RIED A BTRACRISE AE ADSFIEIERIAT IRISFEL 1 1CER = A ERLITRAE 1 1E A ERITR [P
DEPARTMIE F ARTIFICIAL INTE ENICE ACHINE LEARNING { =zt)
4 B \ Icet
\ Choice Based Credit Grading Scheme [CBCGS] N\ =T &
[‘ Under TCET Autonomy ¥ WG T
TECHNOLOGIST University of Mumbai e in 200

Experiment 05 : Write a program to implement RNN.

Learning Objective : Write a program to implement RNN.

Tools : Python

Theory :

Recurrent Neural Network(RNN) is a type of Neural Network where the output from the
previous step is fed as input to the current step. In traditional neural networks, all the inputs
and outputs are independent of each other. Still, in cases when it is required to predict the
next word of a sentence, the previous words are required and hence there is a need to
remember the previous words. Thus RNN came into existence, which solved this issue with
the help of a Hidden Layer. The main and most important feature of RNN is its Hidden state,
which remembers some information about a sequence. The state is also referred to as the
Memory State since it remembers the previous input to the network. It uses the same
parameters for each input as it performs the same task on all the inputs or hidden layers to
produce the output. This reduces the complexity of parameters, unlike other neural networks.

The key feature of RNNs is their ability to maintain a state or memory of previous inputs
while processing new inputs. This memory enables RNNs to capture context and
dependencies within sequential data. Each neuron in an RNN is equipped with a "hidden
state" that serves as its memory, and this hidden state is updated at each time step based on
the current input and the previous hidden state.

In summary, RNNs are a powerful class of neural networks capable of capturing temporal
dynamics in sequential data, with applications ranging from natural language processing to
time series analysis and beyond.

Steps to implement RNN :

e Initialization : Initialize the parameters of the RNN, including the weights
connecting the input layer to the hidden layer, the weights connecting the hidden layer
to itself (recurrent weights), and the weights connecting the hidden layer to the output
layer. Also, initialize biases for each layer.

e Forward Pass :

o For each time step
o tin the input sequence:
m Compute the hidden state at time t using the input at time t and the
previous hidden state.
m Compute the output at time t using the hidden state at time t.
m Store the hidden states and outputs for each time step.

SC 1

TCET
T OF ARTIFICIAL INTELLIGENCE & MACHINE LEARNING ¢

Choice Based Credit Grading Scheme [CBCGS] =7
Under TCET Autonomy LR~
University of Mumbai £t in 2001

e Compute Loss : Calculate the loss between the predicted outputs and the true labels
at each time step using a suitable loss function (e.g., cross-entropy loss for
classification tasks, mean squared error for regression tasks).

e Backpropagation Through Time (BPTT) :

o Initialize gradients for all the weights and biases to zero.
o For each time step t in reverse order :
m Compute the gradients of the loss with respect to the output at time t.
m Backpropagate the gradients through the network to compute the
gradients of the loss with respect to the hidden state at time t.
m Update the gradients of the loss with respect to the weights and biases
using the gradients computed in the previous steps.
o Clip gradients if necessary to prevent exploding gradients.

e Update Parameters : Update the parameters (weights and biases) of the network
using an optimization algorithm such as stochastic gradient descent (SGD), Adam,
RMSprop, etc. Adjust the learning rate if necessary.

e Repeat : Repeat steps 2-5 for a fixed number of iterations (epochs) or until
convergence criteria are met.

Implementation :

[1]: | # Importing the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, LSTM, Dropout, GRU, Bidirectional
from tensorflow.keras.optimizers import SGD

from tensorflow.random import set_seed

set_seed(455)
np.random. seed (455)

[2]: dataset = pd.read_csv("/content/Mastercard_stock_history.csv",
~index_col="Date", parse_dates=["Date"]).drop(["Dividends", "Stock Splits"],,
waxis=1)

print(dataset.head())

Open High Low Close Volume
Date
2006-05-25 3.748967 4.283869
2006-05-26 4.307126 4.348058
2006-05-30 4.183400 4.184330
2006-05-31 4.125723 4.219679
2006-06-01 4.179678 4.474572

.739664 4.279217 395343000
.103398 4.179680 103044000
.986184 4.093164 49898000
.125723 4.180608 30002000
.176887 4.419686 62344000

B Wb W

[3]: print(dataset.describe())

SC 2

TCET f
[T OF ARTIFICIAL INTELLIGENCE & MACHIN _7

Choice Based Credit Grading Scheme [CBCGS] .

b Under TCET Autonomy € =Y
TECHNOLOGIST University of Mumbai et n 2001

[5]: |tstart = 2016
tend = 2020

def train_test_plot(dataset, tstart, tend):
dataset.loc[f"{tstart}":f"{tend}", "High"].plot(figsize=(16, 4),,
~legend=True)
dataset.loc[f"{tend+1}":, "High"].plot(figsize=(16, 4), legend=True)
plt.legend([f"Train (Before {tend+1})", f"Test ({tend+1} and beyond)"])
plt.title("MasterCard stock price")
plt.show()

train_test_plot(dataset,tstart,tend)

MasterCard stock price

4001 — Train (Before 2021) ,‘/J\(M,
—— Test (2021 and beyond) A W
W
W

o o ©° o o° o o7

Date

[6]: def train_test_split(dataset, tstart, tend):
train = dataset.loc[f"{tstart}":f"{tend}", "High"].values
test = dataset.loc[f"{tend+1}":, "High"].values
return train, test
training_set, test_set = train_test_split(dataset, tstart, tend)

[7]: sc = MinMaxScaler(feature_range=(0, 1))
training_set = training_set.reshape(-1, 1)
training_set_scaled = sc.fit_transform(training_ set)

[8]: def split_sequence(sequence, n_steps):

X, y = 1list(), list()

for i in range(len(sequence)):
end_ix = i + n_steps
if end_ix > len(sequence) - 1:

break

seq_x, seq_y = sequenceli:end_ix], sequence[end_ix]
X.append(seq_x)
y.append(seq_y)

return np.array(X), np.array(y)

n_steps = 60

features = 1

split into samples

X_train, y_train = split_sequence(training set_scaled, n_steps)

[9]: | # Reshaping X_train for model
X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],features)

[10]: # The LSTM architecture
model_lstm = Sequential()
model_lstm.add(LSTM(units=125, activation="tanh", input_shape=(n_steps,
~features)))
model_lstm.add(Dense(units=1))
Compiling the model
model_lstm.compile(optimizer="RMSprop", loss='"mse")

model_lstm.summary ()

[11]

[t

[20

[13]:

[14]:

TCET

Choice Based Credit Grading Scheme [CBCGS]
Under TCET Autonomy

University of Mumbai

T OF ARTIFICIAL INTELLIGENGC MACHIN

Model: "sequential"

Layer (type) Output Shape Param #
1stm (LSTM) (None, 125) 63500
dense (Dense) (None, 1) 126

Total params: 63626 (248.54 KB)
Trainable params: 63626 (248.54 KB)
Non-trainable params: O (0.00 Byte)

:].values

model_lstm.fit(X_train, y_train, epochs=50, batch_size=32)
Epoch 1/50
38/38 [] - 2s b6ms/step - loss: 4.7505e-04
Epoch 50/50
38/38 [] - 3s 78ms/step - loss: 3.7731le-04
<keras.src.callbacks.History at 0x7a351a126ef0>
dataset_total = dataset.loc[:,"High"]
inputs = dataset_total[len(dataset_total) - len(test_set) - n_steps
inputs = inputs.reshape(-1, 1)
#scaling
inputs = sc.transform(inputs)
Split into samples
X_test, y_test = split_sequence(inputs, n_steps)
reshape
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], features)
#prediction
predicted_stock_price = model_lstm.predict(X_test)
#inverse transform the values
predicted_stock_price = sc.inverse_transform(predicted_stock_price)
7/7 [1 - 1s 63ms/step
def plot_predictions(test, predicted):
plt.plot(test, color="gray", label="Real")
plt.plot(predicted, color="red", label="Predicted")
plt.title("MasterCard Stock Price Prediction")
plt.xlabel("Time")
plt.ylabel("MasterCard Stock Price")
plt.legend()
plt.show()
def return_rmse(test, predicted):
rmse = np.sqrt(mean_squared_error(test, predicted))
print("The root mean squared error is {:.2f}.".format(rmse))
plot_predictions(test_set,predicted_stock_price)

Tceﬂ

Estd. in 2001

SC

TCET

OF ARTIFICIAL INTELLIGENCE & MACHIN
Choice Based Credit Grading Scheme [CBCGS]
Under TCET Autonomy
University of Mumbai

il

[

MasterCard Stock Price Prediction

400 - — Real
—— Predicted

390 4

380 +

370 1

360

350 4

MasterCard Stock Price

340 +

330 4

320 +

T T T T T
0 25 50 75 100 125 150 175 200
Time

[16]: return_rmse(test_set,predicted_stock_price)

The root mean squared error is 6.46.

Result and Discussion :

Learning Outcomes : Students should have the ability to

LO 4.1: Ability to understand the fundamental concepts of Recurrent Neural Networks,
including the role of hidden states, memory cells, and sequential data processing.
LO 4.2: Ability to Identify and describe real-world applications where RNNs.

Course OQutcomes :

CO : Understand and apply Recurrent Neural Networks.
Conclusion :

SC 5

TECHNOLOGIST

OF ARTIFICIAL

TCET
INTELLIGENCE &

Choice Based Credit Grading Scheme [CBCGS]

Under TCET Autonomy
University of Mumbai

Viva Questions :

Q1. How do RNNs differ from traditional feedforward neural networks?

Q2. What is the role of the hidden state in an RNN?

For Faculty Use
Correction | Formative | Timely Attendance / Total
Parameters | Assessment | completion | Learning

[40%] of Practical | Attitude

[40%] [20%]

Marks
Obtained
SC

