
10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

INTRODUCING VOCALPY: A CORE PYTHON PACKAGE FOR
RESEARCHERS STUDYING ANIMAL ACOUSTIC COMMUNICATION

David Nicholson1∗

1 Independent Researcher, United States of America

ABSTRACT

The study of animal acoustic communication requires true
interdisciplinary collaboration, big team science, and cut-
ting edge computational methods. To those ends, more
and more groups have begun to share their code. How-
ever, this code is often written to answer very specific
research questions, and tailored to lab-specific data for-
mats. As a result, it is not always easy to read and reuse,
and there is significant duplication of effort. Here I in-
troduce a Python package, VocalPy, created to address
these issues. VocalPy has two main goals: (1) make code
more readable across research groups, and (2) facilitate
collaboration between scientists-coders writing analysis
code and research software engineers developing libraries
and applications. To achieve these goals, VocalPy pro-
vides a set of software abstractions for acoustic communi-
cation research. These abstractions encapsulate common
data types, such as audio, spectrograms, acoustic features,
and annotations. Additional abstractions represent typical
steps in workflows, e.g., segmenting audio into sequences
of units, computing spectrograms, and extracting features.
I demonstrate by example how these abstractions in Vo-
calPy enable scientist-coders to write more readable, id-
iomatic analysis code, that is more easily translated to an
application run at scale.

Keywords: bioacoustics, Python, animal communication,
acoustic communication, speech

*Corresponding author: nicholdav@gmail.com.
Copyright: ©2023 David Nicholson This is an open-access ar-
ticle distributed under the terms of the Creative Commons At-
tribution 3.0 Unported License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the orig-
inal author and source are credited.

1. INTRODUCTION

The study of how animals communicate with sound gets
at questions that are central to what it means to be hu-
man. How did language evolve, and how does it relate
to the ability of vocal learning in other animals [1, 2]?
Answering these questions requires collaboration across
disciplines, big team science, and cutting edge computa-
tional methods. Many authors have called for large scale
collaboration across disciplines to investigate language
(as in [1]), and have highlighted the interdisciplinary na-
ture of acoustic communication research more generally
(as in [2]). Concurrently, the many disciplines studying
acoustic communication are becoming ever more compu-
tational, and it has become clear that cutting edge compu-
tational methods will play a key role in this research area.
To see this, one need look no further than the widespread
proliferation of deep learning models, as applied to the
neuroethology of vocal communication [3] and to bioa-
coustics more generally [4].

Broadly speaking, workers in this area have applied
computational methods and shared the results in one of
two ways, both having their own strengths and weak-
nesses. The first way is through graphical user inter-
face (GUI) software, and the second is through impera-
tive scripts for analysis. The strength of GUI software is
that it allows researchers to carry out sophisticated analy-
ses without programming knowledge. A significant draw-
back is that GUIs (usually) do not capture all steps of
analysis, at least not in a manner that makes it easy for
anyone to replicate. Partly in reaction to this, more and
more acoustic communication researchers run their anal-
yses with scripts. These researchers are also sharing this
code with their data, to improve the replicability of their
results. In other words, they are adopting the open sci-
ence practices pioneered by other fields that rely heavily

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

on computational methods.
However, acoustic communication researchers shar-

ing code across disciplines and research groups results
in its own set of issues, especially when that code uses
rapidly evolving computational methods. First, code as-
sociated with a publication is often written to answer very
specific research questions. Second, the same code is
also tailored to very specific data formats, which vary
widely across groups. In particular, in the Python pro-
gramming language, there is no core package for acous-
tic communication researchers. Instead, scientist-coders
tend to write verbose scripts with multiple related vari-
ables passed from function to function, even when these
variables have a natural association that could be encapsu-
lated with a data type. I provide an example code snippet
to illustrate this in Listing 1 below. As a result of all these
factors, it is not always easy to read and reuse shared code.
Furthermore, because each group writes code to deal with
low-level details, there is massive duplication of effort.

To address these issues, and to explore what a core
Python package for acoustic communication research
might look like, here I introduce VocalPy (https:
//github.com/vocalpy/vocalpy). VocalPy ad-
dresses these issues with an approach loosely inspired by
domain-driven design [5]. Thus, the architecture of Vo-
calPy is based on a domain model of common workflows
in acoustic communication research. In the terminology
of domain-driven design, this domain model is meant to
capture the essential entities, services, and relationships
in these workflows. Entities are uniquely-identifiable data
we need to track over the lifetime of a workflow: au-
dio signals, array data such as spectrograms and extracted
acoustic features, and annotations such as those that re-
searchers produce with GUI applications. Services can
convert one form of acoustic communication data to an-
other: a spectrogram is made from audio, features are ex-
tracted from a spectrogram or annotation file, and a set of
files is persisted to a database to represent a dataset. To
illustrate the entities and services provided by VocalPy, a
schematized version of two common workflows in acous-
tic communication research are shown in Fig. 1. These
will be presented further as code listings below. One rea-
son to base the design of VocalPy on a domain model is
to express workflows in a way that minimizes the distance
between an analysis in an imperative script, as might be
written by a domain expert with less coding knowledge,
and similar functionality provided by an application, as
developed by a research software engineer.

The rest of the paper is structured as follows: first

I provide a code listing highlighting some issues with
Python code for acoustic communication research as it is
often written now. Next I introduce the data types and
classes in VocalPy meant to help make code more read-
able and idiomatic across research groups. Finally I pro-
vide an example of a common workflow as it would be
written with VocalPy: segmenting audio into sequences
of units for further analysis [6].

Figure 1. Schematic of two common workflows
in research on acoustic communication, that illus-
trate core data types and other classes provided by
VocalPy. Classes are shown as a simple Unified
Markup Language (UML) diagram, rectangles di-
vided in three with the class’ name at the top, its at-
tributes in the middle, and its methods in the bottom.
Only attributes and methods that are key for discus-
sion here are shown.

2. DESIGN OF VOCALPY

2.1 Comparison to code written without VocalPy

I began by further motivating the need for VocalPy with
an example listing. The goal here is to illustrate how such
code can be easier to both write and read.

Because of space considerations, I cannot provide a
lengthy example that gives the full effect of reading an
entire set of scripts for a project. But we can notice sev-
eral things that are common in such scripts in Listing 1.
First we notice a helper function to generate a spectro-
gram, that has two required arguments: the audio signal
and its sampling rate. Both are required, but without a
data type that encapsulates them, we must pass them in
separately. Next, notice that the helper function also has
several default arguments. Often these default values hid-
den in such helper functions can turn out to be key param-

https://github.com/vocalpy/vocalpy
https://github.com/vocalpy/vocalpy

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

from scipy.signal import spectrogram
import soundfile

def spect(data, fs, fft=1024, window='Hann'):
f, t, s = spectrogram(data, fs, fft=fft, window=window)
return f, t, s

data_bird1, fs_bird1 = soundfile.read('./path/to/bird1.wav')
f_bird1, t_bird1, s_bird1 = spect(data_bird1, fs_bird1)
data_bird2, fs_bird2 = soundfile.read('./path/to/bird2.wav')
f_bird2, t_bird2, s_bird2 = spect(data_bird2, fs_bird2)

definitions of functions below are not shown in snippet
ftrs_bird1 = extract_features(s_bird1, t_bird1, f_bird1)
ftrs_bird2 = extract_features(s_bird2, t_bird2, f_bird2)
rejected_h0, pval = stats_helper(ftrs_bird1, ftrs_bird2)

Listing 1: Toy example of a typical script for acous-
tic communication research, written using standard
scientific Python, without VocalPy.

eters in a scientist-coder’s analysis. As a reader, we may
only be able to determine this by combining clues across
multiple scripts. I show how VocalPy avoids this in List-
ing 3. Also note that the helper function returns multiple
arrays: the matrix representing the spectrogram itself, as
well as the vectors representing the frequencies and times
in the spectrogram. Often we need all three of these for
certain analyses, such as extracting an acoustic parame-
ter within a specific time and frequency range. Again,
because there is no data type to represent spectrograms,
we are required to pass multiple related variables around
to our functions. Finally, notice that these variables can
multiply as we try to represent multiple conditions in our
code. In this case I use suffixes (bird1, bird2) to
distinguish the same data types from two different birds.
This pattern is common in imperative analysis code writ-
ten by a scientist-coder familiar with MatLab and numpy,
but less accustomed to leveraging native Python types or
a tidy data approach that might represent conditions with
a categorical variable.

2.2 VocalPy Data Types

Next I rewrite Listing 1 using VocalPy, to introduce its
data types.

We can observe several differences when compared
with Listing 1. First notice that in Listing 2 we represent
audio with the vocalpy.Audio data type, loading a file
with its read method. We do still have a helper func-
tion that computes spectrograms, whose default parame-
ters could hide key parameters in our analysis; in the next
section I show how to avoid this potential drawback using
the SpectrogramMaker class built into VocalPy. Here
the helper function lets us see that, instead of passing mul-

import vocalpy as voc
from scipy.signal import spectrogram

def spect(audio, fft=1024, window='Hann'):
f, t, s = spectrogram(audio.data, audio.samplerate,

fft=fft, window=window)
return voc.Spectrogram(data=s, frequencies=f, times=t)

ftrs = {}
for bird in ('bird1', 'bird2'):

audio = voc.Audio.read(f'./path/to/{bird}.wav')
spect = spect(audio)
ftrs[bird] = extract_features(spect)

rejected_h0, pval = stats_helper(ftrs['bird1'], ftrs['bird2'])

Listing 2: Listing 1 rewritten with VocalPy data
types.

tiple arrays around, we can instead pass in a single data
type, vocalpy.Audio, and return a single data type,
vocalpy.Spectrogram. Both of these data types en-
capsulate related attributes in a single class.

2.3 VocalPy classes for workflows and datasets

Finally I introduce two more types of classes in VocalPy.
The first represents steps in workflows. The second rep-
resents datasets, and captures metadata about how the
datasets were created. Listing 3 shows a session in the
Python REPL, to demonstrate how VocalPy’s design is
meant to make it easy for a scientist-coder to work interac-
tively. The commands in this session constitute the initial
steps of any workflow for analyzing sequences of units [6]
(simplified for presentation), as depicted schematically in
the top row of Figure 1.

I highlight some important features of the listing.
First notice that here we explicitly declare the parameters
we use to segment audio into units, as a Python dictio-
nary. We pass these parameters to a class that represents
the process of segmenting, vocalpy.Segmenter. To
segment audio, the parameters are passed to a callback
function. This function is passed in as an argument, in
this case evfuncs.segment song. Please note some
key aspects of this design: it encourages us to clearly state
what parameters we use, to avoid hiding them in a helper
function. It also captures the function we use to segment,
the callback. Additionally, the callback-based design af-
fords research groups the ability to re-use their existing
code. Once the vocalpy.Segmenter class is instan-
tiated, we call its segment method that returns a Python
list of vocalpy.Sequence instances, one for each
vocalpy.Audio instance we pass in. Each sequence
has as attributes its source audio, as well as the segmenting

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

>>> import evfuncs
>>> import vocalpy as voc
>>> data_dir = 'gy6or6/032312/'
>>> cbin_paths = voc.paths.from_dir(data_dir, 'cbin')
>>> audios = [voc.Audio.read(cbin_path)
... for cbin_path in cbin_paths]
>>> segment_params = {'threshold': 1500, 'min_syl_dur': 0.01,
... 'min_silent_dur': 0.006}
>>> segmenter = voc.Segmenter(
... callback=evfuncs.segment_song,
... segment_params=segment_params)
>>> seqs = segmenter.segment(audios, parallel=True)
>>> seq_dataset = voc.dataset.SequenceDataset(sequences=seqs)
>>> seq_dataset.to_sqlite(db_name='gy6or6-032312.db',
... replace=True)
>>> print(seq_dataset)
SequenceDataset(sequences=[Sequence(units=
[Unit(onset=2.18934375, offset=2.21, label='-',
audio=None, spectrogram=None),
Unit(onset=2.346125, offset=2.373125, label='-',
audio=None, spectrogram=None),
rest of output omitted
>>> # test that we can load the dataset and it compares equal
>>> loaded = voc.dataset.SequenceDataset.from_sqlite(
... db_name='gy6or6-032312.db')
>>> loaded == seq_dataset
True

Listing 3: Use of VocalPy in the Python REPL to
build a dataset of sequences

parameters and callback used to segment. This enables us
to create a vocalpy.dataset.SequenceDataset
from the vocalpy.Sequence instances that automati-
cally traces the provenance of our data: which audio gave
us which sequence, and how was that audio segmented.
Finally we call the dataset class’ method to sqlite,
to persist the dataset to disk in a single-file database. In
this way, a scientist-coder can flexibly build a dataset and
save it to a shareable file, without needing to install or
use a database directly. We choose to default to SQLite
for several reasons, the two most important of which are
that it is built into Python, and it is one of four storage
formats recommended for datasets by the United States
Library of Congress (https://www.sqlite.org/
locrsf.html).

3. DISCUSSION

Here I introduced VocalPy. Its design represents what
I have argued is needed for a core Python package for
acoustic communication. Through example listings I pre-
sented the core data types, and demonstrated how the
built-in classes support common workflows such as anal-
ysis of acoustic sequences described in [6]. It is my hope
that this introduction will further motivate all of us in this
research area to create the community-developed software
that we need to collaborate and communicate across re-
search groups and disciplines.

4. REFERENCES

[1] M. D. Hauser, N. Chomsky, and W. T. Fitch, “The Fac-
ulty of Language: What Is It, Who Has It, and How
Did It Evolve?,” Science, vol. 298, pp. 1569–1579,
Nov. 2002.

[2] M. Wirthlin, E. F. Chang, M. Knörnschild, L. A. Kru-
bitzer, C. V. Mello, C. T. Miller, A. R. Pfenning, S. C.
Vernes, O. Tchernichovski, and M. M. Yartsev, “A
Modular Approach to Vocal Learning: Disentangling
the Diversity of a Complex Behavioral Trait,” Neuron,
vol. 104, pp. 87–99, Oct. 2019.

[3] T. Sainburg and T. Q. Gentner, “Toward a Computa-
tional Neuroethology of Vocal Communication: From
Bioacoustics to Neurophysiology, Emerging Tools
and Future Directions,” Frontiers in Behavioral Neu-
roscience, vol. 15, p. 811737, Dec. 2021.

[4] D. Stowell, “Computational bioacoustics with deep
learning: A review and roadmap,” p. 46, 2022.

[5] E. Evans, Domain-Driven Design: Tackling Complex-
ity in the Heart of Software. Addison-Wesley Profes-
sional, 2004.

[6] A. Kershenbaum, D. T. Blumstein, M. A. Roch,
Ç. Akçay, G. Backus, M. A. Bee, K. Bohn, Y. Cao,
G. Carter, C. Cäsar, M. Coen, S. L. DeRuiter,
L. Doyle, S. Edelman, R. Ferrer-i-Cancho, T. M.
Freeberg, E. C. Garland, M. Gustison, H. E. Harley,
C. Huetz, M. Hughes, J. Hyland Bruno, A. Ilany, D. Z.
Jin, M. Johnson, C. Ju, J. Karnowski, B. Lohr, M. B.
Manser, B. McCowan, E. Mercado, P. M. Narins,
A. Piel, M. Rice, R. Salmi, K. Sasahara, L. Sayigh,
Y. Shiu, C. Taylor, E. E. Vallejo, S. Waller, and
V. Zamora-Gutierrez, “Acoustic sequences in non-
human animals: A tutorial review and prospectus:
Acoustic sequences in animals,” Biological Reviews,
vol. 91, pp. 13–52, Feb. 2016.

https://www.sqlite.org/locrsf.html
https://www.sqlite.org/locrsf.html

	1. Introduction
	2. Design of VocalPy
	2.1. Comparison to code written without VocalPy
	2.2. VocalPy Data Types
	2.3. VocalPy classes for workflows and datasets

	3. Discussion
	4. References

