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CHAPTER

ONE

OVERVIEW AND TUTORIAL

1.1 Introduction

The modules defined here are designed to facilitate least-squares fitting of noisy data by multi-dimensional, nonlinear
functions of arbitrarily many parameters. The central module is lsqfit because it provides the fitting functions.
lsqfit makes heavy use of auxiliary module gvar, which provides tools that facilitate the analysis of error propa-
gation, and also the creation of complicated multi-dimensional Gaussian distributions.

The following (complete) code illustrates basic usage of lsqfit:

import numpy as np
import gvar as gv
import lsqfit

y = { # data for the dependent variable
’data1’ : gv.gvar([1.376, 2.010], [[ 0.0047, 0.01], [ 0.01, 0.056]]),
’data2’ : gv.gvar([1.329, 1.582], [[ 0.0047, 0.0067], [0.0067, 0.0136]]),
’b/a’ : gv.gvar(2.0, 0.5)
}

x = { # independent variable
’data1’ : np.array([0.1, 1.0]),
’data2’ : np.array([0.1, 0.5])
}

prior = dict(a=gv.gvar(0.5, 0.5), b=gv.gvar(0.5, 0.5))

def fcn(x, p): # fit function of x and parameters p
ans = {}
for k in [’data1’, ’data2’]:

ans[k] = gv.exp(p[’a’] + x[k] * p[’b’])
ans[’b/a’] = p[’b’] / p[’a’]
return ans

# do the fit
fit = lsqfit.nonlinear_fit(data=(x, y), prior=prior, fcn=fcn)
print(fit.format(100)) # print standard summary of fit

p = fit.p # best-fit values for parameters
outputs = dict(a=p[’a’], b=p[’b’])
outputs[’b/a’] = p[’b’]/p[’a’]
inputs = dict(y=y, prior=prior)
print(gv.fmt_values(outputs)) # tabulate outputs
print(gv.fmt_errorbudget(outputs, inputs)) # print error budget for outputs

# save best-fit values in file ’outputfile.p’ for later use

3
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import pickle
pickle.dump(fit.p, open(’outputfile.p’, ’wb’))

This code fits the function f(x,a,b)= exp(a+b*x) (see fcn(x,p)) to two sets of data, labeled data1
and data2, by varying parameters a and b until f(x[’data1’],a,b) and f(x[’data2’],a,b) equal
y[’data1’] and y[’data2’], respectively, to within the ys’ errors. The means and covariance matrices for
the ys are specified in the gv.gvar(...)s used to create them: for example,

>>> print(y[’data1’])
[1.376(69) 2.01(24)]
>>> print(y[’data1’][0].mean, "+-", y[’data1’][0].sdev)
1.376 +- 0.068556546004
>>> print(gv.evalcov(y[’data1’])) # covariance matrix
[[ 0.0047 0.01 ]
[ 0.01 0.056 ]]

shows the means, standard deviations and covariance matrix for the data in the first data set (0.0685565 is the square
root of the 0.0047 in the covariance matrix). The dictionary prior gives a priori estimates for the two parameters,
a and b: each is assumed to be 0.5±0.5 before fitting. The parameters p[k] in the fit function fcn(x, p) are
stored in a dictionary having the same keys and layout as prior. In addition, there is an extra piece of input data,
y[’b/a’], which indicates that b/a is 2±0.5. The fit function for this data is simply the ratio b/a (represented by
p[’b’]/p[’a’] in fit function fcn(x,p)). The fit function returns a dictionary having the same keys and layout
as the input data y.

The output from the code sample above is:

Least Square Fit:
chi2/dof [dof] = 0.17 [5] Q = 0.97 logGBF = 0.65538 itns = 5

Parameters:
a 0.253 (32) [ 0.50 (50) ]
b 0.449 (65) [ 0.50 (50) ]

Fit:
key y[key] f(p)[key]

---------------------------------------
b/a 2.00 (50) 1.78 (30)

data1 0 1.376 (69) 1.347 (46)
1 2.01 (24) 2.02 (16)

data2 0 1.329 (69) 1.347 (46)
1 1.58 (12) 1.612 (82)

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

Values:
a: 0.253(32)

b/a: 1.78(30)
b: 0.449(65)

Partial % Errors:
a b/a b

--------------------------------------------------
y: 12.75 16.72 14.30

prior: 0.92 1.58 1.88
--------------------------------------------------

total: 12.78 16.80 14.42

The best-fit values for a and b are 0.253(32) and 0.449(65), respectively; and the best-fit result for b/a is 1.78(30),

4 Chapter 1. Overview and Tutorial
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which, because of correlations, is slightly more accurate than might be expected from the separate errors for a and b.
The error budget for each of these three quantities is tabulated at the end and shows that the bulk of the error in each
case comes from uncertainties in the y data, with only small contributions from uncertainties in the priors prior.
The fit results corresponding to each piece of input data are also tabulated (Fit: ...); the agreement is excellent,
as expected given that the chi**2 per degree of freedom is only 0.17.

The last section of the code uses Python’s pickle module to save the best-fit values of the parameters in a file for
later use. They are recovered using pickle again:

>>> import pickle
>>> p = pickle.load(open(’outputfile.p’, ’rb’))
>>> print(p[’a’])
0.253(32)
>>> print(p[’b’])
0.449(65)
>>> print(p[’b’]/p[’a’])
1.78(30)

The recovered parameters are gvar.GVars, with their full covariance matrix intact. (pickle works here because
the variables in fit.p are stored in a special dictionary of type gvar.BufferDict; gvar.GVars cannot be
pickled otherwise.)

Note that the constraint in y on b/a in this example is much tighter than the constraints on a and b separately. This
suggests a variation on the previous code, where the tight restriction on b/a is built into the prior rather than y:

... as before ...

y = { # data for the dependent variable
’data1’ : gv.gvar([1.376, 2.010], [[ 0.0047, 0.01], [ 0.01, 0.056]]),
’data2’ : gv.gvar([1.329, 1.582], [[ 0.0047, 0.0067], [0.0067, 0.0136]])
}

x = { # independent variable
’data1’ : np.array([0.1, 1.0]),
’data2’ : np.array([0.1, 0.5])
}

prior = dict(a=gv.gvar(0.5, 0.5))
prior[’b’] = prior[’a’]*gv.gvar(2.0, 0.5)

def fcn(x, p): # fit function of x and parameters p[k]
ans = {}
for k in [’data1’, ’data2’]:

ans[k] = gv.exp(p[’a’] + x[k]*p[’b’])
return ans

... as before ...

Here the dependent data y no longer has an entry for b/a, and neither do results from the fit function; but the prior
for b is now 2±0.5 times the prior for a, thereby introducing a correlation that limits the ratio b/a to be 2±0.5 in the
fit. This code gives almost identical results to the first one — very slightly less accurate, since there is less input data.
We can often move information from the y data to the prior or back since both are forms of input information.

There are several things worth noting from this example:

• The input data (y) is expressed in terms of Gaussian random variables — quantities with means and a covariance
matrix. These are represented by objects of type gvar.GVar in the code; module gvar has a variety of tools
for creating and manipulating Gaussian random variables.

• The input data is stored in a dictionary (y) whose values can be gvar.GVars or arrays of gvar.GVars. The
use of a dictionary allows for far greater flexibility than, say, an array. The fit function (fcn(x, p)) has to
return a dictionary with the same layout as that of y (that is, with the same keys and where the value for each

1.1. Introduction 5
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key has the same shape as the corresponding value in y). lsqfit does allow y to be an array instead of a
dictionary, which might be preferable for very simple fits (but usually not otherwise).

• The independent data (x) can be anything; it is simply passed through the fit code to the fit function fcn(x,p).
It can also be omitted altogether, in which case the fit function depends only upon the parameters: fcn(p).

• The fit parameters (p in fcn(x,p)) are also stored in a dictionary whose values are gvar.GVars or arrays of
gvar.GVars. Again this allows for great flexibility. The layout of the parameter dictionary is copied from that
of the prior (prior). Again p can be a single array instead of a dictionary, if that simplifies the code (which is
usually not the case).

• The best-fit values of the fit parameters (fit.p[k]) are also gvar.GVars and these capture statistical cor-
relations between different parameters that are indicated by the fit. These output parameters can be combined
in arithmetic expressions, using standard operators and standard functions, to obtain derived quantities. These
operations take account of and track statistical correlations.

• Function gvar.fmt_errorbudget() is a useful tool for assessing the origins (inputs) of the statistical
errors obtained in various final results (outputs). It is particularly useful for analyzing the impact of the a
priori uncertainties encoded in the prior (prior).

What follows is a brief tutorial that demonstrates in greater detail how to use these modules in some standard variations
on the data fitting problem. As above, code for the examples is specified completely and so can be copied into a file,
and run as is. It can also be modified, allowing for experimentation. At the very end, in an appendix, there is a
very simple pedagogical example that illustrates the nature of priors and demonstrates some of the simpler techniques
supported by lsqfit.

About Printing: The examples in this tutorial use the print function as it is used in Python 3. Drop the outermost
parenthesis in each print statement if using Python 2; or add

from __future__ import print_function

at the start of your file.

1.2 Making Fake Data

We need data in order to demonstrate curve fitting. The easiest route is to make fake data. The recipe is simple: 1)
choose some well defined function f(x) of the independent variable x; 2) choose values for the xs, and therefore the
“correct” values for y=f(x); and 3) add random noise to the ys, to simulate measurement errors. Here we will work
through a simple implementation of this recipe to illustrate how the gvar module can be used to build complicated
Gaussian distributions (in this case for the correlated noise in the ys). A reader eager to fit real data can skip this
section on first reading.

For the function f we choose something familiar (to some people): a sum of exponentials sum_i=0..99 a[i]
exp(-E[i]*x). We take as our exact values for the parameters a[i]=0.4 and E[i]=0.9*(i+1), which are
easy to remember. This is simple in Python:

import numpy as np

def f_exact(x, nexp=100):
return sum(0.4 * np.exp(-0.9 * (i + 1) * x) for i in range(nexp))

For xs we take 1,2,3..10,12,14..20, and exact ys are then given by f_exact(x):

>>> x = array([1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,12.,14.,16.,18.,20.])
>>> y_exact = f_exact(x)
>>> print(y_exact) # correct/exact values for y
[ 2.74047100e-01 7.92134506e-02 2.88190008e-02 ... ]

6 Chapter 1. Overview and Tutorial
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Finally we need to add random noise to the y_exacts to obtain our fit data. We do this by forming y_exact*noise
where

noise = 1 + sum_n=0..99 c[n] * (x / x_max) ** n,

Here x_max is the largest x used, and the c[n] are Gaussian random variable with means and standard deviations of
order 0.01. This is easy to implement in Python using the gvar module:

import gvar as gv

def make_data(nexp=100, eps=0.01): # make x, y fit data
x = np.array([1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,12.,14.,16.,18.,20.])
cr = gv.gvar(0.0, eps)
c = [gv.gvar(cr(), eps) for n in range(100)]
x_xmax = x/max(x)
noise = 1 + sum(c[n] * x_xmax ** n for n in range(100))
y = f_exact(x, nexp) * noise
return x, y

Gaussian variable cr represents a Gaussian distribution with mean 0.0 and width 0.01, which we use here as a random
number generator: cr() is a number drawn randomly from the distribution represented by cr:

>>> print(cr)
0.000(10)
>>> print(cr())
0.00452180208286
>>> print(cr())
-0.00731564589737

We use cr() to generate mean values for the Gaussian distributions represented by the c[n]s, each of which has
width 0.01. The resulting ys fluctuate around the corresponding values of f_exact(x) and have statistical errors:

>>> print(y)
[0.2752(27) 0.07951(80) ... ]
>>> print(y-f_exact(x))
[0.0011(27) 0.00029(80) ... ]

Different ys are also correlated (by construction), which becomes clear if we evaluate the covariance matrix for the
ys:

>>> print(gv.evalcov(y))
[[ 7.52900382e-06 2.18173029e-06 7.95744444e-07 ... ]
[ 2.18173029e-06 6.33815228e-07 2.31761675e-07 ... ]
[ 7.95744444e-07 2.31761675e-07 8.49651978e-08 ... ]
...

]

The diagonal elements of the covariance matrix are the variances of the individual ys; the off-diagonal elements are a
measure of the correlations:

< (y[i]-<y[i]>) * (y[j]-<y[j]>) >.

The Gaussian variables y[i] together with the numbers x[i] comprise our fake data.

1.3 Basic Fits

Now that we have fit data, x,y = make_data(), we pretend ignorance of the exact functional relationship between
x and y (i.e., y=f_exact(x)). Typically we do know the functional form and have some a priori idea about the

1.3. Basic Fits 7
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parameter values. The point of the fit is to improve our knowledge of the parameter values, beyond our a priori
impressions, by analyzing the fit data. Here we see how to do this using the lsqfit module.

First we need code to represent the fit function. In this case we know that a sum of exponentials is appropriate, so we
define the following Python function to represent the relationship between x and y in our fit:

import numpy as np

def f(x, p): # function used to fit x, y data
a = p[’a’] # array of a[i]s
E = p[’E’] # array of E[i]s
return sum(ai * np.exp(-Ei * x) for ai, Ei in zip(a, E))

The fit parameters, a[i] and E[i], are stored in a dictionary, using labels a and b to access them. These parameters
are varied in the fit to find the best-fit values p=p_fit for which f(x, p_fit) most closely approximates the ys
in our fit data. The number of exponentials included in the sum is specified implicitly in this function, by the lengths
of the p[’a’] and p[’E’] arrays.

Next we need to define priors that encapsulate our a priori knowledge about the parameter values. In practice we
almost always have a priori knowledge about parameters; it is usually impossible to design a fit function without some
sense of the parameter sizes. Given such knowledge it is important (usually essential) to include it in the fit. This is
done by designing priors for the fit, which are probability distributions for each parameter that describe the a priori
uncertainty in that parameter. As in the previous section, we use objects of type gvar.GVar to describe (Gaussian)
probability distributions. Let’s assume that before the fit we suspect that each a[i] is of order 0.5±0.5, while E[i]
is of order 1+i±0.5. A prior that represents this information is built using the following code:

import lsqfit
import gvar as gv

def make_prior(nexp): # make priors for fit parameters
prior = gv.BufferDict() # prior -- any dictionary works
prior[’a’] = [gv.gvar(0.5, 0.5) for i in range(nexp)]
prior[’E’] = [gv.gvar(i+1, 0.5) for i in range(nexp)]
return prior

where nexp is the number of exponential terms that will be used (and therefore the number of as and Es). With
nexp=3, for example, one would then have:

>>> print(prior[’a’])
[0.50(50) 0.50(50) 0.50(50)]
>>> print(prior[’E’])
[1.00(50), 2.00(50), 3.00(50)]

We use dictionary-like class gvar.BufferDict for the prior because it allows us to save the prior if we wish (using
Python’s pickle module). If saving is unnecessary, gvar.BufferDict can be replaced by dict() or most any
other Python dictionary class.

With fit data, a fit function, and a prior for the fit parameters, we are finally ready to do the fit, which is now easy:

fit = lsqfit.nonlinear_fit(data=(x, y), fcn=f, prior=prior)

So pulling together the entire code, from this section and the previous one, our complete Python program for making
fake data and fitting it is:

import lsqfit
import numpy as np
import gvar as gv

def f_exact(x, nexp=100): # exact f(x)
return sum(0.4*np.exp(-0.9*(i+1)*x) for i in range(nexp))

8 Chapter 1. Overview and Tutorial
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def f(x, p): # function used to fit x, y data
a = p[’a’] # array of a[i]s
E = p[’E’] # array of E[i]s
return sum(ai * np.exp(-Ei * x) for ai, Ei in zip(a, E))

def make_data(nexp=100, eps=0.01): # make x, y fit data
x = np.array([1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,12.,14.,16.,18.,20.])
cr = gv.gvar(0.0, eps)
c = [gv.gvar(cr(), eps) for n in range(100)]
x_xmax = x/max(x)
noise = 1+ sum(c[n] * x_xmax ** n for n in range(100))
y = f_exact(x, nexp) * noise
return x, y

def make_prior(nexp): # make priors for fit parameters
prior = gv.BufferDict() # prior -- any dictionary works
prior[’a’] = [gv.gvar(0.5, 0.5) for i in range(nexp)]
prior[’E’] = [gv.gvar(i+1, 0.5) for i in range(nexp)]
return prior

def main():
gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
x, y = make_data() # make fit data
p0 = None # make larger fits go faster (opt.)
for nexp in range(3, 20):

print(’************************************* nexp =’, nexp)
prior = make_prior(nexp)
fit = lsqfit.nonlinear_fit(data=(x, y), fcn=f, prior=prior, p0=p0)
print(fit) # print the fit results
E = fit.p[’E’] # best-fit parameters
a = fit.p[’a’]
print(’E1/E0 =’, E[1] / E[0], ’ E2/E0 =’, E[2] / E[0])
print(’a1/a0 =’, a[1] / a[0], ’ a2/a0 =’, a[2] / a[0])
print()
if fit.chi2 / fit.dof < 1.:

p0 = fit.pmean # starting point for next fit (opt.)

if __name__ == ’__main__’:
main()

We are not sure a priori how many exponentials are needed to fit our data; given that there are only fifteen ys, and
these are noisy, there may only be information in the data about the first few terms. Consequently we wrote our code
to try fitting with each of nexp=3,4,5..19 terms. (The pieces of the code involving p0 are optional; they make
the more complicated fits go about 30 times faster since the output from one fit is used as the starting point for the
next fit — see the discussion of the p0 parameter for lsqfit.nonlinear_fit.) Running this code produces the
following output, which is reproduced here in some detail in order to illustrate a variety of features:

************************************* nexp = 3
Least Square Fit:

chi2/dof [dof] = 6.3e+02 [15] Q = 0 logGBF = -4465.1 itns = 30

Parameters:
a 0 0.0288 (11) [ 0.50 (50) ]
1 0.0354 (13) [ 0.50 (50) ]
2 0.0779 (30) [ 0.50 (50) ]

E 0 1.0107 (24) [ 1.00 (50) ]
1 2.0200 (27) [ 2.00 (50) ]
2 3.6643 (33) [ 3.00 (50) ] *

1.3. Basic Fits 9
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Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 1.9986(24) E2/E0 = 3.6255(62)
a1/a0 = 1.23130(47) a2/a0 = 2.7070(13)

************************************* nexp = 4
Least Square Fit:

chi2/dof [dof] = 0.57 [15] Q = 0.9 logGBF = 220.04 itns = 220

Parameters:
a 0 0.4018 (40) [ 0.50 (50) ]
1 0.4055 (42) [ 0.50 (50) ]
2 0.4952 (76) [ 0.50 (50) ]
3 1.124 (12) [ 0.50 (50) ] *

E 0 0.90037 (51) [ 1.00 (50) ]
1 1.8023 (13) [ 2.00 (50) ]
2 2.7731 (90) [ 3.00 (50) ]
3 4.383 (21) [ 4.00 (50) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 2.0018(12) E2/E0 = 3.0800(98)
a1/a0 = 1.0094(30) a2/a0 = 1.233(14)

************************************* nexp = 5
Least Square Fit:

chi2/dof [dof] = 0.45 [15] Q = 0.97 logGBF = 220.84 itns = 6

Parameters:
a 0 0.4018 (40) [ 0.50 (50) ]
1 0.4049 (44) [ 0.50 (50) ]
2 0.478 (26) [ 0.50 (50) ]
3 0.63 (28) [ 0.50 (50) ]
4 0.62 (35) [ 0.50 (50) ]

E 0 0.90036 (51) [ 1.00 (50) ]
1 1.8019 (15) [ 2.00 (50) ]
2 2.759 (22) [ 3.00 (50) ]
3 4.09 (26) [ 4.00 (50) ]
4 4.95 (48) [ 5.00 (50) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 2.0013(14) E2/E0 = 3.065(24)
a1/a0 = 1.0075(42) a2/a0 = 1.189(63)

************************************* nexp = 6
Least Square Fit:

chi2/dof [dof] = 0.45 [15] Q = 0.97 logGBF = 220.7 itns = 6

Parameters:
a 0 0.4018 (40) [ 0.50 (50) ]
1 0.4041 (47) [ 0.50 (50) ]
2 0.461 (41) [ 0.50 (50) ]
3 0.60 (24) [ 0.50 (50) ]
4 0.47 (37) [ 0.50 (50) ]
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5 0.45 (46) [ 0.50 (50) ]
E 0 0.90035 (51) [ 1.00 (50) ]
1 1.8015 (17) [ 2.00 (50) ]
2 2.746 (34) [ 3.00 (50) ]
3 3.98 (32) [ 4.00 (50) ]
4 4.96 (49) [ 5.00 (50) ]
5 6.01 (50) [ 6.00 (50) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 2.0008(17) E2/E0 = 3.049(37)
a1/a0 = 1.0055(56) a2/a0 = 1.15(10)

************************************* nexp = 7
Least Square Fit:

chi2/dof [dof] = 0.45 [15] Q = 0.96 logGBF = 220.6 itns = 6

Parameters:
a 0 0.4018 (40) [ 0.50 (50) ]
1 0.4036 (48) [ 0.50 (50) ]
2 0.452 (47) [ 0.50 (50) ]
3 0.60 (22) [ 0.50 (50) ]
4 0.42 (37) [ 0.50 (50) ]
5 0.42 (46) [ 0.50 (50) ]
6 0.46 (49) [ 0.50 (50) ]

E 0 0.90035 (51) [ 1.00 (50) ]
1 1.8012 (18) [ 2.00 (50) ]
2 2.739 (39) [ 3.00 (50) ]
3 3.94 (33) [ 4.00 (50) ]
4 4.96 (49) [ 5.00 (50) ]
5 6.02 (50) [ 6.00 (50) ]
6 7.02 (50) [ 7.00 (50) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 2.0006(18) E2/E0 = 3.042(43)
a1/a0 = 1.0045(63) a2/a0 = 1.13(12)

.

.

.

************************************* nexp = 19
Least Square Fit:

chi2/dof [dof] = 0.46 [15] Q = 0.96 logGBF = 220.52 itns = 1

Parameters:
a 0 0.4018 (40) [ 0.50 (50) ]
1 0.4033 (49) [ 0.50 (50) ]
2 0.447 (51) [ 0.50 (50) ]
3 0.60 (21) [ 0.50 (50) ]
4 0.38 (37) [ 0.50 (50) ]
5 0.40 (46) [ 0.50 (50) ]
6 0.45 (49) [ 0.50 (50) ]
7 0.48 (50) [ 0.50 (50) ]
8 0.49 (50) [ 0.50 (50) ]
9 0.50 (50) [ 0.50 (50) ]

1.3. Basic Fits 11
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10 0.50 (50) [ 0.50 (50) ]
11 0.50 (50) [ 0.50 (50) ]
12 0.50 (50) [ 0.50 (50) ]
13 0.50 (50) [ 0.50 (50) ]
14 0.50 (50) [ 0.50 (50) ]
15 0.50 (50) [ 0.50 (50) ]
16 0.50 (50) [ 0.50 (50) ]
17 0.50 (50) [ 0.50 (50) ]
18 0.50 (50) [ 0.50 (50) ]

E 0 0.90035 (51) [ 1.00 (50) ]
1 1.8011 (19) [ 2.00 (50) ]
2 2.734 (42) [ 3.00 (50) ]
3 3.91 (33) [ 4.00 (50) ]
4 4.97 (49) [ 5.00 (50) ]
5 6.02 (50) [ 6.00 (50) ]
6 7.02 (50) [ 7.00 (50) ]
7 8.01 (50) [ 8.00 (50) ]
8 9.00 (50) [ 9.00 (50) ]
9 10.00 (50) [ 10.00 (50) ]
10 11.00 (50) [ 11.00 (50) ]
11 12.00 (50) [ 12.00 (50) ]
12 13.00 (50) [ 13.00 (50) ]
13 14.00 (50) [ 14.00 (50) ]
14 15.00 (50) [ 15.00 (50) ]
15 16.00 (50) [ 16.00 (50) ]
16 17.00 (50) [ 17.00 (50) ]
17 18.00 (50) [ 18.00 (50) ]
18 19.00 (50) [ 19.00 (50) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 2.0004(19) E2/E0 = 3.036(47)
a1/a0 = 1.0038(67) a2/a0 = 1.11(13)

--------------------- fit with extra information

There are several things to notice here:

• Clearly three exponentials (nexp=3) is not enough. The chi**2 per degree of freedom (chi2/dof) is much
larger than one. The chi**2 improves significantly for nexp=4 exponentials and by nexp=6 the fit is as
good as it is going to get — there is essentially no change when further exponentials are added.

• The best-fit values for each parameter are listed for each of the fits, together with the prior values (in brackets,
on the right). Values for each a[i] and E[i] are listed in order, starting at the points indicated by the labels
a and E. Asterisks are printed at the end of the line if the mean best-fit value differs from the prior’s mean by
more than one standard deviation; the number of asterisks, up to a maximum of 5, indicates how many standard
deviations the difference is. Differences of one or two standard deviations are not uncommon; larger differences
could indicate a problem with the prior or the fit.

Once the fit converges, the best-fit values for the various parameters agree well — that is to within their errors,
approximately — with the exact values, which we know since we are using fake data. For example, a and E for
the first exponential are 0.402(4) and 0.9003(5), respectively, from the fit where the exact answers are 0.4 and
0.9; and we get 0.45(5) and 2.73(4) for the third exponential where the exact values are 0.4 and 2.7.

• Note in the nexp=7 fit how the means and standard deviations for the parameters governing the seventh (and
last) exponential are almost identical to the values in the corresponding priors: 0.46(49) from the fit for a and
7.0(5) for E. This tells us that our fit data has little or no information to add to what we knew a priori about
these parameters — there isn’t enough data and what we have isn’t accurate enough.
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This situation is truer still of further terms as they are added in the nexp=8 and later fits. This is why the fit
results stop changing once we have nexp=6 exponentials. There is no point in including further exponentials,
beyond the need to verify that the fit has indeed converged.

• The last fit includes nexp=19 exponentials and therefore has 38 parameters. This is in a fit to 15 ys. Old-
fashioned fits, without priors, are impossible when the number of parameters exceeds the number of data points.
That is clearly not the case here, where the number of terms and parameters can be made arbitrarily large,
eventually (after nexp=6 terms) with no effect at all on the results.

The reason is that the prior that we include for each new parameter is, in effect, a new piece of data (the mean
and standard deviation of the a priori expectation for that parameter); it leads to a new term in the chi**2
function. We are fitting both the data and our a priori expectations for the parameters. So in the nexp=19 fit,
for example, we actually have 53 pieces of data to fit: the 15 ys plus the 38 prior values for the 38 parameters.

The effective number of degrees of freedom (dof in the output above) is the number of pieces of data minus the
number of fit parameters, or 53-38=15 in this last case. With priors for every parameter, the number of degrees
of freedom is always equal to the number of ys, irrespective of how many fit parameters there are.

• The Gaussian Bayes Factor (whose logarithm is logGBF in the output) is a measure of the likelihood that the
actual data being fit could have come from a theory with the prior and fit function used in the fit. The larger this
number, the more likely it is that prior/fit-function and data could be related. Here it grows dramatically from
the first fit (nexp=3) but then more-or-less stops changing around nexp=5. The implication is that this data
is much more likely to have come from a theory with nexp>=5 than with nexp=3 (which we know to be the
actual case).

• In the code, results for each fit are captured in a Python object fit, which is of type
lsqfit.nonlinear_fit. A summary of the fit information is obtained by printing fit. Also the best-fit
results for each fit parameter can be accessed through fit.p, as is done here to calculate various ratios of
parameters.

The errors in these last calculations automatically account for any correlations in the statistical errors for dif-
ferent parameters. This is obvious in the ratio a1/a0, which would be 1.004(16) if there was no statistical
correlation between our estimates for a1 and a0, but in fact is 1.004(7) in this fit. The (positive) correlation is
evident in the covariance matrix:

>>> print(gv.evalcov([a[0], a[1]]))
[[ 1.61726195e-05 1.65492001e-05]
[ 1.65492001e-05 2.41547633e-05]]

Finally we inspect the fit’s quality point by point. The input data are compared with results from the fit func-
tion, evaluated with the best-fit parameters, in the following table (obtained in the code by printing the output from
fit.format(100)):

Fit:
x[k] y[k] f(x[k],p)

-----------------------------------------------
1 0.2752 (27) 0.2752 (20)
2 0.07951 (80) 0.07952 (58)
3 0.02891 (29) 0.02892 (21)
4 0.01127 (11) 0.011272 (83)
5 0.004502 (46) 0.004506 (34)
6 0.001817 (19) 0.001819 (14)
7 0.0007362 (79) 0.0007375 (57)
8 0.0002987 (33) 0.0002994 (24)
9 0.0001213 (14) 0.00012163 (99)

10 0.00004926 (57) 0.00004943 (41)
12 8.13(10)e-06 8.164(72)e-06
14 1.342(19)e-06 1.348(13)e-06
16 2.217(37)e-07 2.227(23)e-07
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18 3.661(85)e-08 3.679(40)e-08
20 6.24(61)e-09 6.078(71)e-09

The fit is excellent over the entire eight orders of magnitude. This information is presented again in the following plot,
which shows the ratio y/f(x,p), as a function of x, using the best-fit parameters p. The correct result for this ratio,
of course, is one. The smooth variation in the data — smooth compared with the size of the statistical-error bars — is
an indication of the statistical correlations between individual ys.
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This particular plot was made using the matplotlib module, with the following code added to the end of main()
(outside the loop):

import pylab as plt
ratio = y / f(x, fit.pmean)
plt.xlim(0, 21)
plt.xlabel(’x’)
plt.ylabel(’y/f(x,p)’)
plt.errorbar(x=x, y=gv.mean(ratio), yerr=gv.sdev(ratio), fmt=’ob’)
plt.plot([0.0, 21.0], [1.0, 1.0])
plt.show()

1.4 Chained Fits

The priors in a fit represent knowledge that we have about the parameters before we do the fit. This knowledge might
come from theoretical considerations or experiment. Or it might come from another fit. Imagine that we want to add
new information to that extracted from the fit in the previous section. For example, we might learn from some other
source that the ratio of amplitudes a[1]/a[0] equals 1±1e-5. The challenge is to combine this new information
with information extracted from the fit above without rerunning that fit. (We assume it is not possible to rerun the first
fit, because, say, the input data for that fit has been lost or is unavailable.)

We can combine the new data with the old fit results by creating a new fit using the best-fit parameters, fit.p,

14 Chapter 1. Overview and Tutorial



lsqfit Documentation, Release 4.5.2

from the old fit as the priors for the new fit. To try this out, we add the following code onto the end of the main()
subroutine in the previous section:

def ratio(p): # new fit function
a = p[’a’]
return a[1] / a[0]

prior = fit.p # prior = best-fit parameters from 1st fit
data = gv.gvar(1, 1e-5) # new data for the ratio

newfit = lsqfit.nonlinear_fit(data=data, fcn=ratio, prior=prior)
print(newfit)

The result of the new fit (to one piece of new data) is:

Least Square Fit:
chi2/dof [dof] = 0.32 [1] Q = 0.57 logGBF = 3.9303 itns = 2

Parameters:
a 0 0.4018 (40) [ 0.4018 (40) ]
1 0.4018 (40) [ 0.4033 (49) ]
2 0.421 (20) [ 0.447 (51) ]
3 0.53 (17) [ 0.60 (21) ]
4 0.46 (34) [ 0.38 (37) ]
5 0.50 (42) [ 0.40 (46) ]
6 0.50 (48) [ 0.45 (49) ]
7 0.50 (50) [ 0.48 (50) ]
8 0.50 (50) [ 0.49 (50) ]
9 0.50 (50) [ 0.50 (50) ]
10 0.50 (50) [ 0.50 (50) ]
11 0.50 (50) [ 0.50 (50) ]
12 0.50 (50) [ 0.50 (50) ]
13 0.50 (50) [ 0.50 (50) ]
14 0.50 (50) [ 0.50 (50) ]
15 0.50 (50) [ 0.50 (50) ]
16 0.50 (50) [ 0.50 (50) ]
17 0.50 (50) [ 0.50 (50) ]
18 0.50 (50) [ 0.50 (50) ]

E 0 0.90030 (51) [ 0.90035 (51) ]
1 1.80007 (67) [ 1.8011 (19) ]
2 2.711 (12) [ 2.734 (42) ]
3 3.76 (18) [ 3.91 (33) ]
4 5.02 (48) [ 4.97 (49) ]
5 6.00 (50) [ 6.02 (50) ]
6 7.00 (50) [ 7.02 (50) ]
7 8.00 (50) [ 8.01 (50) ]
8 9.00 (50) [ 9.00 (50) ]
9 10.00 (50) [ 10.00 (50) ]

10 11.00 (50) [ 11.00 (50) ]
11 12.00 (50) [ 12.00 (50) ]
12 13.00 (50) [ 13.00 (50) ]
13 14.00 (50) [ 14.00 (50) ]
14 15.00 (50) [ 15.00 (50) ]
15 16.00 (50) [ 16.00 (50) ]
16 17.00 (50) [ 17.00 (50) ]
17 18.00 (50) [ 18.00 (50) ]
18 19.00 (50) [ 19.00 (50) ]

Settings:
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svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

Parameters a[0] and E[0] are essentially unchanged by the new information, but a[i] and E[i] are more precise
for i=2 and i=3, as is a[1]/a[0], of course. It might seem odd that E[1], for example, is changed at all, since
the fit function, ratio(p), makes no mention of it. This is not surprising, however, since ratio(p) does depend
up a[1], and a[1] is strongly correlated with E[1] through the prior. It is important to include all parameters from
the first fit as parameters in the new fit in order to capture the impact of the new information on parameters correlated
with a[1]/a[0].

It would have been easy to change the fit code in the previous section to incorporate the new information about
a[1]/a[0]. The approach presented here is numerically equivalent to that approach insofar as the chi**2 func-
tion for the original fit can be well approximated by a quadratic function in the fit parameters — that is, insofar
as exp(-chi**2/2) is well approximated by a Gaussian distribution in the parameters, as specified by the best-fit
means and covariance matrix (in fit.p). This is, of course, a fundamental assumption underlying the use of lsqfit
in the first place.

Obviously, we can include further fits in order to incorporate more data. The prior for each new fit is the best-fit output
(fit.p) from the previous fit. The output from the chain’s final fit is the cummulative result of all of these fits.

1.5 x has Error Bars

We now consider variations on our basic fit analysis (described above). The first variation concerns what to do when
the independent variables, the xs, have errors, as well as the ys. This is easily handled by turning the xs into fit
parameters, and otherwise dispensing with independent variables.

To illustrate this, we modify the basic analysis code above. First we need to add errors to the xs, which we do by
changing make_data so that each x has a random value within about ±0.001% of its original value and an error:

def make_data(nexp=100, eps=0.01): # make x, y fit data
x = np.array([1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,12.,14.,16.,18.,20.])
cr = gv.gvar(0.0, eps)
c = [gv.gvar(cr(), eps) for n in range(100)]
x_xmax = x/max(x)
noise = 1+ sum(c[n] * x_xmax ** n for n in range(100))
y = f_exact(x, nexp) * noise # noisy y[i]s
xfac = gv.gvar(1.0, 0.00001) # Gaussian distrib’n: 1±0.001%
x = np.array([xi * gv.gvar(xfac(), xfac.sdev) for xi in x]) # noisy x[i]s
return x, y

Here gvar.GVar object xfac is used as a random number generator: each time it is called, xfac() is a dif-
ferent random number from the distribution with mean xfac.mean and standard deviation xfac.sdev (that is,
1±0.00001). The main program is modified so that the (now random) x array is treated as a fit parameter. The prior
for each x is, obviously, specified by the mean and standard deviation of that x, which is read directly out of the array
of xs produced by make_data():

def make_prior(nexp, x): # make priors for fit parameters
prior = gv.BufferDict() # prior -- any dictionary works
prior[’a’] = [gv.gvar(0.5, 0.5) for i in range(nexp)]
prior[’E’] = [gv.gvar(i+1, 0.5) for i in range(nexp)]
prior[’x’] = x # x now an array of parameters
return prior

def main():
gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
x, y = make_data() # make fit data
p0 = None # make larger fits go faster (opt.)
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for nexp in range(3, 20):
print(’************************************* nexp =’, nexp)
prior = make_prior(nexp, x)
fit = lsqfit.nonlinear_fit(data=y, fcn=f, prior=prior, p0=p0)
print(fit) # print the fit results
E = fit.p[’E’] # best-fit parameters
a = fit.p[’a’]
print(’E1/E0 =’, E[1] / E[0], ’ E2/E0 =’, E[2] / E[0])
print(’a1/a0 =’, a[1] / a[0], ’ a2/a0 =’, a[2] / a[0])
print()
if fit.chi2/fit.dof<1.:

p0 = fit.pmean # starting point for next fit (opt.)

The fit data now consists of just the y array (data=y), and the fit function loses its x argument and gets its x values
from the fit parameters p instead:

def f(p):
a = p[’a’]
E = p[’E’]
x = p[’x’]
return sum(ai*exp(-Ei*x) for ai, Ei in zip(a, E))

Running the new code gives, for nexp=6 terms:

************************************* nexp = 6
Least Square Fit:

chi2/dof [dof] = 0.54 [15] Q = 0.92 logGBF = 198.93 itns = 6

Parameters:
a 0 0.4025 (41) [ 0.50 (50) ]
1 0.429 (32) [ 0.50 (50) ]
2 0.58 (23) [ 0.50 (50) ]
3 0.40 (38) [ 0.50 (50) ]
4 0.42 (46) [ 0.50 (50) ]
5 0.46 (49) [ 0.50 (50) ]

E 0 0.90068 (60) [ 1.00 (50) ]
1 1.818 (20) [ 2.00 (50) ]
2 2.95 (28) [ 3.00 (50) ]
3 3.98 (49) [ 4.00 (50) ]
4 5.02 (50) [ 5.00 (50) ]
5 6.01 (50) [ 6.00 (50) ]

x 0 0.999997 (10) [ 0.999997 (10) ]
1 1.999958 (20) [ 1.999958 (20) ]
2 3.000014 (30) [ 3.000013 (30) ]
3 4.000065 (36) [ 4.000064 (40) ]
4 5.000047 (34) [ 5.000069 (50) ]
5 6.000020 (39) [ 5.999986 (60) ]
6 6.999988 (40) [ 6.999942 (70) ]
7 7.999956 (42) [ 7.999982 (80) ]
8 8.999934 (50) [ 9.000054 (90) ] *
9 9.999923 (59) [ 9.99991 (10) ]
10 11.999929 (79) [ 11.99982 (12) ]
11 13.99992 (11) [ 13.99991 (14) ]
12 15.99992 (15) [ 15.99998 (16) ]
13 18.00022 (18) [ 18.00020 (18) ]
14 20.00016 (20) [ 20.00016 (20) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0
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E1/E0 = 2.018(22) E2/E0 = 3.27(31)
a1/a0 = 1.065(77) a2/a0 = 1.45(57)

This looks quite a bit like what we obtained before, except that now there are 15 more parameters, one for each x, and
also now all results are a good deal less accurate. Note that one result from this analysis is new values for the xs. In
some cases the errors on the x values have been reduced — by information in the fit data.

1.6 Correlated Parameters; Gaussian Bayes Factor

gvar.GVar objects are very useful for handling more complicated priors, including situations where we know a
priori of correlations between parameters. Returning to the Basic Fits example above, imagine a situation where we
still have a ±0.5 uncertainty about the value of any individual E[i], but we know a priori that the separations between
adjacent E[i]s is 0.9±0.01. We want to build the correlation between adjacent E[i]s into our prior.

We do this by introducing a gvar.GVar object de[i] for each separate difference E[i]-E[i-1], with de[0]
being E[0]:

de = [gvar(0.9, 0.01) for i in range(nexp)]
de[0] = gvar(1, 0.5) # different distribution for E[0]

Then de[0] specifies the probability distribution for E[0], de[0]+de[1] the distribution for E[1],
de[0]+de[1]+de[2] the distribution for E[2], and so on. This can be implemented (slightly inefficiently) in
a single line of Python:

E = [sum(de[:i+1]) for i in range(nexp)]

For nexp=3, this implies that

>>> print(E)
[1.00(50) 1.90(50) 2.80(50)]
>>> print(E[1] - E[0], E[2] - E[1])
0.900(10) 0.900(10)

which shows that each E[i] separately has an uncertainty of ±0.5 (approximately) but that differences are specified
to within ±0.01.

In the code, we need only change the definition of the prior in order to introduce these correlations:

def make_prior(nexp): # make priors for fit parameters
prior = gv.BufferDict() # prior -- any dictionary works
prior[’a’] = [gv.gvar(0.5, 0.5) for i in range(nexp)]
de = [gv.gvar(0.9, 0.01) for i in range(nexp)]
de[0] = gv.gvar(1, 0.5)
prior[’E’] = [sum(de[: i + 1]) for i in range(nexp)]
return prior

Running the code as before, but now with the correlated prior in place, we obtain the following fit with nexp=7 terms:

************************************* nexp = 7
Least Square Fit:

chi2/dof [dof] = 0.44 [15] Q = 0.97 logGBF = 227.47 itns = 3

Parameters:
a 0 0.4018 (40) [ 0.50 (50) ]
1 0.4016 (42) [ 0.50 (50) ]
2 0.404 (12) [ 0.50 (50) ]
3 0.394 (46) [ 0.50 (50) ]
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4 0.40 (16) [ 0.50 (50) ]
5 0.51 (31) [ 0.50 (50) ]
6 0.52 (42) [ 0.50 (50) ]

E 0 0.90032 (51) [ 1.00 (50) ]
1 1.8001 (11) [ 1.90 (50) ]
2 2.701 (10) [ 2.80 (50) ]
3 3.601 (14) [ 3.70 (50) ]
4 4.501 (17) [ 4.60 (50) ]
5 5.401 (20) [ 5.50 (50) ]
6 6.301 (22) [ 6.40 (50) ]

Settings:
svdcut = (1e-15,None) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 1.9994(11) E2/E0 = 3.000(11)
a1/a0 = 0.9996(25) a2/a0 = 1.005(28)

The results are similar to before for the leading parameters, but substantially more accurate for parameters describing
the second and later exponential terms, as might be expected given our enhanced knowledge about the differences be-
tween E[i]s. The output energy differences are particularly accurate: they range from E[1]-E[0] = 0.900(1),
which is ten times more precise than the prior, to E[6]-E[5] = 0.900(10), which is just what was put into the
fit through the prior (the fit data adds no new information). The correlated prior allows us to merge our a priori
information about the energy differences with the new information carried by the fit data x, y.

Note that the Gaussian Bayes Factor (see logGBF in the output) is significantly larger with the correlated prior
(logGBF = 227) than it was for the uncorrelated prior (logGBF = 221). Had we been uncertain as to which
prior was more appropriate, this difference says that the data prefers the correlated prior. (More precisely, it says that
we would be exp(227-221) = 400 times more likely to get this data from a theory with the correlated prior than
from one with the uncorrelated prior.) This difference is significant despite the fact that the chi**2s in the two cases
are almost the same. chi**2 tests goodness of fit, but there are usually more ways than one to get a good fit. Some
are more plausible than others, and the Bayes factor helps sort out which.

1.7 Tuning Priors and the Empirical Bayes Criterion

Given two choices of prior for a parameter, the one that results in a larger Gaussian Bayes Factor after fitting (see
logGBF in fit output or fit.logGBF) is the one preferred by the data. We can use this fact to tune a prior or set of
priors in situations where we are uncertain about the correct a priori value: we vary the widths and/or central values
of the priors of interest to maximize logGBF. This leads to complete nonsense if it is applied to all the priors, but it is
useful for tuning (or testing) limited subsets of the priors when other information is unavailable. In effect we are using
the data to get a feel for what is a reasonable prior. This procedure for setting priors is called the Empirical Bayes
method.

This method is implemented in a driver program

fit, z = lsqfit.empbayes_fit(z0, fitargs)

which varies numpy array z, starting at z0, to maximize fit.logGBF where

fit = lsqfit.nonlinear_fit(**fitargs(z)).

Function fitargs(z) returns a dictionary containing the arguments for nonlinear_fit(). These arguments,
and the prior in particular, are varied as some function of z. The optimal fit (that is, the one for which fit.logGBF
is maximum) and z are returned.

To illustrate, consider tuning the widths of the priors for the amplitudes, prior[’a’], in the example from the
previous section. This is done by adding the following code to the end of main() subroutine:
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def fitargs(z, nexp=nexp, prior=prior, f=f, data=(x, y), p0=p0):
z = np.exp(z)
prior[’a’] = [gv.gvar(0.5, 0.5 * z[0]) for i in range(nexp)]
return dict(prior=prior, data=data, fcn=f, p0=p0)

##
z0 = [0.0]
fit, z = empbayes_fit(z0, fitargs, tol=1e-3)
print(fit) # print the optimized fit results
E = fit.p[’E’] # best-fit parameters
a = fit.p[’a’]
print(’E1/E0 =’, E[1] / E[0], ’ E2/E0 =’, E[2] / E[0])
print(’a1/a0 =’, a[1] / a[0], ’ a2/a0 =’, a[2] / a[0])
print("prior[’a’] =", fit.prior[’a’][0])
print()

Function fitargs generates a dictionary containing the arguments for lsqfit.nonlinear_fit. These are
identical to what we have been using except that the width of the priors in prior[’a’] is adjusted according
to parameter z. Function lsqfit.empbayes_fit() does fits for different values of z and selects the z that
maximizes fit.logGBF. It returns the corresponding fit and the value of z.

This code generates the following output when nexp=7:

Least Square Fit:
chi2/dof [dof] = 0.77 [15] Q = 0.71 logGBF = 233.98 itns = 1

Parameters:
a 0 0.4026 (40) [ 0.500 (95) ] *
1 0.4025 (41) [ 0.500 (95) ] *
2 0.4071 (80) [ 0.500 (95) ]
3 0.385 (20) [ 0.500 (95) ] *
4 0.431 (58) [ 0.500 (95) ]
5 0.477 (74) [ 0.500 (95) ]
6 0.493 (89) [ 0.500 (95) ]

E 0 0.90031 (50) [ 1.00 (50) ]
1 1.8000 (10) [ 1.90 (50) ]
2 2.7023 (86) [ 2.80 (50) ]
3 3.603 (14) [ 3.70 (50) ]
4 4.503 (17) [ 4.60 (50) ]
5 5.403 (19) [ 5.50 (50) ]
6 6.303 (22) [ 6.40 (50) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 1.9993(10) E2/E0 = 3.0015(94)
a1/a0 = 0.9995(25) a2/a0 = 1.011(17)
prior[’a’] = 0.500(95)

Reducing the width of the prior[’a’]s from 0.5 to 0.1 increased logGBF from 227 to 234. The error for a2/a0
is 40% smaller, but the other results are not much affected — suggesting that the details of prior[’a’] are not all
that important, which is confirmed by the error budgets generated in the next section. It is not surprising, of course,
that the optimal width is 0.1 since the mean values for the fit.p[’a’]s are clustered around 0.4, which is 0.1 below
the mean value of the priors prior[’a’].

The Bayes factor, exp(fit.logGBF), is useful for deciding about fit functions as well as priors. Consider the
following two fits of the sort discussed in the previous section, one using just two terms in the fit function and one
using three terms:
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************************************* nexp = 2
Least Square Fit:

chi2/dof [dof] = 0.47 [15] Q = 0.96 logGBF = 254.15 itns = 6

Parameters:
a 0 0.4018 (40) [ 0.50 (50) ]
1 0.4018 (40) [ 0.50 (50) ]

E 0 0.90036 (50) [ 1.00 (50) ]
1 1.80036 (50) [ 1.90 (50) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

************************************* nexp = 3
Least Square Fit:

chi2/dof [dof] = 0.5 [15] Q = 0.94 logGBF = 243.12 itns = 4

Parameters:
a 0 0.4018 (40) [ 0.50 (50) ]
1 0.4018 (40) [ 0.50 (50) ]
2 8(10)e-06 [ 0.50 (50) ]

E 0 0.90035 (50) [ 1.00 (50) ]
1 1.80034 (50) [ 1.90 (50) ]
2 2.700 (10) [ 2.80 (50) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

Measured by their chi**2s, the two fits are almost equally good. The Bayes factor for the first fit, however, is much
larger than that for the second fit. It says that the probability that our fit data comes from an underlying theory with
exactly two terms is exp(254 - 243) = 59,874 times larger than the probability that it comes from a theory
with three terms. In fact, the data comes from a theory with only two terms since it was generated using the same
code as in the previous section but with x, y = make_data(2) instead of x, y = make_data() in the main
program.

1.8 Partial Errors and Error Budgets

We frequently want to know how much of the uncertainty in a fit result is due to a particular input uncertainty or subset
of input uncertainties (from the input data and/or from the priors). We refer to such errors as “partial errors” (or partial
standard deviations) since each is only part of the total uncertainty in the fit result. The collection of such partial errors,
each associated with a different input error, is called an “error budget” for the fit result. The partial errors from all
sources of input error reproduce the total fit error when they are added in quadrature.

Given the fit object (an lsqfit.nonlinear_fit object) from the example in the section on Correlated Param-
eters; Gaussian Bayes Factor, for example, we can extract such information using gvar.GVar.partialsdev()
— for example:

>>> E = fit.p[’E’]
>>> a = fit.p[’a’]
>>> print(E[1] / E[0])
1.9994(11)
>>> print((E[1] / E[0]).partialsdev(fit.prior[’E’]))
0.000419219538523
>>> print((E[1] / E[0]).partialsdev(fit.prior[’a’]))
0.000158871440271
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>>> print((E[1] / E[0]).partialsdev(y))
0.000952553004005

This shows that the total uncertainty in E[1]/E[0], 0.00106, is the sum in quadrature of a contribution 0.00042 due
to the priors specified by prior[’E’], 0.00016 due to prior[’a’], and 0.00095 from the statistical errors in the
input data y.

There are two utility functions for tabulating results and error budgets. They require dictionaries of output results and
inputs, and use the keys from the dictionaries to label columns and rows, respectively, in an error-budget table:

outputs = {’E1/E0’:E[1] / E[0], ’E2/E0’:E[2] / E[0],
’a1/a0’:a[1] / a[0], ’a2/a0’:a[2] / a[0]}

inputs = {’E’:fit.prior[’E’], ’a’:fit.prior[’a’], ’y’:y}
print(fit.fmt_values(outputs))
print(fit.fmt_errorbudget(outputs, inputs))

This gives the following output:

Values:
E2/E0: 3.000(11)
E1/E0: 1.9994(11)
a2/a0: 1.005(28)
a1/a0: 0.9996(25)

Partial % Errors:
E2/E0 E1/E0 a2/a0 a1/a0

------------------------------------------------------------
a: 0.09 0.01 1.09 0.02
y: 0.07 0.05 0.77 0.19
E: 0.35 0.02 2.44 0.16

------------------------------------------------------------
total: 0.37 0.05 2.79 0.25

This table shows, for example, that the 0.37% uncertainty in E2/E0 comes from a 0.09% contribution due to
prior[’a’], a 0.07% contribution due to due to statistical errors in the fit data y, and a 0.35% contribution due to
prior[’E’], where, again, the total error is the sum in quadrature of the partial errors. This suggests that reducing
the statistical errors in the input y data would reduce the error in E2/E0 only slightly. On the other hand, more accu-
rate y data should significantly reduce the errors in E1/E0 and a1/a0, where y is the dominant source of uncertainty.
In fact a four-fold reduction in the y errors reduces the E1/E0 error to 0.02% (from 0.05%) while leaving the E2/E0
error at 0.37%.

1.9 y has No Error Bars

Occasionally there are fit problems where values for the dependent variable y are known exactly (to machine preci-
sion). This poses a problem for least-squares fitting since the chi**2 function is infinite when standard deviations
are zero. How does one assign errors to exact ys in order to define a chi**2 function that can be usefully minimized?

It is almost always the case in physical applications of this sort that the fit function has in principle an infinite number
of parameters. It is, of course, impossible to extract information about infinitely many parameters from a finite number
of ys. In practice, however, we generally care about only a few of the parameters in the fit function. (If this isn’t the
case, give up.) The goal for a least-squares fit is to figure out what a finite number of exact ys can tell us about the
parameters we want to know.

The key idea here is to use priors to model the part of the fit function that we don’t care about, and to remove that
part of the function from the analysis by subtracting or dividing it out from the input data. To illustrate, consider
again the example described in the section on Correlated Parameters; Gaussian Bayes Factor. Let us imagine that
we know the exact values for y for each of x=1, 1.2, 1.4...2.6, 2.8. We are fitting this data with a sum
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of exponentials a[i]*exp(-E[i]*x) where now we will assume that a priori we know that: E[0]=1.0(5),
E[i+1]-E[i]=0.9(2), and a[i]=0.5(5). Suppose that our goal is to find good estimates for E[0] and
a[0].

We know that for some set of parameters

y = sum_i=0..inf a[i]*exp(-E[i]*x)

for each x-y pair in our fit data. Given that a[0] and E[0] are all we want to know, we might imagine defining a
new, modified dependent variable ymod, equal to just a[0]*exp(-E[0]*x):

ymod = y - sum_i=1..inf a[i]*exp(-E[i]*x)

We know everything on the right-hand side of this equation: we have exact values for y and we have a priori estimates
for the a[i] and E[i] with i>0. So given means and standard deviations for every i>0 parameter, and the exact y,
we can in principle determine a mean and standard deviation for ymod. The strategy then is to compute the correspond-
ing ymod for every y and x pair, and then fit ymod versus x to the single exponential a[0]*exp(-E[0]*t). That
fit will give values for a[0] and E[0] that reflect the uncertainties in ymod, which in turn originate in uncertainties
in our knowledge about the parameters for the i>0 exponentials.

It turns out to be quite simple to implement such a strategy using gvar.GVars. We convert our code by first mod-
ifying the main program so that it provides prior information to a subroutine that computes ymod. We will vary the
number of terms nexp that are kept in the fit, putting the rest into ymod as above (up to a maximum of 20 terms,
which is close enough to infinity):

def main():
gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
max_prior = make_prior(20) # maximum sized prior
p0 = None # make larger fits go faster (opt.)
for nexp in range(1, 7):

print(’************************************* nexp =’, nexp)
fit_prior = gv.BufferDict() # part of max_pior used in fit
ymod_prior = gv.BufferDict() # part of max_prior absorbed in ymod
for k in max_prior:

fit_prior[k] = max_prior[k][:nexp]
ymod_prior[k] = max_prior[k][nexp:]

x, y = make_data(ymod_prior) # make fit data
fit = lsqfit.nonlinear_fit(data=(x, y), fcn=f, prior=fit_prior, p0=p0)
print(fit.format(10)) # print the fit results
print()
if fit.chi2/fit.dof<1.:

p0 = fit.pmean # starting point for next fit (opt.)

We put all of our a priori knowledge about parameters into prior max_prior and then pull out the part we need for
the fit — that is, the first nexp terms. The remaining part of max_prior is used to correct the exact data, which
comes from a new make_data:

def make_data(ymod_prior): # make x, y fit data
x = np.arange(1., 10 * 0.2 + 1., 0.2)
ymod = f_exact(x) - f(x, ymod_prior)
return x, ymod

Running the new code produces the following output, where again nexp is the number of exponentials kept in the fit
(and 20-nexp is the number pushed into the modified dependent variable ymod):

************************************* nexp = 1
Least Square Fit (input data correlated with prior):

chi2/dof [dof] = 0.051 [10] Q = 1 logGBF = 97.499 itns = 5

Parameters:
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a 0 0.4009 (14) [ 0.50 (50) ]
E 0 0.90033 (62) [ 1.00 (50) ]

Fit:
x[k] y[k] f(x[k],p)

-----------------------------------------
1 0.15 (11) 0.16292 (47)

1.2 0.128 (74) 0.13607 (38)
1.4 0.110 (52) 0.11365 (30)
1.6 0.093 (37) 0.09492 (24)
1.8 0.078 (26) 0.07928 (19)

2 0.066 (18) 0.06622 (15)
2.2 0.055 (13) 0.05531 (12)
2.4 0.0462 (93) 0.046192 (94)
2.6 0.0387 (66) 0.038581 (74)
2.8 0.0323 (47) 0.032223 (58)

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

************************************* nexp = 2
Least Square Fit (input data correlated with prior):

chi2/dof [dof] = 0.053 [10] Q = 1 logGBF = 99.041 itns = 3

Parameters:
a 0 0.4002 (13) [ 0.50 (50) ]
1 0.405 (36) [ 0.50 (50) ]

E 0 0.90006 (55) [ 1.00 (50) ]
1 1.803 (30) [ 1.90 (54) ]

Fit:
x[k] y[k] f(x[k],p)

------------------------------------------
1 0.223 (45) 0.2293 (44)

1.2 0.179 (26) 0.1823 (28)
1.4 0.145 (15) 0.1459 (18)
1.6 0.1168 (90) 0.1174 (12)
1.8 0.0947 (53) 0.09492 (74)

2 0.0770 (32) 0.07711 (47)
2.2 0.0628 (19) 0.06289 (30)
2.4 0.0515 (11) 0.05148 (19)
2.6 0.04226 (67) 0.04226 (12)
2.8 0.03479 (40) 0.034784 (72)

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

************************************* nexp = 3
Least Square Fit (input data correlated with prior):

chi2/dof [dof] = 0.057 [10] Q = 1 logGBF = 99.845 itns = 4

Parameters:
a 0 0.39998 (93) [ 0.50 (50) ]
1 0.399 (35) [ 0.50 (50) ]
2 0.401 (99) [ 0.50 (50) ]

E 0 0.89999 (36) [ 1.00 (50) ]
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1 1.799 (26) [ 1.90 (54) ]
2 2.70 (20) [ 2.80 (57) ]

Fit:
x[k] y[k] f(x[k],p)

-------------------------------------------
1 0.253 (19) 0.2557 (54)

1.2 0.1968 (91) 0.1977 (28)
1.4 0.1545 (45) 0.1548 (15)
1.6 0.1224 (22) 0.12256 (76)
1.8 0.0979 (11) 0.09793 (39)

2 0.07885 (54) 0.07886 (20)
2.2 0.06391 (27) 0.06391 (10)
2.4 0.05206 (13) 0.052065 (52)
2.6 0.042602 (67) 0.042601 (26)
2.8 0.034983 (33) 0.034982 (13)

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

************************************* nexp = 4
Least Square Fit (input data correlated with prior):

chi2/dof [dof] = 0.057 [10] Q = 1 logGBF = 99.841 itns = 4

Parameters:
a 0 0.39995 (77) [ 0.50 (50) ]
1 0.399 (32) [ 0.50 (50) ]
2 0.40 (10) [ 0.50 (50) ]
3 0.40 (15) [ 0.50 (50) ]

E 0 0.89998 (30) [ 1.00 (50) ]
1 1.799 (23) [ 1.90 (54) ]
2 2.70 (19) [ 2.80 (57) ]
3 3.61 (28) [ 3.70 (61) ]

Fit:
x[k] y[k] f(x[k],p)

---------------------------------------------
1 0.2656 (78) 0.2666 (22)

1.2 0.2027 (32) 0.20297 (97)
1.4 0.1573 (13) 0.15737 (42)
1.6 0.12378 (54) 0.12381 (18)
1.8 0.09853 (22) 0.098540 (78)

2 0.079153 (93) 0.079155 (34)
2.2 0.064051 (39) 0.064051 (15)
2.4 0.052134 (16) 0.0521344 (64)
2.6 0.0426348 (67) 0.0426347 (29)
2.8 0.0349985 (28) 0.0349985 (13)

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 1.999(24) E2/E0 = 3.00(21)
a1/a0 = 0.997(77) a2/a0 = 1.01(25)

Here we use fit.format(10) to print out a table of x and y (actually ymod) values, together with the value of the
fit function using the best-fit parameters. There are several things to notice:
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• Were we really only interested in a[0] and E[0], a single-exponential fit would have been adequate. This
is because we are in effect doing a 20-exponential fit even in that case, by including all but the first term as
corrections to y. The answers given by the first fit are correct (we know the exact values since we are using fake
data).

The ability to push uninteresting parameters into a ymod can be highly useful in practice since it is usually
much cheaper to incorporate those fit parameters into ymod than it is to include them as fit parameters — fits
with smaller numbers of parameters are usually a lot faster.

• The chi**2 and best-fit parameter means and standard deviations are almost unchanged by shifting terms
from ymod back into the fit function, as nexp increases. The final results for a[0] and E[0], for example,
are nearly identical in the nexp=1 and nexp=4 fits.

In fact it is straightforward to prove that best-fit parameter means and standard deviations, as well as chi**2,
should be exactly the same in such situations provided the fit function is linear in all fit parameters. Here the
fit function is approximately linear, given our small standard deviations, and so results are only approximately
independent of nexp.

• The uncertainty in ymod for a particular x decreases as nexp increases and as x increases. Also the nexp
independence of the fit results depends upon capturing all of the correlations in the correction to y. This is why
gvar.GVars are useful since they make the implementation of those correlations trivial.

• Although we motivated this example by the need to deal with ys having no errors, it is straightforward to apply
the same ideas to a situation where the ys have errors. Again one might want to do so since fitting uninteresting
fit parameters is generally more costly than absorbing them into the y (which then has a modified mean and
standard deviation).

1.10 SVD Cuts and Roundoff Error

All of the fits discussed above have (default) SVD cuts of 1e-15. This has little impact in most of the problems, but
makes a big difference in the problem discussed in the previous section. Had we run that fit, for example, with an SVD
cut of 1e-19, instead of 1e-15, we would have obtained the following output:

Least Square Fit (input data correlated with prior):
chi2/dof [dof] = 0.057 [10] Q = 1 logGBF = 100.46 itns = 5

Parameters:
a 0 0.39994 (77) [ 0.50 (50) ]
1 0.398 (32) [ 0.50 (50) ]
2 0.40 (10) [ 0.50 (50) ]
3 0.40 (15) [ 0.50 (50) ]

E 0 0.89997 (30) [ 1.00 (50) ]
1 1.799 (23) [ 1.90 (54) ]
2 2.70 (19) [ 2.80 (57) ]
3 3.61 (28) [ 3.70 (61) ]

Fit:
x[k] y[k] f(x[k],p)

---------------------------------------------
1 0.2656 (78) 0.267 (16)

1.2 0.2027 (32) 0.2030 (74)
1.4 0.1573 (13) 0.1574 (34)
1.6 0.12378 (54) 0.1238 (15)
1.8 0.09853 (22) 0.09854 (67)

2 0.079153 (93) 0.07915 (29)
2.2 0.064051 (39) 0.06405 (12)
2.4 0.052134 (16) 0.052134 (41)
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2.6 0.0426348 (67) 0.0426347 (92)
2.8 0.0349985 (28) 0.0349985 (40)

Settings:
svdcut = (1e-19,None) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 2.00(72) E2/E0 = 3.0(6.1)
a1/a0 = 1.0(2.3) a2/a0 = 1.0(6.8)

The standard deviations quoted for E1/E0, etc. are much too large compared with the standard deviations shown for
the individual parameters, and much larger than what we obtained in the previous section. This is due to roundoff
error. The standard deviations quoted for the parameters are computed differently from the standard deviations in
fit.p (which was used to calculate E1/E0). The former come directly from the curvature of the chi**2 function
at its minimum; the latter are related back to the standard deviations of the input data and priors used in the fit. The
two should agree, but they will not agree if the covariance matrix for the input y data is too ill-conditioned.

The inverse of the y covariance matrix is used in the chi**2 function that is minimized by
lsqfit.nonlinear_fit. Given the finite precision of computer hardware, it is impossible to compute this
inverse accurately if the matrix is singular or almost singular, and in such situations the reliability of the fit results
is in question. The eigenvalues of the covariance matrix in this example (for nexp=6) indicate that this is the case:
they range from 7.2e-5 down to 4.2e-26, covering 21 orders of magnitude. This is likely too large a range to be
handled with the 16–18 digits of precision available in normal double precision computation. The smallest eigenvalues
and their eigenvectors are likely to be quite inaccurate, as is any method for computing the inverse matrix.

The standard solution to this common problem in least-squares fitting is to introduce an SVD cut, here called svdcut:

fit = nonlinear_fit(data=(x, ymod), fcn=f, prior=prior, p0=p0, svdcut=1e-15)

Then the inverse of the y covariance matrix is computed from its eigenvalues and eigenvectors, but with any eigenvalue
smaller than svdcut times the largest eigenvalue replaced by the cutoff (that is, by svdcut times the largest eigen-
value). This limits the singularity of the covariance matrix, leading to improved numerical stability. The cost is less
precision in the final results since we are in effect decreasing the precision of the input y data. This is a conservative
move, but numerical stability is worth the tradeoff.

Note that taking svdcut=-1e-15, with a minus sign, causes the problematic modes to be dropped. This is a more
conventional implementation of SVD cuts, but here it results in much less precision than using svdcut=1e-15
(giving, for example, 1.993(69) for E1/E0, which is almost three times less precise). Dropping modes is equivalent
to setting the corresponding variances to infinity, which is (obviously) much more conservative and less realistic than
setting them equal to the SVD-cutoff variance.

The error budget is interesting in this case. There is no contribution from the original y data since it was exact.
So all statistical uncertainty comes from the priors in max_prior, and from the SVD cut, which contributes since it
modifies the effective variances of several eigenmodes of the covariance matrix. The SVD contribution can be obtained
from fit.svdcorrection so the full error budget is constructed by the following code,

outputs = {’E1/E0’:E[1] / E[0], ’E2/E0’:E[2] / E[0],
’a1/a0’:a[1] / a[0], ’a2/a0’:a[2] / a[0]}

inputs = {’E’:max_prior[’E’], ’a’:max_prior[’a’], ’svd’:fit.svdcorrection}
print(fit.fmt_values(outputs))
print(fit.fmt_errorbudget(outputs, inputs))

which gives:

Values:
E2/E0: 3.00(21)
E1/E0: 1.999(24)
a2/a0: 1.01(25)
a1/a0: 0.997(77)
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Partial % Errors:
E2/E0 E1/E0 a2/a0 a1/a0

------------------------------------------------------------
a: 3.76 0.71 11.80 4.39

svd: 0.29 0.10 0.13 0.55
E: 5.87 0.99 22.35 6.30

------------------------------------------------------------
total: 6.98 1.22 25.27 7.70

Here the contribution from the SVD cut is almost negligible.

Note that covariance matrices are rescaled so that all diagonal elements equal one before the SVD cut is applied. This
means, among other things, that uncorrelated errors — that is, diagonal sub-matrices of the covariance matrix — are
unaffected by SVD cuts. Applying an SVD cut of 1e-4, for example, to the following singular covariance matrix,

[[ 1.0 1.0 0.0 ]
[ 1.0 1.0 0.0 ]
[ 0.0 0.0 1e-20]],

gives a new, non-singular matrix:

[[ 1.0001 0.9999 0.0 ]
[ 0.9999 1.0001 0.0 ]
[ 0.0 0.0 1e-20]]

lsqfit.nonlinear_fit uses a default value for svdcut of 1e-15, and applies SVD cuts to the covariance
matrices from both the fit data and the prior. This default can be overridden as shown above, but for many problems it
is a good choice. Roundoff errors become more accute, however, when there are strong positive correlations between
different parts of the fit data or prior. Then much larger svdcuts may be needed.

The method lsqfit.nonlinear_fit.check_roundoff() can be used to check for roundoff errors by
adding the line fit.check_roundoff() after the fit. It generates a warning if roundoff looks to be a problem.
This check is done automatically if debug=True is added to argument list of lsqfit.nonlinear_fit.

1.11 Bootstrap Error Analysis

Our analysis above assumes that every probability distribution relevant to the fit is approximately Gaussian. For
example, we characterize the input data for y by a mean and a covariance matrix obtained from averaging many
random samples of y. For large sample sizes it is almost certainly true that the average values follow a Gaussian
distribution, but in practical applications the sample size could be too small. The statistical bootstrap is an analysis
tool for dealing with such situations.

The strategy is to: 1) make a large number of “bootstrap copies” of the original input data that differ from each other
by random amounts characteristic of the underlying randomness in the original data; 2) repeat the entire fit analysis
for each bootstrap copy of the data, extracting fit results from each; and 3) use the variation of the fit results from
bootstrap copy to bootstrap copy to determine an approximate probability distribution (possibly non-Gaussian) for the
each result.

Consider the code from the previous section, where we might reasonably want another check on the error estimates
for our results. That code can be modified to include a bootstrap analysis by adding the following to the end of the
main() subroutine:

Nbs = 40 # number of bootstrap copies
outputs = {’E1/E0’:[], ’E2/E0’:[], ’a1/a0’:[], ’a2/a0’:[]} # results
for bsfit in fit.bootstrap_iter(n=Nbs):

E = bsfit.pmean[’E’] # best-fit parameter values
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a = bsfit.pmean[’a’] # (ignore errors)
outputs[’E1/E0’].append(E[1] / E[0]) # accumulate results
outputs[’E2/E0’].append(E[2] / E[0])
outputs[’a1/a0’].append(a[1] / a[0])
outputs[’a2/a0’].append(a[2] / a[0])
outputs[’E1’].append(E[1])
outputs[’a1’].append(a[1])

# extract "means" and "standard deviations" from the bootstrap output;
# print using .fmt() to create compact representation of GVars
outputs = gv.dataset.avg_data(outputs, bstrap=True)
print(’Bootstrap results:’)
print(’E1/E0 =’, outputs[’E1/E0’].fmt(), ’ E2/E1 =’, outputs[’E2/E0’].fmt())
print(’a1/a0 =’, outputs[’a1/a0’].fmt(), ’ a2/a0 =’, outputs[’a2/a0’].fmt())
print(’E1 =’, outputs[’E1’].fmt(), ’ a1 =’, outputs[’a1’].fmt())

The results are consistent with the results obtained directly from the fit (when using svdcut=1e-15):

Bootstrap results:
E1/E0 = 1.999(17) E2/E1 = 2.98(18)
a1/a0 = 0.995(55) a2/a0 = 0.97(28)
E1 = 1.799(16) a1 = 0.398(23)

In particular, the bootstrap analysis confirms our previous error estimates (to within 10-30%, since Nbs=40).
When Nbs is small, it is often safer to use the median instead of the mean as the estimator, which is what
gv.dataset.avg_data does here since flag bstrap is set to True.

1.12 Testing Fits with Simulated Data

Ideally we would test a fitting protocol by doing fits of data similar to our actual fit but where we know the correct
values for the fit parameters ahead of the fit. The lsqfit.nonlinear_fit iterator simulated_fit_iter
creates any number of such simulations of the original fit. Returning again to the fits in the section on Correlated
Parameters; Gaussian Bayes Factor, we can add three fit simulations to the end of the main program:

def main():
gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
x, y = make_data() # make fit data
p0 = None # make larger fits go faster (opt.)
for nexp in range(3, 20):

print(’************************************* nexp =’, nexp)
prior = make_prior(nexp)
fit = lsqfit.nonlinear_fit(data=(x, y), fcn=f, prior=prior, p0=p0)
print(fit) # print the fit results
E = fit.p[’E’] # best-fit parameters
a = fit.p[’a’]
print(’E1/E0 =’, E[1] / E[0], ’ E2/E0 =’, E[2] / E[0])
print(’a1/a0 =’, a[1] / a[0], ’ a2/a0 =’, a[2] / a[0])
print()
if fit.chi2 / fit.dof < 1.:

p0 = fit.pmean # starting point for next fit (opt.)

# 3 fit simulations based upon last fit
for sfit in fit.simulated_fit_iter(3):

print(sfit)
sE = sfit.p[’E’] # best-fit parameters (simulation)
sa = sfit.p[’a’]
E = sfit.pexact[’E’] # correct results for parameters
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a = sfit.pexact[’a’]
print(’E1/E0 =’, sE[1] / sE[0], ’ E2/E0 =’, sE[2] / sE[0])
print(’a1/a0 =’, sa[1] / sa[0], ’ a2/a0 =’, sa[2] / sa[0])
print(’\nSimulated Fit Values - Exact Values:’)
print(

’E1/E0:’, (sE[1] / sE[0]) - (E[1] / E[0]),
’ E2/E0:’, (sE[2] / sE[0]) - (E[2] / E[0])
)

print(
’a1/a0:’, (sa[1] / sa[0]) - (a[1] / a[0]),
’ a2/a0:’, (sa[2] / sa[0]) - (a[2] / a[0])
)

# compute chi**2 comparing selected fit results to exact results
sim_results = [sE[0], sE[1], sa[0], sa[1]]
exact_results = [E[0], E[1], a[0], a[1]]
chi2 = gv.chi2(sim_results, exact_results)
print(

’\nParameter chi2/dof [dof] = %.2f’ % (chi2 / gv.chi2.dof),
’[%d]’ % gv.chi2.dof,
’ Q = %.1f’ % gv.chi2.Q
)

The fit data for each of the three simulations is the same as the original fit data except that the means have been adjusted
(randomly) so the correct values for the fit parameters are in each case equal to pexact=fit.pmean. Simulation
fit results will typically differ from the correct values by an amount of order a standard deviation. With sufficiently
accurate data, the results from a large number of simulations will be distributed in Gaussians centered on the correct
values (pexact), with widths that equal the standard deviations given by the fit (fit.psdev). (With less accurate
data, the distributions may become non-Gaussian, and the interpretation of fit results more complicated.)

In the present example, the output from the three simulations is:

************************************* simulation
Least Square Fit:

chi2/dof [dof] = 0.27 [15] Q = 1 logGBF = 228.78 itns = 46

Parameters:
a 0 0.3968 (40) [ 0.50 (50) ]
1 0.3983 (41) [ 0.50 (50) ]
2 0.390 (12) [ 0.50 (50) ]
3 0.453 (45) [ 0.50 (50) ]
4 0.15 (15) [ 0.50 (50) ]
5 0.72 (31) [ 0.50 (50) ]
6 0.71 (42) [ 0.50 (50) ]

E 0 0.89969 (51) [ 1.00 (50) ]
1 1.8011 (11) [ 1.90 (50) ]
2 2.703 (10) [ 2.80 (50) ]
3 3.603 (14) [ 3.70 (50) ]
4 4.503 (17) [ 4.60 (50) ]
5 5.403 (20) [ 5.50 (50) ]
6 6.303 (22) [ 6.40 (50) ]

Settings:
svdcut = (None,None) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 2.0019(11) E2/E0 = 3.005(11)
a1/a0 = 1.0040(25) a2/a0 = 0.984(28)
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Simulated Fit Values - Exact Values:
E1/E0: 0.0025(11) E2/E0: 0.005(11)
a1/a0: 0.0044(25) a2/a0: -0.021(28)

Parameter chi2/dof [dof] = 1.78 [4] Q = 0.1

************************************* simulation
Least Square Fit:

chi2/dof [dof] = 0.73 [15] Q = 0.76 logGBF = 225.31 itns = 25

Parameters:
a 0 0.4034 (40) [ 0.50 (50) ]
1 0.4037 (42) [ 0.50 (50) ]
2 0.403 (12) [ 0.50 (50) ]
3 0.412 (46) [ 0.50 (50) ]
4 0.34 (16) [ 0.50 (50) ]
5 0.56 (31) [ 0.50 (50) ]
6 0.57 (42) [ 0.50 (50) ]

E 0 0.90024 (51) [ 1.00 (50) ]
1 1.8005 (11) [ 1.90 (50) ]
2 2.701 (10) [ 2.80 (50) ]
3 3.601 (14) [ 3.70 (50) ]
4 4.501 (17) [ 4.60 (50) ]
5 5.401 (20) [ 5.50 (50) ]
6 6.301 (22) [ 6.40 (50) ]

Settings:
svdcut = (None,None) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 2.0000(11) E2/E0 = 3.001(11)
a1/a0 = 1.0007(25) a2/a0 = 0.999(28)

Simulated Fit Values - Exact Values:
E1/E0: 0.0006(11) E2/E0: 0.0007(111)
a1/a0: 0.0011(25) a2/a0: -0.006(28)

Parameter chi2/dof [dof] = 0.13 [4] Q = 1.0

************************************* simulation
Least Square Fit:

chi2/dof [dof] = 0.92 [15] Q = 0.54 logGBF = 223.86 itns = 2

Parameters:
a 0 0.4003 (40) [ 0.50 (50) ]
1 0.4002 (42) [ 0.50 (50) ]
2 0.402 (12) [ 0.50 (50) ]
3 0.390 (46) [ 0.50 (50) ]
4 0.41 (16) [ 0.50 (50) ]
5 0.49 (31) [ 0.50 (50) ]
6 0.50 (42) [ 0.50 (50) ]

E 0 0.90040 (51) [ 1.00 (50) ]
1 1.8003 (11) [ 1.90 (50) ]
2 2.701 (10) [ 2.80 (50) ]
3 3.601 (14) [ 3.70 (50) ]
4 4.501 (17) [ 4.60 (50) ]
5 5.401 (20) [ 5.50 (50) ]
6 6.301 (22) [ 6.40 (50) ]
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Settings:
svdcut = (None,None) svdnum = (None,None) reltol/abstol = 0.0001/0

E1/E0 = 1.9995(11) E2/E0 = 2.999(11)
a1/a0 = 0.9996(26) a2/a0 = 1.004(28)

Simulated Fit Values - Exact Values:
E1/E0: 0.00009(107) E2/E0: -0.0006(111)
a1/a0: 4(2557)e-06 a2/a0: -0.0009(281)

Parameter chi2/dof [dof] = 0.14 [4] Q = 1.0

The simulations show that the fit values usually agree with the correct values to within a standard deviation or so
(the correct results here are the mean values from the last fit discussed in Correlated Parameters; Gaussian Bayes
Factor). Furthermore the error estimates for each parameter from the original fit are reproduced by the simulations.
We also compute the chi**2 for the difference between the leading fit parameters and the exact values. This checks
parameter values, standard deviations, and correlations. The results are reasonable for four degrees of freedom. Here
the first simulation shows results that are off by a third of a standard deviation on average, but this is not so unusual —
the Q=0.1 indicates that it happens 10% of the time.

More thorough testing is possible: for example, one could run many simulations (100?) to verify that the distribution
of (simulation) fit results is Gaussian, centered around pexact. This is overkill in most situations, however. The
three simulations above are enough to reassure us that the original fit estimates, including errors, are reliable.

1.13 Positive Parameters

The priors for lsqfit.nonlinear_fit are all Gaussian. There are situations, however, where other distributions
would be desirable. One such case is where a parameter is known to be positive, but is close to zero in value (“close”
being defined relative to the a priori uncertainty). For such cases we would like to use non-Gaussian priors that force
positivity — for example, priors that impose log-normal or exponential distributions on the parameter. Ideally the
decision to use such a distribution would be made on a parameter- by-parameter basis, when creating the priors, and
would have no impact on the definition of the fit function itself.

lsqfit provides a decorator, lsqfit.transform_p, for fit functions that makes this possible. This decorator
only works for fit functions that use dictionaries for their parameters. Given a prior prior for a fit, the decorator is
used in the following way: for example,

@lsqfit.transform_p(prior.keys(), 0)
def fitfcn(p):

...

when the parameter argument is the first argument of the fit function, or

@lsqfit.transform_p(prior.keys(), 1)
def fitfcn(x, p):

...

when the parameter argument is the second argument of the fit function (see the lsqfit.transform_p docu-
mentation for more detail). Consider any parameter p[’XX’] used in fitfcn. The prior distribution for that
parameter can now be turned into a log-normal distribution by replacing prior[’XX’] with prior[’logXX’]
(or prior[’log(XX)”]) when defining the prior, thereby assigning a Gaussian distribution to logXX rather than
to XX. Nothing need be changed in the fit function, other than adding the decorator. The decorator automatically
detects parameters whose keys begin with ’log’ and adds new parameters to the parameter-dictionary for fitfcn
that are exponentials of those parameters.
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To illustrate consider a simple problem where an experimental quantity y is known to be positive, but experimental
errors mean that measured values can often be negative:

import gvar as gv
import lsqfit

y = gv.gvar([
’-0.17(20)’, ’-0.03(20)’, ’-0.39(20)’, ’0.10(20)’, ’-0.03(20)’,
’0.06(20)’, ’-0.23(20)’, ’-0.23(20)’, ’-0.15(20)’, ’-0.01(20)’,
’-0.12(20)’, ’0.05(20)’, ’-0.09(20)’, ’-0.36(20)’, ’0.09(20)’,
’-0.07(20)’, ’-0.31(20)’, ’0.12(20)’, ’0.11(20)’, ’0.13(20)’
])

We want to know the average value a of the ys and so could use the following fitting code:

prior = gv.BufferDict(a=gv.gvar(0.02, 0.02)) # a = avg value of y’s

def fcn(p, N=len(y)):
return N * [p[’a’]]

fit = lsqfit.nonlinear_fit(prior=prior, data=y, fcn=fcn)
print(fit)
print(’a =’, fit.p[’a’].fmt())

where we are assuming a priori information that suggests the average is around 0.02. The output from this code is:

Least Square Fit:
chi2/dof [dof] = 0.84 [20] Q = 0.67 logGBF = 5.3431 itns = 2

Parameters:
a 0.004 (18) [ 0.020 (20) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

a = 0.004(18)

This is not such a useful result since much of the one-sigma range for a is negative, and yet we know that a must be
postive.

A better analysis is to use a log-normal distribution for a:

prior = gv.BufferDict(loga=gv.log(gv.gvar(0.02, 0.02))) # loga not a

@lsqfit.transform_p(prior.keys(), 0)
def fcn(p, N=len(y)):

return N * [p[’a’]]

fit = lsqfit.nonlinear_fit(prior=prior, data=y, fcn=fcn)
print(fit)
print(’a =’, fit.transformed_p[’a’].fmt()) # exp(loga)

The fit parameter is now log(a) rather than a itself, but we are able to use the identical fit function. Here
fit.transformed_p is the same as fit.p but augmented to include the exponentials of any log-normal variables
— that is, a as well as loga. Rather than including all keys, the decorator can be written with a list containing just
the variables to be transformed: here, @lsqfit.transform_p([’loga’], 0).

The result from this fit is
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Least Square Fit:
chi2/dof [dof] = 0.85 [20] Q = 0.65 logGBF = 5.252 itns = 12

Parameters:
loga -4.44 (97) [ -3.9 (1.0) ]

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

a = 0.012(11)

which is more compelling. The “correct” value for a here is 0.015 (from the method used to generate the ys).

lsqfit.transform_p() also allows parameters to be replaced by their square roots as fit parameters — for ex-
ample, define prior[’sqrt(a)’] (or prior[’sqrta’]) rather than prior[’a’] when creating the prior.
This again guarantees positive parameters. The prior for p[’a’] is an exponential distribution if the mean of
p[’sqrt(a)”] is zero. Using prior[’sqrt(a)”] in place of prior[’a’] in the example above leads to
a = 0.010(13), which is almost identical to the result obtained from the log-normal distribution.

1.14 Troubleshooting

lsqfit.nonlinear_fit error messages that come from inside the gsl routnines doing the fits are sometimes
less than useful. They are usually due to errors in one of the inputs to the fit (that is, the fit data, the prior, or the fit
function). Setting debug=True in the argument list of lsqfit.nonlinear_fitmight result in more intelligible
error messages. This option also causes the fitter to check for significant roundoff errors in the matrix inversions of
the covariance matrices.

Occasionally lsqfit.nonlinear_fit appears to go crazy, with gigantic chi**2s (e.g., 1e78). This could be
because there is a genuine zero-eigenvalue mode in the covariance matrix of the data or prior. Such a zero mode
makes it impossible to invert the covariance matrix when evaluating chi**2. One fix is to include SVD cuts in the
fit by setting, for example, svdcut=(1e-14,1e-14) in the call to lsqfit.nonlinear_fit. These cuts will
exclude exact or nearly exact zero modes, while leaving important modes mostly unaffected.

Even if the SVD cuts work in such a case, the question remains as to why one of the covariance matrices has a zero
mode. A common cause is if the same gvar.GVar was used for more than one prior. For example, one might think
that

>>> import gvar as gv
>>> z = gv.gvar(1, 1)
>>> prior = gv.BufferDict(a=z, b=z)

creates a prior 1±1 for each of parameter a and parameter b. Indeed each parameter separately is of order 1±1, but
in a fit the two parameters would be forced equal to each other because their priors are both set equal to the same
gvar.GVar, z:

>>> print(prior[’a’], prior[’b’])
1.0(1.0) 1.0(1.0)
>>> print(prior[’a’]-prior[’b’])
0(0)

That is, while parameters a and b fluctuate over a range of 1±1, they fluctuate together, in exact lock-step. The
covariance matrix for a and b must therefore be singular, with a zero mode corresponding to the combination a-b; it
is all 1s in this case:

>>> import numpy as np
>>> cov = gv.evalcov(prior.flat) # prior’s covariance matrix
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>>> print(np.linalg.det(cov)) # determinant is zero
0.0

This zero mode upsets nonlinear_fit(). If a and b are meant to fluctuate together then an SVD cut as above will
give correct results (with a and b being forced equal to several decimal places, depending upon the cut). Of course,
simply replacing b by a in the fit function would be even better. If, on the other hand, a and b were not meant to
fluctuate together, the prior should be redefined:

>>> prior = gv.BufferDict(a=gv.gvar(1, 1), b=gv.gvar(1, 1))

where now each parameter has its own gvar.GVar.

1.15 Appendix: A Simple Pedagogical Example

Consider a problem where we have five pieces of uncorrelated data for a function y(x):

x[i] y(x[i])
----------------------
0.1 0.5351 (54)
0.3 0.6762 (67)
0.5 0.9227 (91)
0.7 1.3803(131)
0.95 4.0145(399)

We know that y(x) has a Taylor expansion in x:

y(x) = sum_n=0..inf p[n] x**n

The challenge is to extract a reliable estimate for y(0)=p[0] from the data — that is, the challenge is to extrapolate
the data to x=0.

One approach that is certainly wrong is to truncate the expansion of y(x) after five terms, because there are only
five pieces of data. That gives the following fit, where the gray band shows the 1-sigma uncertainty in the fit function
evaluated with the best-fit parameters:

This fit was generated using the following code:

import numpy as np
import gvar as gv
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import lsqfit

# fit data
y = gv.gvar([

’0.5351(54)’, ’0.6762(67)’, ’0.9227(91)’, ’1.3803(131)’, ’4.0145(399)’
])

x = np.array([0.1, 0.3, 0.5, 0.7, 0.95])

# fit function
def f(x, p):

return sum(pn * x ** n for n, pn in enumerate(p))

p0 = np.ones(5.) # starting value for chi**2 minimization
fit = lsqfit.nonlinear_fit(data=(x, y), p0=p0, fcn=f)
print(fit.format(maxline=5))

Note that here the function gv.gvar converts the strings ’0.5351(54)’, etc. into gvar.GVars. Running the
code gives the following output:

Least Square Fit (no prior):
chi2/dof [dof] = 4.8e-27 [0] Q = 0 logGBF = None itns = 2

Parameters:
0 0.742 (39) [ 1.0 +- inf ]
1 -3.86 (59) [ 1.0 +- inf ]
2 21.5 (2.4) [ 1.0 +- inf ]
3 -39.1 (3.7) [ 1.0 +- inf ]
4 25.8 (1.9) [ 1.0 +- inf ]

Fit:
x[k] y[k] f(x[k],p)

---------------------------------------
0.1 0.5351 (54) 0.5351 (54)
0.3 0.6762 (67) 0.6762 (67)
0.5 0.9227 (91) 0.9227 (91)
0.7 1.380 (13) 1.380 (13)

0.95 4.014 (40) 4.014 (40)

This is a “perfect” fit in that the fit function agrees exactly with the data; the chi**2 for the fit is zero. The 5-
parameter fit gives a fairly precise answer for p[0] (0.74(4)), but the curve looks oddly stiff. Also some of the
best-fit values for the coefficients are quite large (e.g., p[3]= -39(4)), perhaps unreasonably large.

The problem with a 5-parameter fit is that there is no reason to neglect terms in the expansion of y(x) with n>4.
Whether or not extra terms are important depends entirely on how large we expect the coefficients p[n] for n>4 to be.
The extrapolation problem is impossible without some idea of the size of these parameters; we need extra information.

In this case that extra information is obviously connected to questions of convergence of the Taylor expansion we are
using to model y(x). Let’s assume we know, from previous work, that the p[n] are of order one. Then we would
need to keep at least 91 terms in the Taylor expansion if we wanted the terms we dropped to be small compared with
the 1% data errors at x=0.95. So a possible fitting function would be:

y(x; N) = sum_n=0..N p[n] x**n

with N=90.

Fitting a 91-parameter formula to five pieces of data is also impossible. Here, however, we have extra (prior) informa-
tion: each coefficient is order one, which we make specific by saying that they equal 0(1). So we are actually fitting
91+5 pieces of data with 91 parameters.

The prior information is introduced into the fit as a prior:
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import numpy as np
import gvar as gv
import lsqfit

# fit data
y = gv.gvar([

’0.5351(54)’, ’0.6762(67)’, ’0.9227(91)’, ’1.3803(131)’, ’4.0145(399)’
])

x = np.array([0.1, 0.3, 0.5, 0.7, 0.95])

# fit function
def f(x, p):

return sum(pn * x ** n for n, pn in enumerate(p))

# 91-parameter prior for the fit
prior = gv.gvar(91 * [’0(1)’])

fit = lsqfit.nonlinear_fit(data=(x, y), prior=prior, fcn=f)
print(fit.format(maxline=5))

Note that a starting value p0 is not needed when a prior is specified. This code also gives an excellent fit, with a
chi**2 per degree of freedom of 0.35 (note that the data point at x=0.95 is off the chart, but agrees with the fit to
within its 1% errors):

The fit code output is:

Least Square Fit:
chi2/dof [dof] = 0.35 [5] Q = 0.88 logGBF = -0.45508 itns = 2

Parameters:
0 0.489 (17) [ 0.0 (1.0) ]
1 0.40 (20) [ 0.0 (1.0) ]
2 0.60 (64) [ 0.0 (1.0) ]
3 0.44 (80) [ 0.0 (1.0) ]
4 0.28 (87) [ 0.0 (1.0) ]
5 0.19 (87) [ 0.0 (1.0) ]
6 0.16 (90) [ 0.0 (1.0) ]
7 0.16 (93) [ 0.0 (1.0) ]
8 0.17 (95) [ 0.0 (1.0) ]
9 0.18 (96) [ 0.0 (1.0) ]
10 0.19 (97) [ 0.0 (1.0) ]
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11 0.19 (97) [ 0.0 (1.0) ]
12 0.19 (97) [ 0.0 (1.0) ]
13 0.19 (97) [ 0.0 (1.0) ]
14 0.18 (97) [ 0.0 (1.0) ]
15 0.18 (97) [ 0.0 (1.0) ]
.
.
.

88 0.0 (1.0) [ 0.0 (1.0) ]
89 0.0 (1.0) [ 0.0 (1.0) ]
90 0.0 (1.0) [ 0.0 (1.0) ]

Fit:
x[k] y[k] f(x[k],p)

---------------------------------------
0.1 0.5351 (54) 0.5349 (54)
0.3 0.6762 (67) 0.6768 (65)
0.5 0.9227 (91) 0.9219 (87)
0.7 1.380 (13) 1.381 (13)

0.95 4.014 (40) 4.014 (40)

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

This is a much more plausible fit than than the 5-parameter fit, and gives an extrapolated value of p[0]=0.489(17).
The original data points were created using a Taylor expansion with random coefficients, but with p[0] set equal to
0.5. So this fit to the five data points (plus 91 a priori values for the p[n] with n<91) gives the correct result.
Increasing the number of terms further would have no effect since the last terms added are having no impact, and so
end up equal to the prior value — the fit data are not sufficiently precise to add new information about these parameters.

We can test our priors for this fit by re-doing the fit with broader and narrower priors. Setting prior =
gv.gvar(91 * [’0(3)’]) gives an excellent fit,

Least Square Fit:
chi2/dof [dof] = 0.039 [5] Q = 1 logGBF = -5.0993 itns = 2

Parameters:
0 0.490 (33) [ 0.0 (3.0) ]
1 0.38 (48) [ 0.0 (3.0) ]
2 0.6 (1.8) [ 0.0 (3.0) ]
...

but with a very small chi2/dof and somewhat larger errors on the best-fit estimates for the parameters. The loga-
rithm of the (Gaussian) Bayes Factor, logGBF, can be used to compare fits with different priors. It is the logarithm
of the probability that our data would come from parameters generated at random using the prior. The exponential
of logGBF is more than 100 times larger with the original priors of 0(1) than with priors of 0(3). This says that
our data is more than 100 times more likely to come from a world with parameters of order one than from one with
parameters of order three. Put another way it says that the size of the fluctuations in the data are more consistent with
coefficients of order one than with coefficients of order three. The logGBF values argue for the original prior.

Narrower priors, prior = gv.gvar(91 * [’0.0(3)’]), give a poor fit, and also a less optimal logGBF:

Least Square Fit:
chi2/dof [dof] = 3.7 [5] Q = 0.0024 logGBF = -3.3058 itns = 2

Parameters:
0 0.484 (11) [ 0.00 (30) ] *
1 0.454 (98) [ 0.00 (30) ] *
2 0.50 (23) [ 0.00 (30) ] *
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...

The priors are responsible for about half of the final error in our best estimate of p[0] (with priors of 0(1)); the rest
comes from the uncertainty in the data. This can be established by creating an error budget using the code

inputs = dict(prior=prior, y=y)
outputs = dict(p0=fit.p[0])
print(gv.fmt_errorbudget(inputs=inputs, outputs=outputs))

which prints the following table:

Partial % Errors:
p0

------------------------------
y: 2.67

prior: 2.23
------------------------------

total: 3.48

There is a second, equivalent way of fitting this data that illustrates the idea of marginalization. We really only care
about parameter p[0] in our fit. This suggests that we remove n>0 terms from the data before we do the fit:

ymod[i] = y[i] - sum_n=1...inf prior[n] * x[i] ** n

Before the fit, our best estimate for the parameters is from the priors. We use these to create an estimate for the
correction to each data point coming from n>0 terms in y(x). This new data, ymod[i], should be fit with a new
fitting function, ymod(x) = p[0] — that is, it should be fit to a constant, independent of x[i]. The last three
lines of the code above are easily modified to implement this idea:

import numpy as np
import gvar as gv
import lsqfit

# fit data
y = gv.gvar([

’0.5351(54)’, ’0.6762(67)’, ’0.9227(91)’, ’1.3803(131)’, ’4.0145(399)’
])

x = np.array([0.1, 0.3, 0.5, 0.7, 0.95])

# fit function
def f(x, p):

return sum(pn * x ** n for n, pn in enumerate(p))

# prior for the fit
prior = gv.gvar(91 * [’0(1)’])

# marginalize all but one parameter (p[0])
priormod = prior[:1] # restrict fit to p[0]
ymod = y - (f(x, prior) - f(x, priormod)) # correct y

fit = lsqfit.nonlinear_fit(data=(x, ymod), prior=priormod, fcn=f)
print(fit.format(maxline=5))

Running this code give:

Least Square Fit (input data correlated with prior):
chi2/dof [dof] = 0.35 [5] Q = 0.88 logGBF = -0.45508 itns = 2

Parameters:
0 0.489 (17) [ 0.0 (1.0) ]
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Fit:
x[k] y[k] f(x[k],p)

------------------------------------
0.1 0.54 (10) 0.489 (17)
0.3 0.68 (31) 0.489 (17)
0.5 0.92 (58) 0.489 (17)
0.7 1.38 (98) 0.489 (17)

0.95 4.0 (3.0) 0.489 (17) *

Settings:
svdcut = (1e-15,1e-15) svdnum = (None,None) reltol/abstol = 0.0001/0

Remarkably this one-parameter fit gives results for p[0] that are identical (to machine precision) to our 91-parameter
fit above. The 90 parameters for n>0 are said to have been marginalized in this fit. Marginalizing a parameter in this
way has no effect if the fit function is linear in that parameter. Marginalization has almost no effect for nonlinear fits
as well, provided the fit data have small errors (in which case the parameters are effectively linear). The fit here is:

The constant is consistent with all of the data in ymod[i], even at x[i]=0.95, because ymod[i] has much larger
errors for larger x[i] because of the correction terms.

Fitting to a constant is equivalent to doing a weighted average of the data plus the prior, so our fit can be replaced by
an average:

lsqfit.wavg(list(ymod) + list(priormod))

This again gives 0.489(17) for our final result. Note that the central value for this average is below the central
values for every data point in ymod[i]. This is a consequence of large positive correlations introduced into ymod
when we remove the n>0 terms. These correlations are captured automatically in our code, and are essential —
removing the correlations between different ymods results in a final answer, 0.564(97), which has much larger
errors.
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CHAPTER

TWO

GVAR - GAUSSIAN RANDOM
VARIABLES

2.1 Introduction

This module provides tools for representing and manipulating Gaussian random variables numerically. A Gaussian
variable is a random variable that represents a typical random number drawn from a particular Gaussian (or normal)
probability distribution; more precisely, it represents the entire probability distribution, and not, for example, a partic-
ular random number drawn from that distribution. A given Gaussian variable x is therefore completely characterized
by its mean x.mean and standard deviation x.sdev.

A mathematical function of a Gaussian variable can be defined as the probability distribution of function values
obtained by evaluating the function for random numbers drawn from the original distribution. The distribution of
function values is itself approximately Gaussian provided the standard deviation of the Gaussian variable is sufficiently
small. Thus we can define a function f of a Gaussian variable x to be a Gaussian variable itself, with

f(x).mean = f(x.mean)
f(x).sdev = x.sdev |f’(x.mean)|,

which follows from linearizing the x dependence of f(x) about point x.mean. (This obviously fails at an extremum
of f(x), where f’(x)=0.)

The last formula, together with its multidimensional generalization, leads to a full calculus for Gaussian random
variables that assigns Gaussian-variable values to arbitrary arithmetic expressions and functions involving Gaussian
variables. This calculus is useful for analyzing the propagation of statistical and other random errors (provided the
standard deviations are small enough).

A multidimensional collection x[i] of Gaussian variables is characterized by the means x[i].mean for each vari-
able, together with a covariance matrix cov[i, j]. Diagonal elements of cov specify the standard deviations
of different variables: x[i].sdev = cov[i, i]**0.5. Nonzero off-diagonal elements imply correlations be-
tween different variables:

cov[i, j] = <x[i]*x[j]> - <x[i]> * <x[j]>

where <y> denotes the expectation value or mean for a random variable y.

2.2 Creating Gaussian Variables

An object of type gvar.GVar represents a single Gaussian variable. Such an object can be created for a single
variable, with mean xmean and standard deviation xsdev (both scalars), using:
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x = gvar.gvar(xmean, xsdev).

This function can also be used to convert strings like ’-72.374(22)’ or ’511.2 +- 0.3’ into gvar.GVars:
for example,

>>> import gvar
>>> x = gvar.gvar(3.1415, 0.0002)
>>> print(x)
3.14150(20)
>>> x = gvar.gvar("3.1415(2)")
>>> print(x)
3.14150(20)

Function gvar.asgvar(x) returns x if it is a gvar.GVar; otherwise it returns gvar.gvar(x).

gvar.GVars are far more interesting when used to describe multidimensional distributions, especially if there are
correlations between different variables. Such distributions are represented by collections of gvar.GVars in one
of two standard formats: 1) numpy type arrays of gvar.GVars (any shape); or, more flexibly, 2) Python dictio-
naries whose values are gvar.GVars or arrays of gvar.GVars. Most functions in gvar that handle multiple
gvar.GVars work with either format, and if they return multidimensional results do so in the same format as the
inputs (that is, arrays or dictionaries). Any dictionary is converted internally into a specialized (ordered) dictionary
of type gvar.BufferDict, and dictionary-valued results are also gvar.BufferDicts. gvar.BufferDicts
are also useful for archiving gvar.GVars, since they may be pickled using Python’s picklemodule; gvar.GVars
cannot be pickled otherwise. A pickled gvar.BufferDict preserves any correlations that exist between the dif-
ferent gvar.GVars in it.

To create an array of gvar.GVars with mean values specified by array xmean and covariance matrix xcov, use

x = gvar.gvar(xmean, xcov)

where array x has the same shape as xmean (and xcov.shape = xmean.shape+xmean.shape). Then each
element x[i] of a one-dimensional array, for example, is a gvar.GVar where:

x[i].mean = xmean[i] # mean of x[i]
x[i].val = xmean[i] # same as x[i].mean
x[i].sdev = xcov[i, i]**0.5 # std deviation of x[i]
x[i].var = xcov[i, i] # variance of x[i]

gvar.GVars can be used in arithmetic expressions, just like Python floats. These expressions result in new
gvar.GVars whose means and standard deviations are determined from the original covariance matrix. The arith-
metic expressions can include calls to standard functions including: exp, log, sqrt, sin, cos, tan,
arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh.

As an example,

>>> x, y = gvar.gvar([0.1, 10.], [[0.015625, 0.], [0., 4.]])
>>> print(’x =’, x, ’ y =’, y)
x = 0.10(13) y = 10.0(2.0)

makes x and y gvar.GVars with standard deviations sigma_x=0.125 and sigma_y=2, and, in this case, no
correlation between x and y (since cov[i, j]=0 when i!=j). If now we set, for example,

>>> f = x + y
>>> print(’f =’, f)
f = 10.1(2.0)

then f is a gvar.GVar with

f.var = df/dx cov[0, 0] df/dx + df/dx cov[0, 1] df/dy + ...
= 2.0039**2
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where cov is the original covariance matrix used to define x and y (in gvar.gvar). Note that while f and y
separately have 20% uncertainties in this example, the ratio f/y has much smaller errors:

>>> print(f / y)
1.010(13)

This happens, of course, because the errors in f and y are highly correlated (since the error in f comes mostly from
y).

It is sometimes useful to know how much of the uncertainty in some quantity is due to a particular input uncertainty.
Continuing the example above, for example, we might want to know how much of fs standard deviation is due to the
standard deviation of x and how much comes from y. This is easily computed (for the example above):

>>> print(f.partialsdev(x)) # uncertainty in f due to x
0.125
>>> print(f.partialsdev(y)) # uncertainty in f due to y
2.0
>>> print(f.partialsdev(x, y)) # uncertainty in f due to x and y
2.00390244274
>>> print(f.sdev) # should be the same
2.00390244274

gvar.gvar() can also be used to convert strings or tuples stored in arrays or dictionaries into gvar.GVars: for
example,

>>> garray = gvar.gvar([’2(1)’, ’10+-5’, (99, 3), gvar.gvar(0, 2)])
>>> print(garray)
[2.0(1.0) 10.0(5.0) 99.0(3.0) 0.0(2.0)]
>>> gdict = gvar.gvar(dict(a=’2(1)’, b=[’10+-5’, (99, 3), gvar.gvar(0, 2)]))
>>> print(gdict)
{’a’: 2.0(1.0),’b’: array([10.0(5.0), 99.0(3.0), 0.0(2.0)], dtype=object)}

If the covariance matrix in gvar.gvar is diagonal, it can be replaced by an array of standard deviations (square roots
of diagonal entries in cov). The example above, therefore, is equivalent to:

>>> x, y = gvar.gvar([0.1, 10.], [0.125, 2.])
>>> print(’x =’, x, ’ y =’, y)
x = 0.10(13) y = 10.0(2.0)

2.3 Computing Covariance Matrices

The covariance matrix for a set of gvar.GVars, g0 g1 ..., can be computed using

gvar.evalcov([g0, g1...]) -> cov_g

where cov_g[i, j] gives the covariance between gi and gj. Instead of a list or array of gs, one can also give
a dictionary g where g[k] is a gvar.GVar. In this case gvar.evalcov() returns a doubly-indexed dictionary
cov_g[k1][k2] where keys k1, k2 are in g.

Using the example from the previous section, the code

>>> x, y = gvar.gvar([0.1, 10.], [[0.015625, 0.], [0., 4.]])
>>> f = x+y
>>> print(gvar.evalcov([x, y, f]))
[[ 0.015625 0. 0.015625]
[ 0. 4. 4. ]
[ 0.015625 4. 4.015625]]
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confirms that x and y are uncorrelated with each other, but strongly correlated with f. The correlation matrix can be
readily obtained as well:

>>> print(gvar.evalcorr([x, y, f]))
[[ 1. 0. 0.06237829]
[ 0. 1. 0.99805258]
[ 0.06237829 0.99805258 1. ]]

It is often convenient to group related gvar.GVars together in a dictionary rather than an array since dictionaries
are far more flexible. gvar.evalcov can be used to evaluate the covariance matrix for a dictionary containing
gvar.GVars and/or arbitrary arrays of gvar.GVars:

>>> d = dict(x=x, y=y, g=[x+y, x-y])
>>> cov = gvar.evalcov(d)
>>> print(cov[’x’, ’x’])
0.015625
>>> print(cov[’x’, ’y’])
0.0
>>> print(cov[’x’, ’g’])
[ 0.015625 0.015625]

2.4 Random Number Generators

gvar.GVars represent probability distributions. It is possible to use them to generate random numbers from those
distributions. For example, in

>>> z = gvar.gvar(2.0, 0.5)
>>> print(z())
2.29895701465
>>> print(z())
3.00633184275
>>> print(z())
1.92649199321

calls to z() generate random numbers from a Gaussian random number generator with mean z.mean=2.0 and
standard deviation z.sdev=0.5.

To obtain random arrays from an array g of gvar.GVars use giter=gvar.raniter(g) (see
gvar.raniter()) to create a random array generator giter. Each call to next(giter) generates a new
array of random numbers. The random number arrays have the same shape as the array g of gvar.GVars and have
the distribution implied by those random variables (including correlations). For example,

>>> a = gvar.gvar(1.0, 1.0)
>>> da = gvar.gvar(0.0, 0.1)
>>> g = [a, a+da]
>>> giter = gvar.raniter(g)
>>> print(next(giter))
[ 1.51874589 1.59987422]
>>> print(next(giter))
[-1.39755111 -1.24780937]
>>> print(next(giter))
[ 0.49840244 0.50643312]

Note how the two random numbers separately vary over the region 1±1 (approximately), but the separation between
the two is rarely more than 0±0.1. This is as expected given the strong correlation between a and a+da.

gvar.raniter(g) also works when g is a dictionary (or gvar.BufferDict) whose entries g[k] are
gvar.GVars or arrays of gvar.GVars. In such cases the iterator returns a dictionary with the same layout:
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>>> g = dict(a=gvar.gvar(0, 1), b=[gvar.gvar(0, 100), gvar.gvar(10, 1e-3)])
>>> print(g)
{’a’: 0.0(1.0), ’b’: [0(100), 10.0000(10)]}
>>> giter = gvar.raniter(g)
>>> print(next(giter))
{’a’: -0.88986130981173306, ’b’: array([-67.02994213, 9.99973707])}
>>> print(next(giter))
{’a’: 0.21289976681277872, ’b’: array([ 29.9351328 , 10.00008606])}

One use for such random number generators is dealing with situations where the standard deviations are too large to
justify the linearization assumed in defining functions of Gaussian variables. Consider, for example,

>>> x = gvar.gvar(1., 3.)
>>> print(cos(x))
0.5(2.5)

The standard deviation for cos(x) is obviously wrong since cos(x) can never be larger than one. To obtain the
real mean and standard deviation, we generate a large number of random numbers xi from x, compute cos(xi)
for each, and compute the mean and standard deviation for the resulting distribution (or any other statistical quantity,
particularly if the resulting distribution is not Gaussian):

# estimate mean,sdev from 1000 random x’s
>>> ran_x = numpy.array([x() for in range(1000)])
>>> ran_cos = numpy.cos(ran_x)
>>> print(’mean =’, ran_cos.mean(), ’ std dev =’, ran_cos.std())
mean = 0.0350548954142 std dev = 0.718647118869

# check by doing more (and different) random numbers
>>> ran_x = numpy.array([x() for in range(100000)])
>>> ran_cos = numpy.cos(ran_x)
>>> print(’mean =’, ran_cos.mean(), ’ std dev =’, ran_cos.std())
mean = 0.00806276057656 std dev = 0.706357174056

This procedure generalizes trivially for multidimensional analyses, using arrays or dictionaries with
gvar.raniter().

Finally note that bootstrap copies of gvar.GVars are easily created. A bootstrap copy of gvar.GVar x ± dx is
another gvar.GVar with the same width but where the mean value is replaced by a random number drawn from the
original distribution. Bootstrap copies of a data set, described by a collection of gvar.GVars, can be used as new
(fake) data sets having the same statistical errors and correlations:

>>> g = gvar.gvar([1.1, 0.8], [[0.01, 0.005], [0.005, 0.01]])
>>> print(g)
[1.10(10) 0.80(10)]
>>> print(gvar.evalcov(g)) # print covariance matrix
[[ 0.01 0.005]
[ 0.005 0.01 ]]

>>> gbs_iter = gvar.bootstrap_iter(g)
>>> gbs = next(gbs_iter) # bootstrap copy of f
>>> print(gbs)
[1.14(10) 0.90(10)] # different means
>>> print(gvar.evalcov(gbs))
[[ 0.01 0.005] # same covariance matrix
[ 0.005 0.01 ]]

Such fake data sets are useful for analyzing non-Gaussian behavior, for example, in nonlinear fits.

2.4. Random Number Generators 45



lsqfit Documentation, Release 4.5.2

2.5 Limitations

The most fundamental limitation of this module is that the calculus of Gaussian variables that it assumes is only
valid when standard deviations are small (compared to the distances over which the functions of interest change
appreciably). One way of dealing with this limitation is described above in the section on Random Number Generators.

Another potential issue is roundoff error, which can become problematic if there is a wide range of standard deviations
among correlated modes. For example, the following code works as expected:

>>> from gvar import gvar, evalcov
>>> tiny = 1e-4
>>> a = gvar(0., 1.)
>>> da = gvar(tiny, tiny)
>>> a, ada = gvar([a.mean, (a+da).mean], evalcov([a, a+da])) # = a,a+da
>>> print(ada-a) # should be da again
0.00010(10)

Reducing tiny, however, leads to problems:

>>> from gvar import gvar, evalcov
>>> tiny = 1e-8
>>> a = gvar(0., 1.)
>>> da = gvar(tiny, tiny)
>>> a, ada = gvar([a.mean, (a+da).mean], evalcov([a, a+da])) # = a, a+da
>>> print(ada-a) # should be da again
1(0)e-08

Here the call to gvar.evalcov() creates a new covariance matrix for a and ada = a+da, but the matrix does not
have enough numerical precision to encode the size of da‘s variance, which gets set, in effect, to zero. The problem
arises here for values of tiny less than about 2e-8 (with 64-bit floating point numbers — tiny**2 is what appears
in the covariance matrix).

2.6 Implementation Notes; Derivatives; Optimizations

There are two types of gvar.GVar: the underlying independent variables, created with calls to gvar.gvar();
and variables which are obtained from functions of the underlying variables. Each gvar.GVar must keep track
of three pieces of information: 1) its mean value; 2) its derivatives with respect to the underlying variables; and 3)
the covariance matrix for the underlying variables. The derivatives and covariance matrix allow one to compute the
standard deviation of the gvar.GVar as well as correlations between it and any other function of the underlying
variables. A gvar.GVar can be constructed at a very low level by supplying all three pieces of information — for
example,

f = gvar.gvar(fmean, fder, cov)

where fmean is the mean, fder is an array where fder[i] is the derivative of f with respect to the i-th underlying
variable (numbered in the order in which they were created using gvar.gvar()), and cov is the covariance matrix
for the underlying variables (easily obtained from an existing gvar.GVar x using x.cov).

The derivatives stored in a gvar.GVar are sometimes useful. Consider, for example, an array x each of whose
elements was created by a call to gvar.gvar(): x[i] = gvar.gvar(xi_mean,xi_sdev). Then deriva-
tives of a function f(x) with respect to the x[i] can be computed from the gvar.GVar fx = f(x) using
fx.dotder(x[i].der), which equals df(x)/dx[i] at the point x specified by the means of the x[i]s. Note
that this trick only works because the x[i] are among the underlying (original) gvar.GVars (and not combinations
of these).
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When there are lots of underlying variables, the number of derivatives can become rather large, potentially (though not
necessarily) leading to slower calculations. One way to alleviate this problem, should it arise, is to separate the under-
lying variables into groups that are never mixed in calculations and to use different gvar.gvar()s when generating
the variables in different groups. New versions of gvar.gvar() are obtained using gvar.switch_gvar(): for
example,

import gvar
...
x = gvar.gvar(...)
y = gvar.gvar(...)
z = f(x, y)
... other manipulations involving x and y ...
gvar.switch_gvar()
a = gvar(...)
b = gvar(...)
c = g(a, b)
... other manipulations involving a and b (but not x and y) ...

Here the gvar.gvar() used to create a and b is a different function than the one used to create x and y. A derived
quantity, like c, knows about its derivatives with respect to a and b, and about their covariance matrix; but it carries no
derivative information about x and y. Absent the switch_gvar line, c would have information about its derivatives
with respect to x and y (zero derivative in both cases) and this would make calculations involving c slightly slower
than with the switch_gvar line. Usually the difference is negligible — it used to be more important, in earlier
implementations of gvar.GVar before sparse matrices were introduced to keep track of covariances. Note that the
previous gvar.gvar() can be restored using gvar.restore_gvar().

gvar.GVars are designed to work well with numpy arrays. They can be combined in arithmetic expressions with
arrays of numbers or of gvar.GVars; the results in both cases are arrays of gvar.GVars.

Arithmetic operators + - * / ** == != <> += -= *= /= are all defined. gvar.GVars are not ordered so
> >= < <= are not defined. Two gvar.GVars are equal only if their means and derivatives are equal, and their
covariance matrices the same. A gvar.GVar x is defined to equal a non-gvar.GVar y only if x.mean == y
and x.sdev == 0.

The operators > and < are also defined. These allow gvar.GVars to be ordered, which sometimes simplifies al-
gorithm design. gvar.GVar x is defined to be greater than gvar.GVar y if x.mean > y.mean. Similarly
gvar.GVar x is defined to be greater than a number y if x.mean > y. This definition is inconsistent with the
definitions of == and != in that, for example, not (x>y or x<y) is not equivalent to x==y. Logically x>y for
gvar.GVars should evaluate to a boolean-valued random variable, but such variables are beyond the scope of this
module. The operators > and < are included only because they facilitate algorithmic design. Operators >= and <= are
not defined for gvar.GVars.

2.7 Utilities

The function used to create Gaussian variable objects is:

gvar.gvar(...)
Create one or more new gvar.GVars.

Each of the following creates new gvar.GVars:

gvar.gvar(x, xsdev)
Returns a gvar.GVar with mean x and standard deviation xsdev. Returns an array of gvar.GVars if
x and xsdev are arrays with the same shape; the shape of the result is the same as the shape of x.

gvar.gvar(x, xcov)
Returns an array of gvar.GVars with means given by array x and a covariance matrix given by array
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xcov, where xcov.shape = 2*x.shape. The result has the same shape as x.

gvar.gvar((x, xsdev))
Returns a gvar.GVar with mean x and standard deviation xsdev.

gvar.gvar(xstr)
Returns a gvar.GVar corresponding to string xstr which is either of the form "xmean +- xsdev"
or "x(xerr)" (see GVar.fmt()).

gvar.gvar(xgvar)
Returns gvar.GVar xgvar unchanged.

gvar.gvar(xdict)
Returns a dictionary (BufferDict) b where b[k] = gvar(xdict[k]) for every key in dictionary
xdict. The values in xdict, therefore, can be strings, tuples or gvar.GVars (see above), or arrays of
these.

gvar.gvar(xarray)
Returns an array a having the same shape as xarray where every element a[i...] =
gvar(xarray[i...]). The values in xarray, therefore, can be strings, tuples or gvar.GVars
(see above).

gvar.gvar is actually an object of type gvar.GVarFactory.

Means, standard deviations, variances, formatted strings, covariance matrices and correlation/comparison information
can be extracted from arrays (or dictionaries) of gvar.GVars using:

gvar.mean(g)
Extract means from gvar.GVars in g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Result has the same layout as g.

gvar.sdev(g)
Extract standard deviations from gvar.GVars in g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Result has the same layout as g.

gvar.var(g)
Extract variances from gvar.GVars in g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Result has the same layout as g.

gvar.fmt(g, ndecimal=None, sep=’‘)
Format gvar.GVars in g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Each gvar.GVar gi in g is replaced by the string generated by gi.fmt(ndecimal,sep).
Result has same structure as g.

gvar.evalcov(g)
Compute covariance matrix for elements of array/dictionary g.

If g is an array of gvar.GVars, evalcov returns the covariance matrix as an array with shape
g.shape+g.shape. If g is a dictionary whose values are gvar.GVars or arrays of gvar.GVars, the
result is a doubly-indexed dictionary where cov[k1,k2] is the covariance for g[k1] and g[k2].

gvar.evalcorr(g)
Compute correlation matrix for elements of array/dictionary g.
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If g is an array of gvar.GVars, evalcorr returns the correlation matrix as an array with shape
g.shape+g.shape. If g is a dictionary whose values are gvar.GVars or arrays of gvar.GVars, the
result is a doubly-indexed dictionary where corr[k1,k2] is the correlation for g[k1] and g[k2].

The correlation matrix is related to the covariance matrix by:

corr[i,j] = cov[i,j] / (cov[i,i] * cov[j,j]) ** 0.5

gvar.uncorrelated(g1, g2)
Return True if gvar.GVars in g1 uncorrelated with those in g2.

g1 and g2 can be gvar.GVars, arrays of gvar.GVars, or dictionaries containing gvar.GVars or arrays
of gvar.GVars. Returns True if either of g1 or g2 is None.

gvar.chi2(g1, g2)
Compute chi**2 of g1-g2.

chi**2 is a measure of whether the multi-dimensional Gaussian distributions g1 and g2 (dictionaries or
arrays) agree with each other — that is, do their means agree within errors for corresponding elements. The
probability is high if chi2(g1,g2)/chi2.dof is of order 1 or smaller.

Usually g1 and g2 are dictionaries with the same keys, where g1[k] and g2[k] are gvar.GVars or ar-
rays of gvar.GVars having the same shape. Alternatively g1 and g2 can be gvar.GVars, or arrays of
gvar.GVars having the same shape.

One of g1 or g2 can contain numbers instead of gvar.GVars, in which case chi**2 is a measure of the
likelihood that the numbers came from the distribution specified by the other argument.

One or the other of g1 or g2 can be missing keys, or missing elements from arrays. Only the parts of g1 and
g2 that overlap are used. Also setting g2=None is equivalent to replacing its elements by zeros.

chi**2 is computed from the inverse of the covariance matrix of g1-g2. The matrix inversion can be sensitive
to roundoff errors. In such cases, SVD cuts can be applied by setting parameters svdcut and svdnum. See the
documentation for gvar.SVD for information about these parameters.

The return value is the chi**2. Extra data is stored in chi2 itself:

chi2.dof
Number of degrees of freedom (that is, the number of variables compared).

chi2.Q
The probability that the chi**2 could have been larger, by chance, even if g1 and g2 agree. Values
smaller than 0.1 or so suggest that they do not agree. Also called the p-value.

If argument fmt==True, then a string is returned containing the chi**2 per degree of freedom, the number
of degrees of freedom, and Q.

gvar.fmt_chi2(f)
Return string containing chi**2/dof, dof and Q from f.

Assumes f has attributes chi2, dof and Q.

gvar.GVars contain information about derivatives with respect to the independent gvar.GVars from which they
were constructed. This information can be extracted using:

gvar.deriv(g, x)
Compute first derivatives wrt x of gvar.GVars in g.

g can be a gvar.GVar, an array of gvar.GVars, or a dictionary containing gvar.GVars or arrays of
gvar.GVars. Result has the same layout as g.

x must be an independent gvar.GVar, which is a gvar.GVar created by a call to gvar.gvar() (e.g.,
x = gvar.gvar(xmean, xsdev)) or a function f(x) of such a gvar.GVar. (More precisely, x.der
must have only one nonzero entry.)
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The following function creates an iterator that generates random arrays from the distribution defined by array (or
dictionary) g of gvar.GVars. The random numbers incorporate any correlations implied by the gs.

gvar.raniter(g, n=None, svdcut=None, svdnum=None, rescale=True)
Return iterator for random samples from distribution g

The gaussian variables (gvar.GVar objects) in array (or dictionary) g collectively define a multidimensional
gaussian distribution. The iterator defined by raniter() generates an array (or dictionary) containing random
numbers drawn from that distribution, with correlations intact.

The layout for the result is the same as for g. So an array of the same shape is returned if g is an array. When g
is a dictionary, individual entries g[k] may be gvar.GVars or arrays of gvar.GVars, with arbitrary shapes.

raniter() also works when g is a single gvar.GVar, in which case the resulting iterator returns random
numbers drawn from the distribution specified by g.

Parameters

• g (array or dictionary or BufferDict or GVar) – An array (or dictionary) of objects of type
gvar.GVar; or a gvar.GVar.

• n – Maximum number of random iterations. Setting n=None (the default) implies there is
no maximum number.

• svdcut (None or number) – If positive, replace eigenvalues of the covariance matrix of g
with svdcut*(max eigenvalue); if negative, discards eigenmodes with eigenvalues
smaller than svdcut*(max eigenvalue); ignore if set to None.

• svdnum (None or positive int) – If positive, keep only the modes with the largest svdnum
eigenvalues in the covariance matrix for g; ignore if set to None or negative.

• rescale (bool) – Covariance matrix is rescaled so that diagonal elements equal 1 before
applying svd cuts if rescale=True.

Returns An iterator that returns random arrays or dictionaries with the same shape as g drawn from
the gaussian distribution defined by g.

gvar.bootstrap_iter(g, n=None, svdcut=None, svdnum=None, rescale=True)
Return iterator for bootstrap copies of g.

The gaussian variables (gvar.GVar objects) in array (or dictionary) g collectively define a multidimensional
gaussian distribution. The iterator created by bootstrap_iter() generates an array (or dictionary) of new
gvar.GVars whose covariance matrix is the same as g‘s but whose means are drawn at random from the
original g distribution. This is a bootstrap copy of the original distribution. Each iteration of the iterator has
different means (but the same covariance matrix).

bootstrap_iter() also works when g is a single gvar.GVar, in which case the resulting iterator returns
bootstrap copies of the g.

Parameters

• g (array or dictionary or BufferDict) – An array (or dictionary) of objects of type
gvar.GVar.

• n – Maximum number of random iterations. Setting n=None (the default) implies there is
no maximum number.

• svdcut (None or number) – If positive, replace eigenvalues of the covariance matrix of g
with svdcut*(max eigenvalue); if negative, discards eigenmodes with eigenvalues
smaller than svdcut*(max eigenvalue); ignore if set to None.

• svdnum (None or positive int) – If positive, keep only the modes with the largest svdnum
eigenvalues in the covariance matrix for g; ignore if set to None or negative.
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• rescale (bool) – Covariance matrix is rescaled so that diagonal elements equal 1 before
applying svd cuts if rescale=True.

Returns An iterator that returns bootstrap copies of g.

gvar.ranseed(a)
Seed random number generators with tuple seed.

Argument seed is a tuple of integers that is used to seed the random number generators used by numpy and
random (and therefore by gvar). Reusing the same seed results in the same set of random numbers.

ranseed generates its own seed when called without an argument or with seed=None. This seed is stored in
ranseed.seed and also returned by the function. The seed can be used to regenerate the same set of random
numbers at a later time.

Parameters seed (tuple or None) – A tuple of integers. Generates a random tuple if None.

Returns The seed.

Two functions that are useful for tabulating results and for analyzing where the errors in a gvar.GVar constructed
from other gvar.GVars come from:

gvar.fmt_errorbudget(outputs, inputs, ndecimal=2, percent=True, colwidth=10)
Tabulate error budget for outputs[ko] due to inputs[ki].

For each output outputs[ko], fmt_errorbudget computes the contributions to outputs[ko]‘s stan-
dard deviation coming from the gvar.GVars collected in inputs[ki]. This is done for each key combi-
nation (ko,ki) and the results are tabulated with columns and rows labeled by ko and ki, respectively. If
a gvar.GVar in inputs[ki] is correlated with other gvar.GVars, the contribution from the others is
included in the ki contribution as well (since contributions from correlated gvar.GVars cannot be resolved).
The table is returned as a string.

Parameters

• outputs – Dictionary of gvar.GVars for which an error budget is computed.

• inputs – Dictionary of: gvar.GVars, arrays/dictionaries of gvar.GVars, or lists of
gvar.GVars and/or arrays/dictionaries of gvar.GVars. fmt_errorbudget tabulates
the parts of the standard deviations of each outputs[ko] due to each inputs[ki].

• ndecimal (int) – Number of decimal places displayed in table.

• percent (boolean) – Tabulate % errors if percent is True; otherwise tabulate the er-
rors themselves.

• colwidth (positive integer) – Width of each column.

Returns A table (str) containing the error budget. Output variables are labeled by the keys in
outputs (columns); sources of uncertainty are labeled by the keys in inputs (rows).

gvar.fmt_values(outputs, ndecimal=None)
Tabulate gvar.GVars in outputs.

Parameters

• outputs – A dictionary of gvar.GVar objects.

• ndecimal (int or None) – Format values v using v.fmt(ndecimal).

Returns A table (str) containing values and standard deviations for variables in outputs, labeled
by the keys in outputs.

The following functions creates new functions that generate gvar.GVars (to replace gvar.gvar()):
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gvar.switch_gvar()
Switch gvar.gvar() to new gvar.GVarFactory.

Returns New gvar.gvar().

gvar.restore_gvar()
Restore previous gvar.gvar().

Returns Previous gvar.gvar().

gvar.gvar_factory(cov=None)
Return new function for creating gvar.GVars (to replace gvar.gvar()).

If cov is specified, it is used as the covariance matrix for new gvar.GVars created by the function returned
by gvar_factory(cov). Otherwise a new covariance matrix is created internally.

gvar.GVars created by different functions cannot be combined in arithmetic expressions (the error message “In-
compatible GVars.” results).

The following function can be used to rebuild collections of gvar.GVars, ignoring all correlations with other vari-
ables. It can also be used to introduce correlations between uncorrelated variables.

gvar.rebuild(g, gvar=gvar, corr=0.0)
Rebuild g stripping correlations with variables not in g.

g is either an array of gvar.GVars or a dictionary containing gvar.GVars and/or arrays of gvar.GVars.
rebuild(g) creates a new collection gvar.GVars with the same layout, means and covariance matrix as
those in g, but discarding all correlations with variables not in g.

If corr is nonzero, rebuild will introduce correlations wherever there aren’t any using

cov[i,j] -> corr * sqrt(cov[i,i]*cov[j,j])

wherever cov[i,j]==0.0 initially. Positive values for corr introduce positive correlations, negative values
anti-correlations.

Parameter gvar specifies a function for creating new gvar.GVars that replaces gvar.gvar() (the default).

Parameters

• g (array or dictionary) – gvar.GVars to be rebuilt.

• gvar (gvar.GVarFactory or None) – Replacement for gvar.gvar() to use in re-
building. Default is gvar.gvar().

• corr (number) – Size of correlations to introduce where none exist initially.

Returns Array or dictionary (gvar.BufferDict) of gvar.GVars (same layout as g) where all corre-
lations with variables other than those in g are erased.

Finally there is a utility function and a class for implementing an svd analysis of a covariance or other symmetric,
positive matrix:

gvar.svd(g, svdcut=None, svdnum=None, compute_delta=False, rescale=True)
Apply svd cuts to collection of gvar.GVars in g.

g is an array of gvar.GVars or a dictionary containing gvar.GVars and/or arrays of gvar.GVars.
svd(g,...) returns a copy of g whose gvar.GVars have been modified so that their covariance matrix
is less singular than for the original g (the gvar.GVar means are unchanged). This is done using an svd al-
gorithm which is controlled by three parameters: svdcut, svdnum and rescale (see gvar.SVD for more
details). svd cuts are not applied when the covariance matrix is diagonal (that is, when there are no correlations
between different elements of g).

The input parameters are :
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Parameters

• g – An array of gvar.GVars or a dicitionary whose values are gvar.GVars and/or arrays
of gvar.GVars.

• svdcut (None or number (|svdcut|<=1).) – If positive, replace eigenvalues of the
covariance matrix with svdcut*(max eigenvalue); if negative, discard eigenmodes
with eigenvalues smaller than svdcut times the maximum eigenvalue. Default is None.

• svdnum (None or int) – If positive, keep only the modes with the largest svdnum eigen-
values; ignore if set to None. Default is None.

• rescale – Rescale the input matrix to make its diagonal elements equal to 1.0 before applying
svd cuts. (Default is True.)

• compute_inv – Compute representation of inverse of covariance matrix if True; the result
is stored in svd.inv_wgt (see below). Default value is False.

Returns A copy of g with the same means but with a covariance matrix modified by svd cuts.

Data from the svd analysis of g‘s covariance matrix is stored in svd itself:

svd.val
Eigenvalues of the covariance matrix after svd cuts (and after rescaling if rescale=True); the eigenval-
ues are ordered, with the smallest first.

svd.vec
Eigenvectors of the covariance matrix after svd cuts (and after rescaling if rescale=True), where
svd.vec[i] is the vector corresponding to svd.val[i].

svd.eigen_range
Ratio of the smallest to largest eigenvalue before svd cuts are applied (but after rescaling if
rescale=True).

svd.D
Diagonal of matrix used to rescale the covariance matrix before applying svd cuts (cuts are applied to
D*cov*D) if rescale=True; svd.D is None if rescale=False.

svd.logdet
Logarithm of the determinant of the covariance matrix after svd cuts are applied.

svd.correction
Vector of the svd corrections to g.flat;

svd.inv_wgt
The sum of the outer product of vectors inv_wgt[i] with themselves equals the inverse of the covari-
ance matrix after svd cuts. Only computed if compute_inv=True. The order of the vectors is reversed
relative to svd.val and svd.vec

2.8 Classes

The fundamental class for representing Gaussian variables is:

class gvar.GVar
The basic attributes are:

mean
Mean value.

sdev
Standard deviation.
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var
Variance.

Two methods allow one to isolate the contributions to the variance or standard deviation coming from other
gvar.GVars:

partialvar(*args)
Compute partial variance due to gvar.GVars in args.

This method computes the part of self.var due to the gvar.GVars in args. If args[i] is corre-
lated with other gvar.GVars, the variance coming from these is included in the result as well. (This last
convention is necessary because variances associated with correlated gvar.GVars cannot be disentan-
gled into contributions corresponding to each variable separately.)

Parameters args[i] (gvar.GVar or array/dictionary of gvar.GVars) – Variables contribut-
ing to the partial variance.

Returns Partial variance due to all of args.

partialsdev(*args)
Compute partial standard deviation due to gvar.GVars in args.

This method computes the part of self.sdev due to the gvar.GVars in args. If args[i] is corre-
lated with other gvar.GVars, the standard deviation coming from these is included in the result as well.
(This last convention is necessary because variances associated with correlated gvar.GVars cannot be
disentangled into contributions corresponding to each variable separately.)

Parameters args[i] (gvar.GVar or array/dictionary of gvar.GVars) – Variables contribut-
ing to the partial standard deviation.

Returns Partial standard deviation due to args.

Partial derivatives of the gvar.GVar with respect to the independent gvar.GVars from which it was con-
structed are given by:

deriv(x)
Derivative of self with respest to independent gvar.GVar x.

xmust be an independent gvar.GVar, which is a gvar.GVar created by a call to gvar.gvar() (e.g.,
x = gvar.gvar(xmean, xsdev)) or a function f(x) of such a gvar.GVar. (More precisely,
x.der must have only one nonzero entry.)

All gvar.GVars are constructed from a set of independent gvar.GVars. self.deriv(x) returns
the partial derivative of self with respect to independent gvar.GVar x, holding all of the other inde-
pendent gvar.GVars constant.

Parameters x – The independent gvar.GVar.

Returns The derivative of self with respect to x.

There are two methods for converting self into a string, for printing:

__str__()
Return string representation of self.

The representation is designed to show at least one digit of the mean and two digits of the standard devia-
tion. For cases where mean and standard deviation are not too different in magnitude, the representation is
of the form ’mean(sdev)’. When this is not possible, the string has the form ’mean +- sdev’.

fmt(ndecimal=None, sep=’‘)
Convert to string with format: mean(sdev).

Leading zeros in the standard deviation are omitted: for example, 25.67 +- 0.02 becomes
25.67(2). Parameter ndecimal specifies how many digits follow the decimal point in the mean.
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Parameter sep is a string that is inserted between the mean and the (sdev). If ndecimal is None
(default), it is set automatically to the larger of int(2-log10(self.sdev)) or 0; this will display
at least two digits of error. Very large or very small numbers are written with exponential notation when
ndecimal is None.

Setting ndecimal < 0 returns mean +- sdev.

Two attributes and a method make reference to the original variables from which self is derived:

cov
Underlying covariance matrix (type gvar.smat) shared by all gvar.GVars.

der
Array of derivatives with respect to underlying (original) gvar.GVars.

dotder(v)
Return the dot product of self.der and v.

The following class is a specialized form of an ordered dictionary for holding gvar.GVars (or other scalars) and
arrays of gvar.GVars (or other scalars) that supports Python pickling:

class gvar.BufferDict
Dictionary whose data is packed into a 1-d buffer (numpy.array).

A gvar.BufferDict object is a dictionary-like object whose values must either be scalars or arrays (like
numpy arrays, with arbitrary shapes). The scalars and arrays are assembled into different parts of a single
one-dimensional buffer. The various scalars and arrays are retrieved using keys, as in a dictionary: e.g.,

>>> a = BufferDict()
>>> a[’scalar’] = 0.0
>>> a[’vector’] = [1.,2.]
>>> a[’tensor’] = [[3.,4.],[5.,6.]]
>>> print(a.flatten()) # print a’s buffer
[ 0. 1. 2. 3. 4. 5. 6.]
>>> for k in a: # iterate over keys in a
... print(k,a[k])
scalar 0.0
vector [ 1. 2.]
tensor [[ 3. 4.]
[ 5. 6.]]
>>> a[’vector’] = a[’vector’]*10 # change the ’vector’ part of a
>>> print(a.flatten())
[ 0. 10. 20. 3. 4. 5. 6.]

The first four lines here could have been collapsed to one statement:

a = BufferDict(scalar=0.0,vector=[1.,2.],tensor=[[3.,4.],[5.,6.]])

or

a = BufferDict([(’scalar’,0.0),(’vector’,[1.,2.]),
(’tensor’,[[3.,4.],[5.,6.]])])

where in the second case the order of the keys is preserved in a (that is, BufferDict is an ordered dictionary).

The keys and associated shapes in a gvar.BufferDict can be transferred to a different buffer, creating a
new gvar.BufferDict: e.g., using a from above,

>>> buf = numpy.array([0.,10.,20.,30.,40.,50.,60.])
>>> b = BufferDict(a,buf=buf) # clone a but with new buffer
>>> print(b[’tensor’])
[[ 30. 40.]
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[ 50. 60.]]
>>> b[’scalar’] += 1
>>> print(buf)
[ 1. 10. 20. 30. 40. 50. 60.]

Note how b references buf and can modify it. One can also replace the buffer in the original
gvar.BufferDict using, for example, a.buf = buf:

>>> a.buf = buf
>>> print(a[’tensor’])
[[ 30. 40.]
[ 50. 60.]]
>>> a[’tensor’] *= 10.
>>> print(buf)
[ 1. 10. 20. 300. 400. 500. 600.]

a.buf is the numpy array used for a‘s buffer. It can be used to access and change the buffer directly. In
a.buf = buf, the new buffer buf must be a numpy array of the correct shape. The buffer can also be
accessed through iterator a.flat (in analogy with numpy arrays), and through a.flatten() which returns
a copy of the buffer.

A gvar.BufferDict functions like a dictionary except: a) items cannot be deleted once inserted; b) all
values must be either scalars or arrays of scalars, where the scalars can be any noniterable type that works with
numpy arrays; and c) any new value assigned to a key must have the same size and shape as the original value.

Note that gvar.BufferDicts can be pickled and unpickled even when they store gvar.GVars (which
themselves cannot be pickled separately).

The main attributes are:

size
Size of buffer array.

flat
Buffer array iterator.

dtype
Data type of buffer array elements.

buf
The (1d) buffer array. Allows direct access to the buffer: for example, self.buf[i] = new_val sets
the value of the i-th element in the buffer to value new_val. Setting self.buf = nbuf replaces
the old buffer by new buffer nbuf. This only works if nbuf is a one-dimensional numpy array having
the same length as the old buffer, since nbuf itself is used as the new buffer (not a copy).

shape
Always equal to None. This attribute is included since gvar.BufferDicts share several attributes
with numpy arrays to simplify coding that might support either type. Being dictionaries they do not have
shapes in the sense of numpy arrays (hence the shape is None).

The main methods are:

flatten()
Copy of buffer array.

slice(k)
Return slice/index in self.flat corresponding to key k.

isscalar(k)
Return True if self[k] is scalar else False.
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update(d)
Add contents of dictionary d to self.

static load(fobj, use_json=False)
Load serialized gvar.BufferDict from file object fobj. Uses pickle unless use_json is True,
in which case it uses json (obvioulsy).

static loads(s, use_json=False)
Load serialized gvar.BufferDict from string object s. Uses pickle unless use_json is True,
in which case it uses json (obvioulsy).

dump(fobj, use_json=False)
Serialize gvar.BufferDict in file object fobj.

Uses pickle unless use_json is True, in which case it uses json (obviously). json does not
handle non-string valued keys very well. This attempts a workaround, but it will only work in simpler
cases. Serialization only works when pickle (or json) knows how to serialize the data type stored in
the gvar.BufferDict‘s buffer (or for gvar.GVars).

dumps(use_json=False)
Serialize gvar.BufferDict into string.

Uses pickle unless use_json is True, in which case it uses json (obviously). json does not
handle non-string valued keys very well. This attempts a workaround, but it will only work in simpler
cases (e.g., integers, tuples of integers, etc.). Serialization only works when pickle (or json) knows
how to serialize the data type stored in the gvar.BufferDict‘s buffer (or for gvar.GVars).

SVD analysis is handled by the following class:

class gvar.SVD(mat, svdcut=None, svdnum=None, compute_delta=False, rescale=False)
SVD decomposition of a pos. sym. matrix.

SVD is a function-class that computes the eigenvalues and eigenvectors of a positive symmetric matrix mat.
Eigenvalues that are small (or negative, because of roundoff) can be eliminated or modified using svd cuts.
Typical usage is:

>>> mat = [[1.,.25],[.25,2.]]
>>> s = SVD(mat)
>>> print(s.val) # eigenvalues
[ 0.94098301 2.05901699]
>>> print(s.vec[0]) # 1st eigenvector (for s.val[0])
[ 0.97324899 -0.22975292]
>>> print(s.vec[1]) # 2nd eigenvector (for s.val[1])
[ 0.22975292 0.97324899]

>>> s = SVD(mat,svdcut=0.6) # force s.val[i]>=s.val[-1]*0.6
>>> print(s.val)
[ 1.2354102 2.05901699]
>>> print(s.vec[0]) # eigenvector unchanged
[ 0.97324899 -0.22975292]

>>> s = SVD(mat)
>>> w = s.decomp(-1) # decomposition of inverse of mat
>>> invmat = sum(numpy.outer(wj,wj) for wj in w)
>>> print(numpy.dot(mat,invmat)) # should be unit matrix
[[ 1.00000000e+00 2.77555756e-17]
[ 1.66533454e-16 1.00000000e+00]]

Input parameters are:

Parameters
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• mat (2-d sequence (numpy.array or list or ...)) – Positive, symmetric matrix.

• svdcut (None or number (|svdcut|<=1).) – If positive, replace eigenvalues of mat
with svdcut*(max eigenvalue); if negative, discard eigenmodes with eigenvalues
smaller than svdcut times the maximum eigenvalue.

• svdnum (None or int) – If positive, keep only the modes with the largest svdnum eigen-
values; ignore if set to None.

• compute_delta (boolean) – Compute delta (see below) if True; set delta=None oth-
erwise.

• rescale – Rescale the input matrix to make its diagonal elements equal to 1.0 before diago-
nalizing.

The results are accessed using:

val
An ordered array containing the eigenvalues or mat. Note that val[i]<=val[i+1].

vec
Eigenvectors vec[i] corresponding to the eigenvalues val[i].

D
The diagonal matrix used to precondition the input matrix if rescale==True. The matrix diagonalized
is D M D where M is the input matrix. D is stored as a one-dimensional vector of diagonal elements. D is
None if rescale==False.

nmod
The first nmod eigenvalues in self.val were modified by the SVD cut (equals 0 unless svdcut > 0).

kappa
Ratio of the smallest to the largest eigenvector in the unconditioned matrix (after rescaling if
rescale=True)

delta
A vector of gvars whose means are zero and whose covariance matrix is what was added to mat to
condition its eigenvalues. Is None if svdcut<0 or compute_delta==False.

decomp(n)
Vector decomposition of input matrix raised to power n.

Computes vectors w[i] such that

mat**n = sum_i numpy.outer(w[i],w[i])

where mat is the original input matrix to svd. This decomposition cannot be computed if the input matrix
was rescaled (rescale=True) except for n=1 and n=-1.

Parameters n (number) – Power of input matrix.

Returns Array w of vectors.

2.9 Requirements

gvar makes heavy use of numpy for array manipulations. It also uses the numpy code for implementing elementary
functions (e.g., sin, exp ...) in terms of member functions.
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CHAPTER

THREE

GVAR.DATASET - RANDOM DATA SETS

3.1 Introduction

gvar.dataset contains a several tools for collecting and analyzing random samples from arbitrary distributions.
The random samples are represented by lists of numbers or arrays, where each number/array is a new sample from the
underlying distribution. For example, six samples from a one-dimensional gaussian distribution, 1±1, might look like

>>> random_numbers = [1.739, 2.682, 2.493, -0.460, 0.603, 0.800]

while six samples from a two-dimensional distribution, [1±1, 2±1], might be

>>> random_arrays = [[ 0.494, 2.734], [ 0.172, 1.400], [ 1.571, 1.304],
... [ 1.532, 1.510], [ 0.669, 0.873], [ 1.242, 2.188]]

Samples from more complicated multidimensional distributions are represented by dictionaries whose values are lists
of numbers or arrays: for example,

>>> random_dict = dict(n=random_numbers, a=random_arrays)

where list elements random_dict[’n’][i] and random_dict[’a’][i] are part of the same multidimen-
sional sample for every i — that is, the lists for different keys in the dictionary are synchronized one with the other.

With large samples, we typically want to estimate the mean value of the underlying distribution. This is done using
gvar.dataset.avg_data(): for example,

>>> print(avg_data(random_numbers))
1.31(45)

indicates that 1.31(45) is our best guess, based only upon the samples in random_numbers, for the mean of the
distribution from which those samples were drawn. Similarly

>>> print(avg_data(random_arrays))
[0.95(22) 1.67(25)]

indicates that the means for the two-dimensional distribution behind random_arrays are [0.95(22),
1.67(25)]. avg_data() can also be applied to a dictionary whose values are lists of numbers/arrays: for exam-
ple,

>>> print(avg_data(random_dict))
{’a’: array([0.95(22), 1.67(25)], dtype=object),’n’: 1.31(45)}

Class gvar.dataset.Dataset can be used to assemble dictionaries containing random samples. For example,
imagine that the random samples above were originally written into a file, as they were generated:
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# file: datafile
n 1.739
a [ 0.494, 2.734]
n 2.682
a [ 0.172, 1.400]
n 2.493
a [ 1.571, 1.304]
n -0.460
a [ 1.532, 1.510]
n 0.603
a [ 0.669, 0.873]
n 0.800
a [ 1.242, 2.188]

Here each line is a different random sample, either from the one-dimensional distribution (labeled n) or from the two-
dimensional distribution (labeled a). Assuming the file is called datafile, this data can be read into a dictionary,
essentially identical to the data dictionary above, using:

>>> data = Dataset("datafile")
>>> print(data[’a’])
[array([ 0.494, 2.734]), array([ 0.172, 1.400]), array([ 1.571, 1.304]) ... ]
>>> print(avg_data(data[’n’]))
1.31(45)

The brackets and commas can be omitted in the input file for one-dimensional arrays: for example, datafile (above)
could equivalently be written

# file: datafile
n 1.739
a 0.494 2.734
n 2.682
a 0.172 1.400
...

Other data formats may also be easy to use. For example, a data file written using yaml would look like

# file: datafile
---
n: 1.739
a: [ 0.494, 2.734]
---
n: 2.682
a: [ 0.172, 1.400]
.
.
.

and could be read into a gvar.dataset.Dataset using:

import yaml

data = Dataset()
with open("datafile", "r") as dfile:

for d in yaml.load_all(dfile.read()): # iterate over yaml records
data.append(d) # d is a dictionary

Finally note that data can be binned, into bins of size binsize, using gvar.dataset.bin_data(). For ex-
ample, gvar.dataset.bin_data(data, binsize=3) replaces every three samples in data by the average
of those samples. This creates a dataset that is 1/3 the size of the original but has the same mean. Binning is use-
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ful for making large datasets more manageable, and also for removing sample-to-sample correlations. Over-binning,
however, erases statistical information.

Class gvar.dataset.Dataset can also be used to build a dataset sample by sample in code: for example,

>>> a = Dataset()
>>> a.append(n=1.739, a=[ 0.494, 2.734])
>>> a.append(n=2.682, a=[ 0.172, 1.400])
...

creates the same dataset as above.

3.2 Functions

The functions defined in the module are:

gvar.dataset.avg_data(data, median=False, spread=False, bstrap=False)
Average random data to estimate mean.

data is a list of random numbers or random arrays, or a dictionary of lists of random numbers/arrays: for
example,

>>> random_numbers = [1.60, 0.99, 1.28, 1.30, 0.54, 2.15]
>>> random_arrays = [[12.2,121.3],[13.4,149.2],[11.7,135.3],
... [7.2,64.6],[15.2,69.0],[8.3,108.3]]
>>> random_dict = dict(n=random_numbers,a=random_arrays)

where in each case there are six random numbers/arrays. avg_data estimates the means of the distributions
from which the random numbers/arrays are drawn, together with the uncertainties in those estimates. The results
are returned as a gvar.GVar or an array of gvar.GVars, or a dictionary of gvar.GVars and/or arrays of
gvar.GVars:

>>> print(avg_data(random_numbers))
1.31(20)
>>> print(avg_data(random_arrays))
[11.3(1.1) 108(13)]
>>> print(avg_data(random_dict))
{’a’: array([11.3(1.1), 108(13)], dtype=object),’n’: 1.31(20)}

The arrays in random_arrays are one dimensional; in general, they can have any shape.

avg_data(data) also estimates any correlations between different quantities in data. When data is a
dictionary, it does this by assuming that the lists of random numbers/arrays for the different data[k]s are
synchronized, with the first element in one list corresponding to the first elements in all other lists, and so on. If
some lists are shorter than others, the longer lists are truncated to the same length as the shortest list (discarding
data samples).

There are four optional arguments. If argument spread=True each standard deviation in the results refers to
the spread in the data, not the uncertainty in the estimate of the mean. The former is sqrt(N) larger where N
is the number of random numbers (or arrays) being averaged:

>>> print(avg_data(random_numbers,spread=True))
1.31(50)
>>> print(avg_data(random_numbers))
1.31(20)
>>> print((0.50 / 0.20) ** 2) # should be (about) 6
6.25
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This is useful, for example, when averaging bootstrap data. The default value is spread=False.

The second option is triggered by setting median=True. This replaces the means in the results by medians,
while the standard deviations are approximated by the half-width of the interval, centered around the median,
that contains 68% of the data. These estimates are more robust than the mean and standard deviation when
averaging over small amounts of data; in particular, they are unaffected by extreme outliers in the data. The
default is median=False.

The third option is triggered by setting bstrap=True. This is shorthand for setting median=True and
spread=True, and overrides any explicit setting for these keyword arguments. This is the typical choice for
analyzing bootstrap data — hence its name. The default value is bstrap=False.

The final option is to omit the error estimates on the averages, which is triggered by setting noerror=True.
Just the mean values are returned. The default value is noerror=False.

gvar.dataset.autocorr(data, ncorr=None)
Compute autocorrelation in random data.

data is a list of random numbers or random arrays, or a dictionary of lists of random numbers/arrays.

When data is a list of random numbers, autocorr(data) returns an array where autocorr(data)[i]
is the correlation between elements in data that are separated by distance i in the list: for example,

>>> print(autocorr([2,-2,2,-2,2,-2]))
[ 1. -1. 1. -1. 1. -1.]

shows perfect correlation between elements separated by an even interval in the list, and perfect anticorrelation
between elements by an odd interval.

autocorr(data) returns a list of arrays of autocorrelation coefficients when data is a list of random arrays.
Again autocorr(data)[i] gives the autocorrelations for data elements separated by distance i in the list.
Similarly autocorr(data) returns a dictionary when data is a dictionary.

autocorr(data) uses FFTs to compute the autocorrelations; the cost of computing the autocorrelations
should grow roughly linearly with the number of random samples in data (up to logarithms).

gvar.dataset.bin_data(data, binsize=2)
Bin random data.

data is a list of random numbers or random arrays, or a dictionary of lists of random numbers/arrays.
bin_data(data,binsize) replaces consecutive groups of binsize numbers/arrays by the average of
those numbers/arrays. The result is new data list (or dictionary) with 1/binsize times as much random data:
for example,

>>> print(bin_data([1,2,3,4,5,6,7],binsize=2))
[1.5, 3.5, 5.5]
>>> print(bin_data(dict(s=[1,2,3,4,5],v=[[1,2],[3,4],[5,6],[7,8]]),binsize=2))
{’s’: [1.5, 3.5], ’v’: [array([ 2., 3.]), array([ 6., 7.])]}

Data is dropped at the end if there is insufficient data to from complete bins. Binning is used to make calcula-
tions faster and to reduce measurement-to-measurement correlations, if they exist. Over-binning erases useful
information.

gvar.dataset.bootstrap_iter(data, n=None)
Create iterator that returns bootstrap copies of data.

data is a list of random numbers or random arrays, or a dictionary of lists of random numbers/arrays.
bootstrap_iter(data,n) is an iterator that returns n bootstrap copies of data. The random num-
bers/arrays in a bootstrap copy are drawn at random (with repetition allowed) from among the samples in data:
for example,
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>>> data = [1.1, 2.3, 0.5, 1.9]
>>> data_iter = bootstrap_iter(data)
>>> print(next(data_iter))
[ 1.1 1.1 0.5 1.9]
>>> print(next(data_iter))
[ 0.5 2.3 1.9 0.5]

>>> data = dict(a=[1,2,3,4],b=[1,2,3,4])
>>> data_iter = bootstrap_iter(data)
>>> print(next(data_iter))
{’a’: array([3, 3, 1, 2]), ’b’: array([3, 3, 1, 2])}
>>> print(next(data_iter))
{’a’: array([1, 3, 3, 2]), ’b’: array([1, 3, 3, 2])}

>>> data = [[1,2],[3,4],[5,6],[7,8]]
>>> data_iter = bootstrap_iter(data)
>>> print(next(data_iter))
[[ 7. 8.]
[ 1. 2.]
[ 1. 2.]
[ 7. 8.]]

>>> print(next(data_iter))
[[ 3. 4.]
[ 7. 8.]
[ 3. 4.]
[ 1. 2.]]

The distribution of bootstrap copies is an approximation to the distribution from which data was drawn. Con-
sequently means, variances and correlations for bootstrap copies should be similar to those in data. Analyzing
variations from bootstrap copy to copy is often useful when dealing with non-gaussian behavior or complicated
correlations between different quantities.

Parameter n specifies the maximum number of copies; there is no maximum if n is None.

3.3 Classes

gvar.dataset.Dataset is used to assemble random samples from multidimensional distributions:

class gvar.dataset.Dataset
Dictionary for collecting random data.

This dictionary class simplifies the collection of random data. The random data are stored in a dictionary, with
each piece of random data being a number or an array of numbers. For example, consider a situation where there
are four random values for a scalar s and four random values for vector v. These can be collected as follows:

>>> data = Dataset()
>>> data.append(s=1.1,v=[12.2,20.6])
>>> data.append(s=0.8,v=[14.1,19.2])
>>> data.append(s=0.95,v=[10.3,19.7])
>>> data.append(s=0.91,v=[8.2,21.0])
>>> print(data[’s’]) # 4 random values of s
[ 1.1, 0.8, 0.95, 0.91]
>>> print(data[’v’]) # 4 random vector-values of v
[array([ 12.2, 20.6]), array([ 14.1, 19.2]), array([ 10.3, 19.7]), array([ 8.2, 21. ])]

The argument to data.append() could be a dictionary: for example, dd =
dict(s=1.1,v=[12.2,20.6]); data.append(dd) is equivalent to the first append statement
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above. This is useful, for example, if the data comes from a function (that returns a dictionary).

One can also append data key-by-key: for example, data.append(’s’,1.1);
data.append(’v’,[12.2,20.6]) is equivalent to the first append in the exam-
ple above. One could also achieve this with, for example, data[’s’].append(1.1);
data[’v’].append([12.2,20.6]), since each dictionary value is a list, but gvar.Dataset‘s
append checks for consistency between the new data and data already collected and so is preferable.

Use extend in place of append to add data in batches: for example,

>>> data = Dataset()
>>> data.extend(s=[1.1,0.8],v=[[12.2,20.6],[14.1,19.2]])
>>> data.extend(s=[0.95,0.91],v=[[10.3,19.7],[8.2,21.0]])
>>> print(data[’s’]) # 4 random values of s
[ 1.1, 0.8, 0.95, 0.91]

gives the same dataset as the first example above.

A Dataset can also be created from a file where every line is a new random sample. The data in the first
example above could have been stored in a file with the following content:

# file: datafile
s 1.1
v [12.2,20.6]
s 0.8
v [14.1,19.2]
s 0.95
v [10.3,19.7]
s 0.91
v [8.2,21.0]

Lines that begin with # are ignored. Assuming the file is called datafile, we create a dataset identical to that
above using the code:

>>> data = Dataset(’datafile’)
>>> print(data[’s’])
[ 1.1, 0.8, 0.95, 0.91]

Data can be binned while reading it in, which might be useful if there the data set is huge. To bin the data
contained in file datafile in bins of binsize 2 we use:

>>> data = Dataset(’datafile’,binsize=2)
>>> print(data[’s’])
[0.95, 0.93]

Finally the keys read from a data file are restricted to those listed in keyword keys and those that are matched
(or partially matched) by regular expression grep if one or the other of these is specified: for example,

>>> data = Dataset(’datafile’)
>>> print([k for k in a])
[’s’, ’v’]
>>> data = Dataset(’datafile’,keys=[’v’])
>>> print([k for k in a])
[’v’]
>>> data = Dataset(’datafile’,grep=’[^v]’)
>>> print([k for k in a])
[’s’]
>>> data = Dataset(’datafile’,keys=[’v’],grep=’[^v]’)
>>> print([k for k in a])
[]
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The main attributes and methods are:

samplesize
Smallest number of samples for any key.

append(*args, **kargs)
Append data to dataset.

There are three equivalent ways of adding data to a dataset data: for example, each of

data.append(n=1.739,a=[0.494,2.734]) # method 1

data.append(n,1.739) # method 2
data.append(a,[0.494,2.734])

dd = dict(n=1.739,a=[0.494,2.734]) # method 3
data.append(dd)

adds one new random number (or array) to data[’n’] (or data[’a’]).

extend(*args, **kargs)
Add batched data to dataset.

There are three equivalent ways of adding batched data, containing multiple samples for each quantity, to
a dataset data: for example, each of

data.extend(n=[1.739,2.682],
a=[[0.494,2.734],[ 0.172, 1.400]]) # method 1

data.extend(n,[1.739,2.682]) # method 2
data.extend(a,[[0.494,2.734],[ 0.172, 1.400]])

dd = dict(n=[1.739,2.682],
a=[[0.494,2.734],[ 0.172, 1.400]]) # method 3

data.extend(dd)

adds two new random numbers (or arrays) to data[’n’] (or data[’a’]).

This method can be used to merge two datasets, whether or not they share keys: for example,

data = Dataset("file1")
data_extra = Dataset("file2")
data.extend(data_extra) # data now contains all of data_extra

grep(rexp)
Create new dataset containing items whose keys match rexp.

Returns a new gvar.dataset.Dataset‘ containing only the items self[k] whose keys k match
regular expression rexp (a string) according to Python module re:

>>> a = Dataset()
>>> a.append(xx=1.,xy=[10.,100.])
>>> a.append(xx=2.,xy=[20.,200.])
>>> print(a.grep(’y’))
{’yy’: [array([ 10., 100.]), array([ 20., 200.])]}
>>> print(a.grep(’x’))
{’xx’: [1.0, 2.0], ’xy’: [array([ 10., 100.]), array([ 20., 200.])]}
>>> print(a.grep(’x|y’))
{’xx’: [1.0, 2.0], ’xy’: [array([ 10., 100.]), array([ 20., 200.])]}
>>> print a.grep(’[^y][^x]’)
{’xy’: [array([ 10., 100.]), array([ 20., 200.])]}
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Items are retained even if rexp matches only part of the item’s key.

slice(sl)
Create new dataset with self[k] -> self[k][sl].

Parameter sl is a slice object that is applied to every item in the dataset to produce a new
gvar.Dataset. Setting sl = slice(0,None,2), for example, discards every other sample for
each quantity in the dataset. Setting sl = slice(100,None) discards the first 100 samples for each
quantity.

arrayzip(template)
Merge lists of random data according to template.

template is an array of keys in the dataset, where the shapes of self[k] are the same for all keys k
in template. self.arrayzip(template) merges the lists of random numbers/arrays associated
with these keys to create a new list of (merged) random arrays whose layout is specified by template:
for example,

>>> d = Dataset()
>>> d.append(a=1,b=10)
>>> d.append(a=2,b=20)
>>> d.append(a=3,b=30)
>>> print(d) # three random samples each for a and b
{’a’: [1.0, 2.0, 3.0], ’b’: [10.0, 20.0, 30.0]}
>>> # merge into list of 2-vectors:
>>> print(d.arrayzip([’a’,’b’]))
[[ 1. 10.]
[ 2. 20.]
[ 3. 30.]]

>>> # merge into list of (symmetric) 2x2 matrices:
>>> print(d.arrayzip([[’b’,’a’],[’a’,’b’]]))
[[[ 10. 1.]

[ 1. 10.]]

[[ 20. 2.]
[ 2. 20.]]

[[ 30. 3.]
[ 3. 30.]]]

The number of samples in each merged result is the same as the number samples for each key (here 3).
The keys used in this example represent scalar quantities; in general, they could be either scalars or arrays
(of any shape, so long as all have the same shape).

trim()
Create new dataset where all entries have same sample size.

toarray()
Copy self but with self[k] as numpy arrays.
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CHAPTER

FOUR

LSQFIT - NONLINEAR LEAST
SQUARES FITTING

4.1 Introduction

This package contains tools for nonlinear least-squares curve fitting of data. In general a fit has four inputs:

1. The dependent data y that is to be fit — typically y is a Python dictionary in an lsqfit analysis. Its values
y[k] are either gvar.GVars or arrays (any shape or dimension) of gvar.GVars that specify the values of
the dependent variables and their errors.

2. A collection x of independent data — x can have any structure and contain any data (or no data).

3. A fit function f(x, p) whose parameters p are adjusted by the fit until f(x, p) equals y to within ys errors
— parameters p‘ are usually specified by a dictionary whose values p[k] are individual parameters or (numpy)
arrays of parameters. The fit function is assumed independent of x (that is, f(p)) if x = False (or if x is
omitted from the input data).

4. Initial estimates or priors for each parameter in p — priors are usually specified using a dictionary prior
whose values prior[k] are gvar.GVars or arrays of gvar.GVars that give initial estimates (values and
errors) for parameters p[k].

A typical code sequence has the structure:

... collect x, y, prior ...

def f(x, p):
... compute fit to y[k], for all k in y, using x, p ...
... return dictionary containing the fit values for the y[k]s ...

fit = lsqfit.nonlinear_fit(data=(x, y), prior=prior, fcn=f)
print(fit) # variable fit is of type nonlinear_fit

The parameters p[k] are varied until the chi**2 for the fit is minimized.

The best-fit values for the parameters are recovered after fitting using, for example, p=fit.p. Then the p[k] are
gvar.GVars or arrays of gvar.GVars that give best-fit estimates and fit uncertainties in those estimates. The
print(fit) statement prints a summary of the fit results.

The dependent variable y above could be an array instead of a dictionary, which is less flexible in general but possibly
more convenient in simpler fits. Then the approximate y returned by fit function f(x, p) must be an array with the
same shape as the dependent variable. The prior prior could also be represented by an array instead of a dictionary.

The lsqfit tutorial contains extended explanations and examples.
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4.2 Formal Background

The formal structure structure of a least-squares problem involves fitting input data yi with functions fi(p) by adjusting
fit parameters pa to minimize

χ2 ≡
∑
ij

∆y(p)i (cov−1
y )ij ∆y(p)j

≡ (∆y(p))T · cov−1
y · ∆y(p)

where covy is the covariance matrix for the input data and

∆y(p)i ≡ fi(p) − yi.

There are generally two types of input data — actual data and prior information for each fit parameter — but we lump
these together here since they enter in the same way (that is, the sums over i and j are over all data and priors).

The best-fit values pa for the fit parameters are those that minimize χ2:

(∂a∆y(p))T · cov−1
y · ∆y(p) = 0

where the derivatives are ∂a = ∂/∂pa. The covariance matrix covp for these is obtained (approximately) from

(cov−1
p )ab ≡ (∂a∆y(p))T · cov−1

y · (∂b∆y(p)).

Consequently the variance for any function g(p) of the best-fit parameters is given by (approximately)

σ2
g = (∂g(p))T · covp · ∂g(p)

The definition of the covariance matrix implies that it and any variance σ2
g derived from it depend linearly (approxi-

mately) on the elements of the input data covariance matrix covy , at least when errors are small:

σ2
g ≈

∑
ij

c(p)ij (covy)ij

This allows us to associate different portions of the output error σ2
g with different parts of the input error covy , creating

an “error budget” for g(p). Such information helps pinpoint the input errors that most affect the output errors for any
particular quantity g(p), and also indicates how those output errors might change for a given change in input error.

The relationship between the input and output errors is only approximately linear because the coefficients in the
expansion depend upon the best-fit values for the parameters, and these depend upon the input errors — but only
weakly when errors are small. Neglecting such variation in the parameters, the error budget for any quantity is easily
computed using

∂(covp)ab
∂(covy)ij

= DaiDbj

where

Dai ≡ (covp · ∂∆y · cov−1
y )ai

and, trivially, covp = D · covy ·DT.

This last formula suggests that

∂pa
∂yi

= Dai.
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This relationship is true in the limit of small errors, as is easily derived from the minimum condition for the fit, which
defines (implicitly) pa(y): Differentiating with respect to yi we obtain

(∂a∆y(p))T · cov−1
y · ∂∆y(p)

∂yi
= 0

where we have ignored terms suppressed by a factor of ∆y(p). This leads immediately to the relationship above.

The data’s covariance matrix covy is sometimes rather singular, making it difficult to invert. This problem is dealt
with using an svd cut: the covariance matrix is diagonalized, some number of the smallest (and therefore least-
well determined) eigenvalues and their eigenvectors are discarded, and the inverse matrix is reconstituted from the
eigenmodes that remain. (Instead of discarding modes one can replace their eigenvalues by the smallest eigenvalue
that is retained; this is less conservative and sometimes leads to more accurate results.) Note that the covariance
matrix has at most N non-zero eigenvalues when it is estimated from N random samples; zero-modes should always
be discarded.

4.3 nonlinear_fit Objects

class lsqfit.nonlinear_fit(data=None, fcn=None, prior=None, p0=None, svdcut=(1e-15, 1e-15),
svdnum=None, debug=False, **kargs)

Nonlinear least-squares fit.

lsqfit.nonlinear_fit fits a (nonlinear) function f(x, p) to data y by varying parameters p, and stores
the results: for example,

fit = nonlinear_fit(data=(x, y), fcn=f, prior=prior) # do fit
print(fit) # print fit results

The best-fit values for the parameters are in fit.p, while the chi**2, the number of degrees of freedom,
the logarithm of Gaussian Bayes Factor, the number of iterations, and the cpu time needed for the fit are in
fit.chi2, fit.dof, fit.logGBF, fit.nit, and fit.time, respectively. Results for individual pa-
rameters in fit.p are of type gvar.GVar, and therefore carry information about errors and correlations with
other parameters. The fit data and prior can be recovered using fit.x (equals False if there is no x), fit.y,
and fit.prior; the data and prior are corrected for the svd cut, if there is one (that is, their covariance
matrices have been modified in accordance with the svd cut).

Parameters

• data – Data to be fit by lsqfit.nonlinear_fit. It can have any of the following
formats:

data = x, y x is the independent data that is passed to the fit function with the fit
parameters: fcn(x, p). y is a dictionary (or array) of gvar.GVars that encode
the means and covariance matrix for the data that is to be fit being fit. The fit function
must return a result having the same layout as y.

data = y y is a dictionary (or array) of gvar.GVars that encode the means and
covariance matrix for the data being fit. There is no independent data so the fit
function depends only upon the fit parameters: fit(p). The fit function must
return a result having the same layout as y.

data = x, ymean, ycov x is the independent data that is passed to the fit func-
tion with the fit parameters: fcn(x, p). ymean is an array containing the mean
values of the fit data. ycov is an array containing the covariance matrix of the
fit data; ycov.shape equals 2*ymean.shape. The fit function must return an
array having the same shape as ymean.
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data = x, ymean, ysdev x is the independent data that is passed to the fit
function with the fit parameters: fcn(x, p). ymean is an array containing the
mean values of the fit data. ysdev is an array containing the standard deviations
of the fit data; ysdev.shape equals ymean.shape. The data are assumed to be
uncorrelated. The fit function must return an array having the same shape as ymean.

Setting x=False in the first, third or fourth of these formats implies that the fit function
depends only on the fit parameters: that is, fcn(p) instead of fcn(x, p). (This is not
assumed if x=None.)

• fcn (function) – The function to be fit to data. It is either a function of the independent data
x and the fit parameters p (fcn(x, p)), or a function of just the fit parameters (fcn(p))
when there is no x data or x=False. The parameters are tuned in the fit until the function
returns values that agree with the y data to within the ys’ errors. The function’s return value
must have the same layout as the y data (a dictionary or an array). The fit parameters p are
either: 1) a dictionary where each p[k] is a single parameter or an array of parameters (any
shape); or, 2) a single array of parameters. The layout of the parameters is the same as that
of prior prior if it is specified; otherwise, it is inferred from of the starting value p0 for
the fit.

• prior (dictionary, array, or None) – A dictionary (or array) containing a priori estimates
for all parameters p used by fit function fcn(x, p) (or fcn(p)). Fit parameters p are
stored in a dictionary (or array) with the same keys and structure (or shape) as prior. The
default value is None; prior must be defined if p0 is None.

• p0 (dictionary, array, string or None) – Starting values for fit parameters in fit.
lsqfit.nonlinear_fit adjusts p0 to make it consistent in shape and structure with
prior when the latter is specified: elements missing from p0 are filled in using prior,
and elements in p0 that are not in prior are discarded. If p0 is a string, it is taken as a
file name and lsqfit.nonlinear_fit attempts to read starting values from that file;
best-fit parameter values are written out to the same file after the fit (for priming future fits).
If p0 is None or the attempt to read the file fails, starting values are extracted from prior.
The default value is None; p0 must be defined if prior is None.

• svdcut (None or float or 2-tuple) – If positive, eigenvalues of the (rescaled) y covari-
ance matrix that are smaller than svdcut times the maximum eigenvalue are replaced by
svdcut times the maximum eigenvalue. If negative, eigenmodes with eigenvalues smaller
than |svdcut| times the largest eigenvalue are discarded. If zero or None, the covari-
ance matrix is left unchanged. If svdcut is a 2-tuple, the first entry is svdcut for the y
covariance matrix and the second entry is svdcut for the prior’s covariance matrix.

• svdnum (None or int or 2-tuple) – If positive, at most svdnum eigenmodes of the
(rescaled) y covariance matrix are retained; the modes with the smallest eigenvalues are
discarded. svdnum is ignored if set to None. If svdnum is a 2-tuple, the first entry is
svdnum for the y covariance matrix and the second entry is svdnum for the prior’s covari-
ance matrix.

• debug (boolean) – Set to True for extra debugging of the fit function and a check for
roundoff errors. (Default is False.)

• fitterargs – Dictionary of arguments passed on to lsqfit.multifit, which does the
fitting.

The results from the fit are accessed through the following attributes (of fit where fit =
nonlinear_fit(...)):

chi2
The minimum chi**2 for the fit. fit.chi2 / fit.dof is usually of order one in good fits; values
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much less than one suggest that the actual standard deviations in the input data and/or priors are smaller
than the standard deviations used in the fit.

cov
Covariance matrix of the best-fit parameters from the fit.

dof
Number of degrees of freedom in the fit, which equals the number of pieces of data being fit when priors
are specified for the fit parameters. Without priors, it is the number of pieces of data minus the number of
fit parameters.

logGBF
The logarithm of the probability (density) of obtaining the fit data by randomly sampling the parameter
model (priors plus fit function) used in the fit. This quantity is useful for comparing fits of the same
data to different models, with different priors and/or fit functions. The model with the largest value of
fit.logGBF is the one prefered by the data. The exponential of the difference in fit.logGBF between
two models is the ratio of probabilities (Bayes factor) for those models. Differences in fit.logGBF
smaller than 1 are not very significant. Gaussian statistics are assumed when computing fit.logGBF.

p
Best-fit parameters from fit. Depending upon what was used for the prior (or p0), it is either:
a dictionary (gvar.BufferDict) of gvar.GVars and/or arrays of gvar.GVars; or an array
(numpy.ndarray) of gvar.GVars. fit.p represents a multi-dimensional Gaussian distribution
which, in Bayesian terminology, is the posterior probability distribution of the fit parameters.

pmean
Means of the best-fit parameters from fit (dictionary or array).

psdev
Standard deviations of the best-fit parameters from fit (dictionary or array).

palt
Same as fit.p except that the errors are computed directly from fit.cov. This is faster but means
that no information about correlations with the input data is retained (unlike in fit.p); and, therefore,
fit.palt cannot be used to generate error budgets. fit.p and fit.palt give the same means and
normally give the same errors for each parameter. They differ only when the input data’s covariance matrix
is too singular to invert accurately (because of roundoff error), in which case an svd cut is advisable.

transformed_p
Same as fit.p but augmented to include the transforms of any log-normal or other pa-
rameter implemented using decorator lsqfit.transform_p. In the case of a log-normal
variable fit.p[’logXX’], for example, fit.transformed_p[’XX’] is defined equal to
exp(fit.p[’logXX’]).

p0
The parameter values used to start the fit.

Q
The probability that the chi**2 from the fit could have been larger, by chance, assuming the best-fit
model is correct. Good fits have Q values larger than 0.1 or so. Also called the p-value of the fit.

svdcorrection
A dictionary containing the (flattened) svd corrections, if any, to the fit data y and the prior prior.
For example, fit.y is obtained by adding fit.svdcorrection[’y’] to to the (flattened) input y
data. Similarly fit.prior is the input prior plus fit.svdcorrection[’prior’]. When there
is no svd correction, the entries are set equal to None. When the input data and prior are correlated,
fit.svdcorrection[’all’] contains the correction for the concatenated data and prior. There are
no entries for keys ’y’ and ’prior’ in this case. There is also no entry for key ’prior’ when there
is no prior.
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time
CPU time (in secs) taken by fit.

The input parameters to the fit can be accessed as attributes. Note in particular attributes:

prior
Prior used in the fit. This may differ from the input prior if an svd cut is used (svdcut>0). It is either
a dictionary (gvar.BufferDict) or an array (numpy.ndarray), depending upon the input. Equals
None if no prior was specified.

x
The first field in the input data. This is sometimes the independent variable (as in ‘y vs x’ plot), but may
be anything. It is set equal to False if the x field is omitted from the input data. (This also means that
the fit function has no x argument: so f(p) rather than f(x,p).)

y
Fit data used in the fit. This may differ from the input data if an svd cut is used (svdcut>0). It is either
a dictionary (gvar.BufferDict) or an array (numpy.ndarray), depending upon the input.

Additional methods are provided for printing out detailed information about the fit, testing fits with simulated
data, doing bootstrap analyses of the fit errors, dumping (for later use) and loading parameter values, and check-
ing for roundoff errors in the final error estimates:

format(maxline=0, pstyle=’v’)
Formats fit output details into a string for printing.

Parameters

• maxline (integer) – Maximum number of data points for which fit results and input data
are tabulated. maxline<0 implies that only chi2, Q, logGBF, and itns are tabulated;
no parameter values are included. Default is maxline=0.

• pstyle (‘vv’, ‘v’, or ‘m’) – Style used for parameter list. Supported values are ‘vv’ for very
verbose, ‘v’ for verbose, and ‘m’ for minimal. When ‘m’ is set, only parameters whose
values differ from their prior values are listed.

Returns String containing detailed information about fit.

fmt_errorbudget(outputs, inputs, ndecimal=2, percent=True)
Tabulate error budget for outputs[ko] due to inputs[ki].

For each output outputs[ko], fmt_errorbudget computes the contributions to outputs[ko]‘s
standard deviation coming from the gvar.GVars collected in inputs[ki]. This is done for each key
combination (ko,ki) and the results are tabulated with columns and rows labeled by ko and ki, respec-
tively. If a gvar.GVar in inputs[ki] is correlated with other gvar.GVars, the contribution from
the others is included in the ki contribution as well (since contributions from correlated gvar.GVars
cannot be resolved). The table is returned as a string.

Parameters

• outputs – Dictionary of gvar.GVars for which an error budget is computed.

• inputs – Dictionary of: gvar.GVars, arrays/dictionaries of gvar.GVars, or lists
of gvar.GVars and/or arrays/dictionaries of gvar.GVars. fmt_errorbudget
tabulates the parts of the standard deviations of each outputs[ko] due to each
inputs[ki].

• ndecimal (int) – Number of decimal places displayed in table.

• percent (boolean) – Tabulate % errors if percent is True; otherwise tabulate the
errors themselves.

• colwidth (positive integer) – Width of each column.
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Returns A table (str) containing the error budget. Output variables are labeled by the keys in
outputs (columns); sources of uncertainty are labeled by the keys in inputs (rows).

fmt_values(outputs, ndecimal=None)
Tabulate gvar.GVars in outputs.

Parameters

• outputs – A dictionary of gvar.GVar objects.

• ndecimal (int or None) – Format values v using v.fmt(ndecimal).

Returns A table (str) containing values and standard deviations for variables in outputs,
labeled by the keys in outputs.

simulated_fit_iter(n=None, pexact=None, **kargs)
Iterator that returns simulation copies of a fit.

Fit reliability can be tested using simulated data which replaces the mean values in self.y with random
numbers drawn from a distribution whose mean equals self.fcn(pexact) and whose covariance
matrix is the same as self.y‘s. Simulated data is very similar to the original fit data, self.y, but
corresponds to a world where the correct values for the parameters (i.e., averaged over many simulated
data sets) are given by pexact. pexact is usually taken equal to fit.pmean.

Each iteration of the iterator creates new simulated data, with different random numbers, and fits it, return-
ing the the lsqfit.nonlinear_fit that results. The simulated data has the same covariance matrix
as fit.y. Typical usage is:
...
fit = nonlinear_fit(...)
...
for sfit in fit.simulated_fit_iter(n=3):

... verify that sfit.p agrees with pexact=fit.pmean within errors ...

Only a few iterations are needed to get a sense of the fit’s reliability since we know the correct answer in
each case. The simulated fit’s output results should agree with pexact (=fit.pmean here) within the
simulated fit’s errors.

Simulated fits can also be used to estimate biases in the fit’s output parameters or functions of them,
should non-Gaussian behavior arise. This is possible, again, because we know the correct value for every
parameter before we do the fit. Again only a few iterations may be needed for reliable estimates.

The (possibly non-Gaussian) probability distributions for parameters, or functions of them, can be ex-
plored in more detail by setting option bootstrap=True and collecting results from a large number
of simulated fits. With bootstrap=True, the means of the priors are also varied from fit to fit, as in
a bootstrap simulation; the new prior means are chosen at random from the prior distribution. Variations
in the best-fit parameters (or functions of them) from fit to fit define the probability distributions for those
quantities. For example, one would use the following code to analyze the distribution of function g(p) of
the fit parameters:

fit = nonlinear_fit(...)

...

glist = []
for sfit in fit.simulated_fit_iter(n=100, bootstrap=True):

glist.append(g(sfit.pmean))

... analyze samples glist[i] from g(p) distribution ...

4.3. nonlinear_fit Objects 73



lsqfit Documentation, Release 4.5.2

This code generates n=100 samples glist[i] from the probability distribution of g(p). If everything
is Gaussian, the mean and standard deviation of glist[i] should agree with g(fit.p).mean and
g(fit.p).sdev.

The only difference between simulated fits with bootstrap=True and bootstrap=False (the de-
fault) is that the prior means are varied. It is essential that they be varied in a bootstrap analysis since one
wants to capture the impact of the priors on the final distributions, but it is not necessary and probably not
desirable when simply testing a fit’s reliability.

Parameters

• n (integer or None) – Maximum number of iterations (equals infinity if None).

• pexact (None or array or dictionary of numbers) – Fit-parameter values for the underly-
ing distribution used to generate simulated data; replaced by self.pmean if is None
(default).

• bootstrap (bool) – Vary prior means if True; otherwise vary only the means in self.y
(default).

Returns An iterator that returns lsqfit.nonlinear_fits for different simulated data.

Note that additional keywords can be added to overwrite keyword arguments in
lsqfit.nonlinear_fit.

bootstrap_iter(n=None, datalist=None)
Iterator that returns bootstrap copies of a fit.

A bootstrap analysis involves three steps: 1) make a large number of “bootstrap copies” of the original input
data and prior that differ from each other by random amounts characteristic of the underlying randomness
in the original data; 2) repeat the entire fit analysis for each bootstrap copy of the data, extracting fit results
from each; and 3) use the variation of the fit results from bootstrap copy to bootstrap copy to determine
an approximate probability distribution (possibly non-gaussian) for the fit parameters and/or functions of
them: the results from each bootstrap fit are samples from that distribution.

Bootstrap copies of the data for step 2 are provided in datalist. If datalist is None, they are
generated instead from the means and covariance matrix of the fit data (assuming gaussian statistics). The
maximum number of bootstrap copies considered is specified by n (None implies no limit).

Variations in the best-fit parameters (or functions of them) from bootstrap fit to bootstrap fit define the
probability distributions for those quantities. For example, one could use the following code to analyze the
distribution of function g(p) of the fit parameters:

fit = nonlinear_fit(...)

...

glist = []
for sfit in fit.bootstrapped_fit_iter(n=100, datalist=datalist, bootstrap=True):

glist.append(g(sfit.pmean))

... analyze samples glist[i] from g(p) distribution ...

This code generates n=100 samples glist[i] from the probability distribution of g(p). If everything
is Gaussian, the mean and standard deviation of glist[i] should agree with g(fit.p).mean and
g(fit.p).sdev.

Parameters

• n (integer) – Maximum number of iterations if n is not None; otherwise there is no max-
imum.
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• datalist (sequence or iterator or None) – Collection of bootstrap data sets for fitter.

Returns Iterator that returns an lsqfit.nonlinear_fit object containing results from the
fit to the next data set in datalist

dump_p(filename)
Dump parameter values (fit.p) into file filename.

fit.dump_p(filename) saves the best-fit parameter values (fit.p) from
a nonlinear_fit called fit. These values are recovered using p =
nonlinear_fit.load_parameters(filename) where p‘s layout is the same as that of
fit.p.

dump_pmean(filename)
Dump parameter means (fit.pmean) into file filename.

fit.dump_pmean(filename) saves the means of the best-fit parameter values
(fit.pmean) from a nonlinear_fit called fit. These values are recovered using p0 =
nonlinear_fit.load_parameters(filename)where p0‘s layout is the same as fit.pmean.
The saved values can be used to initialize a later fit (nonlinear_fit parameter p0).

static load_parameters(filename)
Load parameters stored in file filename.

p = nonlinear_fit.load_p(filename) is used to recover the values of fit parameters dumped
using fit.dump_p(filename) (or fit.dump_pmean(filename)) where fit is of type
lsqfit.nonlinear_fit. The layout of the returned parameters p is the same as that of fit.p
(or fit.pmean).

check_roundoff(rtol=0.25, atol=1e-6)
Check for roundoff errors in fit.p.

Compares standard deviations from fit.p and fit.palt to see if they agree to within relative tolerance rtol
and absolute tolerance atol. Generates a warning if they do not (in which case an svd cut might be
advisable).

4.4 Functions

lsqfit.empbayes_fit(z0, fitargs, **minargs)
Call lsqfit.nonlinear_fit(**fitargs(z)) varying z, starting at z0, to maximize logGBF (em-
pirical Bayes procedure).

The fit is redone for each value of z that is tried, in order to determine logGBF.

Parameters

• z0 (array) – Starting point for search.

• fitargs (function) – Function of array z that determines which fit parameters to use. The
function returns these as an argument dictionary for lsqfit.nonlinear_fit().

• minargs (dictionary) – Optional argument dictionary, passed on to
lsqfit.multiminex, which finds the minimum.

Returns A tuple containing the best fit (object of type lsqfit.nonlinear_fit) and the opti-
mal value for parameter z.

lsqfit.wavg(xa, svdcut=None, svdnum=None, rescale=True, covfac=None)
Weighted average of gvar.GVars or arrays/dicts of gvar.GVars.
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The weighted average of several gvar.GVars is what one obtains from a least-squares fit of the collection
of gvar.GVars to the one- parameter fit function def f(p): return N * [p[0]] where N is the
number of gvar.GVars. The average is the best-fit value for p[0]. gvar.GVars with smaller standard
deviations carry more weight than those with larger standard deviations. The averages computed by wavg take
account of correlations between the gvar.GVars.

Typical usage is:

x1 = gvar.gvar(...)
x2 = gvar.gvar(...)
x3 = gvar.gvar(...)
xavg = wavg([x1, x2, x3]) # weighted average of x1, x2 and x3

The individual gvar.GVars in this example can be replaced by multidimensional distributions, represented by
arrays of gvar.GVars or dictionaries of gvar.GVars or arrays of gvar.GVars. For example,

x1 = [gvar.gvar(...), gvar.gvar(...)]
x2 = [gvar.gvar(...), gvar.gvar(...)]
x3 = [gvar.gvar(...), gvar.gvar(...)]
xavg = wavg([x1, x2, x3])

# xavg[i] is wgtd avg of x1[i], x2[i], x3[i]

and

x1 = dict(a=[gvar.gvar(...), gvar.gvar(...)], b=gvar.gvar(...))
x2 = dict(a=[gvar.gvar(...), gvar.gvar(...)], b=gvar.gvar(...))
x3 = dict(a=[gvar.gvar(...), gvar.gvar(...)], b=gvar.gvar(...))
xavg = wavg([x1, x2, x3])

# xavg[’a’][i] is wgtd avg of x1[’a’][i], x2[’a’][i], x3[’a’][i]
# xavg[’b’] is gtd avg of x1[’b’], x2[’b’], x3[’b’]

Parameters

• xa – The gvar.GVars to be averaged. xa is a one-dimensional sequence of gvar.GVars,
or of arrays of gvar.GVars, or of dictionaries containing gvar.GVars or arrays of
gvar.GVars. All xa[i] must have the same shape.

• svdcut (None or float) – If positive, eigenvalues of the xa covariance matrix that are
smaller than svdcut times the maximum eigenvalue are replaced by svdcut times the
maximum eigenvalue. If negative, eigenmodes with eigenvalues smaller than |svdcut|
times the largest eigenvalue are discarded. If zero or None, the covariance matrix is left
unchanged.

• svdnum (None or int) – If positive, at most svdnum eigenmodes of the xa covariance
matrix are retained; the modes with the smallest eigenvalues are discarded. svdnum is
ignored if set to None.

• rescale (bool) – If True, rescale covariance matrix so diagonal elements all equal 1 before
applying svd cuts. (Default is True.)

• covfac (None or number) – The covariance matrix (or matrices) of xa is multiplied by
covfac if covfac is not None.

Returns Weighted average of the xa elements. The result has the same type and shape as each
element of xa (that is, either a gvar.GVar or an array of gvar.GVars.)

The following function attributes are also set:

wavg.chi2
chi**2 for weighted average.

76 Chapter 4. lsqfit - Nonlinear Least Squares Fitting



lsqfit Documentation, Release 4.5.2

wavg.dof
Effective number of degrees of freedom.

wavg.Q
The probability that the chi**2 could have been larger, by chance, assuming that the data are all Gaussain
and consistent with each other. Values smaller than 0.1 or suggest that the data are not Gaussian or are
inconsistent with each other. Also called the p-value.

Quality factor Q (or p-value) for fit.

wavg.time
Time required to do average.

lsqfit.gammaQ()
Return the incomplete gamma function Q(a,x) = 1-P(a,x).

Note that gammaQ(ndof/2., chi2/2.) is the probabilty that one could get a chi**2 larger than chi2
with ndof degrees of freedom even if the model used to construct chi2 is correct.

4.5 Utility Classes

class lsqfit.transform_p(priorkeys, pindex=None, pkey=None)
Decorate fit function to allow log/sqrt-normal priors.

This decorator can be applied to fit functions whose parameters are stored in a dictionary-like object. It searches
the parameter keys for string-valued keys of the form "log(XX)", "logXX", "sqrt(XX)", or "sqrtXX"
where "XX" is an arbitrary string. For each such key it adds a new entry to the parameter dictionary with key
"XX" where:

p["XX"] = exp(p[k]) for k = "log(XX)" or "logXX"

or

p["XX"] = p[k] ** 2 for k = "sqrt(XX)" or "sqrtXX"

This means that the fit function can be expressed entirely in terms of p["XX"] even if the actual fit parameter
is the logarithm or square root of that quantity. Since fit parameters have gaussian/normal priors, p["XX"]
has a log-normal or “sqrt-normal” distribution in the first or second cases above, respectively. In either case
p["XX"] is guaranteed to be postiive.

This is a convenience function. It allows for the rapid replacement of a fit parameter by its logarithm or square
root without having to rewrite the fit function — only the prior need be changed. The decorator needs the keys
from the prior, and it needs to be told which argument (numbered from 0) of the fit function is the parameter
dictionary, unless the fit function has only a single argument:

@lsqfit.transform_p(prior.keys(), 1)
def fitfcn(x, p):

...

or

@lsqfit.transform_p(prior.keys(), 0)
def fitfcn(p, other_arg1, ...):

...

or
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@lsqfit.transform_p(prior.keys())
def fitfcn(p):

...

A list of the specific keys that need transforming can be used instead of the list of all keys (prior.keys()).
The decorator assigns a copy of itself to the function as an attribute: fitfcn.transform_p.

Parameters

• priorkeys (sequence) – The keys in the prior that are to be tranformed. Other keys can be
in priorkeys provided they do not begin with ’log’ or ’sqrt’ — they are ignored.

• pindex (integer or None) – Index of the parameters-dictionary in the argument list of the
fit function. Default value is None; one of pkey or pindex must be specified (i.e., not
None), unless the fit function has only a single argument.

• pkey (string or None) – Name of the parameters-variable in the argument keyword dictio-
nary of the fit function. Default value is None; one of pkey or pindex must be specified
(i.e., not None), unless the fit function has only a single argument.

transform(p)
Create transformed copy of dictionary p.

Create a copy of parameter-dictionary p that includes new entries for each "logXX", etc entry corre-
sponding to "XX". The values in p can be any type that supports logarithms, exponentials, and arithmetic.

untransform(p)
Undo self.transform(p).

Reconstruct p0 where p == self.transform(p0); that is remove entries for keys "XX" that were
added by by transform_p.transform() (because "logXX" or "sqrtXX" or ... appeared in p0).

static paramkey(k)
Return parameter key corresponding to prior-key k.

Strip off any "log" or "sqrt" prefix.

static priorkey(prior, k)
Return key in prior corresponding to k.

Add in "log" or "sqrt" as needed to find a key in prior.

class lsqfit.multifit(x0, n, f, reltol=1e-4, abstol=0, maxit=1000, alg=’lmsder’, analyzer=None)
Fitter for nonlinear least-squares multidimensional fits.

Parameters

• x0 (numpy array of floats) – Starting point for minimization.

• n (positive integer) – Length of vector returned by the fit function f(x).

• f (function) – Fit function: multifitminimizes sum_i f_i(x)**2 by varying param-
eters x. The parameters are a 1-d numpy array of either numbers or gvar.GVars.

• reltol (float) – The fit stops when |dx_i| < abstol + reltol * |x_i|; default
value is 1e-4.

• abstol (float) – The fit stops when |dx_i| < abstol + reltol * |x_i|; default
value is 0.0.

• maxit (integer) – Maximum number of iterations in search for minimum; default is 1000.
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• alg (string) – GSL algorithm to use for minimization. Two options are currently available:
"lmsder", the scaled LMDER algorithm (default); and "lmder", the unscaled LMDER
algorithm.

• analyzer (function) – Optional function of x, [...f_i(x)...],
[[..df_ij(x)..]] which is called after each iteration. This can be used to
inspect intermediate steps in the minimization, if needed.

multifit is a function-class whose constructor does a least squares fit by minimizing sum_i f_i(x)**2
as a function of vector x. The following attributes are available:

x
Location of the most recently computed (best) fit point.

cov
Covariance matrix at the minimum point.

f
The fit function f(x) at the minimum in the most recent fit.

J
Gradient J_ij = df_i/dx[j] for most recent fit.

nit
Number of iterations used in last fit to find the minimum.

error
None if fit successful; an error message otherwise.

multifit is a wrapper for the multifit GSL routine.

class lsqfit.multiminex(x0, f, tol=1e-4, maxit=1000, step=1, alg=’nmsimplex2’, analyzer=None)
Minimizer for multidimensional functions.

Parameters

• x0 (numpy array of floats) – Starting point for minimization search.

• f (function) – Function f(x) to be minimized by varying vector x.

• tol (float) – Minimization stops when x has converged to with tolerance tol; default is
1e-4.

• maxit (integer) – Maximum number of iterations in search for minimum; default is 1000.

• step (number) – Initial step size to use in varying components of x; default is 1.

• alg (string) – GSL algorithm to use for minimization. Three options are currently available:
"nmsimplex", Nelder Mead Simplex algorithm; "nmsimplex2", an improved version
of "nmsimplex" (default); and "nmsimplex2rand", a version of "nmsimplex2"
with random shifts in the start position.

• analyzer (function) – Optional function of x, f(x), it, where it is the iteration num-
ber, which is called after each iteration. This can be used to inspect intermediate steps in the
minimization, if needed.

multiminex is a function-class whose constructor minimizes a multidimensional function f(x) by varying
vector x. This routine does not use user-supplied information about the gradient of f(x). The following
attributes are available:

x
Location of the most recently computed minimum (1-d array).
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f
Value of function f(x) at the most recently computed minimum.

nit
Number of iterations required to find most recent minimum.

error
None if fit successful; an error message otherwise.

multiminex is a wrapper for the multimin GSL routine.

4.6 Requirements

lsqfit relies heavily on the gvar, and numpy modules. Several utility functions are in lsqfit_util. Also the
minimization routines are from the Gnu Scientific Library (GSL).
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B
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chi2 (lsqfit.wavg attribute), 76
chi2() (in module gvar), 49
correction (gvar.svd attribute), 53
cov (gvar.GVar attribute), 55
cov (lsqfit.multifit attribute), 79
cov (lsqfit.nonlinear_fit attribute), 71

D
D (gvar.SVD attribute), 58
D (gvar.svd attribute), 53
Dataset (class in gvar.dataset), 63
decomp() (gvar.SVD method), 58
delta (gvar.SVD attribute), 58
der (gvar.GVar attribute), 55
deriv() (gvar.GVar method), 54
deriv() (in module gvar), 49
dof (gvar.chi2 attribute), 49
dof (lsqfit.nonlinear_fit attribute), 71
dof (lsqfit.wavg attribute), 76
dotder() (gvar.GVar method), 55
dtype (gvar.BufferDict attribute), 56

dump() (gvar.BufferDict method), 57
dump_p() (lsqfit.nonlinear_fit method), 75
dump_pmean() (lsqfit.nonlinear_fit method), 75
dumps() (gvar.BufferDict method), 57

E
eigen_range (gvar.svd attribute), 53
empbayes_fit() (in module lsqfit), 75
error (lsqfit.multifit attribute), 79
error (lsqfit.multiminex attribute), 80
evalcorr() (in module gvar), 48
evalcov() (in module gvar), 48
extend() (gvar.dataset.Dataset method), 65

F
f (lsqfit.multifit attribute), 79
f (lsqfit.multiminex attribute), 79
flat (gvar.BufferDict attribute), 56
flatten() (gvar.BufferDict method), 56
fmt() (gvar.GVar method), 54
fmt() (in module gvar), 48
fmt_chi2() (in module gvar), 49
fmt_errorbudget() (in module gvar), 51
fmt_errorbudget() (lsqfit.nonlinear_fit method), 72
fmt_values() (in module gvar), 51
fmt_values() (lsqfit.nonlinear_fit method), 73
format() (lsqfit.nonlinear_fit method), 72

G
gammaQ() (in module lsqfit), 77
grep() (gvar.dataset.Dataset method), 65
GVar (class in gvar), 53
gvar (module), 41
gvar() (in module gvar), 47, 48
gvar.dataset (module), 59
gvar_factory() (in module gvar), 52

I
inv_wgt (gvar.svd attribute), 53
isscalar() (gvar.BufferDict method), 56
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J
J (lsqfit.multifit attribute), 79

K
kappa (gvar.SVD attribute), 58

L
load() (gvar.BufferDict static method), 57
load_parameters() (lsqfit.nonlinear_fit static method), 75
loads() (gvar.BufferDict static method), 57
logdet (gvar.svd attribute), 53
logGBF (lsqfit.nonlinear_fit attribute), 71
lsqfit (module), 67

M
mean (gvar.GVar attribute), 53
mean() (in module gvar), 48
multifit (class in lsqfit), 78
multiminex (class in lsqfit), 79

N
nit (lsqfit.multifit attribute), 79
nit (lsqfit.multiminex attribute), 80
nmod (gvar.SVD attribute), 58
nonlinear_fit (class in lsqfit), 69

P
p (lsqfit.nonlinear_fit attribute), 71
p0 (lsqfit.nonlinear_fit attribute), 71
palt (lsqfit.nonlinear_fit attribute), 71
paramkey() (lsqfit.transform_p static method), 78
partialsdev() (gvar.GVar method), 54
partialvar() (gvar.GVar method), 54
pmean (lsqfit.nonlinear_fit attribute), 71
prior (lsqfit.nonlinear_fit attribute), 72
priorkey() (lsqfit.transform_p static method), 78
psdev (lsqfit.nonlinear_fit attribute), 71

Q
Q (gvar.chi2 attribute), 49
Q (lsqfit.nonlinear_fit attribute), 71
Q (lsqfit.wavg attribute), 77

R
raniter() (in module gvar), 50
ranseed() (in module gvar), 51
rebuild() (in module gvar), 52
restore_gvar() (in module gvar), 52

S
samplesize (gvar.dataset.Dataset attribute), 65
sdev (gvar.GVar attribute), 53

sdev() (in module gvar), 48
shape (gvar.BufferDict attribute), 56
simulated_fit_iter() (lsqfit.nonlinear_fit method), 73
size (gvar.BufferDict attribute), 56
slice() (gvar.BufferDict method), 56
slice() (gvar.dataset.Dataset method), 66
SVD (class in gvar), 57
svd() (in module gvar), 52
svdcorrection (lsqfit.nonlinear_fit attribute), 71
switch_gvar() (in module gvar), 51

T
time (lsqfit.nonlinear_fit attribute), 71
time (lsqfit.wavg attribute), 77
toarray() (gvar.dataset.Dataset method), 66
transform() (lsqfit.transform_p method), 78
transform_p (class in lsqfit), 77
transformed_p (lsqfit.nonlinear_fit attribute), 71
trim() (gvar.dataset.Dataset method), 66

U
uncorrelated() (in module gvar), 49
untransform() (lsqfit.transform_p method), 78
update() (gvar.BufferDict method), 56

V
val (gvar.SVD attribute), 58
val (gvar.svd attribute), 53
var (gvar.GVar attribute), 53
var() (in module gvar), 48
vec (gvar.SVD attribute), 58
vec (gvar.svd attribute), 53

W
wavg() (in module lsqfit), 75

X
x (lsqfit.multifit attribute), 79
x (lsqfit.multiminex attribute), 79
x (lsqfit.nonlinear_fit attribute), 72

Y
y (lsqfit.nonlinear_fit attribute), 72
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