
FluxEngine v3.0: Changes and User Guide

April 16, 2020

Contents

1 Overview and major changes 2
1.1 Execution time . 2
1.2 Feedback and bug reporting . 3

2 Downloading and installing FluxEngine 3

3 Verifying your installation 4

4 Interactive tutorials 4

5 Running FluxEngine v4.0 5
5.1 Using the command line tool . 5
5.2 Driving FluxEngine from your own Python scripts 6

6 Input data requirements 7

7 Creating and modifying configuration files 9
7.1 Opening configuration files . 9
7.2 Configuration file parameters . 9
7.3 k parameterisation specific variables . 13
7.4 Tokens in file paths . 14
7.5 Data layers in detail . 14

7.5.1 Using tokens to reuse selected data 16
7.5.2 Optional data layer attributes . 16
7.5.3 Data layer preprocessing . 17

7.6 Working with different temporal resolutions 17
7.7 Indexing input data using the temporal dimension 18
7.8 Setting output filenames and directory structure 18
7.9 Grouping output from multiple time points into a single file 19
7.10 Filtering input data using a mask . 19

1

8 Bundled tools 20
8.1 Calculating net fluxes with fe calc budgets.py 21
8.2 Using fe reanalyse fco2 driver.py to reanalyse data to a consistent

temperature and depth . 21
8.3 Using fe text2ncdf.py to create FluxEngine compatible NetCDF files . 22
8.4 Automatically updating old configuration files 23

9 Guide for developers 23
9.1 Adding pre-processing functions . 23
9.2 Adding k-parametrisation functors . 24

9.2.1 Adding configuration variables . 25
9.3 Contributing . 25

1 Overview and major changes

The major changes, new to FluxEngine version 4.0 include:

• Python version - With support for Python 2.x stopping in January, all FluxEngine
code and tools have been updated to run using Python 3.6+.

• Installation as a Python package - FluxEngine v4.0 is provided as a Python package
which can be installed from PyPi using Pip. This considerably simplified the
installation process for Windows, MacOS and Linux, and full supports the use of
virtual environments.

• Command line tools - FluxEngine comes with a number of command line tools.
These have been updated to separate importable library code (which can be used
in custom Python scripts) from the driver scripts which are used to run the tools
via the command line. The driver scripts are now automatically added to your op-
erating system’s environment path, mean you don’t need to cd into the FluxEngine
tools directory to use them.

• Updated interactive tutorials - Four interactive Jupyter notebook tutorials were
added after the release of FluxEngine v3.0. These have been updated for v4.0.
These can be found in the tutorials subdirectory.

• Simplifications to config files - Configuration files have been further simplified to
remove some unnecessary options. In some cases these options were no longer
needed, in other cases they could be inferred from the data provided - reducing
the potential for user error when creating configuration files.

1.1 Execution time

Simple benchmarking was conducted using an Intel Core i5 2.7GHz processor with 8GB
RAM running MacOS El Capitan. A one year (2010) run using the SOCATv4 verification
configuration (Nightingale 2000 k parameterisation with process indicator layers off)

2

took approximately 6 minutes to complete using FluxEngine v3.0. This is compared to
over 9 minutes for the same configuration using FluxEngine v2.0. This speed-up can
be largely attributed to the removal of non-required input data layers. Run time will
therefore differ depending on the options specified by configuration files. For example
the Takahashi 2009 verification run took just 4 minutes to complete.

1.2 Feedback and bug reporting

Feedback is greatly appreciated both in terms comments about which aspects of running
and using FluxEngine were not intuitive or poorly explained, as well as which features
would be useful to you in future releases. These can be e-mailed to Tom Holding at
t.m.holding@exeter.ac.uk. Bugs can be reported via our GitHub page by opening
an issue: https://github.com/oceanflux-ghg/FluxEngine/issues or by e-mailing
Tom.

2 Downloading and installing FluxEngine

You will need Python 3.6 (or newer) installed before you can install or use FluxEngine.
If you don’t already have Python installed we recommend installing Anacondas for
this because it has excellent support for Windows, MacOS and Linux. Anacondas
is specifically designed to be used by scientists and engineers, and comes with use-
ful package and environment management tools. You can download Anacondas from
https://www.anaconda.com/distribution/ (make sure you choose the version for Python
3.6 or newer.

It is also highly recommended that you create a separate virtual environment for Flux-
Engine. This prevents dependencies from different projects or versions of Python from
interfering with one another. For information on how to create and manage virtual en-
vironments with Anacondas, see https://docs.conda.io/projects/conda/en/latest/user-
guide/tasks/manage-environments.html.

Once you have Python installed (whether via Anacondas or not) you can install Flux-
Engine in two ways. For most people, the easiest way is to use Pip - a command line tool
for downloading and installing Python modules. The latest stable version of FluxEngine
is packaged as a Python module, and can be installed from PyPi with the following
command:

pip install FluxEngine

The very latest version, which may not be as stable as the PyPi version, can
be downloaded from our GitHub repository https://github.com/oceanflux-ghg/

FluxEngine/archive/master.zip, or if you’re a Git user you can clone the reposi-
tory here: https://github.com/oceanflux-ghg/FluxEngine.git. The PyPi version
will be updated periodically as features are added and tested, or bugs patched. If you
download FluxEngine from GitHub you’ll need to build the package and install it from
your local file system, e.g. by running:

3

python setup.py sdist bdist_wheel

pip install dist/FluxEngine-4.0.dev0.tar.gz

3 Verifying your installation

Two verification scripts come bundled with FluxEngine. These make it easy to verify
that everything has installed correctly and that FluxEngine is producing correct output.
These scripts compare output generated by your local copy of the FluxEngine with a
known reference, and will report any discrepancies.

To verify using Takahashi2009 (T09) and/or SOCATv4 data run the following
command/s using command line (aka Terminal or Command Prompt). Make sure
you have activated the correct virtual environment if you installed FluxEngine us-
ing an environment manager. The executable scripts fe verify takahashi09.py and
fe verify socatv4.py will have been automatically added to your environment path
so there is no need to change directory. On Windows you may need to exit and re-
open command prompt before running these commands. The output will be stored in a
verification output subdirectory in your current working directory.

fe_verify_takahashi09.py

fe_verify_socatv4.py

Verification will take 10-20 minutes and it your installation has been successful you
will receive a messages saying that the verification is completed successfully after each
command.

4 Interactive tutorials

FluxEngine comes with interactive Jupyter notebook tutorials which demonstrate the
basics of how to setup and run FluxEngine for some simple scenarios. These run in
a web browser, and can be started by running fe tutorials.py from the command
line (make sure you’re in the correct virtual environment first). This command starts
a Jupyter server and automatically opens the Jupyter hub page for the tutorials in a
web browser. In the web browser you’ll the contents of the tutorial’s directory, with a
sub-directory for each tutorial. Within each tutorial sub-directory there is a Jupyter
notebook file (ending in .ipynb). Clicking the Jupyter notebook file will open the
interactive tutorial.

Note: On some computers, the web browser may not automatically open. If this
happens you can copy and paste the link provided in the command prompt / terminal
window into a web browser. The tutorials cover:

• Tutorial 1 - Introductory topics, including: using Jupyter notebooks, verification,
modifying FluxEngine configuration files, adding input data layers, running Flux-
Engine and plotting output.

4

• Tutorial 2 - Working with in situ data, including: using build in tools to re-
analyse in situ fCO2 data to a consistent temperature and depth, using the
fe text2ncf.py tool to converting text formatted data into netCDF files for use
with FluxEngine, creating/modifying configuration files to use new data, using the
fe append2insitu.py tool to append FluxEngine output to the original in situ
files.

• Tutorial 3 - Working with fixed station data, including: a more detailed look at
fe reanalyse fco2 driver.py, utilising input data with a temporal dimension,
configuring FluxEngine to perform unit conversions with a pre-processing function,
outputting CO2 flux time series.

• Tutorial 4 - NO2 gas fluxes, including: preparing and input data to calculate
atmosphere-to-ocean NO2 fluxes, using pre-processing functions to perform unit
conversions and estimate missing parameters, overriding dimension names for in-
dividual input data layers, and visualising the effect of surfactant suppression on
gas fluxes.

5 Running FluxEngine v4.0

There are two ways to run FluxEngine: using the command line tools or by importing
FluxEngine as a module in a custom Python script. The simplest method is to use the
command line tools as these provide enough flexibility for most use-cases.

5.1 Using the command line tool

The command line tool for running FluxEngine is called fe run.py and is automatically
added to your environment path, so you don’t need to be in a particular directory to
access it (but you will have to activate the correct virtual environment, if you’re using
one). To run FluxEngine using this tool, open a terminal window (or Command Prompt)
and type fe run.py followed by the path to a configuration file, then any other options:

fe_run.py config [-options]

where [-options] is an option list of options to change how FluxEngine runs. Infor-
mation on valid options can be listed using fe run.py -h to view the help information.
The -h flag can be used with any of the command line tolls to view the help information.
Some options will require you to specify a value, for example when defining start and
stop dates, whereas others will just turn a specific feature on/off.

fe_run.py configs/example_config.conf -l -start_date 2000 -end_date 2010

The above command will run FluxEngine using a configuration file called
example config.conf located in the configs subdirectory of the current working di-
rectory. All file paths in FluxEngine can be supplied as absolute paths or relative to

5

the current working directory. Configuration files are used to define the flux calculation
in detail, including the flux equation to use, input data, gas transfer parameterisation
and output file structure. Next, the command uses three options: The -l option tells
FluxEngine to run without process indicator layers (described later). Turning these off
reduces the time taken to run and results in smaller output files. The second and third
options, -start date and -end date, tell FluxEngine to calculate fluxes from the year
2000 to the year 2010. More information on using fe run.py can be found in the Jupyter
tutorials.

Note: A useful option for testing is -S1 which will only run FluxEngine for the first
time step. This allows you to check the output, and for any error messages, before
committing to a longer run.

5.2 Driving FluxEngine from your own Python scripts

Some tools are provided which allow you to write Python scripts to run FluxEngine
in custom ways. To do this you should import the fluxengine package using import

fluxengine. The fluxengine.core.fe setup tools module contains a function called
run fluxengine, which allows you to specify custom configuration objects to drive Flux-
Engine. This module also contains functions for parsing, verifying and modifying con-
figuration files. While these tools are not currently well documented, example use can
be found in the fe run.py command line tool, and they allow much more control over
how FluxEngine runs. For example it is possible to use a single configuration file and
overwrite a subset of parameters to run a suite of similar simulations. This also allows
FluxEngine to be incorporated into other projects, for example as one step in a larger
model or workflow.

The general workflow for initialising and running FluxEngine using these tools involves
the following steps:

1. Parse the config file

2. Verify the config file)

3. Specify one or more time point to run the FluxEngine

4. Create a set of run parameters (these are derived from the verified config file but
are specific to the date/time you are using)

5. Run FluxEngine for a specific date/time

6. Check return code

Steps 4-6 will be repeated for each time point you want to run the FluxEngine for.
Various functions are available in fluxengine.core.fe setup tools to help with each
of these steps. For an example of how they are used to achieve each of these steps see
the run fluxengine function in the same file.

Note that these tools are intended for use by users who are proficient in Python.
Please report any bugs (see section 1.2).

6

6 Input data requirements

Input data are specified in the configuration file and are conceptualised as ’data layers’
(see section 7.5 for details on how to specify data layers in the configuration file). The
minimum required input data needed to run FluxEngine are:

• Sea surface temperature (sub-skin, skin or both).

• Atmospheric CO2 (either as Molar fraction in dry air, partial pressure in dry air
or concentration).

• CO2 in the surface water (either partial pressure or concentration).

• Air pressure at sea level.

• Sea surface salinity.

• Any data required by your chosen gas transfer velocity (k) parameterisation (typ-
ically wind speed and the second/third moment of wind speed).

There are various other optional inputs, some of which are requires only when using
specific functionality. Table 1 lists the data layers which are recognised by FluxEngine,
whether they are required or optional, and their expected units. Additional input data
layers can be added by simply specifying them in the configuration file in the same
way you would define any other input data layer (see section 7.5). Doing this will
automatically make them available to any custom FluxEngine code. This is useful when
additional data is used by custom gas transfer parameters or pre-processing functions.

7

name description units required?
sstskin sea surface skin temperature ◦K if sstfnd not supplied
sstfnd sea surface foundation tem-

perature

◦K if sstskin not supplied

pco2 sst Ocean temperature at the
point of CO2 measurement.
Only used for calculations of
CO2 flux

◦C optional

vgas air Molar fraction of the flux gas
(e.g. CO2) in dry air.

µmol mol−1

or ppm
Required if pgas air and par-
tial pressure (pgas air) are
not supplied.

pgas air partial pressure of the flux gas
(e.g. CO2) in dry air

µatm Only used in Takahashi verifi-
cation. gas air not supplied.
Not required if concentration
or molar fraction (vgas air)
data are supplied.

pgas sw partial pressure of the flux gas
(e.g. CO2) (aqueous)

µatm. Not required if concentration
data are supplied.

conca concentration of the flux gas
(e.g. CO2) at the interface

gm−3. required if not using fugacity
or partial pressure inputs

concw concentration of the flux gas
(e.g. CO2) (sub-skin)

gm−3. required if not using fugacity
or partial pressure inputs

pressure air pressure at sea level mbar always required
salinity surface salinity none always required
ice fraction ice coverage none optional
pressure air pressure at sea level mbar always required
windu10 wind speed ms−1 by most gas transfer velocity

parameterisations
windu10 moment2 wind speed second moment by most gas transfer velocity

parameterisations
windu10 moment3 wind speed third moment by some gas transfer velocity

parameterisations
sigma0 radar backscatter dB by some gas transfer velocity

parameterisations
sig wv ht significant wave height m by some gas transfer velocity

parameterisations
rain precipitation mm day−1 when including pre-

cipitation effects (e.g.
rain wet deposition or
bias sstskin due rain)

biology chlorophyll-a concentration when using biology process in-
dicator layer

sstgrad sea surface temperature gradi-
ent

◦K m−1 when using sst gradients pro-
cess indicator layer

mask multipurpose mask used to se-
lect specific region/s to com-
pute gas fluxes for

n/a not required

atlantic ocean mask Atlantic Ocean mask none when using Atlantic Ocean re-
gion indicator layer

pacific ocean mask Pacific Ocean mask none when using Pacific Ocean re-
gion indicator layer

southern ocean mask Southern Ocean mask none when using Southern Ocean
region indicator layer

indian ocean mask Indian Ocean mask none when using Indian Ocean re-
gion indicator layer

longhurst mask Longhurst provinces mask none when using Longhurst
province indicator layer

Table 1: Input data layers, units and conditions for inclusion.

8

7 Creating and modifying configuration files

7.1 Opening configuration files

Configuration files are stored as plain text files with a .conf file extension. This means
they can be opened in any text editor. If you’re using Windows you may find that
when you open a configuration file all of the information is stored on a single line,
making it difficult to work with. To avoid this you should open the configuration file
in a text editor which can understand Unix line endings (e.g. not notepad). There
is a free lightweight piece of software called Notepad++ is perfect for this (https:
//notepad-plus-plus.org/). Sublime Text is an excellent feature rich but lightweight
cross-platform text editor (https://www.sublimetext.com/).

The order in which parameters are specified in configuration files doesn’t mat-
ter with the exception of the first line which must specify the version of
FluxEngine that the configuration file is designed for. This takes the form
#?FluxEngineConfigVersion:version, where version is replaced with the version
number. For example, for version 4.0 you would use #?FluxEngineConfigVersion:4.0.
We aim for back compatibility of configuration files, but this is not always possible and
the change between version 3.x and 4.0 introduced some minor incompatibilities. A tool
is provided to automatically make old configuration files compatible with newer versions
of FluxEngine, see section 8.4.

Example annotated configuration files can be found in the configs directory of your
FluxEngine installation path. Parameters are specified in the config file by name followed
by an equals sign (=) and then the value. Note that in contrast to previous versions the
equals sign is now required (as of version 3.0), but this means that parameter values can
now contain spaces. Both variable names and values are case sensitive, and comments
can be added using the hash (#) character. Variables can be specified in any order
although it is convenient to group related variables together. An example definition of
two parameters is given below:

varname1 = 100.0

varname2 = test variable #trailing and preceeding whitespace is ignored

7.2 Configuration file parameters

A short summary of each parameter is given below.

flux calc

Selects the flux equation to use. Valid options are:

• bulk - i.e. F = kαW (pCO2W − pCO2A
), where F is the air-sea flux, k is the gas

transfer velocity, αW is the solubility of the gas in sea water, pCO2W is the partial
pressure of CO2 in the surface sea water and pCO2A

is the partial pressure of CO2

in the atmosphere.

9

• rapid - As described in Woolf et al. (2016) Journal of Geophysical Research:
Oceans. F = k(αW pCO2W

− αApCO2A).

• equilibrium - As described in Woolf et al. (2016) Journal of Geophysical Re-
search: Oceans.

If you choose to use supply atmospheric and ocean gas inputs as a concentration
(rather than fugacity or partial pressure), the choice of flux calc is superseded by the
concentration data. For example, if you have supplied both conca (interface concentra-
tion) and concw (sub-skin concentration), and they have been calculated using the same
solubility, then the rapid calculation is equivalent to the bulk. To avoid this conca

should be calculated using solubility at the skin layer, while concw should be calculated
using solubility from the sub-skin. For more information, see Woolf et al. (2016) Journal
of Geophysical Research: Oceans.

temporal resolution

This is an optional parameter which defines the temporal resolution for which the flux
calculation is computed. If the parameter is not defined in the configuration file it
defaults to monthly. Different temporal resolutions should be defined using the a D

hh:mm format to specify the length of timesteps in days, hours and minutes respectively.
A full explanation, with examples, is given in section ??.

sst gradients, cool skin difference

Valid values for sst gradients are yes or no. If one of sstskin or sstfnd input data
layers are not specified in the configuration file, and sst gradients is set, then the
missing SST input is estimated using the following equation:

sstskin = sstfnd - cool_skin_difference

where cool skin difference is the difference in temperature between the foundation
layer and the skin layer (in Kelvin). The default is 0.17K (see Donlon et al. 2002).

saline skin value

Saline skin value is added to salinity. It is an optional entry and will default to 0.0 if
not specified.

axes data layer, latitude prod longitude prod time prod

Specifies the data layer from which to extract the latitude, longitude and time data from.
axes data layer must be the name of a data layer, e.g. sstskin, and all other input
data layers will have their dimensions checked for consistency with the named data layer.

pco2 reference year, pco2 annual extrapolation

These are optional entries which can be used to specify a reference year from which
pCO2 / fCO2 can be adjusted. This applies an annual correction according to

pco2_increment = (year - pco2_reference_year) * pco2_annual_correction

10

datalayername path, datalayername prod

These define each input data layer. A full explanation with worked examples is provided
below (section 7.5).

random noise windu10, random noise sstskin, random noise sstfnd,
random noise pco2

These are optional variables which control whether random noise is added for each
of their respective data layers. Valid values are yes or no. Note that currently the
magnitude of noise must be modified directly in the source code (this is not advised
unless absolutely necessary).

bias datalayername, bias datalayername value

Setting bias datalayername will add a constant value (defined by
bias datalayername value) to the named data layer. This is applied after any
random noise is added. Currently the following data layer names are supported:
windu10, sstskin, sstfnd and pco2. Valid options for bias datalayername value

are yes or no and default to no if not supplied. bias datalayername value must be a
valid numeric value and defaults to 0.0 if not supplied.

bias k, bias k percent, bias k value, bias k biology value, bias k wind value

These variables control the bias applied to k (the gas transfer velocity). bias k and
bias k percent but be set to either yes or no and control whether any bias is ap-
plied at all and whether the bias is added as an absolute value or as a percentage
of the original value, respectively. Default values for both of these variables are no.
bias k value requires a numeric variable (the default is 0.0) and controls the magni-
tude of the bias (whether as a percentage or absolute value). Bias is only added to
k if the value of windu10 at the same point in space is above a threshold specified
by bias k wind value (the default value is 0.0). Similarly the corresponding value for
biology is below bias k biology value (the default is 0.0).

k parameterisation

This controls the way that the gas transfer velocity (k) is calculated. FluxEngine
comes bundled with a number of k ’functors’ - self-contained Python classes which
take data layers as input and write output to one or more data layers (typically the
k datalayer). For a list of available parameterisations you can run the fe run.py

script with the -list parameterisations option. Alternatively you can see the
Python implementation of each k functor in rate parameterisation.py file located
in the fluxengine.core directory. These can be referred to by name in configura-
tion files. User defined parameterisations can be added to this file and assigned to
k parameterisation by name in the config file. Before writing new k functors you
should read the guide for developers (section 9), as this describes best practices and
provides information on potential pitfalls.

schmidt parameterisation

11

This sets the Schmidt number parameterisation to use. There are currently two op-
tions schmidt Wanninkhof1992 (the default) and schmidt Wanninkhof2014. These are
based on Wanninkhof’s 1992 [?] and updated 2014 [?] Schmidt number parameterisations
respectively.

kb asymmetry

This is an optional parameter which controls the relative weighting given to the atmo-
spheric concentration when calculating the bubble component (kb) of the gas transfer
velocity. This allows the user to scale the relative importance of direct and bubble com-
ponents when calculating total gas transfer velocity, such that larger values increase the
importance of the bubble component. This is only used when k parameterisation is
set to kt OceanFluxGHG. If it is not specified it defaults to 1.0 (no asymmetry).

bias sstskin due rain, bias sstskin due rain value,
bias sstskin due rain intensity, bias sstskin due rain wind

These control whether and how rain (the rain data layer) influences sea surface
temperature. bias sstskin due rain value turns this feature on or off (valid
values are yes and no, with the default being no). If this feature is turned
on, a constant bias (bias sstskin due rain value, default value of 0.0) will be
added to sea surface temperature anywhere that rain intensity is greater than
bias sstskin due rain intensity (default value 0.0) and wind intensity (the
windu10 data layer) is less than bias sstskin due rain wind (default is 0.0).

rain wet deposition

This option enables wet deposition. Valid values are yes or no, and the default value is
no.

k rain linear ho1997

This option enables a linear additive gas transfer velocity term due to rain. A description
of the method can be found in Ashton et al. (2016) . Valid values are yes or no, and
the default value is no.

k rain nonlinear h2012

This option enables a nonlinear additive gas transfer velocity term due to rain. A
description of the method can be found in Ashton et al. (2016) and Harrison et al.
(2012). Valid values are yes or no, and the default value is no.

GAS

This is an optional parameter which specifies the gas to calculate the air-sea flux of.
Valid options are co2, n2o and ch4. If not defined then the default co2 will be used.

output dir

This specifies the root directory that will be used for writing output to. If the directory
doesn’t exist it will be created. Any subdirectories which are used to organise the output
will be created in this folder.

12

output structure

This is an optional parameter which defines the way output will be organised into subdi-
rectories. Tokens can be used in this definition of output structure. The default value
is <YYYY>/<MM>, which will create a directory for each year that FluxEngine runs, and
subdirectories for each month of each year. The resulting netCDF files will therefore be
organised first by year, then by month. This is the default output directory structure
because it is same as that required by the ofluxghg net budget.py tool (see the section
8) to make running this tool convenient.

output file

This is an optional parameter which defines the names of the output netCDF files pro-
duced by FluxEngine. Tokens can be used in the definition (see section 7.4). If it is not
defined the default value of OceanFluxGHG-month<MM>-<mmm>-<YYYY>-v0 is used. If the
file already exists it will be overwritten.

output temporal chunking

This is an optional parameter which tells FluxEngine to combine output into fewer files.
The default value of 1 means that each output file will contain one timestep. Setting
to, for example, 12 means that one output file will be created for every 12 time steps
and FluxEngine output will be placed in a temporal dimension of the output netCDF
files. See section 7.9 for examples. The time range covered by each file depends on the
temporal resolution (see temporal resolution or section 7.6).

Full meta data, including a list of data layer names recognised by FluxEngine, de-
fault values and expected data types can be accessed in the settings.xml file in the
fluxengine src directory. Note: It is strongly recommended that you do not modify this
file.

7.3 k parameterisation specific variables

Several k parametrisation options require additional variables to be specified which
change the way that the gas transfer velocity is calculated. These must be defined in
the configuration file. In particular k generic requires a Schmidt number to be defined
k generic sc (valid values are 600.0 and 660.0) as well as weightings for each order of the
generic gas transfer velocity equation, i.e. k generic a0, k generic a1, k generic a2

and k generic a3.
kt OceanFluxGHG, kt OceanFluxGHG kd wind and k Wanninkhof2013 require that

kb weighting and kd weighting be specified. These define the weighting for the bubble
and direct components of the gas transfer velocity, as described in Goddijn-Murphy et
al., (2015).

Other custom or third-party k parametrisations may require other variables to be spec-
ified and you should consult any documentation or guidance specific to the parametrisa-
tion being used, or examining the initialiser function (init) of the relevant parametri-
sation functor the rate parameterisation.py file.

13

7.4 Tokens in file paths

Configuration files need to define a number of file paths. These include the location
of various input data layers, the root output directory (output dir), output directory
structure (output structure) and output file names (output file). These file paths
will often need to change depending on the date, or even time, that the data corresponds
to. FluxEngine uses several ’tokens’ which allow time information to be substituted into
file paths (or file names) to allow these to change depending on the point in time being
analysed. Tokens are always prefixed by a less-than sign (<) and suffixed by a greater
than sign (>). The following tokens are supported:

• <YYYY>-four digit year, e.g. 2010

• <YY>-two digit year, e.g. 10 for 2010

• <MM> - two digit numerical month, e.g. 01 for January

• <Mmm> - three character abbreviation of the month, e.g. Jan for January

• <MMM> - three character upper-case abbreviation of the month, e.g. JAN for January

• <mmm> - three character lower-case abbreviation of the month, e.g. jan for January

• <DD> - two digit day of the month, e.g. 01 for the 1st of the month. Defaults to
01 when daily resolution is set to no

• <DDD> - three digit day of the year, e.g. 123 for the 3rd May (124 if it is a leap
year). Defaults to the first of the month when temporal resolution is monthly

• <hh> - two digit hour specification in 24-hour format, e.g. 06 for six AM.

• <mm> - two digit minute specification, e.g. 05 for five minutes past the hour.

• <FEROOT> - used by some internal scripts and tutorials to refer to the root directory
to which FluxEngine was installed. This is used, for example, to access data that
comes packaged with FluxEngine.

7.5 Data layers in detail

The term ’data layer’ is used to describe a geographical dataset and any accompanying
metadata. Data layers are used by FluxEngine for inputs, intermediate products and
outputs. Configuration files specify all the input data layers which will be needed for the
flux calculation, but you only need to specify the input data layers which will be used
given the specific options youve selected. For example you do not need to you do not
need to specify biology input files if the ’process indicator layers off’ is set using the -l

flag, and you do not need to specify a sea surface skin temperature data layer if you set
sst gradients = no and supply specify data for sstfnd in the config file. If you try
to run the FluxEngine without a required input youll get an error message telling you

14

which input data layer(s) are missing. If you specify data layers which are not needed
for the calculation options specified they will simply be added as an extra variable in the
netCDF output file(s) and no error messages or warnings will be displayed. This can be
useful if you want additional data packaged with the output files for convenience when
performing further analysis steps after running FluxEngine. This is used with the ice

data layer, for example. which isn’t used in the main flux calculation, but it is useful to
have ice coverage data in the output files so that the net budgets tool can use it.

Data layer paths

To specify an input data layer the configuration file must specify a minimum of two
attributes: a path to the netCDF / .nc file, and a prod (variable name within the
netCDF file). The path can be absolute or relative. Windows users might experience
some problems using absolute paths. If you have problems with this please let me know
(tom: t.m.holding@exeter.ac.uk) and Ill try to fix it. Path are specified in the config file
using the data layer name with the path suffix, like so:

datalayername_path = path/to/data/filename.nc

One important change in this version of FluxEngine is that you should specify the path
including a the filename for the netCDF file, rather simply a directory. This provides
greater flexibility when working with data from many different sources. To help with
this two standard Unix glob patterns can be used to specify patterns of file names: ?

and *. These will match any single character/digit, or any number of characters/digits
(including no characters), respectively. For example to specify the location of ice coverage
data you could use:

ice_path = path/to/data/20100101_???-ice*.nc

This will match any file with a name that starts with 20100101 followed by any three
characters/digits, then the characters -ice, followed by any number of characters/digits
and ending in .nc. Note that glob patterns cannot be used to match directory names and
can only be used to specify the pattern that FluxEngine will use to match the netCDF
file itself.

In most cases the file you want to use as input will depend on the point in time that you
are analysing. In this case you can use tokens (described in section 7.4) to specify date
and time related changes to file or directory names. For example, if your ice coverage
data files are prefixed with the year and month they were recorded, and organised into
subdirectories for each year, ice path might be defined like this:

ice_path = path/to/data/<YYYY>/<YYYY><MM>_???-ice*.nc

Here <YYYY> will be replaced with the four digit year (e.g. 2010 for 2010) and <MM>

will be replaced with the two digit representation of the month (e.g. 01 for January).

15

Data layer products

The second required attribute of a data layer is its product (or ’prod’). This is the name
of the variable within the netCDF file. It is specified in the configuration file by using
the prod suffix with the data layer name. The minimal specification (in this case for
the ’ice’ data layer) could therefore looks like this:

ice_path = path/to/data/<YYYY>/<YYYY><MM>_???-ice*.nc

ice_prod = sea_ice_fraction_mean

7.5.1 Using tokens to reuse selected data

Tokens can be used in directory names allowing your to reuse data for selected inputs.
For example, you may have data for multiple years of sea surface temperature, but only
one year’s worth of salinity data (or this may be a multi-year average). In this case you
can to reuse the salinity data for each year you have of other data. To do this simple
specify the file path of the salinity data by hard-coding the year string into the file path,
while specifying other data layers using tokens as usual. This could look as follows:

salinity_path = path/to/data/2010/2010<MM>_woa-salinity.nc

sstfnd_path = path/to/data/<YYYY>/<YYYY><MM>_OCF-SST-GLO-1M-???-REYNOLDS.nc

7.5.2 Optional data layer attributes

There are several optional attributes which can be configured for each data layer. They
can be set using the same datalayername suffix notation used for the path and prod-
ucts above. These are:

• stddev prod - product name of a variable containing standard deviation data for
the data layer

• count prod - product name containing the number of samples used to calculate
standard deviation

• netCDFName - the variable name used to label this data layer in the output netCDF
file/s

• units - a string description of the units

• minBound - minimum allowed value)

• maxBound - maximum allowed value

• standardName - short standardised description of the variable/data layer

• longName - human readable description of the variable/data layer

• temporalChunking - the number of time points in each file (see section 7.7)

16

• temporalSkipInterval - sets skip interval between temporal indices

• timeDimensionName - specify the name of the time dimension (default is time)

For example to overwrite the minBound and maxBound attributes for the ice coverage
data layer as well as rename it in the output files you can add the following lines to a
configuration file:

ice_minBound = 0.0

ice_maxBound = 100.0

ice_netCDFName = ice_percent

Any value outside of this range will be replaced with missing values.
Default metadata values are stored in settings.xml in the fluxengine

core directory. settings.xml is only mentioned as the definitive place to look up default
values and shouldn’t be modified because this would change the values for all subsequent
FluxEngine runs, and can lead to difficult to detect errors in future runs. If you need
to change one of these values you should always overwrite it using a configuration file
instead (as shown above).

7.5.3 Data layer preprocessing

It is sometimes convenient to apply some pre-processing to a data layer before it is
used for any computations. There is an additional data layer attribute which allows the
user to specify a list of functions to be applied immediately after the data layer read
in. A number of simple preprocessing functions are bundled with FluxEngine (these
can be listed by running ofluxghg run.py with the -list preprocessing flag, or by
viewing the functions directly in the data preprocessing.py file in the fluxengine src
directory). For users comfortable with python, custom pre-processing functions can be
added to data preprocessing.py. These will be automatically detected when running
FluxEngine available to use in configuration files. Before modifying this file you should
familiarise yourself with the guide for developers notes in section 9.

To specify pre-processing functions the preprocessing suffix is used with a list of
function names separated by commas. Each function will be applied in the order it
appears in this list. For example adding the following line to a config file will first
transpose the 2D matrix, then convert from Kelvin to Celsius:

sstskin_preprocessing = transpose, kelvin_to_celsius

Note that no checks are made to ensure the original values are in Kelvin to begin
with, and it is up to the user to ensure that any pre-processing functions are applied
appropriately.

7.6 Working with different temporal resolutions

The temporal resolution over which the FluxEngine will undertake the flux computation
is, by default, one month. This can be changed by defining a new time step in the

17

configuration file by setting temporal resolution. The required format is D hh:mm for
the number of days, hours and minutes between time steps, and it is important that the
hour and minute components are exactly two digits (so there should be a preceding 0 if
necessary). Four examples are given below, which define a time step of one week, twelve
hours, one hour and 30 minutes, and five minutes, respectively:

temporal_resolution = 7 00:00 #one week timestep

temporal_resolution = 0 12:00 #twelve hour timestep

temporal_resolution = 0 01:30 #one hour and 30 minutes time step

temporal_resolution = 0 00:05 #five minute time step

The temporal resolution should not be higher (smaller time step) than that of the
highest resolution input data, otherwise FluxEngine will duplicate some calculations. If
temporal resolution is set lower (larger time step) than that of your highest resolution in-
put data then FluxEngine will not use all of this data. Depending on your requirements,
this may be what you want, but could indicate that higher resolution inputs should be
re-analysed to create a matching data set which has a lower temporal resolution.

When working with higher temporal resolutions than the default monthly resolution, it
will be necessary to modify the output filenames and/or the directory structure. Leaving
them as the default is likely to result in FluxEngine overwriting some of the previous
outputs. See section 7.8 for examples of how to do this.

7.7 Indexing input data using the temporal dimension

Data are sometimes formatted as netCDF files which utilise a temporal dimension in
addition to two spatial dimensions (longitude and latitude). Configuration options are
provided to allow FluxEngine to utilise input data which use a temporal dimension.
The datalayername temporalChunking option can be set for any input data layer and
indicates how many time steps are in a single input file. It is therefore important to set
this in the context of the temporal resolution over which FluxEngine will be run. For
example, if you are using FluxEngine to calculate gas fluxes with a daily resolution and
your input wind speed data files provide daily resolution but contain a single file for each
week, your configuration file should include something like the following:

temporal_resolution = 1 00:00 #daily temporal resolution

windu10_path = path/to/wind_data<DDD>.nc

windu10_prod = windspeed_mean

windu10_temporalChunking = 7 #Each file contains 7 time points

7.8 Setting output filenames and directory structure

You can define the output file names be setting output file in the configuration file.
For example, when using a temporal resolution of one day you’ll need to ensure output
file names are unique so they should include the day that the output corresponds to.
Below are two possible ways you could define this:

18

output_file = OceanGluxGHG_output_<YYYY>_<DDD>.nc #year and day of the year

output_file = OceanGluxGHG_output_<YYYY>_<MM>_<DD>.nc #year, month and day of

the month

Similarly, it might be convenient for FluxEngine to use a different directory hierarchy
to organise the output. The default output directory structure is <YYYY>/<MM> to be
compatible with the flux budgets tool, but to define a custom output directory structure
you can specify output structure in the configuration file. This can be another way
to ensure that output files have unique file paths/names. For example, to group output
files by year and day, you could use

output_structure = <YYYY>/<DDD> #e.g. 1991/019 for 19th Jan 1991

or to group output files by year and month, then by day

output_structure = <YYYY>_<MM>/<DD> #e.g. 1991_01/19 for 19th Jan 1991

7.9 Grouping output from multiple time points into a single file

FluxEngine output for more than one time point can be written to a single file. In
this case each netCDF variable will contain a temporal dimension. This can be useful
when running FluxEngine at high temporal resolution to prevent generating hundreds
or thousands of separate files. To do this, set the output temporal chunking option in
the configuration file, which defines how many time steps to group into each file. For
example, if you’re running FluxEngine with an hourly resolution, you might want to
have a single file per day. This can be achieved by including

output_temporal_chunking = 24 #24 timesteps in each output file

7.10 Filtering input data using a mask

You can specify a mask by specifying the path and prod for the mask data layer. The
mask must have the same spatial dimensions as the input data. It specifies for which grid
cells the flux calculation should be performed (where the mask is non-zero) and which
grid cells should be ignored (where the mask is equal to zero). The usual data/time
tokens can be used when specifying the path of a mask, allowing different masks to be
used for different time points (e.g. if filtering out grid cells with high wind speed). An
example configuration file snippet to define a mask is as follows:

mask_path = data/mask/<YYYY><MM>_maskfile.nc

mask_prod = high_winds

19

8 Bundled tools

FluxEngine comes bundled with a number of command line tools. These are designed
to be used in conjunction with FluxEngine, and perform closely related tasks such as
converting or merging data files, reanalysing fCO2 data, or calculating monthly/annual
net flux budgets. The tools are added to your environment path when FluxEngine is
installed so can be accessed via the command line from any directory (remember to
activate the correct virtual environment). A description of how to use each tool, and a
list of each their command line options, can be viewed by running the tool with the -h

or -help option. A short description of each tool is given below.

fe run.py - Command line tool for running FluxEngine using the settings specified in

a configuration file.

fe calc budgets.py - Calculates integrated net air-sea gas fluxes from FluxEngine out-
put.

fe update config.py - Updates old FluxEngine configuration files to be valid for the
current version. Works with configuration files from FluxEngine v3.0 and newer.

fe resample netcdf.py - Resamples a 1◦ by 1◦ netCDF data to a 5◦ by 4◦ grid. This
tool is kept for historic reasons as it was used to resample the input data for validating
against published Takahashi climatology.

fe text2ncdf.py - Converts in situ data to a netCDF file. See section 8.3 for example
usage.

fe ncdf2text.py - Converts netCDF file (e.g. a FluxEngine output file) to a flat text
file.

fe append2insitu.py - Appends FluxEngine output to a pre-existing text formatted
data file. Intended to allow FluxEngine output to be added as columns for in situ data.

fe reanalyse fco2 driver.py - Generates fCO2 reanalysed to a consistent temperature
and depth. See section 8.2 for details and example usage.

fe compare net budgets.py - Simple tool which compare net budgets between two
runs. This is used as the basic of some of the checks found in the verification scripts (see
section 3). Further tools for performing common verification tasks are available to use
in custom Python scripts by importing fluxengine.tools.lib verification tools.

fe verify socatv4.py - Runs the verification script using interpolated SOCAT CO2

data. fe verify takahashi09.py - Runs the verification script using CO2 data from

Takahashi 2009. fe tutorials.py - Starts a Jupyter notebook server and opens the

interactive tutorials in a web browser.

20

8.1 Calculating net fluxes with fe calc budgets.py

This tool will calculate monthly and annual the net flux budgets from monthly Flux-
Engine output. FluxEngine output is used as input to the tool and must adhere to a
<YYYY>/<MM> output directory structure (this is the default, see section 7.8 for details).
Fluxes can be calculated regionally by setting the region(s) you’d like to calculate fluxes
for. After running the tool a single text file will be generated for each region. This file
contains a monthly breakdown of the estimated net, missing and gross downward (into
the ocean) and upward (into the atmosphere) flux. These regions must correspond to
the values of regions in the region mask file. Usage of the tool is as follows:

fe_calc_budgets.py -d FluxEngine/output -v -lf land_mask_file.nc -mf

region_mask_file.nc -o your/output/directory

The -d or --dir option specifies the directory to the FluxEngine output which the
tool will use to calculate the net flux. The -v option increases verbosity (prints ex-
tra information for the user). The -lf or --landfile options specify a netCDF file
with a variable describing the proportion land in each grid cell. An additional option
--landdataset (or -ld) specifies the variables/product name in the land netCDF file,
but defaults to land proportion if not set. Similarly -mf or --maskfile defines the
region mask netCDF file while --maskdatasets or -md specifies the variable names of
each region’s mask within the netCDF file. Finally, the -o or --outroot option defines
the root directory to which ofluxghg-flux-budgets.py will write output files. Note
that the FluxEngine output, land file and region mask must all have the same spatial
dimensions (grid size). Region names can be set using -r or --regions, and there must
be one for each mask dataset used (defaults to ’global’, e.g. --maskdatasets is not set).

Examples of how land and mask files should be formatted can
be seen by examining the land and mask files used in the verifica-
tion scripts. These are located <FEROOT>/data/onedeg land.nc and
<FEROOT>/data/World Seas-final-complete IGA.nc, respectively.

8.2 Using fe reanalyse fco2 driver.py to reanalyse data to a consistent
temperature and depth

fe reanalyse fco2 driver.py is an external tool which comes bundled with Flux-
Engine and which implements the method described by Goddijn-Murthy (2015) to
reanalyse fCO2 / pCO2, sampled in situ from different depths and/or with differ-
ent instantaneous temperatures, to a consistent temperature field. A driver script
(fe reanalyse fco2 driver.py, in the tools directory) is provided to facilitate us-
ing this script with in situ data via the command line. This tool has many options,
which can be viewed by running it with the -h command:

fe_reanalyse_fco2_driver.py -h

A simple example command to generate a netCDF file containing fCO2 values from a
tab delimited text file is as follows:

21

fe_reanalyse_fco2_driver.py -input_dir path/to/data -input_files datafile.tsv

-sst_dir path/to/ReynoldsSST/ -sst_tail 01_OCF-SST-GLO-1M-100-REYNOLDS.nc

-output_dir output/path -socatversion 6 -usereynolds -startyr 2008 -endyr

2015

The -socatversion 6 option tells the tool to expect column headings to conform to
those used by SOCATv6. If your data header does not conform to a SOCAT naming
convention you can specify each column names for each of the required variables (see
the available options using the -h option for details).

To produce output as text files instead of NetCDF files, use the -asciioutput option.
Example commands utilising different options can be found in the comments at the

top of fe reanalyse fco2 driver.py.

8.3 Using fe text2ncdf.py to create FluxEngine compatible NetCDF files

FluxEngine requires all input data to be supplied in NetCDF files. While FluxEngine
will accept correctly formatted NetCDF files that have been created by any method,
the fe text2ncdf.py tool is provided as a convenient and flexible tool to convert flat
text formatted data into NetCDF files. The tool can run from the command line,
or imported as a Python module (import fluxengine.tools.lib text2ncdf). Basic
operation using the commandline is as follows:

fe_text2ncsf.py inFiles inputfile1.tsv inputfile2.tsv --startTime 2010-01-01

--endTime 2010-12-31 --ncOutPath output/path/file.nc --delim ’\t’

--latProd latitude --lonProd longitude --latResolution 1 --lonResolution 1

--dateIndex 0 --temporalResolution ’0 12:00’ --colNames 1 2 5 ’SST [C]’

’windspeed [ms-1]’ --parse_units --limits -90 90 -180 180

This will convert two files (inputfile1.tsv and inputfile1.tsv) into NetCDF files
for the year 2010. Output files will be saved to output/path. The delimiter separating
values in the input files is defined as a tab, and the latitude and longitude column
names in the input files are latitude and longitude respectively. Output files will
consist of a 1◦ by 1◦ grid, with means, counts and standard deviations calculated for
this grid size. --dateIndex specifies the column index containing the date/time. The
--temporalResolution defines the time step used (by default a separate output file will
be created for each time point). The colNames option allows you to specify column names
(or indices, or a mixture of names and indices) to be converted to NetCDF (indexes
start from 0). This should not include longitude, latitude of data/time columns, as
these are specified separately by --lonProd, --latProd and --dateIndex, respectively.
In this case column numbers 1, 2 and 5, as well as columns with the names SST [C]

and windspeed [mc-1], will be converted. The --parse units option tells the tool
to automatically interpret any text in the header which is contained between square
brackets ([and]) as the units, which will be added as metadata in the output NetCDF.

As with other tools, a full description of the various options can be found by running
the tool using the -h option. This description will always contain the most up to date

22

description of the options and usage.

8.4 Automatically updating old configuration files

Configuration files for FluxEngine version 4.0 are mostly compatible with version 3.x,
however some changes in variable names will prevent old configuration files from running.
A simple command line utility is provided (fe update config.py) to automatically
update old configuration files to the compatible with the current version of FluxEngine.
This utility will work for any configuration file for FluxEngine 3.0 or newer. Usage is
simple:

fe_update_config.py path/to/old_config.conf path/to/updated_config.conf

If you want to ensure a file is written to the updated configuration file path, regardless
of whether the old configuration file required modifying (e.g. as part of an automated
workflow) you can add -alwayswrite to ensure a copy will be written to your output
path.

If version information is missing from an old configuration file, you can mannual add
it, or use the -oldversion flag to tell the tool which version to expect. See the tool’s
help (-h) information for more details.

9 Guide for developers

In FluxEngine v3.0 we have made changes to make it easier for people to modify and
extend the functionality of FluxEngine. We have implemented a more consistent struc-
ture to the code and added the ability to easily extent certain aspects of FluxEngine’s
functionality without modifying the core code. The following sections provide some back-
ground information on how to do this. This is intended for users who are comfortable
programming in Python.

9.1 Adding pre-processing functions

Pre-processing functions are defined in fluxengine
core
data preprocessing.py. When parsing preprocessing data layer proprties in config-
uration files, FluxEngine searches the function names defined in this file, and so any
function which is added will be immediately available for use as a pre-processing func-
tion. However, there are certain requirements for the function to operate harmoniously
with FluxEngine. These are listed below:

• Pre-processing functions must have a single argument, and this must be the
DataLayer instance which corresponds to the input data layer which is being trans-
formed. Detailed of the DataLayer class can be found in DataLayer.py.

• DataLayers should be modified in place. Returned values are ignored.

23

• Pre-processing functions should only modify the (1D) fdata attribute of the
DataLayer instance. The exception to this is if it is convenient to mod-
ify 2D view of this (the data attribute), in which case you must call
datalayer.calculate fdata() afterwards. This is because, while in most cased
fdata is a view of data, in some cases fdata may be a copy of data and hence any
changes to data will not be reflected in fdata. fdata is used for all calculations,
so it is important that any changes are copied to this attribute.

• If a pre-processing function modifies the dimensions or any of the meta data asso-
ciated with a DataLayer it must also manually update the relevant attributes as
these will not be automatically reflected.

9.2 Adding k-parametrisation functors

The gas transfer velocity calculation is fully customisable by adding a ’functor’ class to
the fluxengine

core

rate parameterisation.py file. Functors are classes which are callable (they im-
plement the call member function). This class must be derived from the
KCalculationBase class and implement four functions:

• init - Initialises the class. This must, at a minimum, set self.name. You can
add any arguments which the class needs to initialise to the function signature and
provided they are added as variables with the same name/s in the configuration
file they will be automatically passed to the functor during initialisation (see the
notes on adding configuration variables below).

• input names - This should return a list of DataLayer names (strings) which are
required as inputs to the gas transfer velocity calculation.

• output names - This should return a list of DataLayer names which are modi-
fied or written to. These can be existing or new DataLayers. Any non-existing
DataLayers will be created in the correct dimensions (but filled with missing val-
ues) by FluxEngine prior to performing the gas transfer velocity calculation.

• call - This performs the gas transfer velocity calculation, and will contain all
the implementation details for your specific case. In addition to self) an argument
called data is passed to this function which contains a dictionary of each DataLayer

available to FluxEngine. These can be assessed by using the DataLayer name as a
key. Note that you should not create new DataLayer instances, add entries to this
dictionary or change DataLayers which are not listed by name in the list returned
by output names.

It is best practice to modify the 1D DataLayer.fdata attribute of output
DataLayers. If the 2D DataLayer.data attribute is modified you should update
the fdata attribute by calling DataLayer.calculate fdata for the DataLayers

24

which have changed. This is because, while in most cases fdata is a view of data
to avoid unnecessary duplication, this is not guaranteed on all systems.

The final gas transfer velocity output should usually be written to the k data
layer, as this is what will be used by FluxEngine to calculate air-sea gas
flux. Additionally, it can be a good idea to set the DataLayer.long name and
DataLayer.short name attributes of k to provide a description of the parameter-
isation used because this will be copied to the output netCDF files.)

An example implementation, as well as all the pre-bundled gas transfer velocity func-
tors, can be found in fluxengine

core

rate parameterisation.py.

9.2.1 Adding configuration variables

You can add variables to the configuration file and these will be immediately available
in the flux engine code (encapsulated in the runParams ’namespace’). For example, if
you add

my_new_var = 100.0

to the configuration file. This can be referenced in the FluxEngine code using
runParams.my new var. This is utilised by different k-parameterisation functors which
require additional variables to initialise correctly (see the definition of k generic in
rate parameterisation.py for an example).

Additional configuration variables are interpreted as a float if they’re formatted as a
valid float, otherwise they’re interpreted as a string.

To avoid naming conflicts (since all config variables are imported to the same names-
pace) it is good practice to add a prefix to the name of any custom configuration variables.
Typically this should be the name of the k-parameterisation functor it is associated with.
For example, the k generic) functor requires 5 additional variables each of which begin
with k generic (e.g. k generic sc).

9.3 Contributing

If you’re a git user you can fork the FluxEngine repository at https://github.com/

oceanflux-ghg/FluxEngine and if you develop extensions or functionality which might
be useful to the wider community, or spot and fix any bugs, you can share them by
sending us a pull request. Alternately, if you don’t know what any of that means but
you’ve developed an extension or fixed a bug which you think will be useful to others,
you can e-mail me at t.m.holding@exeter.ac.uk.

25

