
BidBot: The Adaptive Negotiation Agent
Azra Oymaağaç1, Hüseyin Acemli1 and Emirhan Tandoğan1*

1Engineering Faculty, Ozyegin University

Abstract

This project centers on the design and enhancement of an automated negotiation agent within the NegMAS framework,
specifically tailored to address the challenges outlined in the Automated Negotiation League (ANL) 2024. Our agent is
designed to effectively handle bilateral negotiations with the Bidding, Opponent model, and Acceptance strategy (BOA)
framework, without access to opponents’ reservation values. Although automated negotiating agents employ a wide tane of
negotiation strategies, the majority of these agents rely on just one specific strategy. However, it is well known that no
single strategy is the best for every negotiation situation. Our strategic approach integrate dynamic adaptations based on
opponent actions and evolving negotiation scenarios. This report describes our negotiation approach in depth, explains how
it complies with the needs of the competition, and explores how it might offer accurate responses in the context of automated
negotiations.

1. Introduction

The applications of automated negotiation systems
in multi-agent settings has grown dramatically in
tandem with developments in computational negoti-
ation models and artificial intelligence. In this project,
we describe the creation and deployment of an auto-
mated negotiation agent specifically designed for the
Automated Negotiation League (ANL) 2024. Based
on the NegMAS framework this project attempts
to tackle the special problem that the league has
presented: creating an agent that can negotiate bi-
laterally without having access to the opponent’s
reservation value, which is a crucial element of strate-
gic negotiation preparation. Our work utilizes the
components of the Bidding, Opponent model, and
Acceptance (BOA) strategy framework to build an
agent that learns from its opponents’ evolving strate-
gies and adjusts dynamically to maximize its own
utility outcomes. This report unveils our comprehen-
sive negotiation strategy that integrates innovative
approaches to performance measurement, bidding,
opponent modeling, and acceptance strategies. This
introduction serves as a prelude to the intricate de-
tails of our negotiation strategy with the subsequent
sections, we share more detail of all these compo-
nents of our agent with the code explanations and
quantify the performance of our agent.

2. High Level Description of Our
Awesome Agent

Our agent BidBot which designed for specifically for
the ANAC 2024 Automated Negotiation League is

*Corresponding author: azra.oymaagac@ozu.edu.tr
Received: October 20, 2023, Published: December 14, 2023

a sophisticated negotiation system built to manage
the complexities of bilateral negotiation dialogues.
The important component of our agent is strategic
flexibility which is emphasized in the architecture’s
construction, enables it to adjust to changing negotia-
tion dynamics and opponent behaviors.

System Architecture

Our agent employs a modular design consists of sep-
arate but interlinked components named the Bidding
Strategy, Acceptance Strategy and Opponent Model.
Each part is made to carry out specific tasks that
when combined, aid in the agent’s decision-making
process during negotiating. It employs a sophisti-
cated opponent modeling system which constantly
updates its understanding of the opponent’s strate-
gies and reservation values. Because of this, our
agent can make offers that are sensitive to the circum-
stances of the negotiation and properly calibrated.
Using information from the Opponent Model, which
is updated constantly with information on the oppo-
nent’s tactics and reserve values, the Bidding Strategy
modifies offers in real-time. In order to maximize util-
ity, the Acceptance Strategy uses complex algorithms
to assess if an offer is acceptable. The innovative
Opponent Model plays an essential part in direct-
ing the agent’s strategic replies by offering dynamic
estimations.

Performance Measures

We use three carefully chosen performance indicators
to assess our agent’s effectiveness, which when com-
bined provide a complete picture of its negotiating
skills. Firstly, average Utility is the primary indicator,
showing how consistently our representative closes
favorable agreements in a variety of negotiation situ-

mailto:azra.oymaagac@ozu.edu.tr


BidBot: The Adaptive Negotiation Agent

ations [e.g., [3]]. Its ease of application and capacity
to provide valuable insights into our agent’s overall
performance make it a favored choice. Average utility
is calculated based on the following formula, in this
case it only takes into our own agent’s utility.

Uavg =
1
n

n

∑
k=1

Uk

Moving beyond the simplicity of averages, we use
a more sophisticated indicator of negotiation effec-
tiveness called the Distance to Pareto Frontier which
will help us to understand how fair and optimal the
negotiated point. A deal achieves Pareto optimality,
when it cannot be improved for one party without
simultaneously worsening it for another, thus repre-
senting the optimal scenario for both agents [2]. As
this metric considers both agents’ utility, it can be
used to measure mutual benefit. Minimizing the dis-
tance to the Pareto-optimal frontier improves fairness
and the probability of acceptance.

• Ua, Ub: utility of agents in agreement
• Pa, Pb: utility of agents in closest pareto frontier

point

D =
√
(Ua − Pa)2 + (Ub − Pb)2

Finally, we consider the competitive context of the
negotiations through our innovative Negative Op-
ponent Utility metric. The motivation behind the
creation of this metric is that our agent competes
with other competitors’ agents. Therefore, opponent
utility should be considered as a negative, adverse
component of our metric.

• Ua: Own agent utility
• Ub: Opponent agent utility
• γ: Number of agents in competition except our

own agent
• N: Number of negotiations

Uneg =
1
N ∑

(
Uγ

a
Ub

)

3. Agent Components and Strategy

Bidding Strategy

Our bidding approach is a hybrid model that takes
inspiration from the best practices in the field of
negotiation agents. The bidding strategy aims to
calculate the opponent’s concession level for each
offer. According to concession level, bidding strategy
behaves like Boulware if opponent is enough con-
cessive. Conversely, if the opponent does not seem
close to conceding, we employ a Nice Tit-for-Tat strat-
egy.According to concession level, bidding strategy

behaves like Boulware if opponent is enough conces-
sive. Recall for Tit-for-Tat and Boulware strategies:

UA(t, B→ A) : utility of A in offer from B to A at time t

∆UA(t) : UA(t, B→ A)−UA(t− 2, B→ A)

∆UB(t) : UB(t, B→ A)−UB(t− 2, B→ A)

k : hyperparameter

opp_behaviour =

{
not Conceder, if k·∆UA(t)−∆UB(t)

k+1 < 0

Conceder, if k·∆UA(t)−∆UB(t)
k+1 ≥ 0

“Opponent behavior” indicates the behavior of op-
ponent for certain time, doesn’t indicate agent type.
We will decide the counteroffer strategy by using
the table 1. Recall that the Conceder agent concedes
fast during the negotiation while the Boulware agent
hardly concedes until the deadline. Tit-For-Tat agent
can switch its strategy between these tactics stochas-
tically [4].

Predicted Opponent
model for unit time

Applied model for unit
time

Conceder Boulware(P1)
Not Conceder Tit-For-Tat

Table 1: Strategies based on opponent model prediction.

Here is the pseudocode of bidding strategy:

Algorithm 1 Bidding Strategy
1: function BiddingStrategy(recent_opp_offer, past_opp_offer, k)
2: opp_behavior ← k ×

(ufun(recent_opp_offer)− ufun(past_opp_offer)) −
(opp_ufun(recent_opp_offer)− opp_ufun(past_opp_offer)) /
(k+1)

3: if opp_behavior > 0 then
4: create_boulware_strategy(p1) ▷ p1: curvature of function
5: else
6: create_tit_for_tat()
7: end if
8: end function

BidBot Nice Tit-for-Tat Strategy: The BidBot Nice-
Tit-For-Tat strategy adapts the traditional Nice Tit-
for-Tat approach to consider the behaviors of the
opponent. Unlike conventional Nice Tit-for-Tat strat-
egy also taking the opponent’s first bids into account,
BidBot focuses on the opponent’s last 5 offers in-
stead. This adjustment is made to account for po-
tential changes in the opponent’s behavior over time,
providing more accurate insights into their conces-
sion patterns. Besides, since BidBot is designed as
a win-focused agent, instead of nash point utility
calculation in the original formula, BidBot takes its
previous and new target utility as the parameter. To
determine the appropriate concession level for the
next bid, BidBot calculates several key metrics:

2



BidBot: The Adaptive Negotiation Agent

Opponent Concession Analysis

• BidBot evaluates the opponent’s concession be-
havior by computing the utility difference of the
offers with the maximum and minimum utility
by the opponent. This concession metric reflects
the opponent’s willingness to compromise dur-
ing the negotiation process.

Concession Factor Calculation

• BidBot computes a concession factor based on
the opponent’s recent concession behavior and
BidBot’s current target utility. This factor ensures
that BidBot adjusts its concession level dynami-
cally in response to the opponent’s actions.

Adjusting Bid Strategy

• BidBot determines its next bid using a uniquely
developed bidding strategy, which takes into ac-
count the current negotiation time and BidBot’s
updated target utility. This strategy is designed
to optimize BidBot’s bid placement for maximiz-
ing utility while considering the dynamic nature
of the negotiation process.

By leveraging these adaptive strategies, BidBot
aims to maximize its utility and maintain a compet-
itive edge in negotiations against diverse opponent
behaviors.

Algorithm 2 Tit-For-Tat Bidding Strategy
1: function CreateBiddingTitForTat(state, t)
2: opponent_last_bid← state.current_offer if state.current_offer is not

None else None
3: my_utility_of_opponent_last_bid← self.previous_ufun
4: maximum_offered_utility_by_opponent ←

max(self.opponent_ufun_in_opponent_offers)
5: minimum_offered_utility_by_opponent ←

min(self.opponent_ufun_in_opponent_offers)
6: min_utility_of_opponent_last_bids ←

min(self.ufun_in_opponent_offers[-5:])
7: opponent_concession← maximum_offered_utility_by_opponent -

minimum_offered_utility_by_opponent
8: opponent_concede_factor ← min(1, opponent_concession /

(self.my_current_target_utility - min_utility_of_opponent_last_bids +
1e-12))

9: my_concession ← opponent_concede_factor × (1 -
self.my_current_target_utility)

10: my_current_target_utility← max(0.0, (1.0 - my_concession))
11: my_current_target_utility← min(my_current_target_utility, 1.0)
12: move← self.interval_bidding_strategy(t, my_current_target_utility)
13: return move[0]
14: end function

Interval Bidding: After we have calculated the tar-
get utility for our agent. Also, we can control the
opponent’s utility because we can access the oppo-
nent utility function. This situation helps to create a
technique which creates offers having different oppo-
nent utility by staying our agent utility almost same.
In this technique, we set an interval centering target
utility, and store all offers in the interval and order
according to opponent utility by increasing order.

Lastly, we need to choose an offer from sorted of-
fers. We create a formula returning the index linearly
increases according to time.

index = nint(time× (# of interval array))

We use the index in order to return the desired
offer. Also, in our design we set interval as 0.05 be-
cause we target approximately 100 offers for interval
array.

2× interval =
100

outcome spaces
=

100
1000

= 0.1

interval = 0.05

Here is the pseudocode of interval bidding strategy:

Algorithm 3 Interval Bidding Function
1: function IntervalBidding(time, target_utility, interval, min_val,

max_val)
2: possible_outcomes← list() ▷ create a list
3: for outcome in rational_outcomes do
4: if target_utility - our utility of outcome < interval then ▷ if

outcome is within interval, then add to possible_outcomes
5: possible_outcomes.add(outcome)
6: end if
7: end for
8: sort(possible_outcomes, by=opponent_utility) ▷ sort list by

opponent utility by increasing
9: index ← round((max_val − min_val) ∗ time + min_val) ∗

(len(possible_outcomes)− 1)) ▷ decide index depending on time
10: return possible_outcomes[index] ▷ return the offer
11: end function

Here is an example environment with inter-
val(figure 1):

Figure 1: Example environemnt with interval

Opponent Model

One of the main critical point of our agent is our
opponent model. The opponent model of our agent

3



BidBot: The Adaptive Negotiation Agent

utilizes a dual-estimation technique to precisely de-
termine the adversary’s concession strategy and reser-
vation value in real-time. First, with every offer made
throughout the negotiation, it improves the estima-
tion of the opponent’s reservation value. The model
dynamically updates the reservation value to reflect
the most accurate estimate by incorporating insights
from the opponent’s past behavior into each negoti-
ating move through the use of a proprietary formula.
Opponent’s estimated reservation value is recalcu-
lated after each offering according to following for-
mula:

• R: Reservation value
• UB: Utility of B in B offer

R = min(UB, R)

Second, during the course of the negotiation, the
model determines the degree of concession made by
the other party. Our agent can determine whether
the opponent is choosing a more yielding attitude
or a hard-liner stance by using a specially designed
algorithm.

Let UA(t, B→ A) be the utility of A in offer from
B to A at time t.

∆UA(t) : UA(t, B→ A)−UA(t− 2, B→ A)

∆UB(t) : UB(t, B→ A)−UB(t− 2, B→ A)

Let k be the hyperparameter.
The type is defined as:

Type =

{
Boulware, if k·∆UA(t)−∆UB(t)

k+1 < 0

Conceder, if k·∆UA(t)−∆UB(t)
k+1 ≥ 0

Reservation Value Prediction: In this competition,
the opponent model is almost transparent because we
can access opponent utility function, but we do not
know opponent’s reservation value. Therefore, oppo-
nent model must be aimed to detect reservation value
as true as possible. We have developed a technique
to predict reservation value. We store the minimum
utility between opponent utilities for opponent offer
for each step. After, our technique is based on the
fact that usual agent must start high utility for itself,
and it decreases over time. Therefore, we add a time
dependent coefficient for minimum reservation value
to increase accuracy of predicted reservation value.
We are inspired by the gaussian function while cre-
ating our function, so we have named it as gaussian
function in our context.

res_coef =
e(k·time) − 1

ek − 1

res_coef ∈ [0, 1]

predicted_res_value = res_coef ·min_res_value

We plot coefficient–time graph for different k
values. (Figure 2)

Figure 2: Coefficient-time graph for different k values.

According to experimental and heuristic informa-
tion, when k >0 it is better predictor against strict
agents, when k<0 it is better predictor against loose
agents (like Conceder). As a result, we have decided
to use k = 5 for our agent because we need to fo-
cus on strict agent. We can already deal with loose
agents.

Figure 3: Coefficient-time graph for k=5 values.

Also, here is the pseudocode for partner reserva-
tion value:

4



BidBot: The Adaptive Negotiation Agent

Algorithm 4 Update Partner Reservation Value Algo-
rithm
1: function UpdatePartnerReservationValue(opponent_utility)
2: opponent_utility_history.add(opponent_utility)
3: min_reservation_value← min(opponent_utility_history)
4: res_coef← GaussianFunction(time, k)
5: partner_reservation_value← res_coef × min_reservation_value
6: for all outcome in rational_outcomes do
7: if opponent utility of outcome < partner_reservation_value then
8: rational_outcomes.remove(outcome)
9: end if

10: end for
11: end function
12: function GaussianFunction(time, k)
13: return (e(k×time) − 1)/(ek − 1)
14: end function

Acceptance Strategy

At the essential of our agent’s decision-making pro-
cess is the Acceptance Strategy. We use the AC_next
strategy which is a highly preferred, simple, and ef-
fective acceptance strategy. AC_next performs well
with a strong bidding strategy and is selected due
to the dynamic nature of our opponent modelling
and bidding strategy. If we create a good bidding
strategy, AC_next also will be good because AC_next
accept the opponent offer if opponent offer is better
than our agent’s future.

ACnext = UA(t, B→ A) ≥ UA(t + 1, A→ B)

Here is the pseudocode of acceptance strategy:

Algorithm 5 Acceptance Strategy
1: function AcceptanceStrategy(future_offer, opponent_offer)
2: return ufun(future_offer) < ufun(opponent_offer) ▷

check if our utility of opponent offer is higher than our utility
of future offer

3: end function

Quantifying the Agent’s
Performance

A number of simulations and critical analysis went
into the comprehensive empirical evaluation of our
agent’s negotiation prowess. We carefully recorded
the agent’s performance with 2450 negotiations
spread over 10 scenarios between 7 competitors in
order to identify the agent’s strengths and shortcom-
ings, which would guide future iterations of strategy
improvement.

Initially, it was thought to take k parameter in
self.bidding_strategy_formula as equal to 0, which
means only considering opponent agent’s current
and previous utility when calculating the bidding
strategy. Results showed in Table 2.

Then, it is thought that the time dependent k value
might be logical, and the tests were rerun, and results
are as shown in Table 3.

Agent Name Score
BidBot 0.536955
Boulware 0.472314
RVFitter 0.422178
Linear 0.397354
NashSeeker 0.378827
Conceder 0.302175
MiCRO 0.267771

Table 2: Results in tournament between default agents with
2450 negotiations, 10 scenarios and 5 repetitions when k = 0
where k in self.bidding_strategy_formula k * (ufun - prev_ufun)
- (opponent_ufun - prev_opponent_ufun) / (k + 1)

Agent Name Score
BidBot 0.491486
Boulware 0.417739
RVFitter 0.356125
Linear 0.320371
NashSeeker 0.312097
MiCRO 0.242405
Conceder 0.224233

Table 3: Results in tournament between default agents with
2450 negotiations, 10 scenarios and 5 repetitions when k = 1-
state.relative_time where k in self.bidding_strategy_formula k *
(ufun - prev_ufun) - (opponent_ufun - prev_opponent_ufun) / (k
+ 1)

Taking the average self-scores taken in several re-
peated tests into account, it is observed that better
results appear when k = 0 thus k is taken as 0 for the
rest of the parameter decision process.

Agent Name Score
BidBot 0.606405
Boulware 0.564752
RVFitter 0.501827
Linear 0.439011
NashSeeker 0.432746
MiCRO 0.422539
Conceder 0.315184

Table 4: Results in tournament between default agents
with 2450 negotiations, 10 scenarios and 5 repetitions
when P1 = 2+opponent_behavior_decision where P1 in cre-
ate_time_dependant_bidding(state, P1) when calculating tar-
get_utility target_utility = min(((1 - t) * 2 * P0 + 2 * (1 - t) * t *
P1 + t * t * 2 * P2), 1)

After that, when calling cre-
ate_time_dependent_bidding function which
leading target_utility calculation, the value of param-
eter P1 was investigated. And the best results taken
when P1 = 2 + opponent_concession_behaviour
value as shown in Table 4. P1 takes values between 2
and 3 in this case.

Lastly, the current model including reservation

5



BidBot: The Adaptive Negotiation Agent

Agent Name Score
BidBot 0.461024
Boulware 0.397214
RVFitter 0.335579
Linear 0.304782
NashSeeker 0.300081
MiCRO 0.214231
Conceder 0.201193

Table 5: Results in tournament between default agents with
2450 negotiations, 10 scenarios and 5 repetitions when opponent
agent’s reservation value is not estimated.

value estimation with chosen parameters shown in
Table 4, is compared with the model excluding op-
ponent agent’s reservation value estimation shown
in Table 5. And it is obvious that reservation value
estimation improves our agents’ utility, so our agent
is determined as the agent whose results shown in
Table 4.

Table 6: Results in tournament (Part 1)

Agent Name Score Nash Optimality Kalai Optimality Max Welfare Optimality
BidBot 0.606405 0.821354 0.831740 0.907691
Boulware 0.564752 0.861969 0.865165 0.924275
RVFitter 0.501827 0.830389 0.833498 0.910037
Linear 0.439011 0.854445 0.855975 0.945891
NashSeeker 0.432746 0.895643 0.862144 0.903133
MiCRO 0.422539 0.719354 0.747475 0.753214
Conceder 0.315184 0.817812 0.816592 0.933264

Table 7: Results in tournament (Part 2)

Agent Name Pareto Optimality Negative Opponent Utility Score
BidBot 0.968390 0.690754
Boulware 0.977454 0.446760
RVFitter 0.973656 0.216368
Linear 0.993634 0.094948
NashSeeker 0.950255 0.086886
MiCRO 0.872394 0.074974
Conceder 0.989686 0.012125

The results presented in Table 6 and Table 7
suggest that BidBot outperforms default agents in
ANAC 2024 across two key metrics: average utility
("Score") and negative opponent utility. This perfor-
mance underscores BidBot’s status as a win-focused
agent, leveraging a unique blend of time-based and
behavior-based strategies coupled with efficient reser-
vation value and concession level calculations de-
rived from opponent modeling and dynamic bidding
strategies.

However, due to its win-focused nature, BidBot
tends to perform averagely compared to other agents
in terms of Nash, Kalai, Max Welfare, and Pareto
Optimality metrics. Future enhancements aim to
explore additional strategies to foster mutual benefit
in scenarios requiring cooperation.

Future Perspectives

In order to make a negotiation in real life, our agent
must have emotions and feel and analyze the oppo-
nent’s emotion because human is not perfect creature
and it acts with emotions, which is not usually most
sense move. Therefore, if we will create a agent based
on completely abstract and strict math formula, it
does not give good results. Instead, we will create
our agent emotion and understand the opponent
emotion. Also, we communicate with our opponent
emotionally. We need to add emotional intelligence
to our negotiation agent’s capabilities in order for it
to function well in practical situations, going beyond
strict mathematical calculations. The next stage is to
create our agent with emotional awareness so that it
can recognize and react to emotional stimuli. This
will make it easier for the agent to comprehend and
perhaps even anticipate the emotional undertones of
negotiations, allowing for the development of more
flexible and successful strategies.

Further enhancements will involve developing
mechanisms for the agent to express emotions strate-
gically. This capability will allow the agent to engage
more authentically with human negotiators, poten-
tially swaying the course of discussions by mirroring
emotions or demonstrating empathy. One way to
make encounters feel less transactional and more
real is to demonstrate enthusiasm in reaction to a
positive offer or to be patient throughout lengthy
talks.

In the end, our agent will analyze information
and interact with humans more like a human by
fusing emotional intelligence with its current ana-
lytical skills. This will increase its usefulness in a
variety of negotiation situations, from high-stakes
business deals to routine interpersonal negotiations.
Our agent will get much closer to the complex reality
of human bargaining dynamics with the incorpora-
tion of these additional emotional skills.

Conclusion

Our agent is an example of creative thinking and flex-
ibility in the field of automated negotiations, as it was
created for the ANAC 2024 Automated Negotiation
League. It is distinguished by its sensitive oppo-
nent modeling and flexible bidding strategy, which
together guarantee customized answers to shifting
negotiation dynamics. Our agent represents a strate-
gic combination of assertiveness and adaptability,
leveraging a sophisticated mix of strategies driven by
performance metrics and ongoing recalibration.

All things considered, our time at ANL 2024 has
been incredibly fulfilling. It has given us insight-

6



BidBot: The Adaptive Negotiation Agent

ful knowledge about automated negotiation and
equipped us to make more contributions to the multi-
agent system’s development.

References

[1] T. Baarslag, Exploring the strategy space of ne-
gotiating agents, Springer Theses, 2016. https:
//doi.org/10.1007/978-3-319-28243-5.

[2] R. Bahgat, S. AbdelRahman, and G. Farag, "Or-
der Statistics Bayesian–Mining Agent Modeling
for Automated Negotiation," An International
Journal of Computing and Informatics (Informatica),
vol. 33, issue 1, pp. 123-137, 2011.

[3] S. Chen, & G. Weiss, "An Efficient and Adaptive
Approach to Negotiation in Complex Environ-
ments," In L. De Raedt et al. (Eds.), ECAI 2012
(pp. 228-233). IOS Press, 2012. doi:10.3233/978-
1-61499-098-7-228.

[4] R. Aydoğan, O. Keskin and U. Çakan, "Would
You Imagine Yourself Negotiating With a Robot,
Jennifer? Why Not?," in IEEE Transactions on
Human-Machine Systems, vol. 52, no. 1, pp. 41-51,
Feb. 2022, doi: 10.1109/THMS.2021.3121664.

[5] Tim Baarslag, Koen Hindriks, Catholijn Jonker,
"Effective acceptance conditions in real-time
automated negotiation," Decision Support Sys-
tems, Volume 60, 2014, ISSN 0167-9236,
https://doi.org/10.1016/j.dss.2013.05.021.

7

https://doi.org/10.1007/978-3-319-28243-5
https://doi.org/10.1007/978-3-319-28243-5

	1. Introduction
	2. High Level Description of Our Awesome Agent
	System Architecture
	Performance Measures

	3. Agent Components and Strategy
	Bidding Strategy
	BidBot Nice Tit-for-Tat Strategy: 
	Interval Bidding: 

	Opponent Model
	Reservation Value Prediction:

	Acceptance Strategy

	Quantifying the Agent’s Performance
	Future Perspectives
	Conclusion

