
pydgq v0.1.0 user manual

Juha Jeronen

April 21, 2017

juha.jeronen@jyu.fi

Department of Mathematical Information Technology
University of Jyväskylä

1 Introduction

The role of this user manual is to explain the algorithms available in pydgq, which is a Cython-accelerated library
for solving ODE systems in Python. Computational kernels for right-hand sides (RHSs) can be written in both
Python and Cython, whichever is more appropriate for a specific use case. For code examples, see the test/ subdi-
rectory in the source code distribution.

A common target for many numerical integration methods for ordinary differential equations (ODEs) is the
first-order initial value problem

∂u
∂t

= f (u(t), t) , (1)

u(0) = u0 . (2)

In this document, we will summarize, and comment on, several commonly used methods for the numerical solu-
tion of problem (1)–(2), concentrating especially on nonlinear problems, where we make no assumption about the
structure of f , beyond the minimal necessary continuity for each considered method.

1.1 Extension to ODE systems

Consider the extension of (1)–(2) into the initial value problem of a semilinear1 system of ordinary differential
equations

M
∂u
∂t

= f(u(t), t) , (3)

u(0) = u0 , (4)

where M is a matrix, and u and f are vector-valued. One must account for the fact that for each component
equation i, the load component fi now depends on all components of u, making the treatment of (3)–(4) slightly
different from that of the one degree of freedom model problem (1)–(2).

Formally, provided that M is invertible (which is usually true in physically motivated problems, and was
shown above for our specific problem), we may multiply (3) from the left by the inverse matrix M−1, obtaining

∂u
∂t

= M−1f(u(t), t) , (5)

In practice, this is obviously not possible beyond very small systems, due to the prohibitive cost (in terms of both
time and storage) of matrix inversion.

1In this context, a semilinear system is linear with respect to the time derivative ∂u/∂t, but the load f is allowed to be a nonlinear function
of u. See e.g.
http://wiki.math.toronto.edu/DispersiveWiki/index.php/Semilinear
https://www.ma.utexas.edu/mediawiki/index.php/Semilinear_equations

1

http://wiki.math.toronto.edu/DispersiveWiki/index.php/Semilinear
https://www.ma.utexas.edu/mediawiki/index.php/Semilinear_equations

A simple way to proceed from here, in practical numerics, is to recognize that we have explicit access to f (given
a candidate u; in nonlinear problems fixed point iteration is often needed to obtain a computable approximation),
we also have M, and we need M−1f. We define the effective load

g(u(t), t) = M−1f(u(t), t) , (6)

with the help of which, equation (5) becomes

∂u
∂t

= g(u(t), t) . (7)

Thus, given g, we may in principle integrate each component equation separately (unknown ui with the ith com-
ponent of the load, gi), using methods designed for a single ODE. Note that as was already cautioned, we need all
components of u for the evaluation of each load component gi; this provides the connection between the equations
in the ODE system (3).

Multiplying (6) from the left by M, we have
M g = f . (8)

Thus, by solving the linear equation system (8) for the unknown vector g, we obtain the numerical value of M−1f
whenever it is needed. This turns M−1(. . .) into a linear operator, which is much cheaper to evaluate than matrix
inversion.

It should be recognized, though, that solving (8) may be expensive especially for nonlinear problems, where
(8) may need to be solved several times for each iteration of the fixed point loop. (Equation (5) is typically con-
verted into integral form; the RHS must be evaluated at the quadrature points when the integral is approximated
numerically. During the discussions of fixed point methods and discontinuous Galerkin, below, we will see this in
practice.)

2 Explicit methods

Explicit methods supported by the solver are as follows.

2.1 Explicit Runge–Kutta methods

Perhaps one of the best-known families of classical time integrators are the Runge–Kutta (RK) methods.2 Some
useful explicit RK methods have been collected below. Instead of collecting the coefficients into a Butcher tableau,
the methods are here presented in an algorithmic form, ready for implementation into numerical codes.

Below, for u and t, the subscripts n and n + 1 refer to timestep numbers; e.g. un ≡ u(t = tn). The subscripts
for the kj simply label the quantities.

We will list the methods in a form directly suitable for ODE systems with M a unit matrix. If this is not the
case, observe that — by the form of the problem, equation (1) — the kj = f(. . .) represent approximations to the
derivative. Hence, if the ODE system has a nontrivial mass matrix M, evaluating f actually gives

M kj = f(. . .)

and kj can be obtained by solving this linear equation system. This solution process must be repeated for each j
(in this setting e.g. RK4 requires solving four linear equation systems per timestep). Earlier comments about tricks
to speed up the solution process apply.

Note that explicit RK methods cannot be unconditionally stable.3

2For an introduction and a list, see e.g.
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods
http://www.scholarpedia.org/article/Runge-Kutta_methods
Some of this material is summarized here.

3This is noted in e.g.
https://en.wikipedia.org/wiki/Sti�_equation#General_theory

2

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods
http://www.scholarpedia.org/article/Runge-Kutta_methods
https://en.wikipedia.org/wiki/Stiff_equation#General_theory

RK1 The first-order explicit RK method is the forward Euler method:

k1 = f(un, tn) , (9)
un+1 = un + ∆t k1 . (10)

Due to its tendency for extreme numerical instability, this method is not practically useful, and we will not consider
it further.

RK2 The second-order explicit RK method is given in parametric form by

k1 = f(un, tn) , (11)
k2 = f(un + β ∆t k1, tn + β ∆t) , (12)

un+1 = un + ∆t
[
(1− 1

2β
)k1 +

1
2β

k2

]
. (13)

Classical choices for β are 1/2 (explicit midpoint method), 2/3 (Ralston’s method), and 1 (Heun’s method, also
known as the explicit trapezoid rule).

RK3 Kutta’s third-order method is

k1 = f(un, tn) , (14)

k2 = f(un +
∆t
2

k1, tn +
∆t
2
) , (15)

k3 = f(un − ∆t k1 + 2∆t k2, tn + ∆t) , (16)

un+1 = un +
∆t
6
(k1 + 4k2 + k3) . (17)

RK4 The classical fourth-order Runge–Kutta (RK4), which is the most popular of the RK methods, is

k1 = f(un, tn) , (18)

k2 = f(un +
∆t
2

k1, tn +
∆t
2
) , (19)

k3 = f(un +
∆t
2

k2, tn +
∆t
2
) , (20)

k4 = f(un + ∆t k3, tn + ∆t) , (21)

un+1 = un +
∆t
6
(k1 + 2k2 + 2k3 + k4) . (22)

RK4 alternative (“3/8 rule”) There is an alternative, less often used fourth-order explicit RK method, that was
also proposed by Kutta:

k1 = f(un, tn) , (23)

k2 = f(un +
1
3

∆t k1, tn +
1
3

∆t) , (24)

k3 = f(un −
1
3

∆t k1 + ∆t k2, tn +
2
3

∆t) , (25)

k4 = f(un + ∆t k1 − ∆t k2 + ∆t k3, tn + ∆t) , (26)

un+1 = un +
∆t
8
(k1 + 3k2 + 3k3 + k4) . (27)

3

2.2 Symplectic Euler (a.k.a. semi-implicit Euler)

This is a symplectic O(∆t) method due to Niiranen4, closely related to the classical explicit and implicit Euler
methods. From the computational viewpoint, the method is explicit; hence the placement in this section.

For this method only, let us restrict our consideration to state vectors of the form

u = (q1, q̇1, q2, q̇2, . . . qn, q̇n) ,

which result from second-order problems when they are reduced into first-order form. The subscripts for qj and
q̇j refer to vector components. The timestep update is performed with the following sequence of operations:

k ← f (un, tn)

u ← un

u2j ← u2j + ∆t k2j , j = 1, 2, . . . , n

u2j−1 ← u2j−1 + ∆t u2j , j = 1, 2, . . . , n

un+1 ← u .

The subscripts for the non-bolded quantities refer to vector components. In other words, we first compute q̈j = k2j,
and update q̇j = u2j using Forward Euler. Then, we use these updated values (which now correspond to the
velocities at the end of the timestep) to update qj = u2j−1 by Backward Euler. Note that k2j−1, containing q̇j at the
beginning of the timestep, are not needed.

3 Classical implicit methods

Classical implicit methods supported by the solver are as follows. Note that also dG and cG are implicit; these are
treated in their own sections further below.

3.1 Implicit midpoint rule

In principle, the classical implicit midpoint rule (IMR) works as follows:

k = f(un+1/2, tn+1/2) , (28)
un+1 = un + ∆t k , (29)

where the half-timestep (“midpoint”) value of the state vector is taken as the linear interpolant

un+1/2 ≈
1
2
(un + un+1) . (30)

The accuracy of the method is O((∆t)2); furthermore, it is known that the error tends to oscillate around zero. The
method is symplectic and approximately conserves energy (which are useful properties for problems in Hamil-
tonian mechanics). The method is not unconditionally stable; a problem-specific maximum timestep size exists
above which numerical stability is lost.

Consider equation (30). As in all implicit methods, there is the practical issue that un+1 is unknown (indeed,
the whole aim of the method is to compute it). For linear problems, the standard answer is to set up a linear
equation system, using (30) in (28), expanding f (for each specific problem), and then moving terms with un+1
to the left-hand side and un (and knowns) to the right-hand side. The resulting linear equation system, when
numerically solved, gives un+1.

From a computational viewpoint, in the linear case, the need for a computable representation for un+1 has thus
been sidestepped by rewriting the problem into a standard form, where un+1 remains unknown, but for which
standard solvers are available. Obviously, in the general case of an arbitrary nonlinear problem, such an approach
of reduction into a standard form is not possible (since each nonlinear problem class is different).

More relevant to our case is a general approach for arbitrary nonlinear problems. We replace un+1 in (30) with
some computable approximation u∗:

un+1/2 ≈
1
2
(un + u∗) . (31)

4Niiranen, Jouko: Fast and accurate symmetric Euler algorithm for electromechanical simulations. Proceedings of the Electrimacs’99, Sept.
14-16, 1999 Lisboa, Portugal, Vol. 1, pages 71 - 78.

4

The result is then refined by iteration. Given an initial guess for u∗, we evaluate the approximate un+1/2 from
(31), insert it into (28), and evaluate (29), interpreting the left-hand side (the output) as the updated value for u∗.
Then we repeat, obtaining the corresponding updated un+1/2 from (31), and so on. This iteration continues until
u∗(≈ un+1) has converged, or a prescribed maximum number of iterations is reached.

The easiest choice for the initial guess for u∗ is to use un. The requirement of contractivity in the Banach fixed
point theorem is the theoretical reason behind the upper limit for timestep size in this iterative version of IMR
for nonlinear problems; contrast this with von Neumann stability analysis for the version specialized for linear
problems. See section 3.3.

Algorithmic summary of IMR For each timestep n, do the following:

1. Initialize:

u(0)
n+1 ← un

i ← 0

2. Update:

un+1/2 ←
1
2
(un + u(i)

n+1)

k ← f(un+1/2, tn+1/2)

i ← i + 1

u(i)
n+1 ← un + ∆t k

3. If u(i)
n+1 is “close” to u(i−1)

n+1 , the method has converged and the solution is complete. Jump to step 6.

4. If i = imax, the method did not converge. No solution obtained; raise an exception.

5. Next iteration. Continue from step 2.

6. Set the solution obtained as
un+1 ← u(i)

n+1

Notes:

• The superscript in the parentheses denotes the iteration number.

• At step 3 and later, the variable i holds the current number of iterations taken.

• On failed exit, step 4, sometimes the closest obtained solution may be useful even though it did not converge
(e.g. if the tolerance is set all the way down to floating point equality; a numerical limit cycle due to roundoff
and cancellation may prevent exact convergence).

• In practice, it does not make sense to store the intermediate iterates u(i)
n+1 (unless for technical purposes such

as convergence monitoring or debugging); only the latest and previous iterates are needed.

3.2 Backward Euler

Sometimes unconditional stability and high numerical dissipation may be desirable properties. The simplest
method that fits this target is classical backward Euler (BE; also called implicit Euler). We may formulate it as

k = f(un+1, tn+1) (32)
un+1 = un + ∆t k , (33)

The iterative approximation is simply
un+1 ≈ u∗ , (34)

and the iteration proceeds using the same procedure as above. The accuracy is O(∆t).

5

If the fixed-point iteration process is used to implement BE for a general nonlinear problem, the initial guess
for u∗ (at each timestep) must be chosen such that it falls into the basin of attraction of the sought-after fixed point.
This introduces a practical issue, because the contractivity of the iterative procedure (34), (32), (33) will likely fail
above some critical timestep size for this iterative BE for nonlinear problems (where the initial guess becomes too
inaccurate), even though the classical linear version of BE poses no limitation on timestep size (the classical von
Neumann stability analysis result being a-stability).See section 3.3.

Algorithmic summary of BE For each timestep n, do the following:

1. Initialize:

u(0)
n+1 ← un

i ← 0

2. Update:

k ← f (u(i)
n+1, tn+1)

i ← i + 1

u(i)
n+1 ← un + ∆t k

3. If u(i)
n+1 is “close” to u(i−1)

n+1 , the method has converged and the solution is complete. Jump to step 6.

4. If i = imax, the method did not converge. No solution obtained; raise an exception.

5. Next iteration. Continue from step 2.

6. Set the solution obtained as
un+1 ← u(i)

n+1

The same algorithmic notes apply as to IMR.

3.3 Implicit methods and the Banach fixed point theorem

As an example, let us again consider the iterative version of IMR presented above. Mathematically, the iteration
procedure (31), (28), (29) is based on contractive self-maps on metric spaces. One iteration of the procedure maps
a metric space to itself. Recall that a metric space5 is an ordered pair (X, d), where X is a set, and d is a metric,
defining how to measure distance between any two points in X.

The Banach fixed point theorem states that on a metric space, if a self-map is contractive, then a fixed point
exists for the map, and moreover, the fixed point is unique. In symbols, let (X, d) be a metric space. For a contrac-
tive self-map T : X → X, there exists a unique point x∗ such that T(x∗) = x∗. The mapping T is contractive if
it satisfies the Lipschitz condition d(T(x1), T(x2)) ≤ q d(x1, x2), where q ∈ [0, 1) is the Lipschitz constant (of the
mapping T), and x1, x2 ∈ X are arbitrary.

Note that Lipschitz continuity is a fairly stringent requirement, and it may also depend on the domain of the
map. For example, in one dimension, the map x 7→ x2 is Lipschitz on any finite interval, but on the whole of R it
is not. Note also that this particular example is contractive only in the set |x| ≤ 1.

This topic is closely related to the Picard–Lindelöf theorem6, which is concerned with the existence and unique-
ness of solutions to the first-order initial value problem. Indeed, the Banach fixed point theorem is invoked in the
proof of the Picard–Lindelöf theorem.

The iterative IMR procedure presented above is also essentially a discrete application of the Picard–Lindelöf
idea of recasting the first-order initial value problem (1)–(2) as a fixed-point problem for an integral operator.
Observe that equation (29) is a discrete approximation of the integral

un+1 = un +
∫ tn+1

tn
f(u(t), t) dt , (35)

5https://en.wikipedia.org/wiki/Metric_space#De�nition
6https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem

6

https://en.wikipedia.org/wiki/Metric_space#Definition
https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem

which obviously comes from the fundamental theorem of calculus, after using the standard form of the problem,
equation (1), to represent the derivative. Equation (35) is the integral that is considered in the Picard–Lindelöf
theorem. Note that the initial value un in (35) is effectively a constant, but the u(t) in the integrand may need to
be evaluated anywhere in the interval [tn, tn+1], depending on the details of the numerical method.

The same observation holds for the formula for un+1 in the backward Euler method, given in equation (33). In
the theoretical framework, as an implicit method, it belongs in the same category as IMR.

The observation also holds for the formulas for wn+1 in the explicit RK methods, namely equations (10), (13),
(17), (22) and (27). Being explicit methods, however, the approximation to the integral is there constructed in such
a way that no “future data” is needed. For explicit RK methods, although they too can be thought of as being
based on rewriting the problem in the integral form (35), there is no need to invoke the fixed point theorem, since
all needed quantities can be computed by an explicit sequence of operations.

To produce a practical numerical method for (35), two things must be specified. First, because the u(t) in the
integrand is unknown, it must be modeled. A function (or algorithm) is specified to construct an approximate
ũ(t) ≈ u(t), given some discrete set of data, e.g. point values at a set of points in the interval [tn, tn+1], or
alternatively, coefficients for a Galerkin representation. Thus, at each timestep, we seek to solve the approximate
problem

un+1 ≈ un +
∫ tn+1

tn
f(ũ(t), t) dt . (36)

In any reasonable model, at the beginning of the timestep, ũ(tn) = un. Of course, in an implicit method, also
ũ(tn+1) = un+1.

In this view, the choice of the model ũ(t) is the critical difference between explicit and implicit methods. In
explicit methods, the model is constructed such that for any fixed τ ∈ (tn, tn+1], the function value ũ(τ) is based
on information at t < τ (i.e. “old” information) only. Implicit methods lift this restriction, allowing (for any τ) the
use of information from anywhere in [tn, tn+1].

Secondly, an algorithm to evaluate the integral must be specified. A typical choice is a quadrature formula,
approximating the integral as a sum of weighted values of the integrand at a pre-selected set of points.

Now, to bring (36) into a form where fixed point theorems are applicable, we define the self-map (on the space
where the instantaneous field values un+1 live)

u(i+1)
n+1 = un +

∫ tn+1

tn
f(ũ(i)(t), t) dt , (37)

where the superscript in parentheses indexes the iterate sequence. Considering the class of methods which ap-
proximate the integral as a quadrature — indeed, such as IMR and BE — we further approximate

u(i+1)
n+1 ≈ un + ∆t

N

∑
k=1

qk f(ũ(i)(τk), τk) , τk ≡ tn + pk∆t , (38)

where N is the number of quadrature points, qk are their weights and pk ∈ [0, 1] their positions on the standard
unit interval.

In collocation methods (i.e. methods considering function values on a discrete set of points), the model iterate
ũ(i)(t) depends on un, u(i)

n+1, and possibly a set of in-between point values that must be determined internally. In
the case of IMR and BE, only the endpoint values are used. For these methods, we choose ũ(i)(t) as the linear
interpolant (expressed on the standard unit interval)

ũ(i)(p) = (1− p) un + p u(i)
n+1 , p ∈ [0, 1] , (39)

transforming the quadrature (38) into

u(i+1)
n+1 = un + ∆t

N

∑
k=1

qk f((1− pk) un + pk u(i)
n+1 , τk) , τk ≡ tn + pk∆t . (40)

In IMR, the quadrature is simply the midpoint rule N = 1, p1 = 1/2, q1 = 1, leading to

u(i+1)
n+1 = un + ∆t f(

1
2

un +
1
2

u(i)
n+1 , tn +

1
2

∆t) , (41)

which matches (28), (29) and (31), as expected.

7

One the left-hand side of (40) we have only i + 1, and on the right-hand side only i. Hence (40) can be explicitly
iterated to produce a sequence of values u(i+1)

n+1 , i = 0, 1, 2, . . . ; it is the mapping T : u(i)
n+1 7→ u(i+1)

n+1 for which a

fixed point is being sought. By the Banach fixed point theorem, if T is contractive (i.e. the mapped points T(u(i1)
n+1)

and T(u(i2)
n+1) are closer together than the original points u(i1)

n+1 and u(i2)
n+1, for any choice of original points), it has a

unique fixed point. Moreover, the fixed point is the solution un+1.
Note that in (40), f and un can be considered fixed (given by the problem setup and the initial condition,

respectively), whereas u(0)
n+1 (the initial guess) and ∆t (the timestep size) are free.

As a final remark to equation (40), the technique of relaxation is sometimes offered as a convergence aid for
fixed point iteration methods. For example, for IMR, we replace the update procedure (41) with this modified
version:

û(i+1)
n+1 = un + ∆t f(

1
2

un +
1
2

u(i)
n+1 , tn +

1
2

∆t) , (42)

u(i+1)
n+1 = (1− α)u(i)

n+1 + αû(i+1)
n+1 , α ∈ (0, 1) given. (43)

The first equation is the same as (41); we have simply renamed the left-hand side. Subtracting u(i)
n+1 from (43), we

see that
u(i+1)

n+1 − u(i)
n+1 = α(û(i+1)

n+1 − u(i)
n+1) . (44)

The application of the classical relaxation technique thus makes the distance between successive iterates smaller.
Compared to the version without relaxation, this obviously has two effects: contractivity is improved, but on the
other hand, convergence requires more iterations, because the steps are smaller. Despite the slower convergence,
as is well known, this may be useful in cases where contractivity would otherwise fail. (The same remark applies
to any iterative implicit method, replacing (42) with the appropriate update formula.)

IMR is often presented as a tool specifically for linear problems, trading away generality for power. Interest-
ingly, this also leads to developing the method into a completely different direction — and even giving it a different
theoretical origin, in finite differences. (Although (41) can be re-interpreted as a finite difference expression, equa-
tion (35) — or indeed the whole derivation of (41) — makes no use of finite differences!)

Specialization to linear problems enables additional formal manipulations to be performed, leading, as is well
known, to linear equation systems and von Neumann stability analysis (which gives the classical upper limit on
timestep size). These two versions of IMR do not have much in common, beside the core idea of seeking an implicit
approximation at the midpoint — which is formally encoded into equations (28)–(30), common to both forms.

We note that the speed of convergence of the sequence of fixed point iterates xn (unrelated to the use of n to
index the timestep above) is characterized by the following equivalent expressions7:

d(x∗, xn) ≤
qn

1− q
d(x1, x0) , (45)

d(x∗, xn+1) ≤
q

1− q
d(xn+1, xn) , (46)

d(x∗, xn+1) ≤ q d(x∗, xn) . (47)

Any value of q ∈ [0, 1) satisfying these relations for a given contractive mapping T is a Lipschitz constant of T; the
smallest possible value is the best Lipschitz constant of T.

Relations (45)–(47) suggest that the points xn form a geometric sequence converging toward the limit point x∗.
(This also suggests a linear convergence rate, as is well known for fixed point procedures; the geometric nature of
the sequence, roughly speaking, adds a constant number of correct digits in each iteration.)

If the sequence is (at least approximately) geometric, q can be approximated in a simple manner as

q ≈ d(xn+1, xn)

d(xn, xn−1)
. (48)

The expression (48) should stay approximately constant throughout the iteration. One can then use (45) or (46) to
estimate the remaining distance to the (unknown) fixed point, providing a computable error indicator that can be
used for error control. (This is not an error estimator, since (48) makes no guarantees.) The test (48) also tells us
when contractivity has failed (and hence, when the sequence xn cannot be guaranteed to converge).

7https://en.wikipedia.org/wiki/Banach_�xed-point_theorem

8

https://en.wikipedia.org/wiki/Banach_fixed-point_theorem

Contractivity may be local. Typically, for fixed-point procedures arising in numerical integration of differential
equations, contractivity occurs if the timestep ∆t is “small enough” and/or the initial guess for u∗ (iterate x0) is
“close enough” to the solution. In this case, the set X must be chosen appropriately such that T remains contractive
within it; then X can be considered the “basin of attraction”8 of the fixed point.

The implied comparison with dynamical systems (which typically have several basins of attraction) may how-
ever be a bit misleading, so the following must be emphasized. The Picard–Lindelöf theorem states that the
solution of the first-order initial value problem ∂u/∂t = f (u(t), t), u(t0) = u0 exists and is unique on an interval
t ∈ [t0 − ε, t0 + ε] for some ε > 0, if the load function f is uniformly Lipschitz continuous in u (i.e. Lipschitz
continuous with the same constant independent of t), and continuous in t. (Concerning the design of numerical
methods, it may be of interest to note that in the proof, the Banach fixed point theorem is invoked with the initial
iterate set to u(t) = u0 for the whole interval.)

Obviously, different initial values un will typically lead to different solutions un+1 (otherwise the problem
would not be very interesting). What the Banach and PL theorems say is only that for a given initial value (un),
the choice of the initial iterate (x0, initial guess for u∗) within the set X does not matter; if contractivity holds, the
unique solution un+1 (corresponding to the given initial un) will be found.

This is also the theoretical origin of the upper limit on timestep size for this iterative version of IMR. Contrast
this with the version of IMR specialized for linear problems, where the upper limit arises via von Neumann
stability analysis. There is no requirement for these maximum possible timestep sizes to be the same!

What typically happens outside the basin of attraction is that the contractivity of the iterative procedure is
violated, and the sequence fails to converge (unless, by pure luck, one of the non-converging iterates happens to
fall into the basin of attraction).

Thus we arrive at an important practical consideration: unless the iterative procedure (31), (28), (29) has a
globally contractive self-map (for any given problem), the initial guess for u∗ must be made to fall into the basin
of attraction of the sought-after fixed point un+1 of the procedure. This sets an upper limit on the timestep size for
iterative IMR, and similarly for other implicit methods based on the application of the Banach fixed point theorem.

If we use an explicit integration method to generate the initial guess, this basin-of-attraction consideration is
separate from the usual stability limit (with regard to timestep size) of that method9, since that method will not
be used for the actual integration. The stability limit only tells us whether integration using that method would
remain stable. But here, the relevant question is entirely different: whether our iterative procedure, with the given
initial guess (however inaccurate or even qualitatively wrong), will converge to the fixed point un+1 or not. For
nonlinear problems, this question is highly nontrivial.

Is there only one basin of attraction? By the Picard–Lindelöf theorem, if the timestep is “small enough”, exis-
tence and uniqueness hold for the solution of the first-order initial value problem. Thus, it follows that, with ∆t
small enough, and with un and f kept fixed (i.e. under the constraint that we keep the problem fixed), there can be
no competing basins of attraction leading to other solutions. However, this does assume that the approximations
made when constructing the numerical integration method have not changed the qualitative behavior, which may
not be the case.

Finally, what about global existence and uniqueness of the solution on t ∈ [0, tf], where tf is the end time of
the simulation (tf may be large)? The key observation here is that we may treat each timestep as a separate initial
value problem. For example, on the interval t ∈ [tn, tn+1] (of length ∆t), we use the initial condition u(tn) = un,
and the duration of integration (for which we need existence and uniqueness of the solution, considering only
this subproblem) is only ∆t. Then, performing the integration (i.e. solving one timestep), we obtain the final
value u(tn+1) = un+1; this is the initial condition for the next timestep. Thus, even if the ε in the Picard–Lindelöf
theorem sometimes turns out to be small, this does not pose a problem for the global existence and uniqueness of
the solution.

8http://www.scholarpedia.org/article/Basin_of_attraction
9This is true regardless of how the stability limit was derived. (Keep in mind that the classical von Neumann stability analysis is not directly

applicable to nonlinear problems.)

9

http://www.scholarpedia.org/article/Basin_of_attraction

4 Discontinuous Galerkin

The family of discontinuous Galerkin (dG) methods seeks a weak solution of the initial value problem (1)–(2). We
begin by multiplying (1) by a test function w(t), and integrate in time from 0 to the simulation end time tf:∫ tf

0

∂u
∂t

w dt =
∫ tf

0
f (u(t), t)w dt , ∀w . (49)

The quantifier is taken over admissible test functions w (in some technically appropriate sense).
Unlike in finite elements, which are typically used for second-order boundary value problems (or initial bound-

ary value problems), integration by parts would not do us much good here, since (49) only needs the first deriva-
tive. In a pure Galerkin method, the same set of functions is used as both the basis functions of u, and as the test
functions w. In such a setting, moving the derivative from u to w would not gain us anything.

Instead, looking at what this integration buys us, the idea is to relax the requirements on u (and w): we seek
a solution in C−1, i.e. allow u (and w) to have finite jumps (discontinuities) across the element boundaries. This
complicates the method slightly, because we must account for “derivatives of finite discontinuities”, i.e. Dirac
deltas.

In order to develop the argument further, some background is first needed. The following five sections cover
the necessary topics. In the first two, we will briefly review the basics. The rest are focused on issues getting
successively closer to the problem at hand. We will continue with the problem itself in section 4.6.

4.1 Piecewise continuous functions and jumps

Let v(t) be a left-continuous or right-continuous function with a jump at t0,

v(t) =

{
v−(t) , t ≤ t0 (if L.C.) , t < t0 (if R.C.) ,
v+(t) , t > t0 (if L.C.) , t ≥ t0 (if R.C.) ,

(50)

where v−(t) and v+(t) are continuous (i.e. at least C0) functions.
According to the theory of distributions (generalized functions), the derivative of v(t) can be written as

∂v
∂t

(t) =


∂v−
∂t

(t) , t < t0 ,

lim
ε→0+

(v+(t0 + ε)− v−(t0 − ε)) δ(t− t0) , t = t0 ,

∂v+
∂t

(t) , t > t0 ,

(51)

where δ(. . .) is the Dirac delta distribution. Generalization of (50)–(51) to any finite number of discontinuities is
obvious.

To shorten the notation, the limit expression in (51) is often abbreviated by defining the jump operator [. . .],
which maps functions to functions:

[F](t) := lim
ε→0+

(F(t + ε)− F(t− ε)) . (52)

Note that if F is continuous at a point t, then at that point [F](t) = F(t); for continuous functions [. . .] is the
identity operator. In general, it is of course assumed that F is sufficiently mildly behaved so that the left and right
limits exist at the point t, so that the definition (52) actually makes sense. (This of course is true for v(t) defined
above.)

Inserting (52) in (51), we have the (hopefully) more readable notation

∂v
∂t

(t) =


∂v−
∂t

(t) , t < t0 ,

[v](t0) δ(t− t0) , t = t0 ,
∂v+
∂t

(t) , t > t0 ,

. (53)

Observe that [v](t0) can be treated simply as a number, which is in principle explicitly obtainable from the defi-
nitions (52) and (50) (just take the right and left limits of v(t) at t0 and subtract them). Thus, as well as the jump
operator [. . .], we may speak of the jump [v](t0) — i.e. the result, when the jump operator is applied to a given
function at a given point.

10

4.2 The Dirac delta distribution and the Heaviside step function

Formally, the Dirac delta is given by

δ(τ) =

{
+∞ , τ = 0 ,
0 , τ 6= 0 ,

(54)

with the constraint ∫ +∞

−∞
δ(τ) dτ = 1 , (55)

which defines the singularity to be of “unit mass” (when the delta distribution is interpreted as the density function
of an ideal point mass). The Dirac delta distribution satisfies the property∫ +∞

−∞
f (τ) δ(τ) dτ = f (0) . (56)

Importantly, the Dirac delta distribution is not square integrable (δ 6∈ L2(R)).
Strictly speaking, (56) is an abuse of notation, because no function (in the classical sense) satisfying (56) exists.

What equation (56) actually means, must be defined in some mathematically rigorous fashion. One option is to
define δ as a measure. When given a subset A of the real line R, we define δ(A) = 1 if 0 ∈ A, and δ(A) = 0
otherwise. Then we take the left-hand side of (56) to mean the integral of f against this measure,

∫ +∞
−∞ f (τ)δ{dτ}.

Alternatively, one may use the theory of distributions, where distributions are integral functionals; then “δ(τ)”
does not need to exist as an independent object outside the context of the integral (56).10

The Dirac delta can be understood as a limit of a sequence of functions. For example, consider the following
sequence of piecewise constant functions (with two jumps):

dn(τ) :=


0 , τ < −1/2n ,
n , −1/2n < τ < +1/2n ,
0 , τ > +1/2n ,

(57)

where n = 1, 2, . . . Left- or right-continuity does not matter for this example, so we have simply left dn(τ) unde-
fined at the discontinuities. Geometrically, (57) describes a sequence of rectangles, which become narrower and
higher as n increases. The width and height are chosen such that the area remains constant; each dn(τ) satisfies
the normalization (55). At n→ ∞, the limit of the sequence (57) is the Dirac delta.

One may also use11 a sequence of zero-centered normal distributions

ρa(τ) :=
1

a
√

π
exp(−x2/a2) ,

as a→ 0.
A close relative of the Dirac delta distribution is the Heaviside step function:

H(t) =

{
0 , t ≤ t0 (if L.C.) , t < t0 (if R.C.) ,
1 , t > t0 (if L.C.) , t ≥ t0 (if R.C.) ,

(58)

These are related as follows. Observe that if b < 0, then∫ b

−∞
δ(τ)dτ = 0 , b < 0 , (59)

because δ(τ) = 0 for all τ < 0. On the other hand, for any b 6= 0, by (56) we have

1 =
∫ ∞

−∞
δ(τ)dτ =

∫ b

−∞
δ(τ)dτ +

∫ +∞

b
δ(τ)dτ . (60)

Consider the case b > 0. The second term vanishes (because δ(τ) = 0 for all τ > 0). Only the first term remains,
with the result ∫ b

−∞
δ(τ)dτ = 1 , b > 0 . (61)

10https://en.wikipedia.org/wiki/Dirac_delta_function#De�nitions
11https://en.wikipedia.org/wiki/Dirac_delta_function

11

https://en.wikipedia.org/wiki/Dirac_delta_function#Definitions
https://en.wikipedia.org/wiki/Dirac_delta_function

Comparing (59), (61) and (58), we see that at least for any b 6= 0, the Heaviside step function is the cumulative
distribution function of the Dirac delta distribution:∫ b

−∞
δ(τ)dτ = H(b) , b 6= 0 . (62)

To cover the final case b = 0, as always when dealing with infinities, one must be careful. The singularity must be
counted only once. One way to do this is to modify (60) to read

1 =
∫ ∞

−∞
δ(τ)dτ = lim

ε→0+

(∫ ε

−∞
δ(τ)dτ +

∫ +∞

ε
δ(τ)dτ

)
, (63)

which places the split unambiguously on one side of the origin (here the positive side). Then we evaluate the
integrals and take the limit, in that order. The first term remains, while the second one vanishes. Considering that
the result is similar in form to (62) (but now with b = 0), we conclude that H(0) = 1. Thus placing the split on the
positive side of the origin, as in (63), corresponds to choosing H to be right-continuous.

If, on the other hand, the split is placed on the negative side of the origin,

1 =
∫ ∞

−∞
δ(τ)dτ = lim

ε→0+

(∫ −ε

−∞
δ(τ)dτ +

∫ +∞

−ε
δ(τ)dτ

)
, (64)

then the first term, which (as above) tentatively defines H(0), is zero. Hence this choice corresponds to choosing
H to be left-continuous.

We conclude that ∫ b

−∞
δ(τ)dτ = H(b) (65)

for any b, with the case b = 0 requiring special interpretation as explained above. (If H is L.C., then also the LHS
is zero; if H is R.C., then the LHS is 1.)

Finally, considering b as a variable and formally differentiating (65) with respect to b, it is seen (only formally!)
that

δ(b) =
∂H
∂b

(b) . (66)

Rigorously showing (66) requires further development beyond the scope of this short review.12

4.3 The continuous part

It is useful to define the continuous part of v(t), denoted here v̂(t):

v̂(t) := v(t)− [v](t0) H(t− t0) , (67)

where H(. . .) is the Heaviside step function. The jump [v](t0) is simply a number obtainable from v(t).
To justify the name, it must be shown that (67) is indeed continuous. The continuity follows from (50). Obvi-

ously, at any fixed t 6= t0, (67) is continuous, because v is, and the Heaviside function is then constant in a small
neighborhood of t.

Thus we only need to show continuity at the point t = t0. The limit from the left is

lim
ε→0+

v̂(t0 − ε) = v−(t0)− [v](t0) lim
ε→0+

H(−ε)

= v−(t0) , (68)

where we have used the fact that H(−t) is zero for all t > 0. In order to have continuity, (68) must match the limit
from the right,

lim
ε→0+

v̂(t0 + ε) = v+(t0)− [v](t0) lim
ε→0+

H(+ε)

= v+(t0)− [v](t0)

= v+(t0)− (v+(t0)− v−(t0))

= v−(t0) , (69)

12Equation (66) holds at least in the distributional sense.
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Distribution_%28mathematics%29#Di�erentiation

12

https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Distribution_%28mathematics%29#Differentiation

where we have used H(t) = 1 for all t > 0. Thus continuity holds also at t0. Here it does not matter whether H is
taken to be left- or right-continuous, because it is never evaluated at ε = 0; only the one-sided limits are needed.

Now we may reinterpret the definition of v̂(t), equation (67), as decomposing v(t) into a continuous function
and a Heaviside step function times the jump:

v(t) = v̂(t) + [v](t0) H(t− t0) . (70)

For this interpretation to make sense at t = t0, the left- or right-continuity of H must be chosen to match that of v.

4.4 Differentiation and definite integration of piecewise continuous functions

The decomposition (70) allows us to rewrite (53) as

∂v
∂t

(t) =
∂v̂
∂t

(t) + [v](t0) δ(t− t0) , (71)

using the relation between the Heaviside step function and the Dirac delta distribution. Equation (71) gives us the
necessary tool to formally treat the integration of v′(t) over an interval (a, b) containing the singularity at t0 (i.e.
a < t0 < b). We have ∫ b

a
v′(t) dt =

∫ b

a
v̂′(t) dt +

∫ b

a
[v](t0) δ(t− t0) dt

=
∫ b

a
v̂′(t) dt + [v](t0)

∫ b

a
δ(t− t0) dt

=
∫ b

a
v̂′(t) dt + [v](t0)

= v̂(b)− v̂(a) + [v](t0) .

The last integral on the second line evaluates to 1, because we are considering the case where t0 ∈ (a, b).
Finally, consider terms of the same form as the first term in the weak form, equation (49), and let both u and

w have a jump at t0 ∈ (a, b). (This choice is motivated by the fact that we aim to construct a classical Galerkin
method, where the basis and test functions are taken to be the same.) By (70) and (71), we have∫ b

a
u′(t)w(t) dt =

∫ b

a

(
û′(t) + [u](t0) δ(t− t0)

)(
ŵ(t) + [w](t0) H(t− t0)

)
dt

=
∫ b

a
û′(t)ŵ(t) dt

+ [w](t0)
∫ b

a
û′(t)H(t− t0) dt

+ [u](t0)
∫ b

a
ŵ(t) δ(t− t0) dt

+ [u](t0)[w](t0)
∫ b

a
H(t− t0)δ(t− t0) dt

=
∫ b

a
û′(t)ŵ(t) dt + [w](t0)

∫ b

t0

û′(t) dt + [u](t0)ŵ(t0) + [u](t0)[w](t0)H(0)

=
∫ b

a
û′(t)ŵ(t) dt + [w](t0)(û(b)− û(t0)) + [u](t0)(ŵ(t0) + [w](t0)H(0))

=
∫ b

a
û′(t)ŵ(t) dt + [w](t0)(û(b)− û(t0)) + [u](t0)w(t0) , (72)

where in the last step we have used (70). Here it does not matter whether u and w are left- or right-continuous.

4.5 Functions with several jumps

Finally, let us consider how to treat functions with several discontinuities. Let u(t) be a left-continuous function
with N ≥ 2 jumps, located at points tk, k = 1, 2, . . . , N:

u(t) = û(t) +
N

∑
k=1

[u](tk) H(t− tk) . (73)

13

Because H(τ) = 1 for all τ > 0, we may write for given κ and t > tκ that

uκ(t) = û(t) + cκ +
N

∑
k=κ+1

[u](tk) H(t− tk) , 1 ≤ κ ≤ N, t > tκ . (74)

where

cκ :=
κ

∑
k=1

[u](tk) . (75)

Following the convention from many programming languages, if κ = N, we ignore the sum in (74) because then
its start index is greater than its end index, and similarly for the case κ = 0 in (75).

If we further restrict our consideration to the interval t ∈ (tκ , tκ+2), then

uκ(t) = û(t) + cκ + [u](tκ+1) H(t− tκ+1) , 1 ≤ κ ≤ N, t ∈ (tκ , tκ+2) , (76)

locally returning to a form with only one discontinuity, allowing us to use the equations already developed. (For
the purposes of (76), we use the convention that for any k > N, tk = +∞.)

To obtain a version of (72) for the present case, it is convenient to split the interval of integration so that each
subinterval contains up to one discontinuity, allowing us to apply (72) separately to each, and for this, use the form
(76) to represent u (and w).

Considering that the aim is to develop a timestepping method on an interval t ∈ [a, b], we would like to choose
the limits of integration as Ik = (tk, tk+1) for k = 0, 1, . . . , N, setting t0 = a and tN+1 = b. However, to avoid
ambiguities in handling the delta distribution, we must actually use Ik ≡ lim

ε→0+
Iε
k, where Iε

k = (tk − ε, tk+1 − ε).

Keep in mind that we plan to treat our solution as left-continuous. To keep things in line with the intuitive
picture, we require ε < 1

2 min{tk+1 − tk : k = 0, 1, . . . , N}, guaranteeing that each interval covers only one
discontinuity. The epsilon in the lower limit makes the local discontinuity fall strictly inside each Iε

k, and the one
in the upper limit retains the lengths and the non-overlapping property of the intervals.

Thus, we have

∫ b

a
u′(t)w(t) dt = lim

ε→0+

N

∑
k=0

∫ tk+1−ε

tk−ε
u′(t)w(t) dt . (77)

It will however be simpler in practice to consider the case with just one timestep, sidestepping the need for (77),
and also avoiding the need to keep track of the constants cκ for the representation (76). This is possible due to two
reasons.

First, we observe that each jump connects only adjacent intervals. Due to the form of our problem (1)–(2), we
may split it into a sequence of subproblems on Ik, with the final value u(tk+1) from the current timestep fed into
the next one as the initial condition u0.

Secondly, without loss of generality, in the Galerkin setup to follow later, we may choose the global basis
functions (and in a pure Galerkin method, hence also the global test functions) to have support only on one element
each.13

If we have a function, continuous across element boundaries, having support on several elements, that we
would like to use in the basis, then, because this is a discontinuous method, we may always split it into parts
restricted to individual elements (by multiplying with a suitable indicator function), and use those parts instead of
using the original function. (If the parts are used separately, this allows more freedom than the original continuous
function, since the pieces may then have different values for their Galerkin coefficients. If used as a sum (forcing
the same coefficient for each part), this reduces to using the original continuous function.)

From these two properties we conclude that the method can be designed to work locally, and hence it is suffi-
cient to develop an algorithm to treat a single interval (tk, tk+1) at a time.

This completes the background.

13Note that this differs from the finite element method, where (considering classical conforming variants of the method, with classical basis
functions such as the Lagrange interpolation polynomials) the global basis functions are typically attached to nodes, and have support on the
patch of elements surrounding the node. There the global basis functions are pieced together in a matching way from local basis functions on
each element belonging to the patch. Here, because the method is constructed to handle discontinuities of the basis across element boundaries,
there is no need to perform this patching.

14

4.6 Developing the weak form

Now we have the tools required for the problem at hand. Let us split the domain [0, tf] into N intervals Ik =
[tk, tk+1], with t1 = 0 and tN+1 = tf. Let u(t) = u0 for all t < 0 (to make the expression u(−ε) valid).

Let u be left-continuous and w right-continuous. This “complementarity” of the continuity types is needed so
that the test at Ik will “see” the final value of u on Ik−1. At the start of the kth timestep, u(tk) is the final value from
the previous timestep, while w(tk) is the starting value of the test for the current timestep.

Keep in mind that the weak form (49) must hold separately for each choice of w. Thus, each of the test functions
must be defined on the whole interval [0, tf]. In practice, we will choose them to be zero in most of the domain,
nonzero on one element, and having up to two jumps (one at each endpoint of its support).

Denote u(tk) = u0, the initial condition for this timestep. Let ε be arbitrary, with 0 < ε < 1
2 min{tk+1 − tk : k =

0, 1, . . . , N}. Consider a right-continuous test function w having support only on t ∈ [tk − ε, tk+1 − ε), and having
a jump at tk. Equation (49), i.e., ∫ tf

0

∂u
∂t

w dt =
∫ tf

0
f (u(t), t)w dt , ∀w ,

for such w becomes

lim
ε→0+

∫ tk+1−ε

tk−ε

∂u
∂t

w dt = lim
ε→0+

∫ tk+1−ε

tk−ε
f (u(t), t)w dt , (78)

because elsewhere w = 0. As was explained above, we must use limits in order to place the singularity in u′(t)
strictly inside the domain of integration. This is also needed to count only the singularity at tk. Because u is L.C.
and we approach tk+1 from the left, within this timestep u′(t) has no singularity at tk+1 (in the sense of the limit in
(78)).

On the right-hand side of (78), by the problem definition (1)–(2), the load function f involves no time differ-
entiations of u or w. These functions are C−1 continuous. Thus, if f itself is at least C−1 continuous in u and t,
then the integrand will not be worse than C−1, and hence does not need any special handling. This allows us to
immediately drop the limit from the right-hand side:

lim
ε→0+

∫ tk+1−ε

tk−ε

∂u
∂t

w dt =
∫ tk+1

tk

f (u(t), t)w dt .

The left-hand side now has exactly one singularity, which is strictly inside the domain of integration, so we may
apply (72), obtaining

lim
ε→0+

{∫ tk+1−ε

tk−ε

∂û
∂t

ŵ dt + [w](tk)(û(tk+1 − ε)− û(tk)) + [u](tk)w(tk)

}
=
∫ tk+1

tk

f (u(t), t)w dt .

Evaluating the limit on the left-hand side yields, obviously,∫ tk+1

tk

∂û
∂t

ŵ dt + [w](tk)(û(tk+1)− û(tk)) + [u](tk)w(tk) =
∫ tk+1

tk

f (u(t), t)w dt . (79)

Note that w, which was defined to have support on t ∈ [tk − ε, tk+1 − ε), because ε → 0, has now converged into
having support on t ∈ [tk, tk+1). (We could have denoted the original by wε and its limit by w, but the presentation
may look clearer without the extra subscript.)

Equation (79) still contains a mix of u, û, w and ŵ. We make the following observations:

u(tk) = u0 (initial condition for this timestep) , (80)
û(tk) = u(tk) (u L.C.) , (81)
û(t) = u(t)− [u](tk) , t ∈ (tk, tk+1] (eq. (67), u L.C.) , (82)
ŵ(t) = w(t)− [w](tk) , t ∈ [tk, tk+1) (eq. (67), w R.C.) . (83)

It also holds that
[w](tk) = w(tk) (because lim

ε→0+
w(tk − ε) = 0) , (84)

which may be useful in implementing numerics (since it allows us to process each element locally).

15

The expression û(tk+1)− û(tk) may be treated using one-sided limits of u from inside the timestep:

û(tk+1)− û(tk) = (u(tk+1)− [u](tk))− u(tk)

= u(tk+1)− (u(tk) + [u](tk))

= lim
ε→0+

u(tk+1 − ε)− lim
ε→0+

u(tk + ε) , (85)

where in the last form we have used the left-continuity of u (hence u(tk+1) agrees with the limit from the left). This
holds very generally; in the context of multiple timesteps, if there is any offset between u and û due to the history
of jumps at earlier timesteps, in (85) this offset is cancelled by the subtraction; what matters is only how much the
continuous part û — or indeed u itself — changes across the timestep. (This can be made rigorous using (73).)

Rewriting (79), i.e.∫ tk+1

tk

∂û
∂t

ŵ dt + [w](tk)(û(tk+1)− û(tk)) + [u](tk)w(tk) =
∫ tk+1

tk

f (u(t), t)w dt ,

with the help of (82), (83) and (85) to eliminate û and ŵ, we have∫ tk+1

tk

∂u(t)
∂t

(
w(t)− [w](tk)

)
dt+[w](tk)

(
lim

ε→0+
u(tk+1− ε)− lim

ε→0+
u(tk + ε)

)
+[u](tk)w(tk) =

∫ tk+1

tk

f (u(t), t)w dt .

(86)
When manipulating the equations, it is important to keep in mind that u is L.C., whereas w is R.C. Here we have
used the fact that ∂û/∂t = ∂u/∂t on t ∈ (tk, tk+1], because the jump is a constant. (Hence, when doing numerics,
we must be careful in the first term not to evaluate ∂u/∂t at tk when it is written in this way!)

Noting further that [w](tk) is a constant, and u is continuous on t ∈ (tk, tk+1], we may evaluate the second term
in the first integral, obtaining

∫ tk+1

tk

∂u(t)
∂t

w(t) dt− [w](tk)
(

u(tk+1)− lim
ε→0+

u(tk + ε)
)

+ [w](tk)
(

u(tk+1)− lim
ε→0+

u(tk + ε)
)
+ [u](tk)w(tk) =

∫ tk+1

tk

f (u(t), t)w dt .

Now the terms involving [w](tk) cancel, yielding the perhaps familiar-looking weak form for piecewise continuous
u and w: ∫ tk+1

tk

∂u(t)
∂t

w(t) dt + [u](tk)w(tk) =
∫ tk+1

tk

f (u(t), t)w dt . (87)

To recap: when deriving (87), we have taken the solution u as left-continuous and the test function w as right-
continuous, with jumps occurring at timestep boundaries.

So far we have treated the weak initial value problem, first in the context of general piecewise continuous
functions having finite discontinuities at timestep boundaries, and then with test functions having their support
restricted to [tk, tk+1). Now we are in a position to introduce the Galerkin component of the method.

First, let φn(t), n = 1, 2, . . . be a set of (at least C0) continuous functions defined on the closed interval [tk, tk+1].
Let us define the half-open intervals Lk = (tk, tk+1] and Rk = [tk, tk+1) (mnemonic: the name denotes the open
side). Let χA(t) denote the indicator function of a set A:

χA(t) =

{
1 , t ∈ A ,
0 , t 6∈ A .

(88)

We define

ϕn(t) := χLk (t)φn(t) , (89)

ψn(t) := χRk (t)φn(t) , (90)

making ϕn (respectively ψn) suitable as a basis for left-continuous (resp. right-continuous) functions. (The only
thing the multiplication by χ does is that it removes the inappropriate endpoint from the support.) In the Galerkin
spirit, in all other respects the bases are the same.

16

We now represent u as a Galerkin series,

u(t) :=
∞

∑
m=1

um ϕm(t) , (91)

where um are the Galerkin coefficients, and ϕm(t) are the global basis functions. We choose the test functions wi as

wi(t) := ψi(t) , i = 1, 2, . . . (92)

i.e. otherwise the same as the basis for u, but with right-continuity.
Differing from continuous Galerkin methods (such as the finite element method), because now there is no re-

quirement of continuity across the timestep boundaries, we may actually take the local basis functions — of course
appropriately positioned and scaled on the t axis separately for each element, as the time integration proceeds —
as the global basis functions. (In practice, we will of course scale each timestep onto a reference element on [0, 1].)

Inserting (91)–(92) into (87) obtains

∫ tk+1

tk

∂

∂t

(
∞

∑
m=1

um ϕm(t)

)
ψi(t) dt +

((∞

∑
m=1

um lim
ε→0+

ϕm(tk + ε)
)
− u0

)
ψi(tk)

=
∫ tk+1

tk

f
(∞

∑
n=1

um ϕm(t), t
)

ψi(t) dt , ∀i = 1, 2, . . . , (93)

where u0 is the initial condition for this timestep.
Because there are no discontinuities remaining in the first term, we may rearrange it as

∫ tk+1

tk

∂

∂t

(
∞

∑
m=1

um ϕm(t)

)
ψi dt =

∫ tk+1

tk

ψi

∞

∑
m=1

um
∂ϕm

∂t
(t) dt

=
∞

∑
m=1

um

∫ tk+1

tk

ψi
∂ϕm

∂t
(t) dt , (94)

first using the fact that every continuous function on [0, 1] (which is our reference element) is a uniform limit
of polynomials, so that we may exchange differentiation and infinite summation14, and then using Tonelli’s and
Fubini’s theorems to justify the exchange of integration and infinite summation15.

The final step of the theoretical derivation of the dG procedure is to apply (94) to (93). In practical numerics,
we then formally truncate the Galerkin series (choosing a discrete subspace of the function space), obtaining

M

∑
m=1

um

∫ tk+1

tk

ψi
∂ϕm

∂t
(t) dt +

((M

∑
m=1

um lim
ε→0+

ϕm(tk + ε)
)
− u0

)
ψi(tk)

=
∫ tk+1

tk

f
(M

∑
m=1

um ϕm(t), t
)

ψi(t) dt , ∀i = 1, 2, . . . , M , (95)

where M is the total number of basis functions φn in the discrete basis.
Transferring terms and recognizing that this can be formally written as a linear equation system, we have

Au = b(u) , (96)

where u is an M-element vector consisting of the coefficients um, and

Aim =
∫ tk+1

tk

ψi(t)
∂ϕm

∂t
(t) dt + ψi(tk) lim

ε→0+
ϕm(tk + ε) , (97)

bi(u) =
∫ tk+1

tk

f
(M

∑
m=1

um ϕm(t), t
)

ψi(t) dt + ψi(tk)u0 . (98)

14http://math.stackexchange.com/questions/147869/interchanging-the-order-of-di�erentiation-and-summation
15http://math.stackexchange.com/questions/83721/when-can-a-sum-and-integral-be-interchanged

17

http://math.stackexchange.com/questions/147869/interchanging-the-order-of-differentiation-and-summation
http://math.stackexchange.com/questions/83721/when-can-a-sum-and-integral-be-interchanged

Treating the one degree of freedom model problem (1)–(2) has lead to an equation system with M equations,
because there are M basis functions modeling the behavior of this degree of freedom across a single timestep.

Equations (96)–(98), in principle, allow us to solve for the Galerkin coefficients um for this timestep. Together
with relation (91) (similarly truncated), we obtain the behavior of u(t) for all t ∈ (tk, tk+1]. Especially, evaluating
u(tk+1) from (91) then gives us the initial condition for the next timestep.

The limit expression in (97) is easier to evaluate than it looks; it is simply φm(tk).
Note that in general, for nonlinear problems, b depends on u; we have thus presented the method in this form.

Fixed point iteration (for the Galerkin coefficients u) is thus needed to evaluate the load vector b. If f is linear,
its linear dependence on u would of course be extracted and transferred into A (but here we concentrate on the
general nonlinear case).

The final step in practical numerics (for this single degree of freedom problem) is to rewrite the integrals in
(97)–(98) using quadratures on the reference element [0, 1]. The standard tools from finite elements methods can
be used for this.

4.7 Extension to ODE systems

The general treatment from section 1.1 applies also here. In this section, we work out the details specifically for
dG.

The weak form of the problem, equation (49), does not require many changes. Understanding the testing of
a vector-valued quantity by a vector-valued test function as projection into the direction of the test function, we
write ∫ tf

0

∂u
∂t
·w dt =

∫ tf

0

(
M−1f(u(t), t)

)
·w dt , ∀w , (99)

where w is a vector-valued test function, and the dot denotes the usual Euclidean inner product.
Again, by defining the effective load

g(u(t), t) = M−1f(u(t), t) , (100)

we have ∫ tf

0

∂u
∂t
·w dt =

∫ tf

0

(
g(u(t), t)

)
·w dt , ∀w . (101)

Let us look at the contribution of a single component of the test, wj:∫ tf

0

∂uj

∂t
wj dt =

∫ tf

0

(
gj(u1(t), u2(t), . . . , t)

)
wj dt , ∀wj . (102)

Obviously, the previous machinery applies directly to each of the equations (102), producing equations of the form
(87). (No assumptions were made about f beyond C−1 continuity.)

After summing the results over j, and finally using (100) to replace g with its definition, we have the result∫ tk+1

tk

∂u(t)
∂t
·w(t) dt + [u](tk) ·w(tk) =

∫ tk+1

tk

M−1f(u(t), t) ·w dt , ∀w. (103)

As before, from here we may proceed by treating M−1f as an effective load, and solving the linear equation system
M g = f for g whenever its numerical value is needed.

Because the degrees of freedom have been decoupled on the left-hand side, it is convenient to test them in-
dividually, taking the test functions w as wji, j = 1, 2, . . . , N (indexing the degrees of freedom), i = 1, 2, . . . , M
(indexing the set of test functions in a timestep): w1i(t) = (wi(t), 0, 0, . . . , 0), w2i(t) = (0, wi(t), 0, 0, . . . , 0), . . . ,
wNi(t) = (0, 0, 0, . . . , 0, wi(t)), where wi(t), i = 1, 2, . . . , M, are the test functions ψi(t) for a scalar quantity on
the timestep. This produces NM equations in total (as indeed expected, there being N space degrees of freedom,
and M equations per space degree of freedom for one timestep).

Note that each evaluation of g — i.e. each quadrature point for the integral on the right-hand side — will
require the solution of a (possibly large) linear equation system. Furthermore, because u(t) is unknown at any
point t > tk, for nonlinear problems this expensive solution of multiple linear equation systems (for g) must occur
for each iteration inside the fixed point iteration loop. Thus, for a general semilinear system of ODEs, dG (at least
when implemented the way described here) can be expensive.

For linear problems, of course, it is possible to avoid the need for fixed point iteration in implicit integration
methods, making dG much cheaper.

18

Finally, if the space discretization is such as to make M the unit matrix, then g = f and (103) becomes
somewhat cheaper to solve. One particularly simple implementation for nonlinear problems of this form is
to just use (96)–(98) (in principle) independently for each space degree of freedom, again with fixed point it-
eration to make it possible to explicitly evaluate the right-hand side. The only required modification is that
the last available iterate from all space degrees of freedom is needed to evaluate f (each space degree of free-
dom uj(t) has its own Galerkin coefficients in time, (uj)m, replacing the original f with f (u1(t), u2(t), . . . , t) =

f
(M

∑
m=1

(u1)m ϕm(t),
M
∑

m=1
(u2)m ϕm(t), . . . , t

)
).

4.8 Choosing the basis

As the basis functions φn(t), polymomials are a typical choice. One often speaks of the dG(q) method, where q is
the polynomial order of the basis.

4.8.1 dG(0)

(dG(0) is not supported by the solver; this section is only included for information.)
The basis of zeroth-order discontinuous Galerkin consists of just the constant 1 on each element. Looking at

equation (87), i.e. ∫ tk+1

tk

∂u(t)
∂t

w(t) dt + [u](tk)w(tk) =
∫ tk+1

tk

f (u(t), t)w dt ,

we see that if w ≡ 1, we have ∫ tk+1

tk

∂u(t)
∂t

dt + [u](tk) =
∫ tk+1

tk

f (u(t), t) dt .

Furthermore, if the basis of u is piecewise constant, then inside the timestep ∂u/∂t → 0 (recall that the first term
concerns only values inside the current timestep), and we are left with

[u](tk) =
∫ tk+1

tk

f (u(t), t) dt ,

or in other words,

uk+1 − uk =
∫ tk+1

tk

f (u(t), t) dt , (104)

where we have denoted u(tk+1) = uk+1 and u(tk) = uk, and used the fact that u is piecewise constant and left-
continuous. (Hence u(tk) is the “old” value. The value immediately after the jump is lim

ε→0+
u(tk + ε) = u(tk+1),

which also justifies the label uk+1 for the “new” value at timestep k.) Equation (104) coincides with the integral
formula (35), which is simply the integral version of the original problem statement (1).

Strictly speaking, in the dG(0) basis, u(t) is constant on (tk, tk+1], so actually the match with classical methods
is not perfect. It is possible to rigorously obtain backward Euler from (104) by sampling the integrand only at tk+1,
but e.g. IMR and forward Euler model u(t) (inside the RHS integral) differently.

4.8.2 dG(1)

The next simplest choice of basis are the linear polynomials on [0, 1],

p1(x) = 1− x ,
p2(x) = x ,

representing linear interpolation on the element.

19

4.8.3 dG(q)

One convenient choice for arbitrary q, considered the modern approach to polynomial-based Galerkin methods,
are the hierarchical basis functions (a.k.a. Lobatto basis functions), derived from the Legendre polynomials.16 The dis-
continous Galerkin implementation in the solver uses this form of dG(q).

The Legendre polynomials themselves are polynomials on [−1, 1] (note the interval!) that are orthogonal in the
L2 sense: ∫ 1

−1
Pm(x)Pn(x)dx =

2
2n + 1

δmn , (105)

where δmn is the Kronecker delta.
The Legendre polynomials are given by the recurrence relation

P0(x) = 1 , (106)
P1(x) = x , (107)

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) , (108)

where (108) is known as Bonnet’s recursion formula. Among possible direct representations are

Pn(x) =
1
2n

n

∑
k=0

(
n
k

)2
(x− 1)n−k(x + 1)k

=
n

∑
k=0

(
n
k

)(
−n− 1

k

)(
1− x

2

)k

= 2n
n

∑
k=0

xk
(

n
k

)(1
2 (n + k− 1)

n

)
. (109)

The polynomials have been normalized such that Pn(1) = 1 (this is the usual normalization).
A shift onto [0, 1] is possible by defining P̃n(x) = Pn(2x− 1). For the shifted version,∫ 1

−1
P̃m(x)P̃n(x)dx =

1
2n + 1

δmn . (110)

4.8.4 The hierarchical basis

We will use zero-based indexing to match the notation used in the solver code. The first basis function is N0, and
matrix element indexing starts at A00 (for any matrix A).

On the reference element [−1, 1], the hierarchical basis is defined as

N0(x) =
1
2
(1− x) , (111)

N1(x) =
1
2
(1 + x) , (112)

Nj(x) = ψj(x) , j = 2, 3, . . . (113)

where x ∈ [−1, 1], the bubble functions are defined as

ψj(x) :=

√
1
2
(2j− 1)

∫ x

−1
Pj−1(t)dt , (114)

and Pn(t) are the Legendre polynomials using the standard normalization (i.e. Pn(1) = 1 for all n). (Note that
although j ≥ 2 in (113), formula (114) requires only j ≥ 1 to be valid. We will use this later.)

The integral in (114) can be evaluated analytically. For any n ≥ 1, the following recursion formula holds:

(2n + 1)Pn(x) =
∂

∂x
(Pn+1(x)− Pn−1(x)) . (115)

16https://en.wikipedia.org/wiki/Legendre_polynomials

20

https://en.wikipedia.org/wiki/Legendre_polynomials

By integrating both sides of (115) from −1 to x (and relabeling the dummy variable as t), we obtain

(2n + 1)
∫ x

−1
Pn(t)dt = Pn+1(x)− Pn−1(x)− (Pn+1(−1)− Pn−1(−1)) .

It holds that Pn+1(±1) = Pn−1(±1) for any n ≥ 1. The parenthetical expression vanishes, and we have

(2n + 1)
∫ x

−1
Pn(t)dt = Pn+1(x)− Pn−1(x) . (116)

Choosing n = j− 1,

(2(j− 1) + 1)
∫ x

−1
Pj−1(t)dt = Pj(x)− Pj−2(x) ,

i.e.
(2j− 1)

∫ x

−1
Pj−1(t)dt = Pj(x)− Pj−2(x) ,

and rearranging, we have ∫ x

−1
Pj−1(t)dt =

1
(2j− 1)

(
Pj(x)− Pj−2(x)

)
.

The definition (114) thus becomes

ψj(x) =

√
1
2
(2j− 1)

∫ x

−1
Pj−1(t)dt =

√
1
2
(2j− 1)

1
(2j− 1)

(
Pj(x)− Pj−2(x)

)
.

Simplifying, we have the result

ψj(x) =
1√

2(2j− 1)

(
Pj(x)− Pj−2(x)

)
, j ≥ 2 . (117)

Equation (117) shows that the functions ψj(x) for j ≥ 2 are bubbles; the parenthetical expression vanishes both at
−1 and at +1 for any j ≥ 2.

For the special case j = 1 (which is not part of the basis), directly from (114) by using P0(x) ≡ 1 we have

ψ1(x) =
1√
2
(x + 1) . (118)

We will also need the derivative of ψj, which we obtain from (114) (by differentiation of a definite integral by
its upper limit) as

ψ′j(x) =

(√
1
2
(2j− 1)

)
Pj−1(x) . (119)

The integral of ψj is ∫ x

−1
ψj(t)dt =

1√
2(2j− 1)

∫ x

−1

(
Pj(t)− Pj−2(t)

)
dt , j ≥ 2 . (120)

It follows from (114) that ∫ x

−1
Pj(t)dt =

1√
1
2 (2j + 1)

ψj+1(x) ,

and hence also ∫ x

−1
Pj−2(t)dt =

1√
1
2 (2j− 3)

ψj−1(x)

if we allow for the definition of “ψ1”. Thus we may rewrite (120) as

∫ x

−1
ψj(t)dt =

1√
2(2j− 1)

 1√
1
2 (2j + 1)

ψj+1(x)− 1√
1
2 (2j− 3)

ψj−1(x)

 . (121)

21

Especially, since for j ≥ 2 the ψj are bubbles, at x = 1 the expression (121) vanishes for all j ≥ 3. For j = 2, we note
that by (118), we have ψ1(1) =

√
2 (in the last term above), and hence

∫ 1

−1
ψ2(t)dt = − 1√

2 · 3
1√

1
2

√
2 = −

√
2
3

.

We will need this for a special case at the end.
Finally, we recall the L2-orthogonality of the Legendre polynomials on (−1, 1):∫ 1

−1
Pm Pn dt =

2
2n + 1

δmn , (122)

where δmn is the Kronecker delta and m, n ≥ 0.

Alternative explicit representation

As was noted above, Legendre polynomials Pn(x) follow Bonnet’s recurrence formula, equation (108), repeated
here for convenience:

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) . (123)

Considering the ψj, by (117), for any j ≥ 2 it holds that√
2(2j− 1)ψj(x) = Pj(x)− Pj−2(x) .

From (123), we observe that if we set j = n + 1 (whence n = j− 1), we have

jPj = (2(j− 1) + 1)Pj−1 − (j− 1)Pj−2 = (2j− 1)xPj−1 − (j− 1)Pj−2 .

By subtracting jPj−2 from both sides,

j · (Pj − Pj−2) = (2j− 1)xPj−1 − (2j− 1)Pj−2 = (2j− 1)(xPj−1 − Pj−2) .

This gives us an alternative explicit representation for ψj(x):

ψj(x) =
√

2j− 1

j
√

2
(xPj−1(x)− Pj−2(x)) . (124)

Numerically, neither one seems better a priori; as j increases, both (117) and (124) have cancellation problems at
some parts of the domain.

Numerical evaluation of the basis functions

For up to n = 24 or so, standard double precision floating point (with 53-bit mantissa) is sufficient. This was tested
in two ways.

The first test used numpy.polynomial.legendre.leg2poly(), numpy.polynomial.Polynomial, and the integ() method of
Polynomial objects, evaluating the definition (114) directly. Note that (114) must not be integrated numerically;
rounding errors accumulate, and thus for high degrees, when integrated numerically, the result will miss zero at
the right endpoint. Much better is to observe that ψj is a polynomial, treating the integration as an exact operation
on the coefficients.

In the second test, similar results were obtained by Legendre series evaluation (np.polynomial.legendre) of the
explicit solution (117). The problem in this form is cancellation; whether one uses (117) or (124), there are some
parts of the domain [−1, 1] where one must subtract numbers that are almost equal in order to obtain the value
of ψj. Since the Legendre polynomials Pn are oscillatory for n ≥ 2, the higher j is, the more problematic regions
appear. Above n = 30, accuracy is completely lost (as one can observe from the computed values of the Pn near
x = 1).

In either case, the problem is that the coefficients of the Legendre polynomials Pn grow very quickly as the
degree n increases, and that the Pn are oscillatory — making ψj difficult to evaluate, even if one were to use (114)
with analytically computed Pj−1, exact arithmetic for the coefficients, and analytical integration for polynomials.

22

For high degrees, an easy practical approach is to use SymPy’s mpmath module17, which provides an arbitrary-
precision floating point library. The library includes sympy.mpmath.legendre for evaluating Legendre polynomials.
The arbitrary precision (and even for 53-bit results, higher internal working precision) makes it possible to evaluate
(117) directly without worrying about cancellation. This was tested up to q = 300 and the results seemed very
accurate. The downside is that it is very slow, because it is running in pure software. Making a precomputed table
of course helps in practice; this is implemented in precalc.py.

4.8.5 Useful matrices for Galerkin applications

Because the coefficients of the Legendre polynomials Pn grow very quickly as the degree n increases, for reasons
of numerical stability it is preferable to use a semi-analytical method, where the integrals in the Galerkin matrices
are treated analytically.

In this section, we give some useful matrices for the treatment of up to second-order problems in weak form.
This is slightly more general than we need (our ODE system needs only the matrix Cji), but is provided for the
sake of completeness.

Let us restrict our consideration to i, j ≥ 2. The first two rows and columns will be handled later.
A typical stiffness matrix is (j = row, i = column)

Kji :=
∫ 1

−1
ψ′i ψ′j dt

=
∫ 1

−1

(√
1
2
(2i− 1)Pi−1

√
1
2
(2j− 1)Pj−1

)
dt

=

√
1
2
(2i− 1)

√
1
2
(2j− 1)

∫ 1

−1
Pi−1 Pj−1 dt

=

√
1
2
(2i− 1)

√
1
2
(2j− 1)

2
2j− 1

δij

=
1
2
(2j− 1)

2
2j− 1

δij

= δij . (125)

This is of course the motivation for using integrals of Legendre polynomials as the basis functions ψj, and also for
the particular choice of the scaling factor in (114).

A typical damping or gyroscopic matrix is

Cji =
∫ 1

−1
ψ′i ψj dt . (126)

Note that this is also seen as the mass matrix for the first-order initial value problem

∂u
∂t

= f (u(t), t) ,

u(0) = u0 .

By (117) and (119), the matrix element (126) becomes

Cji =

√
1
2
(2i− 1)

1√
2(2j− 1)

∫ 1

−1
Pi−1

(
Pj − Pj−2

)
dt , (127)

i.e.

Cji =

√
2i− 1
2j− 1

∫ 1

−1

(
Pi−1 Pj − Pi−1 Pj−2

)
dt . (128)

17http://docs.sympy.org/0.7.1/modules/mpmath/index.html

23

http://docs.sympy.org/0.7.1/modules/mpmath/index.html

By applying the L2-orthogonality relation (122) and performing algebraic manipulation, we have

Cji = 2

√
2i− 1
2j− 1

(
1

2j + 1
δi−1, j −

1
2j− 3

δi−1, j−2

)

= 2

√
2i− 1
2j− 1

(
1

2j + 1
δi−1, j −

1
2j− 3

δi+1, j

)

= 2

√
2i− 1
2j− 1

1
2j + 1

δi−1, j − 2

√
2i− 1
2j− 1

1
2j− 3

δi+1, j

= 2

√
2(j + 1)− 1

2j− 1
1

2j + 1
δi−1, j − 2

√
2(j− 1)− 1

2j− 1
1

2j− 3
δi+1, j

= 2

√
2j + 1
2j− 1

1
2j + 1

δi−1, j − 2

√
2j− 3
2j− 1

1
2j− 3

δi+1, j

= 2

√
1

(2j− 1)(2j + 1)
δi−1, j − 2

√
1

(2j− 1)(2j− 3)
δi+1, j . (129)

Note the bidiagonal structure and zero main diagonal.
How about the symmetry properties? Consider

Cij = 2

√
1

(2i− 1)(2i + 1)
δj−1, i − 2

√
1

(2i− 1)(2i− 3)
δj+1, i

= 2

√
1

(2(j− 1)− 1)(2(j− 1) + 1)
δj−1, i − 2

√
1

(2(j + 1)− 1)(2(j + 1)− 3)
δj+1, i

= 2

√
1

(2j− 3)(2j− 1)
δj−1, i − 2

√
1

(2j + 1)(2j− 1)
δj+1, i

= 2

√
1

(2j− 3)(2j− 1)
δj, i+1 − 2

√
1

(2j + 1)(2j− 1)
δj, i−1

= 2

√
1

(2j− 3)(2j− 1)
δi+1, j − 2

√
1

(2j + 1)(2j− 1)
δi−1, j

= −2

√
1

(2j + 1)(2j− 1)
δi−1, j + 2

√
1

(2j− 3)(2j− 1)
δi+1, j

= −2

√
1

(2j− 1)(2j + 1)
δi−1, j + 2

√
1

(2j− 1)(2j− 3)
δi+1, j

= −Cji .

We see that Cji is antisymmetric (skew-symmetric).

24

A typical mass matrix is

Mji :=
∫ 1

−1
ψi ψj dt

=
∫ 1

−1

[
1√

2(2i− 1)
(Pi − Pi−2)

1√
2(2j− 1)

(
Pj − Pj−2

)]
dt

=
1√

2(2i− 1)
1√

2(2j− 1)

∫ 1

−1

(
Pi Pj − Pi Pj−2 − Pi−2 Pj + Pi−2 Pj−2

)
dt

= 2
1√

2(2i− 1)
1√

2(2j− 1)

(
1

2j + 1
δij −

1
2j− 3

δi, j−2 −
1

2j + 1
δi−2, j +

1
2j− 3

δi−2, j−2

)
=

1√
2i− 1

1√
2j− 1

(
1

2j + 1
δij −

1
2j− 3

δi, j−2 −
1

2j + 1
δi−2, j +

1
2j− 3

δi−2, j−2

)
=

1
2j− 1

(
1

2j + 1
+

1
2j− 3

)
δij −

1√
2(j− 2)− 1

1√
2j− 1

1
2j− 3

δi+2, j −
1√

2(j + 2)− 1
1√

2j− 1
1

2j + 1
δi−2, j

=
1

2j− 1

(
1

2j + 1
+

1
2j− 3

)
δij −

1√
2j− 5

1
(2j− 3)

1√
2j− 1

δi+2, j −
1√

2j− 1
1

(2j + 1)
1√

2j + 3
δi−2, j . (130)

We have used δi−k, j−k = δij for any k, and δi, j−2 = δi+2, j. Note the tridiagonal structure.
Note the symmetry Mij = Mji. We do not need to check this from the final result, because the definition (first

line) is symmetric with respect to the exchange of i and j.
Equations (125), (129) and (130) allow explicit analytical treatment of the matrices K, C and M for matrix

elements at i, j ≥ 2. To complete the treatment, we must consider the first two rows and columns.

The first two rows and columns

First, observe that by definition, P0(x) = 1 and P1(x) = x. The functions N0(x) and N1(x) are actually their linear
combinations:

N0(x) =
1
2
(1− x) =

1
2
(P0 − P1) , (131)

N1(x) =
1
2
(1 + x) =

1
2
(P0 + P1) , (132)

so if needed, we have the option of utilizing the properties of Legendre polynomials also in these cases.
We will first treat the block i, j = {0, 1} (upper left corner), and then consider the regions i ≥ 2, j = {0, 1} (first

two rows) and i = {0, 1}, j ≥ 2 (first two columns).

Upper left corner Let i, j = {0, 1}.
For the stiffness matrix, we have

Kji =
∫ 1

−1
N′i N′j dt

= 2
(

1
2
(−1)i+1 1

2
(−1)j+1

)
=

1
2
(−1)i+1 (−1)j+1 ,

i.e.

Kji =

[
1/2 −1/2

−1/2 1/2

]
.

25

For the damping/gyroscopic matrix,

Cji =
∫ 1

−1
N′i Nj dt

=
∫ 1

−1

1
2
(−1)i+1 1

2

(
1 + (−1)j+1t

)
dt

=
1
4

(
(−1)i+1

∫ 1

−1
1 dt + (−1)i+j+2

∫ 1

−1
t dt
)

=
1
4

(
(−1)i+1 · 2

)
=

1
2
(−1)i+1 ,

i.e.

Cji =

[
−1/2 1/2

−1/2 1/2

]
.

For the mass matrix,

Mji =
∫ 1

−1
Ni Nj dt

=
∫ 1

−1

1
2

(
P0 + (−1)i+1P1

) 1
2

(
P0 + (−1)j+1P1

)
dt

=
1
4

∫ 1

−1

(
P0 + (−1)i+1P1

) (
P0 + (−1)j+1P1

)
dt

=
1
4

(
2 + (−1)i+j · 2

3

)
=

1
2
+

1
6
(−1)i+j ,

i.e.

Mji =

[
2/3 1/3
1/3 2/3

]
.

We have used the L2-orthogonality of the Legendre polynomials, equation (122), to discard the terms involving
P0 P1, and to evaluate the terms involving P2

0 and P2
1 .

First two rows Let j = {0, 1} and i ≥ 2.
For the stiffness matrix, we have

Kji =
∫ 1

−1
N′i N′j dt

=
∫ 1

−1
ψ′i ·

1
2
(−1)j+1 dt

=
1
2
(−1)j+1

∫ 1

−1
ψ′i dt

=
1
2
(−1)j+1 (ψi(1)− ψi(−1))

= 0 ,

because the functions ψi, i ≥ 2, are bubbles. Because the first line is symmetric with respect to exchanging i and j,
the same result holds also for the first two columns.

26

For the damping/gyroscopic matrix,

Cji =
∫ 1

−1
N′i Nj dt

=
∫ 1

−1
ψ′i ·

1
2

(
P0 + (−1)j+1P1

)
dt

=
∫ 1

−1

(√
1
2
(2i− 1)

)
Pi−1 ·

1
2

(
P0 + (−1)j+1P1

)
dt

=
1
2

√
1
2
(2i− 1)

∫ 1

−1
Pi−1 ·

(
P0 + (−1)j+1P1

)
dt ,

where we have used (119) to represent ψ′i .
Due to the L2-orthogonality, the only nonzero terms are obtained for i = 2:

Cj2 =
1
2

√
3
2

∫ 1

−1
P1 ·

(
P0 + (−1)j+1P1

)
dt

= (−1)j+1 1
2

√
3
2

∫ 1

−1
P1 P1 dt

= (−1)j+1 1
2

√
3
2

2
3

= (−1)j+1 1√
6

,

where j = {0, 1}.
For the mass matrix,

Mji =
∫ 1

−1
Ni Nj dt

=
∫ 1

−1
ψi ·

1
2

(
P0 + (−1)j+1P1

)
dt

=
∫ 1

−1

1√
2(2i− 1)

(Pi(x)− Pi−2(x)) · 1
2

(
P0 + (−1)j+1P1

)
dt

=
1

2
√

2(2i− 1)

∫ 1

−1
(Pi(x)− Pi−2(x)) ·

(
P0 + (−1)j+1P1

)
dt ,

where we have used (117) to represent ψi. Keep in mind that i ≥ 2. Only the term with Pi−2 contributes; nonzero
terms appear for i = 2 and i = 3. We have

Mji = −
1

2
√

2(2i− 1)

∫ 1

−1
Pi−2(x) ·

(
P0 + (−1)j+1P1

)
dt

= − 1
2
√

2(2i− 1)

(
2δi−2, 0 + (−1)j+1 2

3
δi−2, 1

)

= −
(

2
1

2
√

2(2i− 1)
δi−2, 0 + (−1)j+1 1

2
√

2(2i− 1)
2
3

δi−2, 1

)

= −
(

1√
2

δi−2, 0 + (−1)j+1 1
3
√

10
δi−2, 1

)
= −

(
1√
2

δi, 2 + (−1)j+1 1
3
√

10
δi, 3

)
.

This holds for j = {0, 1}, i = {2, 3}.
Again, the definition of Mji is symmetric with respect to exchanging i and j, so the same result holds also for

the first two columns (swapping the roles of i and j).

27

First two columns As was observed, Mji = Mij and Kji = Kij. The only case that has not been treated yet is Cji
for j ≥ 2, i = {0, 1}.

Cji =
∫ 1

−1
N′i Nj dt

=
∫ 1

−1

1
2
(−1)i+1 · ψj dt

=
1
2
(−1)i+1

∫ 1

−1
ψj dt .

As was noted at the beginning, for j ≥ 3 the integral is zero. For j = 2, it is −
√

2/3, and thus we have the final
result

Cji =
1√
6
(−1)iδj, 2 .

This is valid for j ≥ 2, i = {0, 1}. We note that this is antisymmetric (skew-symmetric) to the result for the first
two rows, obtained further above; hence Cji is antisymmetric for any i, j ≥ 0.

5 Continuous Galerkin

A simpler, more classical cousin of dG(q) is obtained if we seek the solution in the class of continuous functions.
This is interesting mainly for comparison; in practical use, the accuracy seems to be much worse than with dG(q).

This leads to continuous Galerkin methods (“cG”, not to be confused with CG, the conjugate gradient method
for linear equation systems). If we allow the sets of basis and test functions to be different, we can also form “cPG”
i.e. continuous Petrov–Galerkin methods (not to be confused with PCG, the preconditioned conjugate gradient
method).

Obviously, for a given polynomial degree q of the basis, some accuracy will be lost in comparison to dG(q). This
is because of the additional requirement of continuity across timestep boundaries, which restricts the freedom of
the Galerkin procedure in determining the optimal values for the coefficients. Instead of locally L2-orthogonalizing
the residual across each timestep, independent of the other timesteps, the residual is L2-orthogonalized under the
restriction that the Galerkin representation of the solution remains continuous across timestep boundaries. Hence,
because there is less freedom to perform the fit, it is likely that the accuracy of the result will suffer.

Let us consider the integration of (1)–(2) over a single timestep using the Galerkin approach. As before, we
multiply (1) by a test function w and integrate from tk − ε to tk+1 − ε:

lim
ε→0+

∫ tk+1−ε

tk−ε

∂u
∂t

w dt = lim
ε→0+

∫ tk+1−ε

tk−ε
f (u(t), t)w dt ∀w , (133)

u(tk) = u0 . (134)

Note that u0 denotes the initial condition for the current timestep. We require u ∈ C0(0, tf) and w ∈ C−1(0, tf).
There are at most finite discontinuities in the integrands of (133). Hence, no jump terms will be generated, and we
may immediately get rid of the limits, obtaining∫ tk+1

tk

∂u
∂t

w dt =
∫ tk+1

tk

f (u(t), t)w dt ∀w , (135)

Then, in the usual Petrov–Galerkin manner, we represent u as a Galerkin series,

u(t) :=
∞

∑
m=1

um ϕm(t) , (136)

where um are the Galerkin coefficients, and ϕm(t) are the global basis functions. We choose the test functions wi as

wi(t) := ψi(t) , i = 1, 2, . . . (137)

allowing them to be different from the basis functions. We require ϕm ∈ C0(0, tf) and ψi ∈ C−1(0, tf). As before,
typically the functions will be defined piecewise across (0, tf), with any discontinuities in ϕ′m and ψi occurring on
the element boundaries.

28

After truncation at M degrees of freedom, we obtain

Au = b(u) , (138)

where u is an M-element vector consisting of the coefficients um, and

Aim =
∫ tk+1

tk

ψi(t)
∂ϕm

∂t
(t) dt , (139)

bi(u) =
∫ tk+1

tk

f
(M

∑
m=1

um ϕm(t), t
)

ψi(t) dt . (140)

Considering what it describes, the equation system (138) by itself is rank-deficient. It becomes uniquely solvable
when the initial condition (134) is applied. This may directly prescribe one of the um (thus eliminating one row
and column), or just modify all of the rows slightly, depending on the basis used.

5.1 cP(0)G(1)

(cP(0)G(1) is not supported by the solver; this section is only included for information.)
Choosing to test (135) with the constant w ≡ 1, we obtain∫ tk+1

tk

∂u
∂t

dt =
∫ tk+1

tk

f (u(t), t) dt ,

from which, immediately,

u(tk+1)− u(tk) =
∫ tk+1

tk

f (u(t), t) dt ,

and by rearranging,

u(tk+1) = u(tk) +
∫ tk+1

tk

f (u(t), t) dt . (141)

Equation (141) coincides with (35), which (as was noted in section 3.3) reduces to different classical methods
depending on the choices of the model for u and the quadrature rule to approximate the integral.

In the Petrov–Galerkin context, the model is (136), the details depending on the choice of basis. For example,
we can choose a piecewise linear basis

ϕ1(p) = 1− p ,
ϕ2(p) = p ,

where p ∈ [0, 1] is the scaled time (on the reference element [0, 1]). This is the cP(0)G(1) method, i.e. continuous
Petrov–Galerkin with (piecewise) constant test and piecewise linear basis. For this basis, u1 = u0 (by (136) and
(134)) and only u2 is unknown. Hence after applying the initial condition, the single equation (141) is enough to
close the system.

If we now approximate the integral using the midpoint rule, we again obtain IMR. Approximating by the
“endpoint rule” gives BE, and the “startpoint rule” gives FE.

29

	Introduction
	Extension to ODE systems

	Explicit methods
	Explicit Runge–Kutta methods
	Symplectic Euler (a.k.a. semi-implicit Euler)

	Classical implicit methods
	Implicit midpoint rule
	Backward Euler
	Implicit methods and the Banach fixed point theorem

	Discontinuous Galerkin
	Piecewise continuous functions and jumps
	The Dirac delta distribution and the Heaviside step function
	The continuous part
	Differentiation and definite integration of piecewise continuous functions
	Functions with several jumps
	Developing the weak form
	Extension to ODE systems
	Choosing the basis
	dG(0)
	dG(1)
	dG(q)
	The hierarchical basis
	Useful matrices for Galerkin applications

	Continuous Galerkin
	cP(0)G(1)

