
AgentRenting2024

Redmar Bakker
Bjarne Daems
Mick Elshout

Daan van Loenen
Yoav Vaizman

Utrecht University

April 2024

Abstract
This report details the working of AgentRenting2024, hereafter referred to as AgentRenting. A

negotiation agent build using the NEGMAS framework for bilateral negotiation. AgentRenting uses
two strategies depending on the order of the negotiation. Both strategies are accompanied by a neural
network which predict the opponent’s reservation value during the negotiation. When AgentRenting is
the first to offer, it bases its offers on the concession its opponent makes and the passage of time. When it
is the last to make an offer, it concedes based on time and uses the predicted opponent’s reservation value
to determine the best final offer. Multiple experiment were run to compare AgentRenting’s performance
to agents used in previous ANAC competitions. Lastly, implications and improvements are discussed.

1 Introduction

Each year the ANAC (Automated Negotiation Agents Competition) sets out a challenge ([1] & [2]). For
2024, the challenge is:

”Design a negotiation agent for a bilateral negotiation that has access to its own utility and its opponent
utility, but not its opponents reservation value.”

With these constraints in mind, the strategy of AgentRenting2024, hereafter referred to as AgentRenting,
makes use of the opponent’s utility function to estimate the opponents reservation value. We hypothesise
that having the final offer impacts the negotiation strategy. This lead us to employ two different strategies,
depending on whether AgentRenting has the final offer or not.

To estimate the opponent’s reservation value, AgentRenting uses a neural network (NN). During the
negotiation, the NN predicts the reservation value. After reaching a certain level of certainty, the prediction
is used by both strategies in their own ways.

In the following section (section 2) a detailed description can be found of each component of AgentRenting.

2 Description

This section details the theory and practical implementation of AgentRenting. Each subsection handles a
component of the BOA framework proposed by [3].

2.1 Opponent model

2.1.1 Concession Curve

AgentRenting performs linear regression on the opponent’s concession curve to estimate what offers the
opponent is likely to make. The idea comes from the strategy used for IAmHaggler, the agent which finished

1

3rd place in the 2010 Automated Negotiating Agent Competition [4]. The last five offers done by the
opponent are fitted to a curve with a function of the following form:

P (t) = MinUtility + (1− F (t)) ∗ (MaxUtility −MinUtility) (1)

Where P is the the utility of the expected offer done by the opponent at round t, MaxUtility is the offer
which gives the opponent the highest utility in a negotiation and MinUtility is the utility that we expect
the opponent to concede to in the end, i.e. the utility they will receive from their (predicted) final offer.
F (t) is the concession function as a function of time t

F (t) = (t/T)1/e (2)

Where t is the current round in the negotiation, T is the total negotiation time and e is the ’tactic’
variable used as defined by [6].

This form of function took inspiration from the agent HardHeaded [7], which won the ANAC 2011. The
same form is used for AgentRenting’s own concession curve, used in its bidding strategy, which will be
elaborated on later.

MaxUtility can easily be found by iterating over all possible offers in the bidding space. MinUtility and
e are the parameters which are found using least squares regression. This is performed by the curve fit

function, imported from Python package scipy.optimize. F (t) decides the rate of concession of the con-
cession curve, which depends on the value set for e,. Therefore, assuming the opponent to do offers with, for
them, descending utilities, any concession curve starting at MaxUtility can be modeled. If the opponent’s
offers do not adhere to this constraint, the chance increases that the curve fit function will fail to fit the
offers to a concession curve of this form.

This curve fitting is performed in AgentRenting by the function opponent final offer

2.1.2 Neural Network

AgentRenting utilizes a neural network to predict the reservation value of the opponent. It incorporates
bid history, including utilities and response times, along with statistical features of the negotiation (up to
that point) and the estimated concession curve of the opponent. Since the model is employed throughout
the entire negotiation, bid history and statistical features may not always provide a sufficiently precise basis
for determining the reservation value. Therefore, we utilize the model only in the final 10 percent of the
negotiation. This approach also offers performance advantages, as we have encountered issues with reaching
time limits due to the significant time consumption of predictions.

2.1.2.1 Architecture

The neural network (NN) processes two types of inputs: (1) the bid history and (2) the statistical features.
This distinction allows us to apply specific functions for interpreting these two data types. The bid history is
handled using a Long Short-Term Memory (LSTM) function, a variant of a recurrent neural network (RNN)
model, which is effective in learning from three-dimensional step data. Since every prediction is based on
all previous bids (a list of lists), this function proves to be highly suitable. The statistical features are
processed using the Dense function, a fundamental layer function for NNs. Both inputs are fed into layers
of 64 neurons, followed by a second hidden layer of 32 neurons, then a third layer of 32 neurons, and finally,
the output layer with 29 nodes. The model predicts the reservation value in categories, dividing the range
of the reservation value into steps of 0.025 from 0.0 up to 0.7, with the last step (0.7 - 1.0) forming the
final category. These categories allow the model to choose from 29 possible outcomes. The loss function is
a modified version of categorical cross-entropy, introducing additional loss based on the deviation from the
true label. This encourages the model to predict values as close to the actual reservation value as possible,
rather than merely optimizing for accuracy. AgentRenting’s strategy benefits more from a directionally
correct prediction rather than one that is either exactly right or completely wrong.

Ladjusted = −
C∑
i=1

ytrue,i log(ypred,i) + |argmax(ytrue)− argmax(ypred)|n (3)

2

To improve the model, several best practices were employed. Normalization was applied to enhance
training efficiency and accuracy. To prevent overfitting, we divided the datasets into training (70 percent),
validation (15 percent), and testing (15 percent) datasets, introduced two dropout layers between the hidden
layers, and employed a reduce on plateau technique. This method decreases the learning rate of the Adam
optimizer when a plateau is reached in the validation dataset’s performance during training. The testing
dataset is subsequently used to evaluate the model on unseen data, determining its final accuracy.

2.1.2.2 Data construction and training

The model was developed in two phases: (1) the Java phase and (2) the Python phase. Initially, we created
a modified version of the ANL tournament function that collected data from negotiations held during the
tournament. Then, depending on the phase, tournaments were conducted with selected agents to gather ne-
gotiation data. Following this, a script was utilized to construct a trainable dataset from the collected data,
including necessary bid history, statistical features for the model and the estimated opponent’s concession
curve. In the Java phase, approximately 9,000 negotiations were simulated, yielding around 135,000 data
points (negotiation steps). For the Python phase, around 4,000 negotiations were conducted, resulting in
approximately 480,000 data points. The last dataset is bigger, since we had configured this tournament to
run with longer negotiations to mimic the real tournament more.

The first phase aimed to acquaint the model with the negotiation process and several successful strategies.
The agents selected for this phase were partially based on a paper by Ragzeghi et al., which discussed the use
of deep reinforcement learning to develop a negotiation agent for the ANL contest. The chosen agents, includ-
ing Yushu, ParsAgent3, Nozomi, IAMhaggler2011, AgentSmith2016, AgentFSEGA, and HardHeaded, were
top-rated in previous contest editions, representing a diverse range of frequently employed negotiation styles.

The second phase introduced adjustments for the 2024 edition of the tournament, which is crucial as the
2024 edition replaces time limits with step limits, significantly altering some dynamics. For this phase, the
model was retrained with data from the Python-based ANL2024 negotiation tournament, using the stan-
dard ANL2024 agents NaiveTitForTat, RVFitter, NashSeeker, MiCRO, Boulware, Conceder and Linear, and
AgentRenting with phase 1 version of the NN model. The results are shown in Figures 1 & 2

(a) Training (b) Evaluation

Figure 1: Phase 1

2.2 Bidding strategy

The bidding strategy of AgentRenting is dependent on having the final offer in a negotiation. We believe
that the agent which gets to do the final offer has an advantage. When the negotiation comes down to

3

(a) Training (b) Evaluation

Figure 2: Training Phase 2

the final offer, the ability to choose what this offer will be rather than whether to accept it is vital, as it
can be expected that most agents will accept any offer above their reservation value if the alternative is no
agreement.

In the first subsection, the bidding strategy when having the final offer is described. In the second subsec-
tion, the bidding strategy when the opponent has the final offer is described. In the code of AgentRenting,
this is represented as bidding strategy.

2.2.1 Final offer

Given the nature of a negotiation, a deal has to be struck where both agent have to slowly concede to each
other. [5] proposed 3 different conceding strategies for bilateral negotiations:

• Resource-dependent

• Behaviour-dependent

• Time-dependent

In the context of ANAC 2024, a resource conceding strategy is nonrelevant as resource does not play a role
in a negotiation. A behaviour-dependent strategy is essentially about imitating the opponents conceding
strategy. As both agents have full access to the utility of offers, both agents can use it to map the outcome
space of the negotiation. With this information, imitating the opponent’s behavior gives little advantage
besides protecting oneself from exploitative agents. This leaves only a time-dependent strategy. Which
concedes utility as a function of the time left in the negotiation. AgentRenting’s conceding function took
inspiration from the agent HardHeaded [7], which won the ANAC 2011.

At every round of the negotiation, AgentRenting uses formulas 1 & 2 to determine the utility to which
to concede to at that round. Where, with formula 1: MinUtility is initially set to the original Nash
Point, MaxUtility is the offer which gives AgentRenting the highest utility in a negotiation and F (t) is the
concession function as a function of time t

And with formula 2: t is the current round in the negotiation as a proportion of the total negotiation
time, T is the total negotiation time and e is set to 0.02. This value also comes from Hardheaded [7] and
means AgentRenting adopts a Boulware tactic. That is to say: AgentRenting starts conceding relatively
late, but when it does, relatively fast. In a negotiation with less than 100 total steps, e is set to 0.05, as
the few amount of steps in which the agent actually concedes makes it more favorable to start conceding
earlier. This Boulware tactic ensures that AgentRenting does not concede utility for the vast majority of
a negotiation and quickly concedes in the last stages of the negotiation to the Nash Point. At each round,
AgentRenting picks an offer on or above the utility set by Formulas 1 and 2 which gives the highest utility

4

to the opponent. This is to ensure that all made offers are close to the Pareto Front. Formulas 1 and 2 are
represented in AgentRenting as concession function.

During the negotiation, the neural network predicts the opponent’s reservation value based on metrics
mentioned in section 2.1.2. This is done with function self.update partner reserved value.
As running the NN is quite time-consuming, this function is only called in the last 5%. The NN returns
a range in which the opponent’s reservation value will be with a 0.8 probability. This can be interpreted
as the precision with which the opponent’s reservation value is predicted. If this range is smaller than
0.2, AgentRenting procedes to flatline. Flatlining is staying at the current utility and not conceding more,
resulting in an identical offer being made until the last round in the negotiation.

In the last round of the negotiation, AgentRenting predicts the opponent’s reservation value to be the
upper bound of the range received from the NN. The upper bound is chosen to play it safe and not end
up predicting lower than the opponent’s actual reservation value. This predicted opponent’s reservation
value and AgentRenting’s own reservation value are used to redefine the outcome space. From this reduced
outcome space, it selects the offer with the most utility for itself. If the opponent’s reservation value is
predicted by the NN to be above the Nash point, their reservation value is predicted to be at the Nash point.
If the prediction is correct and the opponent accepts any offer above its reservation value in the last round,
this offer is accepted by the opponent and gives AgentRenting the highest advantage achievable.

If the NN cannot reach the certainty threshold during the negotiation, a backup tactic is employed
to ensure a good outcome. After 90% of the negotiation time has passed, AgentRenting starts using the
opponent’s predicted concession curve, which is modelled as described in section 2.1.1, to update MinUtility
from formula 1, the utility that it is conceding to. The opponent’s final offer which corresponds to the
opponent’s MinUtility obtained by the regression is compared to the MinUtility AgentRenting is conceding
to itself. If its ownMinUtility gives AgentRenting a lower utility than the utility of the offer that its opponent
is conceding to, AgentRenting changes its MinUtility to be slightly below this level. This is represented
in AgentRenting as opponent modeling. The reason behind this strategy is to prevent AgentRenting from
conceding to a point which is less favorable than what we expect our opponent to be willing to give us in
the end. The choice to update MinUtility to slightly below what we expect to get is to play it a little safer
and not depend blindly on the regression technique.

If the opponent modeling fails and we do not flatline or update ourMinUtility, the hard headed Boulware
tactic is continued until the end, offering the Nash point as our last offer if there is no agreement before the
final step.

The entire final offer strategy of AgentRenting is represented in the function last offer strategy.

2.2.2 Not final offer

AgentRenting’s bidding strategy, in the case where it does not have the final offer, is similar to having the
last offer but different in some key ways. Suppose we assume our opponent to do offers with descending
utilities for them and ascending utilities for us. If this were the case, accepting their final offer would grant
us the highest utility. Our only goal should be to convince any opponent modeling, if the opponent uses one,
that we have a high reservation value, to convince the opponent to concede to us as much as possible.

A concession curve is used in the same way with the same form of function (formulas 1 and 2), with
MinUtility initially set to the original Nash point. However, the tactic variable e is set to 0.05 to be more
conceding. To make the opponent concede, we reason it is necessary to concede ourselves as well, as their
opponent modeling might fail otherwise, or they might have systems in place to deal with hard headed
agents. The opponent’s modelled concession curve from section 2.1.1 is used in the same way as in the final
offer strategy, updating MinUtility when we expect the opponent to concede to a better offer than we are
currently conceding to, to prevent conceding more than necessary. However, the neural network is used in
a slightly different way. If the opponent’s reservation value range (i.e. precision) which we receive from the
NN is below 0.2, and if the current final offer which we concede to seems to give the opponent a lower utility
than their reservation value (now predicted to be the upper bound of this range), MinUtility is updated
to correspond with an offer which is best for us but still above the opponent’s reservation value. Note that
this overrides any MinUtility updates which result from the opponent modeling via curve fitting. If we

5

do indeed update MinUtility, this still means our offers will not be rational for the opponent to accept
until our final offer. But by making a final offer which we expect the opponent to accept, we try not to
be completely dependent on the opponent’s final offer. This strategy is represented in AgentRenting as
not last offer strategy

2.3 Acceptance strategy

During the negotiation, AgentRenting only accepts offers that are at least as good as the utility of the offer
AgentRenting makes itself in the same round. If this is the case, AgentRenting accepts the offer made by
our opponent. In the final step, if the opponent has the last offer, AgentRenting accepts any offer above its
reservation value. This means that AgentRenting completely concedes to the opponent in the final round,
if the opponent has the final offer, no agreement has been made before the final round, and the opponent’s
final offer is above our reservation value. Although this is a big difference with agent HardHeaded [7], which
would often not come to an agreement, we believe that getting some utility is better than nothing at all,
especially because AgentRenting compensates by being very hard headed when it does have the final offer.
This is represented in AgentRenting as acceptance strategy.

References

[1] Tim Baarslag, Koen Hindriks, Catholijn Jonker, Sarit Kraus, and Raz Lin. The First Automated Negoti-
ating Agents Competition (ANAC 2010), volume 383, pages 113–135. 01 2012. ISBN 978-3-642-24696-8.
doi: 10.1007/978-3-642-24696-8 7.

[2] Tim Baarslag, Katsuhide Fujita, Enrico Gerding, Koen Hindriks, Takayuki Ito, Nicholas Jennings,
Catholijn Jonker, Sarit Kraus, Raz Lin, Valentin Robu, and Colin Williams. Evaluating practical nego-
tiating agents: Results and analysis of the 2011 international competition. Artificial Intelligence, 198:
73–103, 05 2013. doi: 10.1016/j.artint.2012.09.004.

[3] Tim Baarslag, Koen Hindriks, Mark Hendrikx, Alex Dirkzwager, and Catholijn Jonker. Decoupling
Negotiating Agents to Explore the Space of Negotiation Strategies, volume 535, pages 61–83. 01 2014.
ISBN 9784431547570. doi: 10.1007/978-4-431-54758-7 4.

[4] Enrico H. Gerding Nicholas R. Jennings Colin R. Williams, Valentin Robu. IAMhaggler: A Negotiation
Agent forComplex Environments, volume 383, pages 151–158. 11 2011. ISBN 978-3-642-24696-8. doi:
10.1007/978-3-642-24696-8 10.

[5] Peyman Faratin, Carles Sierra, and Nick R. Jennings. Negotiation decision functions for autonomous
agents. Robotics and Autonomous Systems, 24(3):159–182, 1998. ISSN 0921-8890. doi: https://doi.org/
10.1016/S0921-8890(98)00029-3. Multi-Agent Rationality.

[6] S. Fatima, Michael Wooldridge, and Nicholas Jennings. Optimal negotiation strategies for agents with
incomplete information. volume 2333, pages 377–392, 08 2001. ISBN 978-3-540-43858-8. doi: 10.1007/
3-540-45448-9 28.

[7] Thijs Krimpen, Daphne Looije, and Siamak Hajizadeh. HardHeaded, volume 435, pages 223–227. 01
2013. ISBN 978-3-642-30736-2. doi: 10.1007/978-3-642-30737-9 17.

6

	Introduction
	Description
	Opponent model
	Concession Curve
	Neural Network

	Bidding strategy
	Final offer
	Not final offer

	Acceptance strategy

