

Product Installation & Usage

Guide

API Specification
Risk Assessment
Tool

Copyright @ 2020 CloudVector Inc. All rights reserved.

Introduction 3

API Specification Risks 3
Risk Categories 3

Security 3
Authentication 3
Authorization 3
Transport 3

Data Validation 3
Format 4

Risk Severity & Scores 4

Custom Rules 4

Installation 7
System Requirements 7
Install 7
Upgrade 7

Usage 8

Support 10

Copyright @ 2020 CloudVector Inc. All rights reserved.

Introduction
This document aims to introduce the API Specification Risk Assessment Tool. The tool can be
used to identify risks associated with one or more OpenAPI v2 or v3 specifications, and
consequently be used for reducing the attack surface across applications.

API Specification Risks
OpenAPI specifications (hereby called spec(s)) define the properties associated with an
application and its APIs. Such properties include but are not limited to: enablement of HTTPS
for transactions, the type of parameters to be input, or data types used for API response. The
API Specification Risk Assessment tool subjects each spec to a number of ​rules​. Each rule
consists of one or more ​expressions that checks for specific violations. The rule also defines
one or more applicable ​categories and associates the violation with a ​severity and ​score​. In
addition, the tool also provides sufficient information related to each of the rules that has
triggered such as the application, the API, the parameters etc. which can help identify and fix
the violations.

Risk Categories
The tool checks for risks across three major categories:

Security
This category contains rules associated with the security aspects of the spec. An example of a
security attribute would be to check whether the credentials for an API are transported over
HTTP/HTTPS. The Security category is further categorized into 3 sub-categories:

● Authentication
● Authorization
● Transport

Data Validation
The data category rules check for properties associated with the data exchanged between the
client and the server. As an example, we check whether array parameters have a maximum
number of elements pre-defined. Absence of such a restriction on parameters can result in DoS
attempts by a malicious actor.

Copyright @ 2020 CloudVector Inc. All rights reserved.

Format
Finally, the rules in this category check for format related violations. As an example, properties
associated with an invalid response code such as “805” would be a violation in this category.

Risk Severity & Scores
Each rule that is triggered results in a violation and is assigned a corresponding score. The
score is assigned based on the research performed by CloudVector Security Research Team.
These scores will be customizable in subsequent updates released to this tool. The score
ranges between 0-10. The tool then maps every score to a severity as defined below:

Critical : 9-10
High : 6-8
Medium : 4-5
Low : 1-3
NoRisk : 0

Custom Rules
In addition to the predefined Security, Data, and Format rules that are shipped out of the box for
evaluation against every OpenAPI spec, this tool allows users to define their own custom rules.
This is useful when the enterprise defines their custom standards or guidelines for their
development teams. An example of such a custom rule can be: “Every defined API endpoint
URL should adhere to the format/reg-ex “^/api/v[0-9]+/”. Such custom rules can be defined using
a BNF grammar. For instance, a rule that checks for all array parameters to have the maximum
number of elements defined, would translate in BNF as:

parameters->*->type eq array AND parameters->*->maxItems is-missing True

The rules can also be expressed in JSON format as:
 {"name": "CVSPD005a",

 "description": "Parameters of type array should have maxItems defined.",

 "score": 6,

 "rule": [

 {"identifier": "parameters->*->type",

 "condition": "eq",

 "value": "array"},

 "and",

 {"identifier": "parameters->*->maxItems",

 "condition": "is-missing",

 "value": "True"}

]

 }

Copyright @ 2020 CloudVector Inc. All rights reserved.

Note that the identifier refers to the objects to be evaluated within the OpenAPI spec. The
identifier can either be a ​keyword​ identifier or an ​absolute​ identifier:

● Absolute identifiers ​represent the absolute path to the specific field within the spec. Each
absolute identifier starts with a ​# which is typically used to represent the root of the
OpenAPI spec. E.g. “#->info->contact” refers to the ​contact field within the ​info object in
the spec.

● If it is not an absolute identifier, it is assumed to be a ​keyword identifier​. The first token in
the keyword identifier is expected to represent all objects within the spec. For instance,
the keyword identifier “​parameters->*->type​” refers to all parameters objects across all
APIs within the analyzed spec.

Further notes about custom rules:

● This tool supports the following comparison operators based on data types:
○ Integers: ​<, >, <=, >=, !=, ==
○ Strings: ​eq, ne, pattern-match
○ is-missing​, ​is-empty

● __key__ suffix-operator: A typical rule such as “​parameters->*->type eq array” would
compare the ​value of the ​type field, with the user-supplied value ​“array”​. We support the
__key__ suffix-operator which forces the identifier field key itself to be used in
comparison. E.g. an identifier such as ​“responses->*__key__ >= 600” checks for the
response codes themselves to be compared against the user-supplied value ​“600”​.

● While the first token can be used to refer to a keyword across the spec, we also support
the ​operation token which can be used to refer to the ​Operation item​s within the
OpenAPI spec. The ​operation keyword helps retrieve all request methods for an API
such as ​“get”, “post”, “delete”,​ etc.

● Operators (“​and”/”or”​) joining different expressions are evaluated from left-to-right. Take
an example of a rule definition:

 {"name": "CVSPD001",

 "description": "Parameters of type array should have maxItems defined.",

 "score": 6,

 "rule": [

 {"identifier": "parameters->*->type",

 "condition": "eq",

 "value": "array"},

 "and",

 {"identifier": "parameters->*->maxItems",

 "condition": "is-missing",

 "value": "True"},

 "or",

 {"identifier": "parameters->*->format",

 "condition": "is-missing",

 "value": "True"},

Copyright @ 2020 CloudVector Inc. All rights reserved.

]

 }

If each of the three expressions as above evaluated to, say: [​True​, ​False, True​]
respectively, then the final evaluation occurs as:

(True and False or True) == True​.
● The tool also allows the ability to specify nested rules in scenarios where the language

may itself not be sufficient to express a relatively sophisticated rule. An example of a
parent rule (​name: CVSPS003​) referring to a nested rule (​CVSP003a​) is:

 {"name": "CVSPS003a",

 "description": "Global security field is missing, is empty, or contains

an empty security requirement.",

 "enabled": false,

 "rule": [

 {"identifier": "#->security",

 "condition": "is-missing",

 "value": "True"},

 "or",

 {"identifier": "#->security",

 "condition": "is-empty",

 "value": "True"},

 "or",

 {"identifier": "#->security->*",

 "condition": "is-empty",

 "value": "True"}

]

 },

 {"name": "CVSPS003",

 "description": "Global security field is missing, is empty, or contains

an empty security requirement.",

 "score": 9,

 "enabled": true,

 "rule": [

 {"identifier": "operation->security",

 "condition": "is-missing",

 "value": "True"},

 "and",

 {"identifier": "__rule__CVSPS003a",

 "condition": "==",

 "value": "True"}

]

 }

Note here that the nested rule is prefixed with the string ​“__rule__”​. The referenced
nested rule refers to another disabled rule using the rule name (here ​CVSPS003a​).

Copyright @ 2020 CloudVector Inc. All rights reserved.

Installation

System Requirements
● Operating System: MacOS, Linux, Windows
● Software: Python 3+

Install
● First setup a Python3 virtual environment:

$ virtualenv -p python3 cvapirisk_venv

● Activate the virtualenv

$ cd cvapirisk_venv

$ source cvapirisk_venv/bin/activate

● Use pip to install the tool:

$ pip install --extra-index-url http://pypi.cloudvector.net:8182/

--trusted-host pypi.cloudvector.net cvapirisk

Username: ​cvapirisk_user Password: ​ApiS3cur!ty

● Validate the installation:
$ cvapirisk -h

The output should look like:
usage: cvapirisk [-h] {eval_risk,trend_risk} ...

positional arguments:

 {eval_risk,trend_risk}

 sub-command help

eval_risk eval_risk help

trend_risk trend_risk help

optional arguments:

 -h, --help show this help message and exit

Copyright @ 2020 CloudVector Inc. All rights reserved.

Upgrade
● On command line:

$ pip install ​-U​ --extra-index-url http://pypi.cloudvector.net:8182/
--trusted-host pypi.cloudvector.net cvapirisk

Usage
The following section provides the usage details of the tool assuming that you have installed the
tool successfully.

● Show help:
cvapirisk -h

Usage:

cvapirisk [-h]
cvapirisk eval_risk (-z spec_zip_file | -s spec_file)
 (-i cv_rules_file -r custom_rules_file) (-o output_file)

cvapirisk trend_risk <original_spec_file> <updated_spec_file>
 (-i cv_rules_file -r custom_rules_file) (-o output_file)

eval_risk Evaluate the risks within a collection of specs or a single spec
trend_risk Observe the risk trend between two specs

Options:
-h Show Usage

Options (eval_risk):
-z spec_zip_file The zip file that contains a collection of specs
-s spec_file A single spec file
-i cv_rules_file CloudVector rules file. Note that this is optional.
-r custom_rules_file The custom rules file. Note that this is optional.
-o output_file The output file to capture the evaluation results

Options (trend_risk):
<original_spec_file> The original spec file
<updated_spec_file> The updated spec file
-i cv_rules_file CloudVector rules file. Note that this is optional.

 ​-r custom_rules_file The custom rules file. Note that this is optional.
-o output_file The output file to capture the evaluation results

Copyright @ 2020 CloudVector Inc. All rights reserved.

● Identify violations in a spec:

$ cvapirisk eval_risk ​-s ​orangebank.json -i cv_rules.json -o

cvreport.json

...

● Identify violations in a spec using ONLY custom rules:

$ cvapirisk eval_risk -s orangebank.json -o cvreport.json -r

custom_rules.json

...

● Identify violations across a collection of OpenAPI specs, using CV rules AND

custom rules:

$ cvapirisk eval_risk ​-z orangebank_specs.zip -o cvreport.json

-i cv_rules.json -r custom_rules.json

...

● Compare two versions of the spec using ONLY CV rules:

$ cvapirisk ​trend_risk orangebank_user_orig.json

orangebank_user.json -i cv_rules.json -o cvreport.json

...

● Run the tool with CICD triggers defined:

$ cvapirisk eval_risk -z orangebank_specs.zip -o cvreport.json

-i cv_rules.json ​ -c cicd.cfg
$ echo $?

Note that the tool outputs violations on stdout and also writes them to the output json file
(​cvreport.json in above example). The JSON output data can be persisted in a backend
database for richer analytics.

● Using the cvapirisk API server:

$ cvapiriskserver -c apisparc_server.cfg

Please find the config file ​apisparc_server.cfg in the installation folder. Typically,
in a Python virtual environment installation of the tool, the file can be found at
lib/python3.x/site-packages/cvsvc_apirisk/score/spec_security/a

pisparc_server.cfg

Copyright @ 2020 CloudVector Inc. All rights reserved.

Note that the rules file(s) can be pre-loaded at a specific location and then referenced
when making client requests.

Once the server is started, an API spec can be evaluated as:

$ curl -X POST http://localhost:8500/eval_risk -d '{"spec_url":

"file:///tmp/orangebank_stores.json", "cv_rules_path":

"/tmp/cv_rules.json", "custom_rules_path": null}

The ​spec_url parameter can also refer to a specification residing over the web. That
is, the URL starts with “​http(s):// ​”​.

Support
For further troubleshooting and support, please reach out to your customer success manager or
email us at support@cloudvector.com.

Copyright @ 2020 CloudVector Inc. All rights reserved.

