AntiAgent: a Negotiation Agent for ANL2024

Panagiotis Aronis (p.aronis@students.uu.nl)
Sander van Bennekom (s.vanbennekom1@students.uu.nl)
Mats Buis (m.p.buis@students.uu.nl)

Vedant Puneet Singh (v.p.singh@students.uu.nl)
Collin de Wit (c.r.dewit@students.uu.nl)

Department of Information and Computing Sciences
Utrecht University

Netherlands
April 15, 2024

1 Introduction

This report presents AntidAgent, a negotiating agent submitted to the Automated Negotiating
Agent Competition (ANAC) for the Automated Negotiation League (ANL2024) challenge. Com-
petitor agents participate in a bilateral negotiation tournament over multiple negotiation domains
against each other using the Alternating Offers Protocol (AOP). Negotiators exchange offers ac-
cording to their conflicting interests represented by their respective utility functions. The other
party can respond with an acceptance, a counteroffer, or choose to (prematurely) end the nego-
tiation. The goal is to reach a mutually acceptable agreement before the negotiation deadline
where each agent achieves the agreed outcome’s utility for them. Otherwise, if the deadline
is reached with no agreement or the negotiation ends early for any reason agents receive their
respective reservation values.

For this year’s challenge, ANL202/, negotiating agents have access to the opponent’s pref-
erence profile, having complete knowledge of their utility function. This makes the negotiation
domains essentially single issue. However, the opponent’s reservation value is private information
so there is still a lot of uncertainty during the negotiation sessions. The winner of the challenge
is the agent that scores best on individual utility. Unlike previous competitions, agents cannot
learn between different negotiation sessions and there is no discount factor for utilities. A sig-
nificant part of the challenge is to get an accurate estimate of the opponent’s reservation value
during the negotiation session and exploit this knowledge for own advantage.

The implementation of AntiAgent follows the BOA agent framework ([1], [2]). According to
this, the negotiation strategy is divided into three interacting components, namely, the bidding
strategy, which generates the bids the agent offers to the opponent, the acceptance strategy, which
decides if the agent should agree to a proposed offer, and the opponent model, or to be exact, the
reservation value model in our case, which attempts to learn the opponent’s private information
based on their behavior. For building, testing and evaluating the agent the NegMAS platform
was used with Python.


mailto:p.aronis@students.uu.nl
mailto:s.vanbennekom1@students.uu.nl
mailto:m.p.buis@students.uu.nl
mailto:v.p.singh@students.uu.nl
mailto:c.r.dewit@students.uu.nl

2 Agent Description

The submitted negotiating agent, AntiAgent, is named appropriately as it generates the optimal
response to an assumed opponent acceptance strategy. The core strategy element is a ezpected
utility calculation depending on the number of bidding rounds remaining. Our work is heavily
inspired by the analysis in [3]. This paper demonstrates how to make optimal concessions against
specific classes of acceptance strategies. We make use of the general framework of sequential de-
cision techniques to maximize the expected utility with our bidding curve. We add on this work
in some significant ways given our particular negotiation challenge. First, we leverage the knowl-
edge of the opponent’s utility function to apply the expected utility computation to non zero-sum
scenarios. Second, the bidding strategy was made adaptive to the behavior of the opponent. In
particular, we make use of an opponent reservation value model, partly based on the NegMAS
default negotiator RV Fitter, to get an estimated distribution of the opponent’s reservation value.
Then we use this estimate to dynamically update our assumed opponent acceptance model which
in turn changes our optimal response based on expected utility. Finally, we attempt to model
opponent acceptance strategies other than satisficing, that is always accepting anything more
than their reservation value. However, modeling the opponent as satisficing turned out to be a
surprisingly tough benchmark to beat as we will discuss later.

The above optimal response strategy based on expected utility gained renders AntiAgent an
incredibly competitive negotiator. Due to the expected utility monotonically increasing with
more bidding rounds to go, the agent tends to not concede at all for the most part of the
negotiation, a tactic that generally works given the success of past ANAC competitors like
HardHeaded [4]. However, with fewer rounds remaining it is able to make timely concessions
achieving enough agreements in the end. Because there is no discount factor for utilities in this
challenge, it is always a good idea to be patient, and our agent takes this to the extreme getting
most agreements on the very last negotiation round exactly as planned with the optimal bidding
curve. The agent’s acceptance strategy also fully relies on the expected utility calculation, where
the expected utility for a turn is always lower than our next optimal bid. The previous two
strategy components are made dynamic with the use of an opponent reservation value model that
employs two different kind of reservation value estimation, a simple one based on the opponent
negotiation gap and a more sophisticated one based on best curve fitting assuming that the
opponent’s bidding strategy resembles a time-dependent tactic.

3 Agent Implementation

The AntiAgent strategy implementation makes use of the NegMAS platform in Python. In partic-
ular, the negotiating agent is a python class extending negmas.sao.SAONegotiator. The function
on_preferences_changed is used for the agent initialization (for ANL2024, only called once before
starting each negotiation session). The initial values for important class variables will be given
in the relevant subsections below. All other functionality is captured in the __call__ class method
and follows the BOA agent framework. Each call to the agent object implements one round of
the AOP protocol taking the current negotiation state (SAOState) and returning an appropriate
type of response (SAOResponse). First, the update_partner_reserved_value function updates our
current best estimate for the opponent’s reservation value. This estimate is then used in op-
ponent_acceptance_probability function which models the likelihood of the opponent accepting a
particular offered outcome. The latter function is an integral part of the maximize_expected_utility
function that generates the optimal bidding strategy and the accompanied expected utility for
each remaining round of the negotiation session (of course we need to recalculate this trajectory
when the estimate of the opponent’s reservation value changes). With this calculation done,



the acceptance_strategy first determines the acceptability of the opponent’s offer by comparing it
with our current expected utility threshold and then the bidding_strategy determines the counter
offer using the current optimal outcome that achieves the expected utility.

Before delving into the specific details of each of these functions we should mention some im-
portant changes compared to our original envisioned negotiation strategy components. First and
foremost the original (multi-phase) time-dependent tactic was scraped for the current expected
utility module that fully determines both our current bidding and acceptance strategies. Even
though with enough bidding rounds remaining the current bidding curve somewhat resembles
an extreme Boulware tactic, the current version enjoys many advantages. In addition to being
more unpredictable and generating more accurate timely concessions closer to the negotiation
deadline, it is a formulation of an optimal response to the assumed opponent acceptance model
that guarantees a very competitive negotiator (given that the assumption is justified) and it
is also more easily adaptive to the opponent behavior benefiting from the opponent reservation
value model. The second, less important, change concerns the reservation value model. Although
our agent implementation still uses the envisioned curve fitting technique inspired by the default
RVFitter negotiator, we also employ a second more simplistic approach to reservation value
modeling. Curve fitting assumes that the opponent bidding history is the result of following
a time-dependent tactic curve and attempts to find the best reservation value and concession
exponent that fit the offered outcomes so far. Even though this technique is extremely potent
against time-dependent tactics it can be highly inaccurate for other bidding strategies and it is
also quite expensive to perform every single round. A solution that solves both of these issues
is to employ a simpler rough estimate of the opponent’s reservation value based on the current
negotiation gap for the most part of the negotiation session and only switch to curve fitting
closer to the deadline where we can get more accurate prediction due to more data points being
available, exactly when it really matters as the latter stage of a negotiation session is far more
crucial to achieve good performance.

3.1 Update Partner Reserved Value

As we already mentioned this strategy module employs two different methods of very different
sophistication to balance out speed and generality in the early negotiation stages with increased
accuracy to squeeze out slightly better deals closer to the negotiation deadline. The process starts
by always keeping track of the opponent’s new offer, thus saving their whole bidding history in
the form of (relative time) timestamps, individual utilities of outcomes and the minimum and
maximum of the latter. Then we employ our learning techniques depending on the relative
time of the negotiation session. For the first 90% of the negotiation session we just check the
biggest own concession the opponent has made so far and, assuming that they offer no outcomes
below their reservation value, we set our current reservation value estimate to half that value.
That is, we starting by estimating the reservation value at 0.5 and this estimate only goes down
during this stage proportionally to the greatest concession made from the opponent. For the last
10% of the negotiation session we employ the more sophisticated curve fitting technique. This
method assumes (in addition) that the opponent follows a time-dependent tactic for bidding. In
particular, a polynomial aspiration curve is used like the one that is used by the default NegMAS
negotiators, Boulware, Linear and Conceder. Then the scipy.optimize.curve_fit method is used
to estimate the best reservation value and concession exponent that fit the opponent’s bidding
history so far. The reservation value estimate is updated only if there are at least 25 unique
outcomes offered from the opponent in order to avoid overestimating the reservation values of
opponents that have not conceded much yet.



3.2 Opponent Acceptance Probability

After updating the opponent reservation value estimate and in order to be able to compute our
new optimal expected utility we need to update our opponent acceptance strategy model, that
is, what is the probability that the opponent will accept an outcome with certain utility for
themselves. Initially, a static acceptance model was used as a benchmark that was really similar
to the work in [3]. The prior knowledge of the opponent reservation value was just assumed
to be a uniform distribution over all possible values and we did not update this knowledge
according to the opponent’s behavior at all. In addition, the opponent acceptance strategy was
modeled to be satisficing, that is, we assume they will always accept anything that is better than
their real reservation value. This way the probability that the opponent accepts an outcome
of individual utility w is p(u) = w. The resulting agent with no reservation value modeling
and completely non-adaptive bidding and accepting strategies was already outperforming all
default NegMAS negotiators with time-dependent tactics. Now to make use of our reservation
value estimates we can assume that the opponent reservation value follows a normal distribution
with mean equal to our current best reservation value estimate. The standard deviation is also
dynamically computed so the normal distribution fits exactly in the range of all assumed possible
opponent reservation values (the greatest concession of the opponent so far is exactly 6 standard
deviations), so the uncertainty about the reservation value reduces over time. Assuming that the
opponent is satisficing as before, we get a logistic function acceptance probability response for the
opponent, p(u) = ®((u — p)/o) = 0.5+ 0.5er f((u — p)/(0+/2)). Significant attempts were made
to outperform this last version of the agent. One of the most promising alternative opponent
acceptance strategies made use of the curve fitting model estimation of the opponent concession
exponent and assumed that the acceptance strategy mirrors the bidding strategy as modeled by
the RVFitter module’s aspiration curve. This agent version was perfect against time-dependent
tactics but it was not robust enough to generalize across other opponents. The surprisingly hard
to beat satisficing opponent model demonstrates that against rational opponents it always comes
down to satisficing behavior when close to the negotiation deadline when most of the agreements
actually take place.

3.3 Maximize Expected Utility

Having a fully specified adaptive opponent acceptance strategy that makes use of our opponent
reservation value estimates we are now ready to exactly calculate the optimal response to this
acceptance strategy. That is to say, what is the optimal bidding curve for the remainder of
the negotiation session that maximizes our expected utility, only considering our bids and the
(assumed) probability that the opponent will accept any of them. The computation of expected
utilities and optimal bids for each of the remaining negotiation (bidding) rounds works by back-
wards induction from the negotiation deadline. First, the agent gets the number, n, of own
bidding rounds it has left. Important detail is that because of the asymmetry of the AOP ne-
gotiation protocol the agent to bid first always gets an extra bidding round compared to their
opponent no matter the negotiation deadline. For no remaining bidding rounds, n = 0, there is no
bid we can make, so there is no opportunity for the opponent to accept and (ignoring opponent’s
offers) the best (and only) thing we can do is to end with an unsuccessful negotiation getting our
reservation value, rv. Then we have that the expected utility with zero bidding rounds remaining
is Uy = rv. Can we do any better for n = 1?7 We have exactly one bid to make, offering some
outcome w with own utility u4 and opponent utility up. For each outcome we have modeled the
acceptance probability of the opponent so we can compute the expected utility we achieve for
each possible offered outcome. Doing the math we have that the best outcome to offer is the one
that maximizes the extra utility gain for this round, Uy = (ug —rv)*p(up), and our new optimal



expected utility is Uy = Uy + Uy. We can see that as a kind of Nash point solution adjusted
by the assumed opponent acceptance model. This relation of course generalizes to every round
and so we have: U, = U,_1 + argmaz,(ua(w) — Uy_1) * p(up(w)). Intuitively, the expected
utility with one less round is assumed as our new ‘reservation value’ and we try to maximize the
extra utility gain on top of that if possible. Some properties about this process should be noted.
The modeled opponent’s acceptance probability is a strictly increasing function, therefore the
quantities to be maximized are always larger at the pareto frontier points. This means that our
agent needs to only consider pareto-optimal outcomes for bidding and we filter through these
during initialization using negmas.preferences.pareto_frontier. Another property that emerges
due to the same reason is that the bidding history generated is (not strictly) decreasing which
essentially means that our expected utility with more rounds remaining is always higher.

3.4 Acceptance Strategy

With the expected utility computation done, most of the work for our acceptance strategy is
already done. We already know our current expected utility so it is reasonable to accept an
opponent’s offer that gives us an individual utility higher than this threshold. However, because
we recompute the expected utilities when our opponent reservation value estimate is updated, it
is possible that after a sudden concession from the opponent, the current expected utility could
be higher than the outcome we offered the previous turn (we think that we already conceded
more than enough). In this case we lower our acceptance threshold to our last utility offered.
Due to the acceptance thresholds being derived via maximizing expected utility, it is evident
that both negotiation time and opponent’s behavior greatly influence the decision made by the
acceptance strategy. Finally, when rejecting an offer, a counteroffer is always made as there is
never an incentive to prematurely end the negotiation due to the absence of any utility discount
factor.

3.5 Bidding Strategy

Likewise for the bidding strategy almost all of the work is already done by calculating the
optimal bids as response to the opponent modeled acceptance strategy. The only thing the
bidding strategy should decide is when to go with the computed optimal offer or just repeat
our last offer. Even though all bidding curves computed with expected utility maximization are
monotonic, it is still possible as we mentioned above for the current optimal bid to have higher
utility for us compared to our previous offer. In this case we ignore the optimal offer and repeat
our previous offer again, thus ensuring that our bidding history is (not strictly) monotonic. This
is a deliberate design choice in an attempt to render AntiAgent a bit more clear and friendly
to behavioral strategies that could hold a ‘grudge’ if we moved back from a previous offer. All
optimal offers are generated by maximizing the expected utility recurring formula and our first
offer is no different. When the number of pareto optimal points is less than the remaining biding
rounds till the negotiation deadline we will indeed offer our best outcome due to the monotonicity
of expected utility. Otherwise, it is perfectly possible for the first bid to already be conceding
if this is needed to maximize expected utility. From our analysis it is evident that both agents’
preference profiles and opponent’s behavior via the adaptive opponent acceptance model is taken
into account when generating the optimal bids to offer.



References

[1]

Tim Baarslag et al. “Decoupling negotiating agents to explore the space of negotiation
strategies”. In: Nowvel insights in agent-based complex automated negotiation (2014), pp. 61—
83.

Tim Baarslag et al. “The Significance of Bidding, Accepting and Opponent Modeling in
Automated Negotiation.” In: ECAIL 2014, pp. 27-32.

Tim Baarslag et al. “Optimal non-adaptive concession strategies with incomplete informa-
tion”. In: Recent Advances in Agent-based Complex Automated Negotiation (2016), pp. 39—
54.

Takayuki Ito et al. Complex automated negotiations: Theories, models, and software compe-
titions. Springer, 2013.



	Introduction
	Agent Description
	Agent Implementation
	Update Partner Reserved Value
	Opponent Acceptance Probability
	Maximize Expected Utility
	Acceptance Strategy
	Bidding Strategy


