F ARTIFICIAL INTELLIGENCE & MACHINE LEARNIN ‘Tif"
Choice Based Credit Grading Scheme [CBCGS] 3 \ c

Under TCET Autonomy < K
University of Mumbai £t in 2001

Experiment 06 : Write a program for Image Classification using CNN.

Learning Objective : Write a program for image classification using CNN.

Tools : Python

Theory :

CNN stands for Convolutional Neural Network. It's a type of deep learning algorithm that is
particularly well-suited for analyzing visual data like images and videos. CNNs are inspired
by the organization of the animal visual cortex and have been successful in various computer
vision tasks such as image classification, object detection, segmentation, and more.

Here's how CNNs work :

1.

Convolutional Layers: The core building blocks of CNNs are convolutional layers.
These layers apply a set of learnable filters (also called kernels) to small patches of
input data. This operation helps in detecting features like edges, textures, or patterns
in the input images.

Pooling Layers: After convolutional layers, pooling layers are often added to reduce
the spatial dimensions of the input volume, thus decreasing the computational
complexity. Pooling layers typically perform operations like max-pooling or
average-pooling to downsample the feature maps obtained from the convolutional
layers.

Activation Function: Usually, after each convolutional or pooling layer, an activation
function like ReLU (Rectified Linear Unit) is applied elementwise to introduce
non-linearity into the network.

Fully Connected Layers: Towards the end of the network, one or more fully
connected layers are added. These layers take the features extracted by the
convolutional layers and learn to classify them into different categories based on their
learned representations.

Softmax Layer: In classification tasks, a softmax layer is often used as the final layer
to produce probability scores for each class. The class with the highest probability is
chosen as the predicted class.

CNNss are typically trained using labeled datasets through a process called backpropagation,
where the network adjusts its parameters (weights and biases) to minimize the difference
between predicted and actual outputs.

CNNs have been instrumental in achieving state-of-the-art performance in various computer
vision tasks and have found applications in diverse fields such as autonomous vehicles,
medical image analysis, facial recognition, and more.

SC

The basic steps to build an image classification model using a neural network are:

b=

TCET
L INTELLIG

T OF ARTIFICIA

Under TCET Autonomy
University of Mumbai

ENCE & MACHIN
Choice Based Credit Grading Scheme [CBCGS]

Flatten the input image dimensions to 1D (width pixels x height pixels).

Normalize the image pixel values (divide by 255).
One-Hot Encode the categorical column.

\\tcéﬂ

=

Estd. in 2001

Build a model architecture (Sequential) with Dense layers (Fully connected layers).

Train the model and make predictions.

Implementation :

[E13) s

import tensorflow as tf
from keras import datasets, layers, models

[2]:
~load_data()

Normalize pizel wvalues between O and 1
train_images, test_images =
[3]: # Print the shapes of the loaded data
print ("Shape of training images:", train_images.shape)
print("Shape of training labels:", train_labels.shape)
print("Shape of test images:", test_images.shape)
print ("Shape of test labels:", test_labels.shape)

of training images: (50000, 32, 32, 3)
of training labels: (50000, 1)

of test images: (10000, 32, 32, 3)

of test labels: (10000, 1)

Shape
Shape
Shape
Shape

[4]: model = models.Sequential()
model
model.add (layers.MaxPooling2D((2, 2)))
model.
model.add(layers.MaxPooling2D((2, 2)))

model.

Flatten the output from 2D to 1D
model.add(layers.Flatten())
model.add(layers.Dense (64, activation='relu'))
model .add (layers.Dense(10))

Print a summary of the model architecture
model. summary ()

Model: "sequential"

train_images / 255.0, test_images / 255.0

add(layers.Conv2D(64, (3, 3), activation='relu'))

add(layers.Conv2D(64, (3, 3), activation='relu'))

10 classes for CIFAR-10

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 30, 30, 32) 896
max_pooling2d (MaxPooling2 (None, 15, 15, 32) 0

D)

conv2d_1 (Conv2D) (None, 13, 13, 64) 18496
max_pooling2d_1 (MaxPoolin (None, 6, 6, 64) 0

g2D)

conv2d_2 (Conv2D) (None, 4, 4, 64) 36928

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.

.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))

SC

TCET

T OF ARTIFICIAL INTELLIGENCE & MACHINE LEARBNING
Choice Based Credit Grading Scheme [CBCGS]
Under TCET Autonomy

University of Mumbai €t in 2001
flatten (Flatten) (None, 1024) 0
dense (Dense) (None, 64) 65600
dense_1 (Dense) (None, 10) 650

Total params: 122570 (478.79 KB)
Trainable params: 122570 (478.79 KB)
Non-trainable params: O (0.00 Byte)

[6]: model.compile(optimizer='adam', loss=tf.keras.losses.
~SparseCategoricalCrossentropy (from_logits=True), metrics=['accuracy'])
history = model.fit(train_images, train_labels, epochs=50,,
~validation_data=(test_images, test_labels))

Epoch 1/50

1563/1663 [] - 17s 8ms/step - loss: 1.5257 -
accuracy: 0.4438 - val_loss: 1.2574 - val_accuracy: 0.5542

Epoch 2/50

1563/1663 [1 - 9s 6ms/step - loss: 1.1554 -
accuracy: 0.5900 - val_loss: 1.05562 - val_accuracy: 0.6211

Epoch 3/50

1563/1663 [] - 7s 4ms/step - loss: 1.0114 -

accuracy: 0.6447 - val_loss: 0.9928 - val_accuracy: 0.6518

Epoch 48/50

1563/1563 [] - 8s b5ms/step - loss: 0.1327 -
accuracy: 0.9532 - val_loss: 2.4169 - val_accuracy: 0.6766

Epoch 49/50

1663/1563 [] - 8s b5ms/step - loss: 0.1232 -
accuracy: 0.9566 - val_loss: 2.4369 - val_accuracy: 0.6872

Epoch 50/50

1563/1563 [] - 8s b5ms/step - loss: 0.1292 -
accuracy: 0.9570 - val_loss: 2.5471 - val_accuracy: 0.6754

[6]: test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('Test accuracy:', test_acc)

313/313 - 1s - loss: 2.5471 - accuracy: 0.6754 - 713ms/epoch - 2ms/step
Test accuracy: 0.6754000186920166

[7]: model.save('model.h5"')

/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103:
UserWarning: You are saving your model as an HDF5 file via “model.save() . This
file format is considered legacy. We recommend using instead the native Keras

format, e.g. "model.save('my_model.keras') .
saving_api.save_model(

[8]: import numpy as np
import matplotlib.pyplot as plt
import cv2
from google.colab.patches import cv2_imshow

[9]: | # Load the trained model
model = tf.keras.models.load_model('model.h5")

[18]: # Load and preprocess a test image
image_path = '/content/drive/MyDrive/Dataset/ImageSet/dogl.jpg'
image = tf.keras.preprocessing.image.load_img(image_path, target_size=(32, 32))
input_array = tf.keras.preprocessing.image.img_to_array(image)
input_array = np.expand_dims(input_array, axis=0)
input_array = input_array / 255.0

TCET 2
DEPARTMENT OF ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

Choice Based Credit Grading Scheme [CBCGS]
Under TCET Autonomy ® l
University of Mumbai £t in 2001

[19]: img = cv2.imread(image_path)
cv2_imshow (img)

[20]: # Make predictions
predictions = model.predict(input_array)
predicted_class = np.argmax(predictions[0])

1/1 [1 - Os 30ms/step
[21]: # Print the predicted class and confidence value
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',yu
<'horse', 'ship', 'truck']
print("Predicted class:", class_names[predicted_class])

Predicted class: dog

Result and Discussion :

Learning Outcomes : Students should have the ability to

LO 6.1: Ability to implement image classification tasks using CNNs, where the network
learns to classify images into different categories based on the features it extracts.

LO 6.2: Understand how CNNs can be adapted for object detection tasks, where the goal is to
locate and classify objects within images.

SC 4

TCET o

ARTIFICIAL INTELLIGENCE & MACHINE LEARBNING
Choice Based Credit Grading Scheme [CBCGS] , == F
Under TCET Autonomy LB~
University of Mumbai £t in 2001

SUMIL

D [~\UEY
TECHNOLOGIST

Course OQutcomes :
CO : Understand and apply Convolutional Neural Networks.

Conclusion :

Viva Questions :

Q1. What is the purpose of activation functions in CNNs, and which activation functions are
commonly used?

Q2. How do convolutional layers work in a CNN, and what role do they play in image
classification?

For Faculty Use
Correction | Formative | Timely Attendance / Total
Parameters | Assessment | completion | Learning
[40%] of Practical | Attitude
[40%] [20%]
Marks
Obtained

