
DataJunction
A metrics platform to store and manage metric definitions.

1

The history of DJ

2

Beto
Software Engineer @ Preset.io (an Apache Superset SaaS company)

3

● Apache Superset PMC member
● Not a DJ but plays music

○ Wrote 44 songs last month for FAWM
● beto@preset.io

mailto:beto@preset.io

4

The history of DJ

➔ Facebook experimentation team (2014?)
◆ A/B tests (Deltoid)

➔ Later
◆ Materialization

● Transforms and cubes
○ Eg, (country, gender)
○ Additive metrics

◆ Anomaly detection
◆ Dashboards
◆ Growth accounting
◆ ?

5

The history of DJ

➔ Netflix (2017)
◆ Let’s open source DJ!

➔ github.com/DataJunction (2018)
◆ 0 commits…

➔ The missing piece of the modern data stack (2021)
◆ https://benn.substack.com/p/metrics-layer

https://benn.substack.com/p/metrics-layer

“A better architecture
would do for metrics what
dbt did for transformed
data—make them globally
accessible to every other
tool in the data stack.
Rather than each tool
defining their own
aggregations, the metrics
layer is a centralized
clearing house for how all
metrics are calculated.”

7

Why did it take so long?

➔ 2 strong requirements:
◆ A robust ANSI SQL parser
◆ Transpilers to generate DB-specific SQL (Hive, Presto, etc.)

8

Why did it take so long?

➔ 2 strong requirements:
◆ A robust ANSI SQL parser -> sqloxide
◆ Transpilers to generate DB-specific SQL (Hive, Presto, etc.)

9

Why did it take so long?

➔ 2 strong requirements:
◆ A robust ANSI SQL parser -> sqloxide
◆ Transpilers to generate DB-specific SQL (Hive, Presto, etc.)

i. Generate a SQLAlchemy query object
ii. Use dialects to transpile to DB-specific SQL

10

Why SQL?

➔ SQL is like sharks 🦈
◆ Sharks are older than trees
◆ Sharks are older than the rings of Saturn, actually
◆ (Sharks are also older than SQL)
◆ Sharks have been around for 450 Million years because

they’re good at what they do
➔ SQL has been around for almost 50 years for the same reason

◆ Declarative
◆ “Standardized”

11

First proof of concept

➔ End-to-end demo: Superset consuming DJ metrics

table

source transform metric service

12

First proof of concept

➔ End-to-end demo: Superset consuming DJ metrics

table

source transform metric

Reflection SQL parsing
Schema inference

API

Functions

service

Transpilation
Query execution
Results backend

SQLAlchemy
dialect

Demo!

14

Yian
Software Engineer at Netflix (XP)

15

16

Architecture Overview

17

Architecture Overview: Metrics Service

-> Core DJ

-> All nodes stored in a database
with support for versioning and
rollbacks.

-> Provides APIs for creating,
updating and introspection of the
node DAG

18

Architecture Overview: Reflection Service

-> Monitoring service that pushes
info about state of external
tables to DJ.
-> Keeps schemas of source nodes
in sync with actual tables.
-> Breaking changes are identified
and communicated to the downstream
nodes

19

Architecture Overview: Materialization Service

-> Handles node materialization

20

Architecture Overview: Query Service

-> Interfaces with a generic data
warehouse.
-> Used by all other services to
run/track queries and retrieve
table metadata.
-> Can be customized for a
specific DJ deploy as long as it
conforms to API contract.

21

Access Layers

-> Two access patterns: viewers vs
developers.

22

Contribution Flow: Source Nodes

23

Contribution Flow: Source Nodes

curl -X 'POST' \
 'http://dj:8000/nodes/' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "views",
 "display_name": "Views",
 "description": "Views events",
 "columns": {},
 "mode": "published",
 "type": "source"
}'

Two API calls

(1) Create the source node

24

Contribution Flow: Source Nodes

curl -X 'POST' \
 'http://dj:8000/nodes/views/table/' \
 -H 'Content-Type: application/json' \
 -d '{
 "catalog_name": "prod",
 "schema": "example",
 "table": "views",
 "columns": []
}'

Two API calls

(2) Link it to a real table.

The source
node’s columns
will be
populated
based on the
actual table.

Contribution Flow: Dimension Nodes

Example Query
SELECT country_code,
 name,
 alpha2_code,
 alpha3_code,
 top_level_domain
FROM countries
GROUP BY country_code

➔ Definition includes
query used to bring
together the
dimensions dataset.

➔ Primary key (can be
referenced from
other nodes)

➔ Lets DJ infer
relationships
between metrics and
dims to generate
queries

Contribution Flow: Transform Nodes
➔ Users can choose to

add one or more
transform nodes
based on the
sources, if
necessary.

➔ Query defined in
SQL.

➔ DJ will maintain
same dialect.

Contribution Flow: Transform Nodes
➔ Provides

flexibility.
➔ As many layers

as needed.
➔ Can reuse

others’
transforms
when
convenient.

➔ Can control
how the
transform is
materialized
by setting the
materializatio
n
configuration.

Contribution Flow: Transform Nodes
Example: Materialization Config
curl -X 'POST' \
 'http://dj:8000/nodes/views_agg/table/' \
 -H 'Content-Type: application/json' \
 -d '{
 "engine_name": "spark",
 "engine_version": "3.1.2",
 "config": {
 "spark.executor.memory": "4g",
 "spark.memory.fraction": "0.6", ...
 },
}'

29

Contribution Flow: Metrics
➔ An

aggregation
of columns on
an existing
upstream node

➔ Dimensions on
the upstream
nodes are
used to infer
available
dims for
metric

30

Consumption: Metrics

➔ In addition to the regular node CRUD API endpoints, some
additional endpoints specific to metrics:
◆ GET /metrics/{name}/sql/

● Generates SQL for a metric based on the selected filters
and dimensions

◆ GET /metrics/{name}/data/
● Runs the generated SQL and returns the metrics data

31

Consumption: Metrics

Generated SQL:

SELECT
 <dimension A>,
 <dimension B>, ...
 <measure A>,
 <measure B>, ...
FROM <upstream node>
WHERE <filter expression> AND ...
GROUP BY <dimension A>, <dimension B>, ...

32

Contribution Flow: Cubes ➔ A cube is a multi-dimensional set of
metrics.

➔ Primary benefit: materialization to Druid
with predefined set of dimensions

➔ Subsequent metric queries can go directly
to the Druid datasource

33

Consumption: Versioning
➔

34

Client Support

DJ-SQL Parsing and
Query Construction
How DataJunction Constructs Arbitrarily Complex
Queries from your SQL definitions

35

Nick
Director, AI & ML PI Research @Travelers

36

37

You give DJ SQL. DJ gives you… SQL?

➔ DJ gives you familiar and ergonomic ways to model your data
◆ Tell DJ SOURCEs

● TRANSFORM data with SQL
● Define DIMENSIONs with SQL
● Tell DJ METRICs with SQL

➔ DJ parses SQL exactly as written, representing it as its own
AST. From the AST, DJ can…
◆ Give back the queries as written
◆ Incorporate DJ metadata into queries
◆ Optimize queries given underlying data sources
◆ Combine queries to compute metrics
◆ Determine query similarity

POST dj/nodes/
{
 "description": "Average repair price",
 "query": "SELECT Avg(price) as avg_repair_price

 FROM repair_order_details",
 "mode": "published",
 "name": "avg_repair_price",
 "type": "metric",
}

38

Creating A Metric with SQL

SELECT Avg(price) AS avg_repair_price
FROM repair_order_details

39

SELECT Avg(price) AS avg_repair_price
FROM repair_order_details

40

SELECT Avg(price) AS avg_repair_price
FROM repair_order_details

41

Compilation & Extraction: Incorporating DJ Metadata Into Queries

➔ Once DJ has parsed queries into ASTs it can take steps to
validate and incorporate DJ metadata into them:
◆ DJ finds the DJ Nodes that tables represent
◆ DJ deduces what table expressions that column expressions

originate from
◆ So, DJ infers columns and their types - whether they exist

unambiguously and if compound expressions are valid
➔ With all of this information baked into the AST, it is easy to

see what dimensions are valid to be applied to any given query

42

SELECT Avg(price) AS avg_repair_price
FROM repair_order_details

43
SELECT Avg(price) AS avg_repair_price
FROM repair_order_details

SELECT repair_order_id, municipality_id
FROM repair_order_fact

44

Build Planning: Optimizing Your Queries

➔ DJ tracks all of the valuable information derived in the compile
and extraction.

➔ This information is used downstream while determining the
optimal way to surface data for you.

➔ Since you can tell DJ of materializations of nodes - even
intermediate nodes such as transforms and dimensions that might
otherwise be derived in raw SQL from your sources - you can also
specify parameters for how to leverage them while designing how
your metric will be derived.

➔ This means understanding all of the routes that could be
explored to create a viable query and choosing the optimal route
that fits within given constraints

45

46

Build: Deriving Meaning From Your Queries

➔ Finally, once we have a route in mind to build a query, there is
the matter of actually making a valid query.

➔ Following the build plan we design, we implement the appropriate
joins to incorporate requested dimensions

➔ Ultimately, the SQL DJ create will be be what SQL was written
combined in the expected ways

GET dj/nodes/metrics/avg_repair_price/sql/?dimensions=repair_order.municipality_id

SELECT Avg(price) AS avg_repair_price, repair_orders.municipality_id
FROM repair_order_details
 LEFT JOIN (SELECT repair_order_id,
 municipality_id
 FROM repair_orders_fact) AS repair_orders
 ON repair_order_details.repair_order_id =
 repair_orders.repair_order_id
GROUP BY repair_orders.municipality_id

Data Materialization in DJ
How DJ makes what you define.

48

Olek
Data Engineer (Core DSE at Netflix)

49

50

Typical Flow Source_S1 Source_S2 Source_S3

Transform_T1 Transform_T2

Metric_M1 Metric_M2 Dim_D1 Metric_M3 Metric_M4

Cube_C1

Dim_D2

Cube_C2

51

Source Nodes → view to the “outside”

prod.viewing_f

External metadata:
● Ownership / ACLs
● Table schema
● Partition keys
● Data availability

○ HW mark
○ min/max

partitions

DJ metadata:
● Dimensions
● Measures

prod.geography_d

Table schema:
- date (int)
 dimension: time
- country_code (string)
 dimension: country
- lang_code (string)
 dimension: language
- currency (string)
 …

Looking for a table that
DJ doesn’t see yet?

→ Click “here”
 to add to DJ

52

Typical Flow Source_S1 Source_S2 Source_S3

Transform_T1 Transform_T2

Metric_M1 Metric_M2 Dim_D1 Metric_M3 Metric_M4

Cube_C1

Dim_D2

Cube_C2

53

Transform Nodes → form of expression

Transform_T1

Requires:
● SparkSQL (other dialect later)

Optional:
● Materialization details

○ Catalog / schema / table
○ Cadence
○ Spark config

● Data audits
○ Business audit spec

● Caching targets:
○ e.g. Druid

Materialization Service will:

● Infer output schema
○ Columns and types
○ Measures and dimensions
○ Column level dependencies

● If materialization is defined
○ Set up materialization

schedule
○ Monitor and
○ Reflect data availability in

DJ

54

Typical Flow Source_S1 Source_S2 Source_S3

Transform_T1 Transform_T2

Metric_M1 Metric_M2 Dim_D1 Metric_M3 Metric_M4

Cube_C1

Dim_D2

Cube_C2

55

Cube Nodes → metrics and dimensions
Cube_C1

Requires:
● List of metrics
● List of dimensions

○ Group By, Rollup, Cube,
Grouping Sets

Optional:
● Materialization details

○ Catalog / schema / table
○ Cadence

● Data audits
○ Business audit spec

● Caching targets:
○ Druid

Materialization service:

● Similarly to Transform Nodes
○ Materialize data
○ Cache it in Druid
○ Refresh on schedule
○ Mark the Data Availability

56

Typical Flow Source_S1 Source_S2 Source_S3

Transform_T1 Transform_T2

Metric_M1 Metric_M2 Dim_D1 Metric_M3 Metric_M4

Cube_C1

Dim_D2

Cube_C2

Node Dependencies and Change Management
How DJ keeps track of the relationships between nodes

57

Sam
Software Engineer - Experimentation Platform (XP-Analysis @ Netflix)

58

59

Nodes are Dependent on Other Nodes

➔ Selecting columns
➔ Joining two nodes
➔ Linking a column to a dimension
➔ Filtering another node
➔ Feeding an aggregation in a metric
➔ Many more…

60

Typical Flow Source_S1 Source_S2 Source_S3

Transform_T1 Transform_T2

Metric_M1 Metric_M2 Dim_D1 Metric_M3 Metric_M4

Cube_C1

Dim_D2

Cube_C2

61

Source Nodes vs. “Other” Nodes

➔ Source nodes are unique in that they are meant to be
representatives of external tables, i.e. tables in your data
warehouse.

➔ Therefore, whether source nodes are “valid” or “invalid” can’t
be controlled by DJ - they simply reflect state in the data
warehouse

➔ “Other” nodes however (transforms, metrics, dimensions) are
always dependent on at least one node. In the simplest case, a
single source node.

62

Typical Flow Source_S1 Source_S2 Source_S3

Transform_T1 Transform_T2

Metric_M1 Metric_M2 Dim_D1 Metric_M3 Metric_M4

Cube_C1

Dim_D2

Cube_C2

63

Node Dependency Validation

➔ Dependency validation happens on the node’s query:
◆ All node names used in the query must exist in the DJ DAG

and have a status of valid
◆ All columns used in projections must exist in the referenced

node
◆ All columns used in functions or operations must match the

type requirements

64

Node “Status” vs. Node “Mode”

➔ Status - A system defined attribute of valid or invalid
➔ Mode - A user defined attribute of draft or published
➔ When a user specifies a node is in draft mode, while adding or

updating a node, the system allows changes that may make a node
invalid.

➔ However, when a user specifies that a node is in published mode,
the system enforces a strict requirement that the node is valid

65

Example 1

66

Example 1

67

Example 1

68

Example 1 X DJ won’t let you create
this dimension node in
“published” mode

69

Example 1 However…it will allow you
to add the node in
“draft” mode

70

Example 1

?...

So what happens when the
Transform node is updated
to include column D?

71

Example 1 DJ automatically propagates
the effects of the change to
the Dimension node and
switches its status to valid

72

Example 1 But remember…draft and
published are user defined
modes of the node. The node
being valid just means that
it’s eligible for someone to
switch it to published.

73

Example 2

74

Example 2

75

Example 2
?...

76

Example 2

77

Example 2 Nodes that are both
published and invalid is a
quadrant that’s a rough
representation of the health
of the overall DJ graph

78

79

80

Example 3

81

Example 3

!

! !

!

DJ stops the change and
returns an error with a list
of published downstream
nodes that will be made
invalid by that specific
change…

82

Example 3

!

! !

!

Given this information, the
user feels informed enough
to make the change anyway,
so they try again, this time
with force enabled

83

Example 3
All of the affected nodes
are automatically switched
to a status of invalid

84

In summary

➔ Mode is set by the user and is meant to represent the user’s
intentions (draft or published)

➔ Status is set by the system and is meant to represent the
current state of the node within the DAG (valid or invalid)

85

Questions?

