outputs the desired action v. Inspired by the approach in

[1], we use a CNN to model the policy function. However,

since CNNs have been shown to work better on classifi-

cation than regression, we employ classification instead of

regressing control outputs. To this end, each control space is

discretized into ni bins as given in Table I.

Our network design is based on AlexNet [30], where

the convolutional layers are initialized with ImageNet [31]

pre-trained weights as done before in [1], [32]. We used

ImageNet pre-trained features as they been proven to be

effective for transfer learning in a number of visual recog-

nition tasks [33], [34]. The network architecture is shown

in Fig 3. The fully-connected layer’s weights are initialized

from a normal distribution. While we could have had separate

networks for each control parameter, this would enormously

increase the size of our model and make the prediction

completely independent. Instead, we employ a shared ar-

chitecture commonly used in multi-task learning [23], [32],

such that the non-linear relationship between the different

parameters could be learned. Each parameter has a separate

fc7 layer and this ensures that the network learns a shared
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Fig. 2. A small subset of the data processed by the model during training can be seen here. Note that during training, we use a wide variety of objects
with different sizes, shapes and rigidity.

Conv1
96@

(55x55)

Conv2
256@

(27x27)

Conv3
384@

(27x27)

Conv4
384@

(13x13)

Conv5
256@

(13x13)
fc6

4096

(20)(5) (10) (20)(10)Mode (3)

Fig. 3. We employ a deep neural network to learn the action policy. The convolutional layers and the first fully connected layer (fc6) are shared (in grey).
The fc7 and output control layers are trained (in orange) to learn control-specific weights.

representation of the task until the fc6 layer. The fc8 ouputs

are finally sent through and normalized by a sigmoidal

function. Predicting the correct discretized value for each

control parameter is formulated as a multi-way classification

problem. More specifically, pij = π(I, uij) is akin to a Q

value function that returns the probability of success when

the action corresponding to the jth discrete bin for control

dimension i is taken.

E. Curriculum Training

Algorithm 1 describes the complete training structure

of our method. First, initial data is collected to perform

sensitivity analysis and given this priority ordering, we

begin the training procedure for our policy models. Apart

from diversity in the objects seen, we still need to enforce

exploration in the action space through all stages of the

curriculum training.

As described in Algorithm 1, the greedy action corre-

sponds to executing whatever control values the network

predicts. The hyper-parameters, εpost = 0.15 and εpre = 0.7,

determine the probability of choosing a random action vis-

à-vis the greedy one given by the policy. Therefore, for the

control dimensions already learned, we are more likely to

select the policy via the network. In our framework, for

parameters that have already been learned in the curriculum

(i.e i < k), they will have little exploration. In contrast,

for control parameters with i > k, they have a great deal

of exploration so that the data collected captures the higher

order effects between control parameters. When i = k, the

control is chosen with importance sampling explained as

follows. The grasping policy is parameterized as a multi-

class classifier on a discretized action space. As a result,

the output value pij from the final sigmoid layer for the jth

discrete bin for control i can be treated as a bernoulli random

variable with probability pij . Here, the control value ui that

is selected is the one which the model is most uncertain

about and hence has the highest variance i.e ui = argmaxj
pij(1- pij)). Taking the analytic derivative, the uncertainity

is maximized when pij=0.5. This approach is similar to

previous works such as [13], where actions were taken based

on what the agent is most “curious”/uncertain about and the

curiosity reward is defined as the prediction error of the next

state given the current state and action. Similarly, in [6],

the actions that maximize information gain about the agent’s

belief of the environment dynamics were taken.

At each stage of the curriculum learning, we also aggre-

gated the training dataset similar to DAgger [35] and prior
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Algorithm 1 Curriculum Accelerated Self-Supervised Learn-

ing (CASSL)

Given: ξ, εpre, εpost, D = {}
Collect: dataset d0 with quasi-random control samples

Initialize: aggregated dataset D ← D ∪ {d0}
[S(1), S(2), S(T )] ← SensitivityAnalysis(D)

Find curriculum C using [S(1), S(2), S(T )]

Train: Models M0
i with D ∀i

for control (indexed by k) in C do
Collect new dataset dk with the policy below:

πCASSL =

⎧⎪⎨
⎪⎩

εpost-Greedy with Mk−1
i i < k

Importance sampling of fc 8 i = k

εpre-Greedy with Mk−1
i i > k

Aggregate new dataset D = {D, dk}
Update Model Mk with D

end

work [1]. On stage k of the curriculum, the network was

fine-tuned on Dk ={Dk−1, dk}, where dk is the dataset

collected in the current stage of the curriculum. We sample

dk 2.5 times more than Dk−1 to give more importance to

new datapoints.

IV. CASSL FOR GRASPING

We now describe the implementation of CASSL for the

task of grasping objects. The grasping experiments and data

are collected on a Fetch mobile manipulator [36]. Visual data

is collected using a PrimeSense Carmine 1.09 short-range

RGBD sensor and we use a 3-finger adaptive gripper from

Robotiq. The Expanding Space Tree (ESTk) planner from

MoveIt is used to generate collision-free trajectories and state

estimation is hand-designed similar to prior work [1] - using

background subtraction to detect newly placed objects on the

table. We further use depth images to obtain an approximate

value for the height of objects.

A. Adaptive Grasping

The robotiq gripper has three fingers that can be inde-

pendently controlled and has two primary grasp modalities -

encompassing and finger-tip grips. As shown in Fig 4, there

are three operational modes for the gripper - Pinch, Normal

and Wide. Pinch mode is meant for precision grasping of

small objects and is limited to finger-tip grasps. Normal

grasping mode is the most versatile and can grasp a wide

range of objects with encompassing and finger-tip grasps.

Similarly, Wide mode is adept at grasping circular or large

objects. While the fingers can be individually controlled,

we only command the entire gripper to open/close, and the

proprietary planner handles the lower-level control for the

fingers. The fingers are operated at a speed of 110mm/sec.

The adaptive mechanisms of the gripper also allow it to

better handle the uncertainty in the object’s geometry and

pose. As a result of the adaptive closing mechanism, some

of the grasps end up being similar to push-grasps [37].

TABLE I

CONTROL PARAMETERS, RANGE AND DISCRETIZATION

Parameter Min Max # of Discrete Bins
θ −180◦ 180◦ 20
α −10◦ 10◦ 10
β −30◦ 30◦ 10
hG (Height) 0 1 5
MG (Mode) 0 2 3
fG (Force) 15N 60N 20

The gripper fingers sweep the region containing the object,

such that the object ends up being pushed inside the fingers

regardless of its starting position. Sometimes, such grasps

may not have force closure and the object could slip out of

the gripper.

B. Grasping Problem Definition

We formulate our problem in the context of table-top

grasping, where we infer high-level grasp control parameters

based on the image of the object. There are three parameters

that determine the location of the grasp (xG, yG and hG),

three parameters that determine the approach direction and

orientation of the gripper (α, β and θ) and two others that

involve the configuration (Mode MG and Force fG). The

geometric description of the three angles with respect to the

object pose is shown in Fig 4 and details of each parameter

are provided in Table I. θ is very sensitive to asymmetrical,

elongated objects while α - the angle from the vertical axis

- allows the gripper to tilt its approach direction to grasp the

objects from the side. The camera’s point cloud data gives

a noisy estimate of the object height, denoted by Hpc. Let

HTable be the height of the table with respect to the robot

base. Then, hG is a scaling parameter (between 0 and 1) that

interpolates between these two values, where the final height

of the object is zG = hG · (Hpc − HTable) + HTable. The

height of a grasp is crucial in ensuring that the gripper moves

low enough to make contact with the object in the first place.

However, note that the error in the height depends on both

hG and the noisy depth measurement from the camera. As

shown in Fig 4, there were only three discrete modes for the

gripper provided by the manufacturer.

Although the total space of grasp control is 8 dimensional,

two of the translational controls (xG and yG) are subsumed

in the sampling. Given an input image of the entire scene

IS , 150 patches IP are sampled which correspond to the

different values of xG and yG. Though this increases the

inference time (since we have to input multiple samples),

it also massively decreases the search space as a lot of the

scene ({xG, yG} corresponding to the background) is empty.

Hence, only 6 dimensions of control {hG, α, β, θ,MG, fG}
are learned for our task of grasping.

C. Sensitivity Analysis on Adaptive Grasping

As described in Section III-B, we collect a dataset of 1960

grasp interactions using the sobol quasi-random sampling

scheme with an accuracy of 21% during data collection. The

results for the S
(1)
i , S

(T )
i and S

(2)
ij indices for all control

parameters are shown in Table II. While the sensitivity

analysis was limited to 10 objects, they were diverse in
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Fig. 4. Our grasping problem formulation involves the high dimensional control of the adaptive gripper. (a) describes the translational and rotational
control dimensions (xG and yG are however subsumed in input samples). (b) describes the various modes of grasping, i.e. basic, wide and pinch modes.
(c) illustrates the force the gripper is allowed to apply on the objects. (d) describes the gripper’s commanded height with respect to the table and the object.

TABLE II

SENSITIVITY ANALYSIS RESULTS

fG MG α β θ hG

S(1) 0.014 0.109 0.040 0.087 0.164 0.124

S(T ) 0.799 0.985 0.892 1.130 0.850 0.788

S(2)

fG - 0.0125 -0.195 -0.216 -0.153 0.0956
MG - - -0.0859 0.163 -0.190 0.0385
α - - - -0.0904 -0.194 -0.236
β - - - - -0.280 -0.0519
θ - - - - - -0.260
hG - - - - - -

their properties - shape, deformable vs. rigid, large vs. small.

Given sensitivity indices for each control parameter, the

objective function in Eqn 1 is optimized to determine the

optimal ordering of the control parameters to learn. The

ordering that minimizes Eqn 1 is: [hG, θ, fG,MG, α, β] in

decreasing order of priority.

D. Training and Model Inference

Eqn 2 is the joint loss function that is optimized. ŷ corre-

sponds to the success/failure label, D(i) gives the number of

discretized bins for control parameter i (see Table I), K (=6)

is the number of control parameters, B is the batch size and

σ is the sigmoid activation. δ(k, ui,j) is an indicator function

and is equal to 1 when the control parameter i corresponding

to bin j is applied. yfc7i,j is the corresponding feature vector

that is passed into the final sigmoid activation.

L =

K∑

i=1

D(i)∑

j=1

B∑

k=1

δ(k, ui,j) · Cross-Entropy(σ(yfc7i,j ), ŷ) (2)

Note that for each image datapoint, the gradients for all six

control parameters are back-propagated throughout training.

For each stage of the curriculum, the network is trained for

15-20 epochs with a learning rate of 0.0001 using the ADAM

optimizer [38]. For inference, once we have the bounding

box of the object of interest, 150 image patches are sampled

randomly within this window and are re-sized to 224 × 224

dimensions for the forward pass through the CNN. For each

control parameter, the discrete bin with the highest activation

is selected and interpolated to obtain the actual continuous

value. The networks and optimization are implemented in

TensorFlow [39]. As a good practice when training deep

models, we used dropout(0.5) to reduce model over-fitting.

V. EXPERIMENTAL EVALUATION

Experimental Settings: To quantitatively evaluate the

performance of our framework, we physically tested the

learned models on a set of diverse objects and measured their

grasp accuracy averaged over a large number of trials. We

have three test sets (shown in Fig 5): 1) Set A containing 10

objects seen by the robot during training 2) Set B containing

10 novel objects and 3) Set C with 20 novel objects. For Sets

A and B, 5 grasps were attempted for each object placed

in various random initial configurations and the results are

detailed in Table III. CL0 in Table III refers to the model

that was trained on the 1960 grasps collected for sensitivity

analysis. Fig 6 shows some of the successful grasps executed

with the robot using the final model trained with CASSL

(i.e. CL6). Given the long physical testing time on the

largest test set C, we took the best performing model and

baselines on test sets A and B and tested them on Set C.

As summarized in Table III, the values reported for each

model were averaged for a total of 160 physical grasping

trials (8 per object). When testing, the object was placed in

8 canonical orientations (NSWE,NE,SE,SW and NW) with

respect to the same reference orientation.

Curriculum Progress: The grasp accuracy increases with

each stage of curriculum learning on Set A and B, as shown

in Fig 7. Starting with CL0 at 41.67%, the accuracy topped

70.0% on Set A (Seen objects) and 62% on Set B (Novel

objects) at the end of the curriculum for the CL6 model. Note

that at each stage of the curriculum, the model trained on the

previous stage was used to collect around 460-480 grasps

as explained in Algorithm 1. As expected, the performance

of the models on Set A with seen objects was better than

that of the novel objects in Set B. Yet, the strong grasping

performance on unseen objects suggests that the CNN was

able to learn a generalized visual representation to scale its

inference to novel objects. There was a dip in accuracy for

CL2, possibility owing to over-fitting on one of the control

dimensions, but the performance recovered in subsequent

stages since the models are trained with all the aggregated

data.
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Fig. 5. Set A contains 10 objects seen in training. Set B and C contain 10 and 20 novel objects respectively not used in training

TABLE III

RESULTS ON TEST SET WITH SEEN AND NOVEL OBJECTS

Training
Testing

Set A Set B Set C
CL0 20.9 42.0 42.0 -

CASSL(Ours) - CL6(β) 51.1 70.0 62.0 66.9
CASSL(Random1) 42.7 56.0 54.0 55.6
CASSL(Random2) 37.1 54.0 50.0 -

Staged Learning [1], [2] 26.85 66.0 54.0 56.9
Random Exploration 25.8 48.0 48.0 -

Baseline Comparison: We evaluated against four base-

lines, all of which are provided equal or more data than

that given to CASSL. 1) Random Exploration - Training the

network from scratch with 4756 random grasps. 2) Staged
Learning [1], [2] - We first trained the network with data

from sensitivity analysis (i.e. CL0) and used this learned

policy to sample the next 2796 grasp data points, as done

in prior work. The policy was then fine-tuned with the

aggregated data (4756 examples). In the third and final

stage, 350 new grasp data points were sampled. This staged

baseline was the training methodology used in prior work [1],

[2]. 3) CASSL (Random 1 & 2) - Instead of using sensitivity

analysis to define the curriculum, two sets of randomly

ranked control parameters were trained with CASSL and the

performance of the final trained models is reported in Table

III. The ordering for Random 1 and 2 is [MG, α, θ, β, fG, hG]
(in decreasing order of priority) and [β, fG, α, hG,MG, θ]
respectively. In addition to the baselines above, the CL0

model achieves a grasping rate of around 20.86% and this

could be roughly considered as the performance of random

grasping trained with 1960 datapoints.

All the curriculum models (except CL0, CL2) outper-

formed the random exploration baseline’s accuracy of 48%.

On the Set B (novel objects), CL6 showed a marked increase

of 14%, 8% and 12% vis-à-vis the random exploration,

staged learning and CASSL (Random 2) baselines respec-

tively. For the results on the larger Set C, CL6 still outper-

formed staged learning by about 10% and CASSL (Random

1) by 11.3%. The curriculum optimized with sensitivity

analysis outperformed the random curriculum, illustrating the

importance of choosing the right curriculum ranking, the lack

of which can hamper learning performance.

Fig. 6. Some successful grasps achieved by model trained with CASSL.

Fig. 7. Variation in grasp accuracy with respect to stages in learning

VI. CONCLUSION AND FUTURE WORK

We introduce Curriculum Accelerated Self-Supervised

Learning (CASSL) for high-level, high-dimensional control

in this work. In general, using random sampling or staged

learning is not optimal. Instead, we utilize sensitivity analysis

to compute the curriculum ranking in a data-driven fashion

and assign the priority for learning each control parameter.

We demonstrate effectiveness of CASSL on adaptive, 3-

fingered grasping. On novel test objects, CASSL outper-

formed baseline random sampling by 14%, on-policy sam-
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pling by 8% and a random curriculum baseline by 12%. In

future work, we hope to explore the following: 1) Modify

the existing framework to include dynamically changing

curriculum instead of a pre-computed stationary ordering 2)

Investigate applications in hierarchical reinforcement learn-

ing, where high-level policy trained with CASSL is used

alongside a low-level controller 3) Scale CASSL for learning

in high dimensional manipulation tasks such as in-hand

manipulation.
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