
Arda Küçük Group11 Assignment report

This report created for describing and explaining the structure of AwesomeNegotiator class
designed for 2024 ANAC League. Awesome negotiator is an AI agent designed to manage
the negotiation process continuously analyzing the opponent’s behaviors and adjusting its
strategy based on this information. At every step of the negotiation process the agent’s
decision-making process is towards to predicting potential acceptable offer from the
opponent and determining the best response to these offers. The agent aims to maximize
its own benefits while also contributing positively to the negotiation process.

Class Structure and Functions

• On_preferences_changed:
This Method is called when there are changes in the agent’s preferences. It calculates
all possible outcomes within the domain and stores it in self.rational_outcomes.
Additionally, it sets the opponent’s reservation value as a starting point equal to its own
reservation value.

• Call:
Determines the agent’s response based on the current negotiation. If the offer from the
opponent is not acceptable a new offer is generated through the bidding_strategy
method

• Acceptance_strategy:
This function decides whether the current offer should be accepted or not. It
compares the utility of the current offer against a adjusted threshold based on time
progression. If the offer exceeds this threshold or close to the highest utility
observed from the opponent as the deadline approaches, it is accepted.

• Bidding_strategy
Determines the counteroffer to be presented to the opponent. As time progresses in
the negotiation the strategy evaluates offers considering both the agent’s and the
opponent's benefits to maximize overall utility.

• Update_partner_reserved_value
Updates the estimated reservation value of the opponent based on the most recent
offer received. If the utility from the opponent’s last offer is lower than what was
previously stored it indicates as a possible lower boundary which updates the
reserved value.

Acceptance Strategy
The acceptance strategy function is a crucial element of the agent's negotiation process.
This function is specifically designed to decide whether to accept the offer currently on the
table based on a dynamic assessment of the negotiation context.

Key components
• 1. Dynamic Threshold Based on Time Progression

The function calculates a threshold that decreases as the negotiation progresses.
This is based on the formula dynamic_threshold = (2 - 1.5 * time_elapsed) *
self.ufun.reserved_value, which adjusts the acceptance threshold lower as more
time elapses. This dynamic thresholding reflects the urgency and flexibility needed
as the negotiation approaches its deadline. Influanced by "Accepting optimally in
automated negotiation with incomplete information".

• 2. Decision Based on Utility Comparison:
The function checks if the utility of the current offer exceeds the dynamically
calculated threshold. If the offer's utility surpasses this threshold, it is immediately
accepted. Influanced by Effective acceptance conditions in real-time automated
negotiation," Decision Support Systems.

• 3. Endgame Strategy Enhancement:
As the deadline nears (remaining_time < 0.2), the strategy includes a check against
the highest utility offer observed so far within the negotiation (‘max_past_utility’). If
the current offer's utility is at least 90% of this maximum value, it is accepted. This
part of the strategy aims to secure a favorable outcome before the negotiation
window closes, minimizing the risk of leaving the negotiation table with a suboptimal
deal or no deal at all. Influanced by “Compromising strategy based on estimated
maximum utility for automated negotiating agents”.

After the first implementation of this code we can see that our score is highly
increased I aimed to get a better score then conceder to start. Here is my agent’s
score after implementing acceptance strategy:

Will run 4 negotiations on 1 scenarios between 2 competitors

negotiations ━━ 100% 0:00:07

 strategy score

0 Conceder 0.797052

1 AwesomeNegotiator 0.688255

Bidding Strategy
Key Components

• 1. Trade off Strategy
The strategy uses a time-dependent weighting system where the agent's priority
shifts from maximizing its own utility early in the negotiation to considering the
opponent's utility more as the deadline approaches. The weights adjust dynamically
as my_weight = 1 - time_elapsed and their_weight = time_elapsed, reflecting a
strategic shift towards compromise over time. Influanced by "Trade-off Strategy"
from negotiation literature, where negotiators balance multiple decision variables to
increase the overall welfare of all parties involved. This approach helps in reaching
agreements that are acceptable to both parties by making trade-offs between
different negotiation issues.

• 2. Concession Strategy
If no offers exceed the combined utility of the previous best offer, the strategy may
still choose an offer close to this best utility as a concession. This is part of ensuring
that the negotiation moves forward and reflects a willingness to compromise,
particularly as the negotiation nears its conclusion.

I influenced by A negotiation meta strategy combining trade-off and concession
moves and using similarity criteria to make issue trade-offs in automated
negotiations. Bidding strategy that involves combining different negotiation tactics,
specifically trade-offs and concessions. This influence is reflected in the strategy's
ability to dynamically adjust offers based on a combination of the agent’s and the
opponent’s utilities, emphasizing a balanced approach to advancing the negotiation
towards a mutually acceptable agreement.

Reserved Value
• 1. Utility Function Utilization:

 This method evaluates the utility of the latest offer made by the opponent using the
opponent's utility function (opponent_ufun). If the utility derived from this offer is lower
than the current stored reservation value (partner_reserved_value), the reservation value is
updated to this new lower value. This adjustment reflects the lowest utility the opponent
might accept based on the current negotiation context. Updating the reservation value
based on this new information allows your agent to adapt its negotiation strategy

accordingly, aiming to secure a more advantageous position by understanding the lowest
utility the opponent is potentially willing to settle for.

• 2. Updating Offer Strategies:

Following the update of the reservation value, the list of rational outcomes
(rational_outcomes) is also updated to reflect this new reservation threshold. This update
filters out any outcomes from the rational outcomes list that now fall below the newly
adjusted reservation value. By doing so, the agent ensures that all future offers it considers
are above or equal to the updated reservation value, which can enhance the effectiveness
of the offers it presents in later stages of the negotiation. This strategy helps maintain a high
standard for the offers and aligns the negotiation actions with the most current
understanding of the opponent’s negotiation threshold, potentially leading to more
successful negotiation outcomes.

Quantifying the agent’s performance
1.Main Domain

I tested main domain for 10 times so I can see my percentage in this domain.

Test1: 0 AwesomeNegotiator 0.275779 -1 Conceder 0.275490 8s
Test2: 0 Conceder 0.228300 -1 AwesomeNegotiator 0.096782 8s
Test3: 0 Conceder 0.403729 -1 AwesomeNegotiator 0.310993 10s
Test4: 0 Conceder 0.568815- 1 AwesomeNegotiator 0.324796 7s
Test5: 0 Conceder 0.330282 -1 AwesomeNegotiator 0.289102 7s
Test6: 0 Conceder 0.515639 -1 AwesomeNegotiator 0.275266 8s
Test7: 0 Conceder 0.673616 -1 AwesomeNegotiator 0.541514 8s
Test8: 0 Conceder 0.464263 -1 AwesomeNegotiator 0.383862 9s
Test9: 0 Conceder 0.306957 -1 AwesomeNegotiator 0.153313 9s
Test10: 0 Conceder 0.525583 -1 AwesomeNegotiator 0.369664 9s

