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Abstract

Summary: Microbial sequences generated from clinical samples are often contaminated with human host sequences that
must be removed for ethical and legal reasons. Care must be taken to excise host sequences without inadvertently removing
target microbial sequences to the detriment of downstream analyses such as variant calling and de novo assembly. To
facilitate accurate host decontamination of both short and long sequencing reads, we developed Hostile, a tool capable of
rapid host read removal using laptop specification hardware. We demonstrate that our approach removes at least 99.868%
of real human reads and retains at least 99.997% of simulated bacterial reads. Use of a masked reference genome further
increases bacterial read retention (>=99.997%) with negligible (<0.001%) reduction in human read removal performance.
Compared with an existing tool, Hostile removed up to 11x more human reads and up to 11x fewer microbial reads while
taking less time for typical workloads.
Availability and implementation: Hostile is implemented as an MIT licensed Python package available from
https://github.com/bede/hostile

1 Introduction
Microbial specimens are often contaminated with host sequences. Since
experimental host genome depletion protocols are imperfect, host DNA
often reaches the sequencing instrument. Where the specimen host is
a human, it is important that host sequences are subsequently deleted
in order to protect anonymity. The widespread human contamination
of publicly deposited microbial sequence data (Bush et al., 2020) is
therefore regrettable and raises regulatory concerns, particularly in light
of the rapid growth of metagenomic diagnostics. Furthermore, unwanted
host sequences waste computing resources and may adversely affect
downstream analyses such as variant calling and de novo assembly. Host
decontamination is therefore the first step performed in many microbial
genomic analyses. Existing approaches employ one of three strategies: i)
exclusive retention of reads aligning to a target microbial genome (Hunt
et al., 2022), ii) subtractive removal of reads aligning to a host genome,
and iii) subtractive removal after metagenomic read classification (Kim
et al., 2016; Wood et al., 2019). Where the target microbe is known a
priori, the first strategy (exclusive retention) may be most suitable: for
SARS-CoV-2 it is both more accurate and computationally efficient than
subtractive removal (Hunt et al., 2022). However, the second and third
strategies (subtractive removal) are generalisable, and thus necessary for
analysis of microbes that are unknown a priori, mixtures, or novel.

In this article, we describe a simple tool implementing subtractive
removal of contaminant human genome sequences, together with rigorous
evaluation of its performance against real human genomes and simulated
bacterial reads representing the 985 complete bacterial assemblies in the

FDA-ARGOS dataset (Sichtig et al., 2019). We also report performance
using simulated reads for 140 complete mycobacterial genomes. These
results provide evidence of the accuracy of the approach in terms of both
its ability to remove human host reads (sensitivity), and to retain microbial
reads (specificity).

2 Materials and Methods
Hostile is implemented as a Python package providing a command line
interface and Python API. The decontamination process involves a series
of streaming operations on optionally gzip-compressed input FASTQ files:
i) alignment to a human genome (Minimap2 or Bowtie2), ii) counting
distinct reads (Samtools), iii) discarding mapped reads (and their mate
reads if applicable; Samtools), iv) counting remaining reads (Samtools),
v) Replacing read names with incrementing integers, and vi) writing gzip-
compressed FASTQ files (Samtools) (Li, 2018; Langmead and Salzberg,
2012; Danecek et al., 2021). These operations are streaming to reduce
execution time and disk IO. Bowtie2 is the default aligner for short reads
due to its relatively compact (<4GB) memory footprint, while Minimap2
is the default aligner for long reads, requiring approximately 12GB of
RAM using the map-ont preset for ONT reads. Hostile outputs summary
statistics in JSON format including the total number of reads before and
after decontamination.

A custom human reference genome was built from the current
telomere-to-telomere human genome assembly (Nurk et al., 2022) and
human leukocyte antigen (HLA) sequences. Human Illumina (Byrska-
Bishop et al., 2022) and ONT (Jain et al., 2018) reads from the
well-characterised NA12878 sample were downsampled using BBTools
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Table 1. Evaluation of Hostile and the Human Read Removal Tool (HRRT) on real human and simulated bacterial and mycobacterial reads

Reads retained (%) Execution time (s)
Dataset Samples Total reads Hostile Hostile (masked) HRRT Hostile Hostile (masked) HRRT

Human Illumina (real) 1 199,510,296 0.1317% 0.1320% 1.4687% 1,299 1,215 1,056
Human ONT (real) 1 2,498,111 0.0380% 0.0381% 0.0373% 2,744 2,747 448
Bacteria Illumina 985 273,511,602 99.9999% 99.9999% 99.9988% 3,526 3,529 937
Bacteria ONT 985 8,230,970 99.9892% 99.9970% 99.9890% 1,375 1,370 5,559
Mycobacteria Illumina 140 51,360,128 100.0000% 100.0000% 99.9999% 680 691 838
Mycobacteria ONT 140 1,544,982 99.9995% 100.0000% 99.9986% 312 309 808

Note: Percentages of retained reads represent the sum of reads from all samples in the dataset

(Bushnell, 2014) to a target depth of 10. Refer to the Supplementary Text
for detailed information about test data and masked reference genome
construction. Illumina reads were simulated with DWGSIM (Homer,
2010) while ONT reads were simulated with PBSIM2 (Ono et al., 2021).

We evaluated Hostile version 0.0.2 performance alongside the
Human Read Removal Tool (HRRT; also known as Human Scrubber;
https://github.com/ncbi/sra-human-scrubber) version
2.1.0. Testing was performed using an Ubuntu 22.04 AMD64 virtual
machine.

3 Results
Full benchmarking results are shown in Supplementary Table S1,
summarised in Table 1 and described here. Refer to the Supplementary
Text for detailed information about test data preparation.

Accuracy of human read removal: human read removal accuracy
was evaluated using real Illumina and Nanopore reads. Refer to the
Supplementary Text for detailed information about test data. For Illumina
data, Hostile retained 0.132% of human reads while HRRT retained
1.47% of human reads (11-fold more). For ONT data, Hostile and
HRRT retained similar percentages of human reads – 0.038% and
0.037% respectively. Use of a reference genome masked against bacterial
sequences negligibly increased Hostile’s retention of human reads from
0.131738% to 0.131979% (Illumina) and from 0.038029% to 0.038069%
(ONT).

Accuracy of microbial read retention: accuracy of bacterial read
retention was evaluated using Illumina and ONT sequences simulated
from reference-grade complete bacterial assemblies in the FDA-ARGOS
dataset. For simulated Illumina data, Hostile retained 99.99989% of reads
while HRRT retained 99.99875%, corresponding to HRRT removing
11 times as many bacterial reads as Hostile. Hostile’s bacterial read
retention increased to 99.99994% through the use of a reference genome
masked against bacterial sequences. For simulated ONT data, Hostile and
HRRT retained similar percentages of bacterial reads – 99.98918% and
99.98901% respectively. Use of a masked reference genome reduced the
number of bacterial ONT reads removed by Hostile by 72% (from 891 to
251).

For mycobacterial reads, 140 complete assemblies were simulated
in the same fashion. For simulated mycobacterial Illumina data,
Hostile retained 99.99998% of reads while HRRT retained 99.999868%,
corresponding to HRRT removing 9 times more mycobacterial reads
than Hostile. For simulated mycobacterial ONT data, Hostile retained
99.99948% of reads while HRRT retained 99.99864%. Use of a masked
reference with Hostile resulted in perfect (100%) retention of both
Illumina and ONT reads.

Performance and execution time: Execution time was measured as
the median wall clock time required to process gzip-compressed FASTQ
input and create gzip-compressed decontaminated FASTQ output with 8
threads. See Table S1 for the commands used. Neither tool was faster
for all datasets tested. HRRT was consistently faster at decontaminating

human reads, taking 1,056s and 448s to decontaminate real Illumina
and ONT reads respectively, while Hostile took 1,215s and 2,743s.
For simulated bacterial Illumina reads, HRRT was faster, taking 937s
vs. 3,507s for Hostile. However, for ONT reads, Hostile was faster,
taking 1,369s vs. 5,559s for HRRT. For mycobacterial reads, Hostile
decontaminated both Illumina and ONT reads faster than HRRT (687s
and 309s for Hostile vs. 838s and 808s for HRRT). Hostile’s overall
per-base throughput of 8-30Mbp/s during testing was more consistent
than HRRT’s 7-46Mbp/s throughput. HRRT’s creation of uncompressed
temporary FASTQ files may explain its varied performance characteristics
for host-light and host-heavy input data.

4 Discussion
In any diagnostic or experiment where microbial genomes might be
contaminated with human genomes, host decontamination is necessary
both to safeguard patient anonymity and to avoid encumbering
downstream analyses with redundant and potentially detrimental off-target
sequences. For downstream analysis it is also of critical importance
that microbial sequences are not inadvertently removed, leading to false
variant calls and broken de novo assemblies. Where target microbes are
unknown a priori, mixed or sufficiently novel, a subtractive human read
removal approach is required, involving non-trivial computation using
gigabytes of RAM. Hostile uses one of two complementary seed-and-
extend aligners to accurately excise human reads. Bowtie2 is well-suited
for decontaminating short reads due to its small memory footprint, fast
index loading, and memory-mapped index support, while Minimap2
offers excellent long (and short) read performance in return for a larger
index that is considerably slower to load. Compared to an existing
approach, Hostile is more sensitive in terms of removing human reads,
and specific in retaining diverse bacterial reads, and we have shown that
its specificity increases further by use of a masked reference genome.
Unlike some existing tools, Hostile streams compressed fastq input to
compressed fastq output without creating intermediate files. Hostile’s
RAM requirements are increasingly met by consumer laptops, creating
scope for client-side host decontamination using what we hope will be
broadly useful software.
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