
OGRePy: An Object-Oriented General Relativity
Package for Python
By Barak Shoshany
Email: baraksh@gmail.com
Website: https://baraksh.com/
GitHub: https://github.com/bshoshany

GitHub repository: https://github.com/bshoshany/OGRePy
PyPi project: https://pypi.org/project/OGRePy/

This is the complete documentation for v1.1.0 of the library, released on 2024-09-08.

Introduction
Summary
Features
The object-oriented design philosophy

Installing and loading the package
Global installation
Installing in a virtual environment
Creating a Jupyter notebook
Importing the package
Getting help

Creating and displaying tensor objects
Defining coordinates
Error checking
Defining metrics
Displaying tensors
Changing the output style
Line and volume elements
Choosing index letters
Creating tensors in a given manifold

Operations on single tensors
Changing a tensor's symbol
Raising and lowering indices
Coordinate transformations
Replacing symbols in the tensor components
Customizing the simplification function
Getting information about tensors
Getting the components of a tensor

Calculations with tensors

mailto:baraksh@gmail.com
https://baraksh.com/
https://github.com/bshoshany
https://github.com/bshoshany/OGRePy
https://pypi.org/project/OGRePy/


Addition of tensors
More on index specifications
Multiplication of tensor by scalar
Taking traces and contracting tensors: theoretical review
Taking traces and contracting tensors: OGRePy syntax

Derivatives and curvature tensors
The Christoffel symbols
The Riemann tensor
Exact sign checks with list()
The riemann()  method and caching
The Kretschmann scalar
The Ricci tensor and scalar
The Einstein tensor
Covariant derivatives

Curves and geodesics
The curve Lagrangian
Geodesic equations from the Lagrangian
Geodesic equations from the Christoffel symbols
Geodesics equations in terms of the time coordinate
Changing the curve parameter

About the project
Bug reports and feature requests
Contribution and pull request policy
Starring the repository
Acknowledgements
Copyright and citing
Other projects to check out

Introduction

Summary
OGRePy is a modern Python package for differential geometry and tensor calculus, designed to be both
powerful and user-friendly. It can be used in a variety of contexts where tensor calculations are needed,
in both mathematics and physics, but it is especially suitable for general relativity.

Tensors are abstract objects, which can be represented as multi-dimensional arrays once a choice of
index configuration and coordinate system is made. OGRePy stays true to this definition, but takes away
the complexities that come with combining tensors in different representations. This is done using an
object-oriented programming approach, taking advantage of principles such as encapsulation and class
invariants to eliminate the possibility of user error.



The user initially defines each tensor in OGRePy using its explicit components in any single
representation. Operations on this tensor are then done abstractly, without needing to specify which
representation to use. Possible operations include addition of tensors, multiplication of tensor by scalar,
trace, contraction, and partial and covariant derivatives.

OGRePy will automatically choose which representation to use for each tensor based on how the tensors
are combined. For example, if two tensors are added, then OGRePy will automatically use the same index
configuration (upper and lower indices) for both. Similarly, if two tensors are contracted, then OGRePy
will automatically ensure that the contracted indices are one upper (contravariant) and one lower
(covariant). OGRePy will also automatically transform all tensors being operated on to the same
coordinate system.

Transformations between representations are done behind the scenes; all the user has to do is specify
which metric to use for raising and lowering indices, and how to transform between the coordinate
systems being used. This information only needs to be given once and for all when first defining the
tensors and coordinate systems, and will be used automatically from that point on.

This also means that there is no room for user error. The user cannot mistakenly perform "illegal"
operations such as . Instead, the user simply inputs the names of the tensors, the order
(but not the configuration) of indices for each, and the operations to perform - and the correct
combination  will be automatically deduced.

OGRePy is a Python port of the popular Mathematica package OGRe, first released in February 2021,
used by many general relativity researchers worldwide. The Python port uses the same robust and
performance-oriented algorithms, and retains the package's core design principles. It was made to be as
flexible and powerful as possible, while also being simple to learn and easy to use, and suitable for both
experienced and novice researchers. OGRePy uses SymPy to facilitate symbolic computations and Jupyter
as a notebook interface.

The Python port was specifically designed to mimic as much of the original Mathematica package's
syntax as possible, while also greatly improving on that syntax in many ways due to the fact that Python,
unlike Mathematica, is a truly object-oriented language. The documentation for both packages was also
kept as similar in structure and scope as possible, with the same practical examples. This means that
anyone who is familiar with the Mathematica version should easily be able to use the Python version, and
vice versa.

Features
Define coordinate systems and the transformation rules between them. The Jacobians are
automatically calculated. Tensor components are then transformed automatically between
coordinates behind the scenes as needed.
Each tensor is associated with a specific metric. Tensor components are then transformed
automatically between different index configurations, raising and lowering indices behind the scenes
as needed.

2Aμν + BμλCλν

2Aμν + Bμ
λC

λν

https://github.com/bshoshany/OGRe
https://www.sympy.org/
https://jupyter.org/


Display any tensor in any index configuration and coordinate system, either in vector/matrix form or
as a list of all unique non-zero elements. Metrics can also be displayed as a line element.
Automatically simplify tensor components, optionally with a user-defined simplification function.
Easily calculate arbitrary tensor formulas using any combination of addition, multiplication by scalar,
trace, contraction, partial derivative, covariant derivative, and permutation of indices.
Built-in methods for calculating the Christoffel symbols (Levi-Civita connection), Riemann tensor,
Ricci tensor and scalar, Einstein tensor, Kretschmann scalar, curve Lagrangian, and volume element
from a metric.
Calculate the geodesic equations in terms of an affine curve parameter, in two different ways: from
the Christoffel symbols or from the curve Lagrangian. For spacetime metrics, the geodesic equations
can be calculated in terms of the time coordinate.
Easily keep track of all tensors created in a notebook session, including the relations between them -
for example, see which metrics were created and which tensors are associated with each metric.
Export tensor components in TeX or Mathematica format.
Designed with speed and performance in mind, using optimized algorithms developed specifically
for this package.
Clear and detailed documentation, with many examples, in Jupyter Notebook, HTML, and PDF
formats.
Open source. The code is extensively documented; please feel free to fork and modify it as you see
fit.
Under continuous and active development. Bug reports and feature requests are welcome, and
should be made via GitHub issues.

The object-oriented design philosophy
Object-oriented programming refers to a paradigm where a program's code is organized around
objects. An object belongs to a user-defined type, called a class. The class defines the data that the
object stores, as well as methods or member functions that read or manipulate that data. One of the
fundamental principles of object-oriented programming is encapsulation, which means that the user
may only access an object's data using the methods defined by the class, and is unable to access the
object's data directly.

Importantly, encapsulation allows for the preservation of class invariants. An invariant is a condition of
validity that can always be assumed to be satisfied by the data stored in each object. If the methods
make sure to preserve the invariant whenever they store or manipulate the data, and the user is
prevented from changing the data manually and thus potentially violating the invariant, then the
implementation of the class can be greatly simplified, and performance can be improved, because the
class will not need to verify that the data is valid every time it performs an operation.

The main idea behind OGRePy is to simplify the use of tensors by encoding all the information about a
tensor in a single, self-contained object. As I mentioned above, a tensor is an abstract object. One can
find components which represent this abstract entity in a particular coordinate system and index
configuration, but the tensor is not its components. In OGRePy, a tensor object is initially defined (or

https://github.com/bshoshany/OGRePy/blob/master/OGRePy/docs/OGRePy_Documentation.ipynb
https://github.com/bshoshany/OGRePy/blob/master/OGRePy/docs/OGRePy_Documentation.html
https://github.com/bshoshany/OGRePy/blob/master/OGRePy/docs/OGRePy_Documentation.pdf
https://github.com/bshoshany/OGRePy/issues


constructed) by providing the components of the tensor in a particular representation - but once this is
done, the user does not need to worry about coordinates or indices anymore, or even remember which
coordinates and indices were initially used. The abstract tensor object will automatically transform the
initial data to a different coordinate system or index configuration as needed, based on the context in
which it was used.

As a tensor object holds the components of the same tensor in many different representations, the most
important class invariant is the assumption that the different components indeed represent the same
tensor. This is achieved using encapsulation; the object's data can only be modified by private methods
that preserve the invariant, and thus the user cannot accidentally cause a violation of the invariant by
assigning components to one representation that are not related to the components of all other
representations by the appropriate coordinate and/or index transformation.

Since Mathematica is not an object-oriented language, the original OGRe package merely simulated
classes and objects using associative arrays, resulting in a somewhat awkward syntax. Python, on the
other hand, is an inherently object-oriented language, and the Python package takes full advantage of
that. Tensors are objects, and the various tensor operations are done directly on these objects using
methods and overloaded operators. Class invariants and encapsulation guarantee that the different
representations of the tensor objects are always consistent, and the correct representation is chosen on
demand for each calculation using intelligent algorithms.

Installing and loading the package

Global installation
To install OGRePy from PyPI using pip , simply run the following command in the terminal:

pip install OGRePy

The current version of OGRePy officially supports only Python v3.12 and above. It may also work with
older versions of Python 3, but this is not guaranteed, as development and testing was only done with
the indicated Python version. If your global Python installation is an older version, and you cannot
upgrade it, consider using pyenv or pyenv-win to install multiple Python versions in parallel, or use a
portable local installation to run OGRePy.

Installing OGRePy using pip  will also automatically install its dependent packages, ipykernel and
sympy, if they are not already installed. The current version of OGRePy officially supports only ipykernel
v6.29 and above and sympy v1.13 and above, so if you are still using older versions, you should
upgrade these packages using the command pip install --upgrade ipykernel sympy .

Installing in a virtual environment
Advanced users may wish to install OGRePy inside a Python virtual environment in order to avoid
potential dependency conflicts with other packages. To do this, first open the directory where you would

https://pypi.org/project/OGRePy/
https://github.com/pyenv/pyenv
https://github.com/pyenv-win/pyenv-win
https://pypi.org/project/ipykernel/
https://pypi.org/project/sympy/
https://docs.python.org/3/tutorial/venv.html


like to store your new virtual environment in the terminal, and run:

python -m venv .OGRePy-env --upgrade-deps  on Windows,
python3 -m venv .OGRePy-env --upgrade-deps  on WSL/Linux/macOS.

This will create a virtual environment under the .OGRePy-env  subdirectory. The --upgrade-deps  flag
automatically upgrades pip  to the latest version. To activate the virtual environment, run:

.OGRePy-env\Scripts\activate.bat  on Windows (Command Prompt),
& .OGRePy-env\Scripts\Activate.ps1  on Windows (PowerShell),
source .OGRePy-env/bin/activate  on WSL/Linux/macOS.

If this worked correctly, you will see the text (.OGRePy-env)  at the beginning of the terminal prompt.
Now you can install OGRePy using pip  as above. To deactivate the virtual environment, simply run the
command deactivate  in the terminal.

Creating a Jupyter notebook
OGRePy is designed to run within a Jupyter notebook. It is also possible to run it from within a Python
script, usually for automation purposes, but Jupyter is required for interactivity and for displaying tensors
and their components as rendered TeX equations.

OGRePy supports two Jupyter notebook interfaces:

Visual Studio Code: This is the officially recommended way to use OGRePy, due to helpful
features such as IntelliSense, tooltips, and type checking. Download and install from the official
website. Run VS Code, then create a new file with the .ipynb  extension and open it, or press F1 to
open the Command Pallette and choose the option "Create: New Jupyter Notebook". This will
prompt you to automatically install the required VS Code extensions and Python packages if they
are not already installed.
JupyterLab: Install with pip install jupyterlab . Run by executing jupyter-lab  in the
terminal, and then create a new notebook in the web browser. Please note that JupyterLab is not
officially supported, as development and testing was only done with VS Code, although I have
verified that the package does work in JupyterLab.

If you are running OGRePy in a virtual environment:

With Visual Studio Code, open the folder where you create the virtual environment, press F1 to open
the Command Pallette, choose the option "Python: Select Interpreter", and select the .OGRePy-env
environment. The interpreter can also be selected for individual Jupyter notebooks in VS Code using
the "Select Kernel" button at the top right of the notebook.
With JupyterLab, first activate the virtual environment in the terminal as explained above, and then
run jupyter-lab  from the same terminal.

Importing the package

https://jupyter.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://jupyter.org/


To load OGRePy, type the following code in a Jupyter notebook cell and execute it using Shift+Enter:

import OGRePy as T

OGRePy: An Object-Oriented General Relativity Package for Python
By Barak Shoshany (baraksh@gmail.com) (baraksh.com)
v1.1.0 (2024-09-08)
GitHub repository: https://github.com/bshoshany/OGRePy
Documentation: .ipynb, .pdf, .html

All of OGRePy's functions are now accessible via the T  namespace. While it is not common practice in
Python to import packages as single letters, OGRePy uses this convention because in the original
Mathematica version of OGRe, all module names started with a capital T (which stands for "Tensor").
However, you can change that to another namespace if you prefer, for example import OGRePy as 
gr .

If desired, the welcome message can be disabled by defining OGREPY_DISABLE_WELCOME = True  in
the notebook before importing the package. Alternatively, you could set the environment variable
OGREPY_DISABLE_WELCOME  to True , which allows you to disable it permanently. If you changed your

mind later and you want to see the welcome message (for example, if you want a link to the
documentation), execute the command T.welcome() .

OGRePy also automatically checks for updates from PyPI when it is imported. This can be disabled by
defining OGREPY_DISABLE_UPDATE_CHECK = True  in the notebook, or setting the environment
variable OGREPY_DISABLE_UPDATE_CHECK  to True , before importing the package. In that case, you
can still check for updates manually if you wish, using T.update_check() .

However, note that this check is performed asynchronously, so it does not increase the load time of the
package, and you can continue working while the check is being performed. If the welcome message is
disabled, the startup update check is performed in "quiet mode", meaning that it only notifies you if a
new version is available, but not if you are running the latest version.

Getting help
One of the reasons I recommend Visual Studio Code as the preferred notebook interface for this package
is the IntelliSense feature, which displays a helpful popup with suggestions and information about
various language components. To test this feature, once OGRePy is loaded in the notebook, create a new
code cell and start typing T.  - once you write the dot character, you will see a popup menu listing all
the functions contained in the T  namespace.

Browse the menu using the arrow keys. There will be an additional popup next to this menu with the
documentation for each function. If you do not see the documentation, press Ctrl+Space. You can also
start typing to filter the options in the menu. For example, if you type w , the welcome()  function will
be selected, and you will see the documentation for that function. In the same way, you can view the
documentation and usage instructions for all OGRePy functions.

https://github.com/bshoshany
mailto:baraksh@gmail.com
https://baraksh.com/
https://github.com/bshoshany/OGRePy
https://github.com/bshoshany/OGRePy/blob/master/OGRePy/docs/OGRePy_Documentation.ipynb
https://github.com/bshoshany/OGRePy/blob/master/OGRePy/docs/OGRePy_Documentation.pdf
https://github.com/bshoshany/OGRePy/blob/master/OGRePy/docs/OGRePy_Documentation.html
https://github.com/bshoshany/OGRe
https://pypi.org/project/OGRePy/


Press Tab to complete the code and write down the full function welcome() . Once the code is written,
the popup will disappear, but it will reappear again after you write (  to display the parameters that
should go into the parentheses. You can also hover with the mouse over any function to read its
documentation.

If you are using JupyterLab instead of VS Code, the popups will not be displayed automatically by
default, but you can press Ctrl+,  to go to the settings, then click on "Code Completion" and check
"Show the documentation panel" and "Enable autocompletion". (However, note that the documentation
will not be formatted as nicely on JupyterLab.)

You can also view the documentation for a particular OGRePy function using the function doc() . For
example:

T.doc(T.welcome)

welcome() -> None

Print the welcome message.

doc()  itself also has documentation:

T.doc(T.doc)

doc(obj: Callable[..., Any] | type) -> None

Print the documentation for an object as a Markdown-formatted notebook cell. If the object is
a class, print the documentation for its constructor.

Parameters:

obj : The object to print the documentation for.

Exceptions:

OGRePyError : If no documentation exists.

The documentation files OGRePy_Documentation.ipynb , OGRePy_Documentation.html , and
OGRePy_Documentation.pdf  are bundled with the package, so you can view them at any time - even

offline - by simply clicking the links in the welcome message.

Creating and displaying tensor objects

Defining coordinates

https://github.com/bshoshany/OGRePy/blob/master/OGRePy/docs/OGRePy_Documentation.ipynb
https://github.com/bshoshany/OGRePy/blob/master/OGRePy/docs/OGRePy_Documentation.html
https://github.com/bshoshany/OGRePy/blob/master/OGRePy/docs/OGRePy_Documentation.pdf


To define tensors, we first need to define the manifold on which they reside. Since we are focusing on
general relativity, we will use 4-dimensional spacetime manifolds in the following examples, but this
package works equally well with manifolds that are purely spatial and/or have a different number of
dimensions.

The first step is to define the coordinate system. We can represent a coordinate system as a vector  (or
a tensor of rank 1) defining a point in space(time). In OGRePy, coordinates are represented as objects of
the class Coordinates . Therefore, defining a coordinate system is a simple matter of constructing a
new Coordinates  object. The constructor for this class is defined as follows:

T.doc(T.Coordinates)

Coordinates(*components: s.Symbol | str) -> None

Construct a new coordinate object.

Parameters:

components : One or more strings or SymPy Symbol  objects specifying the coordinates.
Strings should be in the same format as the argument to SymPy's symbols() , e.g. "t x 
y z" , and it is possible to enter just one string for all the coordinates.

For example, let us create an object for the Cartesian spacetime coordinates . First we will
need some SymPy Symbol  objects to represent the individual coordinates , , , and . Conveniently,
OGRePy contains a module, OGRePy.abc , which contains SymPy symbols for all English and Greek
letters, both lowercase and uppercase. Note that the Greek letter lambda (lowercase , uppercase ) is
accessed via the symbols lamda  and Lamda  respectively, since lambda  is a reserved keyword in
Python.

For users familiar with SymPy: OGRePy.abc  is similar to sympy.abc , except that OGRePy.abc

explicitly assumes that all symbols are real, and also contains uppercase Greek letters. If complex symbols
are desired, they should be imported from sympy.abc  or created directly via sympy.Symbol  or
sympy.symbols()  instead.

We import the symbols as follows:

from OGRePy.abc import t, x, y, z

Now we have direct access to the symbols t , x , y , and z  in our notebook. Let us use them to
construct our Cartesian coordinate system:

Cartesian = T.Coordinates(t, x, y, z)

Here is a breakdown of the code:

xμ

(t,x, y, z)
t x y z

λ Λ



Cartesian  is the name of the new object we are creating.
T  is the namespace we chose for OGRePy when we imported it via import OGRePy as T .
Coordinates  is the name of the class we want to construct an instance of. This class represents a

coordinate system in OGRePy.
Coordinates()  is the constructor, that is, the function that creates a new Coordinates  object

representing a particular coordinate system.
We can pass any number of arguments to the constructor. Usually these will be SymPy symbols
representing the coordinates (but it is also possible to pass strings, which will be converted to
symbols automatically).
t , x , y , and z  are the symbols we exported above.

We can similarly define the spherical spacetime coordinates :

from OGRePy.abc import phi, theta

r = T.sym("r", nonnegative=True)

Spherical = T.Coordinates(t, r, theta, phi)

Note that Greek letters are imported using the full name of the letter: theta  stands for . Similarly,
Theta  will be the uppercase . One thing you should be aware of is that the letters  and  are

imported as lamda  and Lamda  respectively, because lambda  (with a b ) is a reserved keyword in
Python.

Another thing to note here is that we defined the  coordinate manually as a SymPy Symbol  object
using OGRePy's sym()  function instead of importing it from OGRePy.abc . The reason for defining 
separately this way is that we get more control over the properties of this coordinate. As mentioned
above, any symbol imported from OGRePy.abc  is automatically assumed to be real. However, for , we
also want to indicate that it is a non-negative symbol. This signals to SymPy to treat  as non-negative
when doing calculations or performing simplifications.

To illustrate this point, consider that , defined above using from OGRePy.abc import t , is a real
coordinate that can be positive, negative, or zero. Therefore, when we try to simplify , we get the
absolute value of :

T.s.simplify(T.s.sqrt(t**2))

On the other hand, when we do the same to , which is designated as non-negative, we simply get 
back, without an absolute value:

T.s.simplify(T.s.sqrt(r**2))

(t, r, θ,ϕ)

θ

Θ λ Λ

r

r

r

r

t

√t2

t

|t|

r r

r



In these examples, note that SymPy is automatically imported into the OGRePy namespace as s , which
means we can access the entire SymPy namespace as T.s . This is done purely for convenience, so you
don't have to import SymPy to the notebook separately. However, you could also import sympy
directly if you prefer. Because SymPy is available as T.s , we could access the SymPy simplify()

function directly via T.s.simplify() .

OGRePy offers two functions that can be used to create your own symbols: sym() , which is the
preferred alternative to calling SymPy's Symbol()  constructor, and syms() , which is the preferred
alternative to calling SymPy's symbols()  function. The main differences between OGRePy's sym()
and syms()  and SymPy's Symbol()  and symbols()  are:

1. OGRePy's functions always add the assumption that the symbols are real, which helps with
simplification.

2. OGRePy's functions always convert strings to TeX codes. This is important, because in SymPy,
Symbol("mu") != Symbol(r"\mu") , even though they are both displayed using the same

symbol. On the other hand, in OGRePy, sym("mu") == sym(r"\mu") , which prevent errors.

Error checking
OGRePy contains robust error checking. If you call the constructor with invalid input, the construction will
fail and you will get an error message telling you what to fix. For example, if you try typing
T.Coordinates(42)  you will get the following friendly error message:

💱  The components must be either a SymPy Array  object or a list. The object 42  is of type
int .

If you are an advanced user who prefers to see the full traceback and/or catch the exceptions and handle
them on your own, you can set T.options.friendly_errors = False  to turn off the friendly error
messages and raise exceptions instead. Set it back to True  to re-enable the friendly error messages.

Defining metrics
To finish defining a (Riemannian or pseudo-Riemannian) manifold, we need to define its metric tensor.
Like any other tensor in OGRePy, the metric tensor is an abstract tensor that has multiple
representations. We "jump start" the tensor by providing its components in one particular representation,
and all the other representations will be calculated automatically.

In the case of a metric tensor, the defining representation must always be the one with two indices down:
. However, it can be given in any coordinate system. In OGRePy, metrics are represented as objects of

the class Metric . Therefore, as with coordinates, defining a metric is a simple matter of constructing a
new Metric  object. The constructor for this class is defined as follows:

T.doc(T.Metric)

gμν



Metric(*, coords: Coordinates, components: list[Any] | s.NDimArray | 
s.Matrix, symbol: str | s.Symbol = g) -> None

Construct a new metric object.

Parameters:

coords : An OGRePy Coordinates  object specifying the coordinate system of the
representation of the initialization components. Will also be designated the default
coordinate system of the metric.
components : The components with which to initialize the metric. Can be a list, a SymPy
Array  object, or a SymPy Matrix  object.
symbol  (optional): A string or a SymPy Symbol  object designating the symbol to be

used when displaying the metric. The string can include any TeX symbols, e.g.
r"\hat{T}"  (note the r  in front of the string, indicating that the \  in the string is not

an escape character).

Exceptions:

OGRePyError : If the metric components are not an invertible symmetric matrix.

Let us create a tensor object for the Minkowski metric, specifying the components in Cartesian
coordinates:

Minkowski = T.Metric(
    coords=Cartesian,
    components=T.diag(-1, 1, 1, 1),
    symbol="eta",
)

To define the components we used the OGRePy diag()  function, which generates a diagonal matrix (a
SymPy Matrix  object) with the given components on the diagonal. OGRePy's diag()  is a convenient
shorthand for SymPy's Matrix.diag() .

For the symbol, we used the string "eta" , which will be displayed as the Greek letter . Alternatively,
we could have used any TeX string, such as r"\eta" . (Note the r  in front of the string, indicating that
it is a "raw" string literal, so the \  in the string is treated as an actual \  and not an escape character.)
Internally, the string "eta"  is actually converted to r"\eta" . The symbol  argument also accepts
SymPy Symbol  objects, in which case it extracts the TeX code from the object, so we could have also
used from OGRePy.abc import eta  and then entered eta  as the symbol, but that is more
cumbersome.

Similarly, let us define the Schwarzschild metric, this time specifying the components in spherical
coordinates:

η



from OGRePy.abc import M

Schwarzschild = T.Metric(
    coords=Spherical,
    components=T.diag(
        -(1 - 2 * M / r),
        1 / (1 - 2 * M / r),
        r**2,
        r**2 * T.s.sin(theta) ** 2,
    ),
)

Here we imported the symbol M  to use as the mass. Be careful not to write something like 2M  instead
of 2 * M . While 2M  makes sense mathematically, it is not a legal Python expression. Note that we did
not specify a symbol, so the symbol  will be used by default.

Displaying tensors
In OGRePy, the term tensor object refers to any object of the Tensor  class or its derived classes, which
include Metric  (but not Coordinates , which is not a tensor, just a list of symbols) Every tensor object
in OGRePy has a method called show() , which shows the symbol, indices, coordinates, and
components in those indices and coordinates, in vector or matrix form when applicable. Let us try it for
the two metrics we created:

Minkowski.show()

Schwarzschild.show()

In fact, calling the show()  method explicitly is not necessary. If the output of a notebook cell is a tensor
object, the output of the show()  method will be displayed automatically:

Minkowski

g

ημν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

gμν
∣
∣
∣(t,r,θ,ϕ)

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

− 1 0 0 0

0 0 0

0 0 r2 0

0 0 0 r2 sin2 (θ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

2M
r

1

− +12M
r



A coordinate system is not a tensor, but it does have a show()  method as well, and it is also executed
automatically if it's the output of a notebook cell:

Cartesian.show()

Spherical

The other method available for displaying the contents of tensors is list() , which lists all of the
unique (up to sign), non-zero components of the tensor. It is usually the best option for higher-rank
tensors, which cannot be displayed in vector or matrix form, such as the Christoffel symbols or Riemann
tensor (see below). For example, let us list the components of the Minkowski metric:

Minkowski.list()

There is a convenient shortcut for calling list() : simply use the ~  (invert) operator in front of the
tensor. For example:

~Schwarzschild

A Coordinates  object does not have a list()  method, as it wouldn't make sense to list its
components in this manner.

If, as in the examples above, no additional arguments are given to show()  and list() , they display
the tensors in their default indices and default coordinates, which are the ones first used to define the
tensor (unless you change them later). So, for example, the default indices of the Minkowski metric are

ημν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

( t x y z )

( t r θ ϕ )

ηtt = −ηxx = −ηyy = −ηzz = −1

gtt = − 1

grr =

gθθ = r2

gϕϕ = r2 sin2 (θ)

2M
r

1

− + 12M
r



two lower indices, and its default coordinates are Cartesian. We will show later how to change these
defaults, and how to display any tensor in any index configuration and coordinate system. Note that if a
tensor object is displayed automatically as the output of a cell, or using the ~  shortcut for list() , it
will always be displayed in its default indices and coordinates.

A good practice when using OGRePy is to set up the notebook so that the result of the last assignment in
the cell is automatically printed out. This will save us the trouble of writing an extra line every time we
want to print out tensors we assign to variables. This is achieved by executing the following command:

from IPython.core.interactiveshell import InteractiveShell

InteractiveShell.ast_node_interactivity = "last_expr_or_assign"

Changing the output style
The options  object of the OGRePy package is used to set various options, which will then be respected
by all functions and classes in the package. We already saw above that we can use it to turn off the
friendly error message by setting T.options.friendly_errors = False .

To control the style of the output, you can change the property T.options.css_style  to any string of
your choice. The default is just an empty string, but we can change this to any CSS style we want. For
example:

T.options.css_style = "background-color: #000; color: #fff; font-size: 20px; padding: 5px"
~Schwarzschild

To reset the style to the default value, we simply "delete" the property using del :

del T.options.css_style

Now the style is back to normal:

~Schwarzschild

gtt = − 1

grr =

gθθ = r2

gϕϕ = r2 sin2 (θ)

2M
r

1

− + 12M
r

https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS


This is common to all properties of options ; the del  operator does not delete the property, it simply
resets it to the default value.

Line and volume elements
In the case of metrics, we can also display them as a line element using the method line_element() .
For example, here are the line elements for our two metrics:

Minkowski.line_element()

Schwarzschild.line_element()

Note that these are standard SymPy expressions, so they can be manipulated like any other expressions,
including operations such as simplifying or factoring. As an example of a more interesting (non-diagonal)
line element, consider the Alcubierre warp drive metric:

v_t = T.func("v")(t)
f_t_x_y_z = T.func("f")(t, x, y, z)
Alcubierre = T.Metric(
    coords=Cartesian,
    components=[
        [-1 + f_t_x_y_z**2 * v_t**2, 0, 0, -f_t_x_y_z * v_t],
        [0, 1, 0, 0],
        [0, 0, 1, 0],
        [-f_t_x_y_z * v_t, 0, 0, 1],
    ],
)

gtt = − 1

grr =

gθθ = r2

gϕϕ = r2 sin2 (θ)

2M
r

1

− + 12M
r

−dt2 + dx2 + dy2 + dz2

dϕ2r2 sin2 (θ) + dθ2r2 + + dt2 ( − 1)
dr2

− + 12M
r

2M
r

gμν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

f 2v2 − 1 0 0 −fv

0 1 0 0
0 0 1 0

−fv 0 0 1

⎞
⎟⎟⎟
⎠



Here we used OGRePy's func()  function, which is a wrapper around SymPy's Function  class which
also defines the function to be real. Note that the metric was automatically printed in matrix form, since
we configured the notebook to print out the result of the last assignment. Here is a list of its non-zero
components:

~Alcubierre

 is a form function which is equal to 1 inside a "warp bubble" of finite radius and 0 outside it, and  is
the velocity of the bubble, which can be faster than the speed of light ( ). Note that for  and  we
used a new type of object: a SymPy Function  object. This represents a function of the elements given
as the arguments to the constructor, so  is a function of  while  is a function of all of the coordinates.

It is easy to see that the metric is flat where , that is, outside the bubble. Its line element is:

Alcubierre.line_element()

We can simplify it as follows. First, we expand the parentheses:

Alcubierre.line_element().expand()

Using the args  method, we can split this expansion into individual terms (we put the result inside a
SymPy Array  so the terms will be properly displayed as SymPy expressions in the notebook):

args = Alcubierre.line_element().expand().args
T.s.Array(args)

Now we can factorize the third, fifth, and sixth terms together, then add the rest: (recall that indices start
from zero!)

args[0] + args[1] + args[3] + T.s.factor(args[2] + args[4] + args[5])

In this form, it is immediately clear that the metric is flat outside the warp bubble (where  is ), and
inside the warp bubble (when  is ) it is a flat metric translated by an amount  in the  direction.

gtt = f 2v2 − 1
gtz = gzt = −fv

gxx = gyy = gzz = 1

f v

v > 1 v f

v t f

f = 0

dt2 (f 2(t,x, y, z)v2(t) − 1)− 2dtdzf(t,x, y, z)v(t) + dx2 + dy2 + dz2

dt2f 2(t,x, y, z)v2(t) − dt2 − 2dtdzf(t,x, y, z)v(t) + dx2 + dy2 + dz2

[ dx2 dy2 dz2 −dt2 dt2f 2(t,x, y, z)v2(t) −2dtdzf(t,x, y, z)v(t) ]

−dt2 + dx2 + dy2 + (dtf(t,x, y, z)v(t) − dz)2

f 0
f 1 v (t) dt z



Another thing we can do with a metric is calculate its volume elements squared, which is simply the
determinant of the metric, using the method volume_element_squared() . For example:

Minkowski.volume_element_squared()

Schwarzschild.volume_element_squared()

Alcubierre.volume_element_squared()

As with the line elements, these are SymPy expressions, so they can be modified just like any other
expression. Therefore, to calculate the volume element itself, we can just take the square root (adding a
minus sign if the metric is Lorentzian):

T.s.simplify(T.s.sqrt(-Schwarzschild.volume_element_squared()))

Choosing index letters
By default, the show()  method uses Greek letters for the indices, in a specific pre-determined order.
The letters can be changed by setting the property T.options.index_letters  to a list of symbols.
The default letters are:

T.options.index_letters

−1

−r4 sin2 (θ)

−1

r2 |sin (θ)|



['\\mu',
 '\\nu',
 '\\rho',
 '\\sigma',
 '\\kappa',
 '\\lambda',
 '\\alpha',
 '\\beta',
 '\\gamma',
 '\\delta',
 '\\epsilon',
 '\\zeta',
 '\\epsilon',
 '\\theta',
 '\\iota',
 '\\xi',
 '\\pi',
 '\\tau',
 '\\phi',
 '\\chi',
 '\\psi',
 '\\omega']

As you can see, they are given as strings containing TeX symbols. We can display these symbols more
nicely in the notebook using the IPython package:

from IPython.display import Math

Math(",".join(T.options.index_letters))

This means that the letter  will be used for the first index,  for the second, and so on. However,
sometimes we want to use different letters. T.options.index_letters  can accept a list of TeX
symbols, SymPy symbols, and/or strings in the same format as SymPy's symbols()  function, that is, a
space- or comma-separated list of one or more letters or TeX codes - or a mix and match of all of the
above, as long as it's inside a list. Ranges of letters can be indicated using a colon, so for example, here is
how to change the indices to lowercase English letters in alphabetical order:

T.options.index_letters = ["a:z"]

show()  will now use these letters - in this particular order - when displaying tensors:

Minkowski

μ, ν, ρ,σ,κ,λ,α,β, γ, δ, ϵ, ζ, ϵ, θ, ι, ξ,π, τ,ϕ,χ,ψ,ω

μ ν

ηab
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠



As always with the options  object, to reset the index_letters  property to its default value, we
"delete" it using del :

del T.options.index_letters

Note that list()  always uses the coordinate symbols themselves for the indices (e.g. , , etc.), so
it is not affected by T.options.index_letters .

Creating tensors in a given manifold
Any tensors other than coordinates and metrics are created as objects of the OGRePy class Tensor . The
constructor for this class is defined as follows:

T.doc(T.Tensor)

Tensor(*, metric: Metric, indices: IndexConfiguration, coords: Coordinates, 
components: list[Any] | s.NDimArray | s.Matrix, symbol: str | s.Symbol = 
\\square, simplify: bool = False) -> None

Construct a new tensor object.

Parameters:

metric : An OGRePy Metric  object specifying the metric which will be used to raise
and lower indices for this tensor.
indices : A tuple of integers specifying the index configuration of the representation of

the initialization components. Each integer in the tuple can be either +1 for an upper index
or -1 for a lower index. Will also be designated the default index configuration of the
tensor.
coords : An OGRePy Coordinates  object specifying the coordinate system of the

representation of the initialization components. Will also be designated the default
coordinate system of the tensor.
components : The components with which to initialize the tensor. Can be a list, a SymPy
Array  object, or (for rank 2 tensors) a SymPy Matrix  object.
symbol  (optional): A string or a SymPy Symbol  object designating the symbol to be

used when displaying the tensor. The string can include any TeX symbols, e.g.
r"\hat{T}"  (note the r  in front of the string, indicating that the \  in the string is not

an escape character). If omitted, the placeholder  ( r"\square" ) will be used.
simplify  (optional): Whether to simplify ( True ) or not simplify ( False , the default)

the components before storing them.

In OGRePy, all tensor objects must have an associated metric - except coordinate objects, and the
metric tensors themselves. This is because OGRePy automatically raises and lowers indices as appropriate
for various operations such as adding and contracting tensors, and it cannot do so without knowing

ηtt ηxx

□



which metric to use. Even scalars, which have no indices, should still be associated to a specific metric -
since they can multiply other tensors, and you cannot multiply tensors from different manifolds together.

The index configuration of the tensor is a tuple. The number of indices is the rank of the tensor. Each
element in the tuple corresponds to one index, with +1 specifying an upper index and -1 specifying a
lower index. For example, (-1, -1)  corresponds to a tensor such as the metric , which has two
lower indices, while (1, -1, -1, -1)  corresponds to a tensor such as the Riemann tensor ,
which has one upper index followed by three lower indices.

The components of the tensor can be given in several equivalent forms: a list, a SymPy Array  object, or
(for rank 2 tensors) a SymPy Matrix  object. Usually, a list is the simplest option if we are specifying the
components explicitly. (For advanced users: The components can, more generally, be any SymPy
NDimArray , including mutable and/or sparse arrays, but OGRePy always stores the components as an

immutable dense array, no matter what form the input was originally in.)

The components are the representation of the new tensor in the given index configuration and
coordinate system. If a coordinate system is not specified, the default coordinate system of the
associated metric will be used - but it is recommended to always specify the coordinate system explicitly,
to avoid accidentally defining the tensor with the wrong components. The components will be
automatically converted to different indices or coordinates later as needed, as we will demonstrate
below.

To create a scalar, or a tensor of rank 0 (with no indices), we must input an empty tuple ()  for the
indices, and a list with exactly one item for the components. Note that a "bare" expression, not inside a
list, will not work. For example, let us define the Kretschmann scalar in the Schwarzschild spacetime
(below we will show how to calculate it directly from the metric):

SchwarzschildKretschmann = T.Tensor(
    metric=Schwarzschild,
    coords=Spherical,
    indices=(),
    components=[(48 * M**2) / r**6],
    symbol="K",
)

Similarly, we can create a vector, or a tensor of rank 1 (with one index). For example, let us create a
vector for the 4-velocity of a particle moving at 3-velocity  along the  direction in Minkowski space.
Since the 4-velocity has an upper index by definition, we make sure to define the components in the
representation of the tensor with an upper index by specifying the index configuration as (1,) :

from OGRePy.abc import v

FourVelocity = T.Tensor(

gμν

Rρ
σμν

K
∣
∣
∣(t,r,θ,ϕ)

=
48M 2

r6

v x



    metric=Minkowski,
    coords=Cartesian,
    indices=(1,),
    components=T.s.Array([1, v, 0, 0]) / T.s.sqrt(1 - v**2),
)

There are a few important things to note here:

1. In Python, a tuple of one element must be specified with a comma, i.e. (1,) , because (1)  would
be interpreted as an integer.

2. We used a SymPy Array  object to define the components since this allowed us to divide each
component by the square root . This would not be possible with a normal Python list.

3. Since we did not specify a symbol for this tensor, its symbol is just a placeholder . We will give it a
proper symbol below.

Finally, as an example of a tensor of rank 2 (with two indices), let us define the stress-energy tensor 
for a perfect fluid, using its matrix representation with two upper indices by specifying the index
configuration (1, 1) :

from OGRePy.abc import p, rho

PerfectFluid = T.Tensor(
    metric=Minkowski,
    coords=Cartesian,
    indices=(1, 1),
    components=T.diag(rho, p, p, p),
    symbol="T",
)

In a similar manner, we could also define tensors of rank 3 and above. However, such tensors are most
often derived by operating on lower-rank tensors, rather than defined manually via their components.
We will see an example of such a derivation when we derive the Christoffel symbols and Riemann tensor
from the metric below.

Operations on single tensors

□μ∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜⎜⎜
⎝

0
0

⎞
⎟⎟⎟⎟⎟
⎠

1
√1−v2

v

√1−v2

√1 − v2

□

T μν

Tμν∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎟
⎠



Changing a tensor's symbol
If we ever want to change the symbol used to display a tensor, we can simply change the property
symbol  to any string, TeX code, or SymPy Symbol . For example, let us give the symbol  to the four-

velocity:

FourVelocity.symbol = "u"

Now, when we display the tensor using show()  or list() , this is the symbol that will be used:

FourVelocity

Raising and lowering indices
Raising and lowering indices is one of the most basic tensor operations. For example, if we have a vector
represented with one upper index, , we can turn it into a covector, which is represented with one lower
index, by contracting it with the metric:

This is called "lowering an index". Here and in the rest of this documentation, we will be using the
Einstein summation convention, where the same index repeated exactly twice, once as an upper index
and once as a lower index, implies summation over that index. In this case, the implied summation is
over :

Such a sum over an index is called a contraction, and it is a generalization of the inner product, as we will
describe in more details below. Conversely, if we have a covector , we can raise its index by
contracting it with the inverse metric:

This works the same for indices of higher-rank tensors. For example, if we have a tensor of rank 2
represented with two upper indices, , we can lower either one or both of its indices:

u

uμ
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜⎜⎜
⎝

0
0

⎞
⎟⎟⎟⎟⎟
⎠

1
√1−v2

v

√1−v2

vν

vμ = gμνv
ν.

ν ∈ 0, 1, 2, 3

vμ =
3

∑
ν=0

gμνv
ν = gμ0v

0 + gμ1v
1 + gμ2v

2 + gμ3v
3.

wμ

wμ = gμνwν.

T μλ

T μ
ν = gνλT

μλ, Tμν = gμρgνλT
ρλ.



In OGRePy, since tensor objects are abstract tensors, independent of any specific index configuration,
there is no notion of raising or lowering the indices of a tensor object. Instead, one simply request
to display the components of the tensor with the desired index configuration, without modifying the
object itself. This works with both the show()  and list()  methods, by simply providing as an
argument the list of indices in the format , as when we created a new tensor.

As an example, let us use show()  to display the vector FourVelocity  with a lower index, that is, with
index configuration (-1,) :

FourVelocity.show(indices=(-1,))

OGRePy automatically knows to use the Minkowski  metric to lower the index, which means that a
minus sign has been added to the first component, as expected. Similarly, here is PerfectFluid  with
just the second index lowered, this time displayed using list() :

PerfectFluid.list(indices=(1, -1))

The components of the representation of the metric with two upper indices are the components of the
inverse metric, since

Therefore, a quick way to show the components of the inverse metric is to display it with the index
configuration (1, 1) :

Schwarzschild.show(indices=(1, 1))

For the same reason, the metric with one upper and one lower index is just the identity matrix:

(±1, ±1, . . . )

uμ
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜⎜⎜
⎝

−

0
0

⎞
⎟⎟⎟⎟⎟
⎠

1
√1−v2

v

√1−v2

T t
t = −ρ

Tx
x = T y

y = T z
z = p

gμλg
λν = δνμ.

gμν
∣
∣
∣(t,r,θ,ϕ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

− 0 0 0

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

r
−2M+r

−2M+r

r

1
r2

1

r2 sin2 (θ)



Schwarzschild.list(indices=(1, -1))

As explained above, if show()  or list()  are called without any arguments, the tensor is displayed in
its default index configuration, which is the one first used to define the tensor. So the 4-velocity has
one upper index by default, and the stress tensor has two upper indices by default, because that is how
we initially defined them. However, the default indices can be changed by setting the property
default_indices . For example, let us change the default indices of the perfect fluid stress tensor to

two lower indices:

PerfectFluid.default_indices = (-1, -1)

Now, when we display the tensor using show()  or list()  without any arguments, this is the index
configuration that will be used:

PerfectFluid

Coordinate transformations
The components of any tensor may be transformed from one coordinate system  to another
coordinate system  using the following prescription:

For every lower index , add a factor of  (i.e. the derivative of the old coordinates with
respect to the new, or the Jacobian).
For every upper index , add a factor of  (i.e. the derivative of the new coordinates with
respect to the old, or the inverse of the Jacobian).

For example, given a tensor with components  in a coordinate system , we can transform to
components  in another coordinate system  as follows:

For a general rank  tensor with  upper indices  and  lower indices , the
transformation takes the form

gtt = grr = gθθ = gϕϕ = 1

Tμν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎟
⎠

xμ

xμ
′

μ ∂xμ/∂xμ
′

μ ∂xμ
′
/∂xμ

Tαβ xμ

Tα′β′ xμ
′

Tα′β′(xμ
′
) = /

∂xα

∂xα′

∂xβ

∂xβ′

(p, q) p α1, … ,αp q β1, … ,βq

T
α′

1⋯α′
p

β′
1⋯β′

q
(xμ

′
) = ( ⋯ )( ⋯ )T

α1⋯αp

β1⋯βq
(xμ)

∂xα′
1

∂xα1

∂xα
′
p

∂xαp

∂xβ
′
1

∂xβ1

∂xβ
′
q

∂xβq



As a mnemonic for this formula, recall that two indices may only be contracted if one of them is an upper
index and the other is a lower index. If an index is in the denominator of a derivative, then its role is
reversed (upper  lower). Thus the old (non-primed) and new (primed) indices can only be in places that
allow properly contracting the Jacobian or inverse Jacobian with the tensor. For example,  is an upper
index in  and therefore must be contracted with a lower index. Thus,  must be in the denominator,
to lower its index and allow it to be contracted with the tensor.

As we saw above, OGRePy automatically knows how to raise or lower indices as needed using the
appropriate metric. Similarly, any operation that requires transforming to another coordinate system will
preform the transformation automatically behind the scenes. However, for this to happen, OGRePy needs
to know the appropriate transformation rules. These are defined between the tensor objects representing
the coordinates, which were created as Coordinates  objects. The rules for transforming from a source
coordinate system to a target coordinate system are stored within the tensor object representing the
source. This is done using the method set_coord_transformation() . To illustrate, let us define
transformations from Cartesian  to Spherical  and back:

Cartesian.set_coord_transformation(
    target=Spherical,
    rules={
        x: r * T.s.sin(theta) * T.s.cos(phi),
        y: r * T.s.sin(theta) * T.s.sin(phi),
        z: r * T.s.cos(theta),
    },
)

Spherical.set_coord_transformation(
    target=Cartesian,
    rules={
        r: T.s.sqrt(x**2 + y**2 + z**2),
        theta: T.s.acos(z / T.s.sqrt(x**2 + y**2 + z**2)),
        phi: T.s.atan2(y, x),
    },
)

As you can see, the rules are supplied as a dictionary specifying the transformation from each source
coordinate to the target coordinates. Note that we did not have to input a rule for t , since it stays the
same in both cases; the transformation is in the spatial coordinates only.

Now OGRePy knows how to convert back and forth between these two coordinate systems - and this will
happen automatically whenever required. We just needed to provide these rules once and for all, and any
tensor initially defined in one coordinate system can now be automatically converted to the other.

As in the case of raising and lowering indices, displaying a tensor in a different coordinate system is a
simple matter of calling the methods show()  or list()  with an additional argument specifying the
coordinate system to use. For example, let us show the Minkowski metric in spherical coordinates:

Minkowski.show(coords=Spherical)

↔
α1

T ∂xα1



We can also ask to see a tensor in a specific index configuration and a specific coordinate system:

PerfectFluid.show(coords=Spherical, indices=(1, 1))

The method list()  works in exactly the same way, for example:

SchwarzschildKretschmann.list(coords=Cartesian)

Just as with default indices, every tensor has a default coordinate system, which is, initially, the one we
used to create it. We can change it by setting the property default_coords , and then whenever we
display the tensor, it will be displayed in that coordinate system if no other coordinate system is
specified. For example, let's change the default coordinates of the perfect fluid stress tensor to spherical
coordinates:

PerfectFluid.default_coords = Spherical

Now, when we display the tensor using show()  or list()  without any arguments (or with just a
choice of indices), this is the coordinate system that will be used:

~PerfectFluid

Note that the coordinate transformation we defined is only invertible for . However, since we
defined the coordinate  above as a non-negative symbol, this is already taken care of by SymPy behind

ημν
∣
∣
∣(t,r,θ,ϕ)

=

⎛
⎜⎜⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 (θ)

⎞
⎟⎟⎟⎟
⎠

Tμν∣
∣
∣(t,r,θ,ϕ)

=

⎛
⎜⎜⎜⎜⎜
⎝

ρ 0 0 0
0 p 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

p

r2

p

r2 sin2 (θ)

K =
48M 2

(x2 + y2 + z2)3

T tt = ρ

T rr = p

T θθ = pr2

Tϕϕ = pr2 sin2 (θ)

r ≥ 0
r



the scenes. To illustrate this, let us define a new scalar in Minkowski space, which is equal to the spatial
distance from the origin:

SpatialDistance = T.Tensor(
    metric=Minkowski,
    coords=Cartesian,
    indices=(),
    components=[T.s.sqrt(x**2 + y**2 + z**2)],
    symbol="d",
)

When we convert this scalar to spherical coordinates, we get , as expected:

SpatialDistance.show(coords=Spherical)

However, if we did not define  as a non-negative symbol, we would have obtained  instead.

Replacing symbols in the tensor components
By using the replace  argument of list()  and show() , we can replace symbols in the tensor
components with other symbols or numerical values. The replacement must be in the form of a
dictionary, where each key in the dictionary will be replaced with its value. Each of the keys and the
values of the dictionary can be either a SymPy Symbol  object or a SymPy Expr  object. The
components will then be simplified, and the tensor will be displayed with the new components. Note that
this only applies to displaying the components; the tensor data itself will not change.

For example, perhaps we would like to display the value of the Kretschmann scalar for a particular choice
of  and :

SchwarzschildKretschmann.show(replace={M: 1, r: 10})

Or maybe we would like to display the perfect fluid stress tensor with  equal to :

PerfectFluid.list(replace={p: rho})

d
∣
∣
∣(t,x,y,z)

= √x2 + y2 + z2

r

d
∣
∣
∣(t,r,θ,ϕ)

= r

r |r|

M r

K
∣
∣
∣(t,r,θ,ϕ)

=
3

62500

p ρ



The replacement can, of course, also be combined with a choice of indices and/or coordinates:

PerfectFluid.list(coords=Cartesian, indices=(1, 1), replace={p: rho})

Another, more advanced, thing we can do with list()  and show()  is to pass a function to be
executed on each tensor component before printing it. We will see an example below, in the "Geodesic
equations from the Lagrangian" section.

Customizing the simplification function
Whenever OGRePy performs an operation that creates or modifies tensor components, such as
converting between index representations or coordinate systems, it automatically simplifies the result
using SymPy's simplify() . However, advanced users may want to have more control over this
simplification process. This can be done using by setting T.options.simplify_func  to a function of
your choice.

For example, you may want to customize the arguments passed to simplify (such as ratio  or
inverse , see here for more information), or you may want to use specific SymPy simplification

functions such as powsimp()  or logcombine()  in a specific combination, or even refine()  with
specific assumptions.

In extreme situations, you may even want to cancel simplification altogether, if it is taking too long,
which can be achieved using T.options.simplify_func = lambda x: x  - that is, replacing the
simplification function with the identity function.

Note that changing the simplification function will not automatically apply it to any existing tensors. The
reason is that when OGRePy calculates the components of a tensor in a particular representation, it
calculates them once and for all, and then saves them in the object's data to be reused later. This is
done to improve performance, so that the components don't have to be recalculated every time they are
needed.

We can force re-simplification of the stored components of a specific tensor using the method
simplify() . As usual with the options  object, you may restore the simplification function to the

default, SymPy's simplify() , with the command del T.options.simplify_func .

Getting information about tensors

T tt = T rr = ρ

T θθ = ρr2

Tϕϕ = ρr2 sin2 (θ)

T tt = Txx = T yy = T zz = ρ

https://docs.sympy.org/latest/modules/simplify/simplify.html


The info()  method can be used to display the information encoded in a tensor object in human-
readable form. Here is an example:

Minkowski.info()

Name: Minkowski
Class: Metric
Symbol: 
Rank: 2
Dimensions: 4
Default Coordinates: Cartesian
Default Indices: (-1, -1)
Associated Metric For: FourVelocity , PerfectFluid , SpatialDistance

As for show()  and list() , OGRePy defines a convenient shortcut for calling info() : use the +
(unary plus) operator in front of the tensor. For example:

+PerfectFluid

Name: PerfectFluid
Class: Tensor
Symbol: 
Rank: 2
Dimensions: 4
Default Coordinates: Spherical
Default Indices: (-1, -1)
Metric: Minkowski

A Coordinates  object also has an info()  method, and it can be used to check which tensors use
this coordinate system as their default:

+Cartesian

Name: Cartesian
Class: Coordinates
Dimensions: 4
Default Coordinates For: Minkowski , Alcubierre , FourVelocity , SpatialDistance

It is also possible to get each of these properties of the tensor individually, using the properties
symbol , default_indices , and default_coords  and the methods rank() , dim() , and
metric() . Note that the symbol, default indices, and default coordinates are properties that can be

changed, but rank() , dim() , and metric()  are read-only properties obtained using methods, as it
doesn't make sense to change these properties. Here are some examples of using these properties and
methods. The symbol is a bit cryptic:

ημν

Tμν



PerfectFluid.symbol

'T[0][1]'

The purpose of the [0][1]  is to serve as a placeholders for indices, since the actual letters that will be
used as the indices can be different each time. (These placeholders are added automatically when we
create the tensor, there is no need to specify them manually, although you can if you want.) To get the
symbol as a TeX string, we can use the tex_symbol()  method, and pass its output to the IPython
Math()  function to display it in the notebook:

Math(PerfectFluid.tex_symbol())

Similarly, we can use the default_indices  and default_coords  properties to obtain the default
indices and coordinates:

PerfectFluid.default_indices

(-1, -1)

PerfectFluid.default_coords

And we can use the metric()  method to obtain the associated metric:

PerfectFluid.metric()

In the last two examples, default_coords  and metric() , notice that the output directly shows the
tensors used as the default coordinates and associated metric respectively. This is because
default_coords  and metric()  return a reference to the relevant Coordinates  or Metric

object respectively, and that object then gets displayed in the notebook using the show()  method, as it
is the output of the cell.

However, since we are working inside a notebook, it would be helpful to know the name of the notebook
variable referring to this Coordinates  or Metric  object. It turns out that is not at all straightforward
to obtain this information in Python, since an object reference might not even be associated to any
specific variable, or it may be associated to more than one variable. Luckily, OGRePy comes with a special
algorithm to figure out which notebook variables refer to which objects. We already saw that algorithm
in action when we used the info()  method above. However, we can also obtain the name of the

Tμν

( t r θ ϕ )

ημν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠



variable by simply converting the object to a string using the str  constructor. This works on both
Coordinate  and Metric  objects:

str(PerfectFluid.default_coords)

'Spherical'

str(PerfectFluid.metric())

'Minkowski'

That same algorithm powers the module function info() , which lists all the tensors created so far,
including the names of the variables used to define these tensors. Here are all the tensors we defined so
far in this notebook:

T.info()

9 tensor objects created: 2 coordinates, 3 metrics, 4 tensors.

Coordinate systems:

1. Cartesian  (id: 0x13cfd73bc40 ), default for: Minkowski , Alcubierre , FourVelocity ,
SpatialDistance

2. Spherical  (id: 0x13cfe7e7100 ), default for: Schwarzschild , SchwarzschildKretschmann ,
PerfectFluid

Metrics and associated tensors:

1. Minkowski  (symbol: ) (id: 0x13cfd50e8e0 ), used by: FourVelocity , PerfectFluid ,
SpatialDistance

2. Schwarzschild  (symbol: ) (id: 0x13cffde2780 ), used by: SchwarzschildKretschmann
3. Alcubierre  (symbol: ) (id: 0x13cffde2d00 )

Tensors:

1. SchwarzschildKretschmann  (symbol: ) (id: 0x13c8025bfb0 )
2. FourVelocity  (symbol: ) (id: 0x13c802b2cf0 )
3. PerfectFluid  (symbol: ) (id: 0x13c802967f0 )
4. SpatialDistance  (symbol: ) (id: 0x13c806a2070 )

We see that we created 9 tensors in total so far: 2 coordinate systems, 3 metrics, 3 tensors associated
with the Minkowski metric, and 1 tensor associated with the Schwarzschild metric.

Getting the components of a tensor
Sometimes you may want to extract the components of a tensor in a specific representation as a list, so
you can use them outside of this package, as regular SymPy expressions rather than tensor objects. This

ημν

gμν

gμν

K

uμ

Tμν

d



is done using the components()  method. For example, we can retrieve the components of the inverse
Schwarzschild metric (with two upper indices):

InverseSchwarzschild = Schwarzschild.components(coords=Spherical, indices=(1, 1))

We can now treat InverseSchwarzschild  as any other SymPy Array  - for example, extract the
element at a particular position:

InverseSchwarzschild[0, 0]

If the desired index configuration and/or coordinate system are not specified, the default ones will be
used. However, it is important to always know exactly which representation the components are in, to
avoid confusion. Thus, you will be notified which representation was used:

Schwarzschild.components()

OGRePy: Using default coordinate system Spherical  and default index configuration (-1, -1).

This warning can be disabled by adding the argument warn=False .

Since components()  returns a SymPy Array , we can use the subs()  method to perform
replacements, just like the replace  argument of show()  and list()  (see above). For example, here
are the components of the Schwarzschild metric on the hypersurface with :

Schwarzschild.components().subs({theta: T.s.pi / 2})

OGRePy: Using default coordinate system Spherical  and default index configuration (-1, -1).

⎡
⎢⎢⎢⎢⎢⎢⎢
⎣

− 0 0 0

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥
⎦

r

−2M+r

−2M+r

r

1
r2

1

r2 sin2 (θ)

−
r

−2M + r

⎡
⎢⎢⎢⎢⎢⎢
⎣

− 1 0 0 0

0 0 0

0 0 r2 0

0 0 0 r2 sin2 (θ)

⎤
⎥⎥⎥⎥⎥⎥
⎦

2M
r

1

− +12M
r

θ = π/2

⎡
⎢⎢⎢⎢⎢⎢
⎣

− 1 0 0 0

0 0 0

0 0 r2 0
0 0 0 r2

⎤
⎥⎥⎥⎥⎥⎥
⎦

2M
r

1

− +12M
r



In the case of a coordinate system, that is, a Coordinates  object, components()  takes no arguments,
since a coordinate system cannot have multiple representations:

Spherical.components()

Calculations with tensors
Now that we have all the bookkeeping of tensors out of the way, we can finally discuss how to use those
tensors in calculations. In OGRePy, all tensor calculations are performed by simply using normal
operations such as addition and multiplications on the tensors. However, this does not work the same as
operating, for example, on integers; in most tensor operations, we also have to specify indices. Some of
these indices will be *free indices, which will remain in the final result, while others may be
**contraction indices, which will be contracted upon.

OGRePy supports a comprehensive collection of tensor operations. A tensor calculation in OGRePy can
involve any number of tensor objects and can contain any combination of addition, multiplication by
scalar, trace, contraction, partial derivative, and covariant derivative. The result will be stored in a new
tensor object. Let us now go over these operations one by one, and give some examples.

Addition of tensors
Addition of tensors in OGRePy is represented by a sum of the form tensor1(index1, index2, ...) 
+ tensor2(index1, index2, ...) , where tensor1  and tensor2  are the tensor objects to be
added, and (index1, index2, ...)  are the index specifications for each tensor, given as SymPy
symbols. (Note that an index specification is not the same as an index configuration, which is a tuple of
the form (Â±1, Â±1, ...)  specifying which indices are up (+1) and which are down (-1).)

Note that you do not specify the position (upper or lower) of the indices. Furthermore, just like in any
tensor equation, the index letters themselves have no meaning; they are just placeholders. Therefore,
(a, b, c) , (X, Y, Z) , and (alpha, beta, gamma)  are all completely equivalent. The only

requirement is that the indices are consistent; in the case of addition, this means that both tensors being
added must have the same indices up to permutation.

The following constraints apply to addition of tensors:

You may not add a tensor representing a coordinate system to any other tensor, since coordinates
do not transform like tensors.
You may not add two tensors associated with different metrics, since their sum would have
undefined transformation properties.
You may not add two tensors with different ranks, since that is not a well-defined operation.
As stated above, both tensors must have the same indices up to permutation.  and

 (with inverted indices on the second tensor) are both okay, but  doesn't

[ t r θ ϕ ]

Aμν + Bμν

Aμν + Bνμ Aμν + Bαβ



make sense, as it has more free indices than the rank of the result (that is, the result will be of the
form  instead of ).

As an example, let us add the Minkowski metric  and the perfect fluid stress tensor . First we
import symbols from OGRePy.abc  to use as indices, then we perform the actual sum:

from OGRePy.abc import mu, nu

result = Minkowski(mu, nu) + PerfectFluid(mu, nu)

Notice that the addition operation returned a new tensor object. This tensor's symbol has been
automatically set to reflect the formula that was used to create it. However, often we want the new
tensor to have its own single-letter symbol. To do that, we can use the symbol  property:

result.symbol = "S"
result

With this symbol, the tensor equation we calculated becomes:

The order of indices we specify for each tensor matters. To give an example, let us define the following
non-symmetric tensor:

NonSymmetric = T.Tensor(
    metric=Minkowski,
    coords=Cartesian,
    indices=(-1, -1),
    components=[[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
    symbol="N",
)

T μναβ T μν

ημν Tμν

ημν + Tμν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

ρ − 1 0 0 0
0 p + 1 0 0
0 0 p + 1 0
0 0 0 p + 1

⎞
⎟⎟⎟
⎠

Sμν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

ρ − 1 0 0 0
0 p + 1 0 0
0 0 p + 1 0
0 0 0 p + 1

⎞
⎟⎟⎟
⎠

Sμν = ημν + Tμν.

Nμν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠



If we add it to the Minkowski metric, we get:

Minkowski(mu, nu) + NonSymmetric(mu, nu)

Note that in this example we did not save the new tensor object in a variable, we just showed the result.
However, if we flip its index specification from (mu, nu)  to (nu, mu) , then we instead get:

Minkowski(mu, nu) + NonSymmetric(nu, mu)

To stress an important point, there is no difference between NonSymmetric(mu, nu)  and
NonSymmetric(nu, mu)  on its own, as the index labels themselves are meaningless unless there is

some context in which they obtain meaning - as is always the case for tensor expressions. However, there
is a big difference between, for example, Minkowski(mu, nu) + NonSymmetric(mu, nu)  and
Minkowski(mu, nu) + NonSymmetric(nu, mu) , as the indices have a different order, and thus the

two expressions refer to adding different components.

Of course, any number of tensors can be added, not just two - and the same tensor can be added
multiple times, with different index specifications each time. For example, we can calculate the following
expression:

Minkowski(mu, nu) + PerfectFluid(mu, nu) + NonSymmetric(mu, nu) + NonSymmetric(nu, mu)

More on index specifications
For calculations that involve many indices, it may be more convenient to specify the indices as a string
instead of individual symbols. This also saves us the trouble of importing or defining those symbols
explicitly. This string must be given in the same format as SymPy's symbols()  function, that is, a space-
or comma-separated list of one or more letters or TeX codes. It is also possible to provide a list of strings,

ημν + Nμν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

−1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

ημν + Nνμ
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎟
⎠

ημν + Tμν + Nμν + Nνμ
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

ρ − 1 0 0 1
0 p + 1 0 0
0 0 p + 1 0
1 0 0 p + 1

⎞
⎟⎟⎟
⎠



or even mix and match symbols and strings. For example, the previous calculation can also be written as
follows:

Minkowski(mu, nu) + PerfectFluid("mu nu") + NonSymmetric("mu", nu) + NonSymmetric("nu", "mu")

Index specifications have a use even if we are not doing a calculation: they change the indices that
appear when show()  is called, instead of the default index letters (as specified using
T.options.index_letters ). For example, with the default index letters, NonSymmetric  will be

displayed with the indices :

NonSymmetric

However, if we want to display it with the indices  instead, we can simply indicate these indices in
parentheses:

NonSymmetric("alpha beta")

Another alternative syntax is available for those who prefer the index specification format from the
Mathematica version of OGRe: a string where each letter is a separate symbol, with no spaces between
the letters, e.g. "abc" corresponds to (a, b, c). This format is less useful in the Python version since there is
no easy way to enter Greek indices as individual letters; in Mathematica it's easy to write e.g. "Î¼Î½"
using escape sequences, but in Python it's easier to write "mu nu" or use symbols named mu  and nu
explicitly. The Mathematica format is accessible via square brackets, e.g.:

NonSymmetric["ab"]

ημν + Tμν + Nμν + Nνμ
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

ρ − 1 0 0 1
0 p + 1 0 0
0 0 p + 1 0
1 0 0 p + 1

⎞
⎟⎟⎟
⎠

μν

Nμν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

αβ

Nαβ
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠



Multiplication of tensor by scalar
Multiplication of tensor by scalar in OGRePy is represented by a product of the form scalar * 
tensor(index1, index2, ...) , where tensor  is the tensor object to be multiplied, (index1, 

index2, ...)  is an index specification as for addition, and scalar  is the scalar to multiply by. Note
that scalar  should be a number or SymPy expression, and not a tensor object of rank 0. To multiply a
tensor by a tensor of rank 0, use contraction instead, as detailed in the next section.

As an example, let us multiply the Minkowski metric  by 2:

2 * Minkowski(mu, nu)

While in this example the indices seem redundant, they are necessary because in most non-trivial
situations we would like to combine multiplication with other operations, such as addition or contraction,
in which the order of indices matters. For example, consider:

2 * t * Minkowski(mu, nu) - 3 * x * PerfectFluid(mu, nu) + 4 * y * NonSymmetric(mu, nu) - 5 * 

Taking traces and contracting tensors: theoretical review
The most complicated tensor operation is contraction, a generalization of the vector inner product. This
is done by summing over one or more disjoint pairs of indices, with each pair containing exactly one
upper index and one lower index. Raising and lowering indices is one example of contraction: the metric
(or its inverse) is contracted with a tensor. Coordinate transformations are another example, where we
contract the Jacobian (or its inverse) with a tensor.

The simplest example of contraction is the vector inner product, which is defined as the contraction of a
vector (one upper index) with a covector (one lower index):

Nab
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

ημν

2ημν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

−2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎟
⎠

2tημν − 3xTμν + 4yNμν − 5zNνμ
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

−3ρx − 2t 0 0 4y
0 −3px + 2t 0 0
0 0 −3px + 2t 0

−5z 0 0 −3px + 2t

⎞
⎟⎟⎟
⎠



The middle part of this equality comes from the fact that, as explained above, when we lower an index on
, we use the metric:

This, in turn, justifies the notation  on the right-hand side, as this is, in fact, an inner product of
two vectors using the metric  (in index-free notation).

Contraction of indices in higher-rank tensors is simply a generalization of the inner product, for example:

We can also contract more than one index:

This simply amounts to the fact that lowering both indices of  involves contracting each index with
the metric. We can even contract two indices of the same tensor:

This is called taking the trace. Furthermore, it is also possible to contract pairs of indices from more than
two tensors at the same time:

However, such operations can always be broken down into individual contractions of pairs of tensors. For
example, in this case, one could first contract  with  and then contract the result with  - which
is indeed how this kind of contraction will be performed in OGRePy in practice:

In a contraction, there are two types of indices: contracted indices, which are summed upon, and free
indices, which are not summed upon. The rank of the tensor that results from the contraction is the
number of free indices. So for example, in the expression  we have one contracted index, , and
two free indices,  and . Therefore, the resulting tensor is of rank two:

Taking traces and contracting tensors: OGRePy syntax
Contraction of tensors in OGRePy is represented by an expression of the form tensor1(index1, 
index2, ...) @ tensor2(index1, index2, ...) , where tensor1  and tensor2  are the tensor
objects to be contracted, and (index1, index2, ...)  are the index specifications for each tensor.
Any matching indices in both index specifications will be contracted. This means that, for example, 
is calculated using v(mu) @ w(mu)  and  is calculated using A(mu, nu) @ B(nu, rho) @ 
C(rho, sigma) . Note that the user doesn't need to worry about the contracted indices being one

vμwμ = gμνv
μwν = g(v,w).

wν

wμ = gμνw
ν.

g(v,w)
g

AμαBαν = gαβA
μαBβ

ν.

AμνBμν = gμαgνβA
μνBαβ.

Bαβ

Aμ
μ = gμνA

μν.

AμνBνρC
ρσ = gναgρβA

μνBαβCρσ.

Bνρ Cρσ Aμν

AμνBνρC
ρσ = Aμν (BνρC

ρσ) .

AμαBαν α

μ ν

T μ
ν = AμαBαν.

vμwμ

AμνBνρC
ρσ



upper and one lower, which is a common source of errors when contracting tensors by hand; the order
of the indices, and whether the same index repeats twice, is all that matters.

As a first example, let us create the stress-energy tensor for a perfect fluid with a 4-velocity . This is
defined as follows:

Even though this does not involve any contractions, it still counts as a "trivial" contraction, since two
tensors (the 4-velocities) are juxtaposed next to each other to create another tensor. This is also known
as an outer product. Therefore, it uses the same @  operator syntax as any other contraction, except
that there are no matching indices. Note that this expression involves not just contraction (in the first
term), but also multiplication by scalar (in both terms), and addition of the two terms together. Again,
OGRePy takes care of everything behind the scene, so this just works:

PerfectFluidFromVelocity = (rho + p) * FourVelocity(mu) @ FourVelocity(nu) + p * Minkowski(mu,
PerfectFluidFromVelocity.symbol = "T"
PerfectFluidFromVelocity

Indeed, for  we get the previously defined stress tensor:

PerfectFluidFromVelocity.show(replace={v: 0})

Multiplying a tensor by a scalar (i.e. a tensor of rank 0) is also done using a "trivial" contraction with no
contracted indices. For example:

(SpatialDistance() @ Minkowski(mu, nu)).show(coords=Spherical)

uμ

T μν = (ρ + p)uμuν + pgμν.

Tμν∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

− 0 0

− 0 0

0 0 p 0
0 0 0 p

⎞
⎟⎟⎟⎟⎟⎟
⎠

−ρ−pv2

v2−1

v(ρ+p)

v2−1

v(ρ+p)

v2−1

−ρv2−p

v2−1

v = 0

Tμν∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎟
⎠

dημν
∣
∣
∣(t,r,θ,ϕ)

=

⎛
⎜⎜⎜⎜
⎝

−r 0 0 0
0 r 0 0
0 0 r3 0

0 0 0 r3 sin2 (θ)

⎞
⎟⎟⎟⎟
⎠



Note the empty index specification () , which is mandatory in order for OGRePy to recognize that the
scalar is involved in a tensor calculation. We can also multiply a scalar by another scalar:

SpatialDistance() @ SpatialDistance()

Now let us demonstrate some non-trivial contractions. First, we have the inner product of vectors - in this
case, we get the norm (squared) of the 4-velocity, since we are contracting it with itself:

FourVelocity(mu) @ FourVelocity(mu)

We can also contract several tensors together, with two matching pairs of indices:

FourVelocity(mu) @ PerfectFluidFromVelocity(mu, nu) @ NonSymmetric(nu, rho)

Finally, to take the trace of a tensor, we simply match pairs of indices in that tensor's index specification:

Minkowski(mu, mu)

PerfectFluid("mu mu")

Of course, this also works for tensors with more than two indices, as we will see below. Any combination
of indices can be used, with no limit on the number of traces taken for each tensor.

Derivatives and curvature tensors

dd
∣
∣
∣(t,x,y,z)

= x2 + y2 + z2

uμu
μ∣
∣
∣(t,x,y,z)

= −1

uμT
μ
νN

ν
ρ
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜⎜
⎝

0
0
0

−

⎞
⎟⎟⎟⎟
⎠ρ

√1−v2

ημ
μ∣
∣
∣(t,x,y,z)

= 4

Tμ
μ∣
∣
∣(t,r,θ,ϕ)

= −ρ + 3p



The partial derivative  is represented in OGRePy using the class PartialD . It can be contracted with
other tensors using the usual OGRePy contraction notation - including an appropriate index specification
- to calculate gradients and divergences.

The gradient of a tensor is the partial derivative  acting on the tensor with a free index, e.g.  for a
tensor,  for a vector, or  for a rank-2 tensor, resulting in a tensor of one rank higher (due to
the extra index). In OGRePy, this is done by contracting the PartialD  object from the left with the
tensor, using the contraction operator @ . For example, we can calculate the gradient  of the
Kretschmann scalar as follows:

T.PartialD(mu) @ SchwarzschildKretschmann()

And here is the gradient of the Schwarzschild metric:

~(T.PartialD(mu) @ Schwarzschild("alpha beta"))

The divergence of a tensor is the contraction of the partial derivative  with one of the tensor's indices,
e.g.  for a vector or  for a rank-2 tensor, resulting in a tensor of one rank lower. To illustrate,
let us create the position vector of a particle in Minkowski space:

Position = T.Tensor(
    metric=Minkowski,
    coords=Cartesian,
    indices=(1,),
    components=[t, x, y, z],
    symbol="x",
)

∂μ

∂μ ∂μϕ

∂μu
ν ∂μT

νλ

∂μK

∂μK
∣
∣
∣(t,r,θ,ϕ)

=

⎛
⎜⎜⎜⎜
⎝

0

−

0
0

⎞
⎟⎟⎟⎟
⎠

288M 2

r7

∂rgtt = −

∂rgrr = −

∂rgθθ = 2r
∂rgϕϕ = 2r sin2 (θ)

∂θgϕϕ = 2r2 sin (θ) cos (θ)

2M
r2

2M

r2(− + 1)
2

2M
r

∂μ

∂μu
μ ∂μT

μν



Its gradient is:

T.PartialD(mu) @ Position(nu)

And its divergence is:

T.PartialD(mu) @ Position(mu)

As you can see, the syntax for both the gradient and divergence is the same; if the index specification of
PartialD  matches one of the indices of the tensor to its right, then the divergence will be calculated,

otherwise the gradient will be calculated.

WARNING: When applying partial derivatives to tensors, the result generally does not transform
like a tensor under a coordinate transformation. For this reason, in general relativity we normally use
the covariant derivative instead of a partial derivative. However, there are three important exceptions,
where partial derivatives must be used: in the covariant derivative itself, the Levi-Civita connection, and
the Riemann tensor, all of which will be discussed below.

Of these three special cases, the covariant derivative and the Riemann tensor turn out to nonetheless
transform like tensors under coordinate transformations, due to cancellations. However, the Levi-Civita
connection, whose components are called the Christoffel symbols, has a special transformation rule,
which is used automatically by OGRePy, as we will show.

In all other cases, if the user creates an arbitrary tensor using partial derivatives, the result will generally
transform incorrectly under a coordinate transformation in OGRePy. Therefore, it is highly
recommended to avoid using partial derivatives in OGRePy unless you really know what you're doing.

The Christoffel symbols
The Christoffel symbols are a very important tensor-like object in differential geometry. They are the
components of the Levi-Civita connection, which is the unique torsion-free connection that preserves

xμ
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

t

x

y

z

⎞
⎟⎟⎟
⎠

∂μx
ν∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

∂μx
μ∣
∣
∣(t,x,y,z)

= 4



the metric. The Christoffel symbols are defined as follows:

Each of the terms inside the parentheses is a gradient of the metric, with different indices. For example,
the first term  is represented in OGRePy as T.PartialD(mu) @ metric(nu, sigma)  where
metric  is the tensor object representing the metric. Since OGRePy allows us to easily perform an

arbitrary number of contraction, addition, multiplication by scalar, and partial derivative operations, we
can calculate the Christoffel symbols of the Schwarzschild metric directly as follows: (We used SymPy's
Rational  class to create a symbolic 1/2 in the front, otherwise it would have been a numeric 0.5)

from OGRePy.abc import lamda, sigma

WrongSchwarzschildChristoffel = T.s.Rational(1, 2) * Schwarzschild(lamda, sigma) @ (T.PartialD
WrongSchwarzschildChristoffel.symbol = "Gamma"
WrongSchwarzschildChristoffel.default_indices = (1, -1, -1)
~WrongSchwarzschildChristoffel

However, there is a problem; as we mentioned above, the Christoffel symbols are not the components
of a tensor, meaning that the Levi-Civita connection does not transform as a tensor does under a
coordinate transformation. Indeed, by transforming the metric in the definition, one can show that

The first term is the familiar transformation rule for a tensor, with one factor of the Jacobian per index as
usual. However, there is also an extra second term, meaning that the Christoffel symbols do not
transform like a tensor.

(Similarly, you are also not supposed to raise or lower indices in the Christoffel symbols, but in practice,
you can do that as long as you make it clear that it's just an abuse of notation - you are only adding

Γλ
μν = gλσ (∂μgνσ + ∂νgσμ − ∂σgμν) .

1
2

∂μgνσ

Γt
tr = Γt

rt =

Γr
tt =

Γr
rr =

Γr
θθ = 2M − r

Γr
ϕϕ = (2M − r) sin2 (θ)

Γθ
rθ = Γθ

θr = Γϕ
rϕ = Γϕ

ϕr =

Γθ
ϕϕ = −

Γϕ
θϕ = Γϕ

ϕθ =

M

r (−2M + r)
M (−2M + r)

r3

M

r (2M − r)

1
r

sin (2θ)

2
1

tan (θ)

Γλ′

μ′ν ′ = Γλ
μν + .

∂xμ

∂xμ′

∂xν

∂xν ′

∂xλ
′

∂xλ
∂xλ

′

∂xλ
∂2xλ

∂xμ′∂xν ′



factors of the metric, not creating a new tensor representation with different transformation properties.)

Due to the extra transformation term, the tensor object WrongSchwarzschildChristoffel  we
calculated manually above must not be used! Instead, we should use the method christoffel()  of
the Metric  class, which not only performs the calculation automatically for us, but also marks the result
as a special tensor object with special transformation properties (more precisely, it will be an instance of
the Christoffel  subclass):

~Schwarzschild.christoffel()

These are the same components we got before, but now they will transform properly. In addition, the
tensor object automatically has the correct index configuration (1, -1, -1) .

For maximal clarity, let us demonstrate the discrepancy in the coordinate transformation with a simple
test metric:

SimpleMetric = T.Metric(
    coords=Cartesian,
    components=T.diag(-x, 1, 1, 1),
)

We calculate its Christoffel symbols in two ways. First manually, as we did above for the Schwarzschild
metric:

Γt
tr = Γt

rt =

Γr
tt =

Γr
rr =

Γr
θθ = 2M − r

Γr
ϕϕ = (2M − r) sin2 (θ)

Γθ
rθ = Γθ

θr = Γϕ
rϕ = Γϕ

ϕr =

Γθ
ϕϕ = −

Γϕ
θϕ = Γϕ

ϕθ =

M

r (−2M + r)
M (−2M + r)

r3

M

r (2M − r)

1
r

sin (2θ)

2
1

tan (θ)

gμν
∣
∣
∣(t,x,y,z)

=

⎛
⎜⎜⎜
⎝

−x 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠



WrongSimpleMetricChristoffel = T.s.Rational(1, 2) * SimpleMetric(lamda, sigma) @ (T.PartialD(m
WrongSimpleMetricChristoffel.symbol = "Gamma"
WrongSimpleMetricChristoffel.default_indices = (1, -1, -1)
~WrongSimpleMetricChristoffel

Then, with the built-in christoffel()  method:

~(SimpleMetricChristoffel := SimpleMetric.christoffel())

Note that in this example we used Python's "walrus operator" := , which is an assignment operator
which returns the result of the assignment (this is also called an "assignment expression"). This allowed
us to easily call list()  on the result by prepending the ~  operator, instead of having to write an
additional line.

The two results have the same components, as expected. But now, let us now transform them to
spherical coordinates. First, we transform the tensor object obtained using christoffel() :

SimpleMetricChristoffel.list(coords=Spherical)

Γt
tx = Γt

xt =

Γx
tt =

1
2x
1
2

Γt
tx = Γt

xt =

Γx
tt =

1
2x
1
2



This is the correct representation of the Christoffel symbols in spherical coordinates, as the extra term in
the transformation was taken into account. However, if we transform the Christoffel symbols we obtained
by manual calculation, we get:

WrongSimpleMetricChristoffel.list(coords=Spherical)

This is not the correct result, since the transformation did not take into account the extra term. To verify
that the former result is indeed the correct one, let us change the default coordinate system of
SimpleMetric  to spherical:

Γt
tr = Γt

rt =

Γt
tθ = Γt

θt =

Γt
tϕ = Γt

ϕt = −

Γr
tt =

Γr
θθ = −r

Γr
ϕϕ = −r sin2 (θ)

Γθ
tt =

Γθ
rθ = Γθ

θr = Γϕ
rϕ = Γϕ

ϕr =

Γθ
ϕϕ = −

Γϕ
tt = −

Γϕ
θϕ = Γϕ

ϕθ =

1
2r

1
2 tan (θ)

tan (ϕ)

2
sin (θ) cos (ϕ)

2

cos (ϕ) cos (θ)
2r

1
r

sin (2θ)

2
sin (ϕ)

2r sin (θ)
1

tan (θ)

Γt
tr = Γt

rt =

Γt
tθ = Γt

θt =

Γt
tϕ = Γt

ϕt = −

Γr
tt =

Γθ
tt =

Γϕ
tt = −

1
2r

1
2 tan (θ)

tan (ϕ)

2
sin (θ) cos (ϕ)

2
cos (ϕ) cos (θ)

2r
sin (ϕ)

2r sin (θ)



SimpleMetric.default_coords = Spherical

Now, when we calculate the Christoffel symbols manually from this metric, we will get their correct
representation in spherical coordinates. This is because OGRePy always performs the calculations
internally in the default coordinates of the first tensor in any operation (e.g. A  for the contraction A @ 
B ), so the result will be calculated from scratch in spherical coordinates, instead of being calculated first
in Cartesian coordinates and then transformed:

WrongSimpleMetricChristoffel2 = T.s.Rational(1, 2) * SimpleMetric(lamda, sigma) @ (T.PartialD(
WrongSimpleMetricChristoffel2.symbol = "Gamma"
WrongSimpleMetricChristoffel2.default_indices = (1, -1, -1)
~WrongSimpleMetricChristoffel2

Indeed, this is the exact same result we got when we transformed SimpleMetricChristoffel  to
spherical coordinates. We have learned an important lesson: since the Christoffel symbols do not
transform like a tensor, we should always use the built-in method christoffel()  of the Metric

class to calculate them, which ensures that they transform properly. (Of course, this method is also much
more convenient than writing the explicit definition...)

For future use, let us define the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, which
describes an expanding universe:

a_t = T.func("a")(t)
FLRW = T.Metric(
    coords=Spherical,

Γt
tr = Γt

rt =

Γt
tθ = Γt

θt =

Γt
tϕ = Γt

ϕt = −

Γr
tt =

Γr
θθ = −r

Γr
ϕϕ = −r sin2 (θ)

Γθ
tt =

Γθ
rθ = Γθ

θr = Γϕ
rϕ = Γϕ

ϕr =

Γθ
ϕϕ = −

Γϕ
tt = −

Γϕ
θϕ = Γϕ

ϕθ =

1
2r

1
2 tan (θ)

tan (ϕ)

2
sin (θ) cos (ϕ)

2

cos (ϕ) cos (θ)

2r
1
r

sin (2θ)

2
sin (ϕ)

2r sin (θ)
1

tan (θ)



    components=T.diag(-1, a_t**2, a_t**2 * r**2, a_t**2 * r**2 * T.s.sin(theta) ** 2),
)

Here,  is the scale factor. This metric has the line element:

FLRW.line_element()

and the volume element squared:

FLRW.volume_element_squared()

Its Christoffel symbols can be easily calculated using christoffel() :

~FLRW.christoffel()

The Riemann tensor
The Riemann curvature tensor  can be calculated from the Christoffel symbols using the
definition:

gμν
∣
∣
∣(t,r,θ,ϕ)

=

⎛
⎜⎜⎜⎜
⎝

−1 0 0 0
0 a2 0 0
0 0 a2r2 0

0 0 0 a2r2 sin2 (θ)

⎞
⎟⎟⎟⎟
⎠

a(t)

dϕ2r2a2(t) sin2 (θ) + dθ2r2a2(t) + dr2a2(t) − dt2

−r4a6(t) sin2 (θ)

Γt
rr = ∂taa

Γt
θθ = ∂taar

2

Γt
ϕϕ = ∂taar

2 sin2 (θ)

Γr
tr = Γr

rt = Γθ
tθ = Γθ

θt = Γϕ
tϕ = Γϕ

ϕt =

Γr
θθ = −r

Γr
ϕϕ = −r sin2 (θ)

Γθ
rθ = Γθ

θr = Γϕ
rϕ = Γϕ

ϕr =

Γθ
ϕϕ = −

Γϕ
θϕ = Γϕ

ϕθ =

∂ta

a

1
r

sin (2θ)

2
1

tan (θ)

Rρ
σμν

Rρ
σμν = ∂μΓρ

νσ − ∂νΓρ
μσ + Γρ

μλΓλ
νσ − Γρ

νλΓλ
μσ



Even though it contains partial derivatives, it nonetheless transforms like a tensor under a change of
coordinates, because the extra transformation terms exactly cancel each other. To calculate this tensor,
we can simply write down the formula explicitly with the correct indices contracted:

~(SchwarzschildRiemann := (
    T.PartialD(mu) @ Schwarzschild.christoffel(rho, nu, sigma) - T.PartialD(nu) @ Schwarzschil
))

Notice that this time we used the christoffel()  method with arguments corresponding to an index
specification; this is simply a shortcut for using the ()  operator on the resulting tensor, as we have
done above. Let us change the symbol to , since the current symbol contains the entire formula, and is
very cumbersome to display multiple times:

SchwarzschildRiemann.symbol = "R"
~SchwarzschildRiemann

∂tΓt
θθ − ∂θΓt

tθ + Γt
tνΓν

θθ − Γt
θνΓν

tθ = ∂rΓr
θθ − ∂θΓr

rθ + Γr
rνΓν

θθ − Γr
θνΓν

rθ = −∂θΓt
tθ − ∂

∂tΓt
ϕϕ − ∂ϕΓt

tϕ + Γt
tνΓν

ϕϕ − Γt
ϕνΓν

tϕ = ∂rΓr
ϕϕ − ∂ϕΓr

rϕ + Γr
rνΓν

ϕϕ − Γr
ϕνΓν

rϕ = −∂ϕΓt
tϕ − ∂tΓt

∂tΓθ
θt −

∂rΓθ
θr − ∂θ

∂θΓθ
tt −

∂θΓθ
rr − ∂r

∂θΓθ
ϕϕ − ∂ϕΓθ

θ

∂θΓϕ
ϕθ − ∂ϕΓϕ

θ

R



Here we run into another issue: we wanted , but what we actually got was , since this is the
order of indices from left to right in the definition. There are two ways to fix this in OGRePy. One is to use
the permute()  method. We simply need to call permute()  with  as the old indices and  as
the new indices to fix the issue:

SchwarzschildRiemann.permute(old=[mu, rho, nu, sigma], new=[rho, sigma, mu, nu])
~SchwarzschildRiemann

Rt
t
rr =

Rt
t
θθ = Rr

r
θθ = −Rθ

t
tθ = −Rθ

r
rθ = −

Rt
t
ϕϕ = Rr

r
ϕϕ = −Rϕ

t
tϕ = −Rϕ

r
rϕ = −

Rt
r
rt =

Rt
θ
θt = Rt

ϕ
ϕt =

Rr
t
tr =

Rr
r
tt =

Rr
θ
θr = Rr

ϕ
ϕr =

Rθ
θ
tt = Rϕ

ϕ
tt =

Rθ
θ
rr = Rϕ

ϕ
rr =

Rθ
θ
ϕϕ = −Rϕ

θ
θϕ =

Rθ
ϕ
ϕθ = −Rϕ

ϕ
θθ = −

2M

r2 (−2M + r)
M

r

M sin2 (θ)

r
2M (−2M + r)

r4

M (2M − r)

r4

2M

r2 (2M − r)
2M (2M − r)

r4

M

r2 (−2M + r)
M (−2M + r)

r4

M

r2 (2M − r)
2M sin2 (θ)

r
2M
r

Rρ
σμν R

ρ
μνσ

μρνσ ρσμν



Now we have obtained the correct expression for the Riemann tensor of the Schwarzschild metric. In fact,
we did not have to specify the old indices explicitly; since SchwarzschildRiemann  is the result of a
tensor calculation, it actually remembers the index specification it obtained as a result of the calculation,
and this will be used automatically if the old  argument is not specified.

The other way to fix this is to wrap the original calculation inside the calc()  function, which is simply a
convenience function that allows us to calculate a tensor, change its symbol, and permute its indices in
just one function call. We will show examples of its usage below.

Exact sign checks with list()

The sharp-eyed reader may have noticed that, when we used list()  on the Schwarzschild Riemann
tensor above, it listed, for example, the components  and  separately, even though they are the
negatives of each other. Unfortunately, SymPy's comparison operation is very rudimentary, comparing
the general structure of the expression rather than an actual mathematical comparison. This can be seen
on even simpler comparisons - for example, the following comparison will yield False  even though the
two expressions are clearly mathematically equal:

Rt
rtr =

Rt
rrt =

Rt
θtθ = −Rt

θθt = Rr
θrθ = −Rr

θθr = −

Rt
ϕtϕ = −Rt

ϕϕt = Rr
ϕrϕ = −Rr

ϕϕr = −

Rr
ttr =

Rr
trt =

Rθ
ttθ = Rϕ

ttϕ =

Rθ
tθt = Rϕ

tϕt =

Rθ
rrθ = Rϕ

rrϕ =

Rθ
rθr = Rϕ

rϕr =

Rθ
ϕθϕ = −Rθ

ϕϕθ =

Rϕ
θθϕ = −Rϕ

θϕθ = −

2M

r2 (−2M + r)
2M

r2 (2M − r)
M

r

M sin2 (θ)
r

2M (−2M + r)

r4

2M (2M − r)

r4

M (2M − r)

r4

M (−2M + r)

r4

M

r2 (−2M + r)
M

r2 (2M − r)
2M sin2 (θ)

r
2M
r

Rt
rtr Rt

rrt



expr1 = 1 / (1 - x)
expr2 = -(1 / (x - 1))
expr1 == expr2

False

This can be resolved by noticing that  if and only if . So if we subtract one expression
from the other, simplify the result, and compare to zero, we will get a correct answer:

T.s.simplify(expr1 - expr2) == 0

True

Normally, list()  doesn't do this for every single component of the tensor, since that could be a very
time-consuming task for large tensors with complicated components. However, we could ask list()
to perform these more precise comparisons by adding the exact=True  option:

SchwarzschildRiemann.list(exact=True)

You can see that now list()  correctly identifies all of the components that are negatives of each
other, resulting in a much shorter list. If you're wondering why this option only applies to comparing
components that are the negative of each other, rather than all comparison - that is because OGRePy
automatically simplifies all tensor components in advance, so if two components are the same, they
should already be simplified to the exact same expression.

The Riemann tensor with all its indices lowered satisfies the following symmetry and anti-symmetry
relations:

a = b a − b = 0

Rt
rtr = −Rt

rrt =

Rt
θtθ = −Rt

θθt = Rr
θrθ = −Rr

θθr = −

Rt
ϕtϕ = −Rt

ϕϕt = Rr
ϕrϕ = −Rr

ϕϕr = −

Rr
ttr = −Rr

trt =

Rθ
ttθ = −Rθ

tθt = Rϕ
ttϕ = −Rϕ

tϕt =

Rθ
rrθ = −Rθ

rθr = Rϕ
rrϕ = −Rϕ

rϕr =

Rθ
ϕθϕ = −Rθ

ϕϕθ =

Rϕ
θθϕ = −Rϕ

θϕθ = −

2M

r2 (−2M + r)
M

r

M sin2 (θ)

r
2M (−2M + r)

r4

M (2M − r)

r4

M

r2 (−2M + r)
2M sin2 (θ)

r
2M
r

Rρσμν = −Rσρμν = −Rρσνμ = Rμνρσ



We can verify this for the Schwarzschild Riemann tensor using list()  with exact=True :

SchwarzschildRiemann.list(indices=(-1, -1, -1, -1), exact=True)

This shows that the symmetry and anti-symmetry relations are indeed satisfied.

The riemann()  method and caching

Don't worry - you don't need to write the explicit definition of the Riemann tensor every time you want
to calculate it. Instead, OGRePy offers the method riemann()  of the Metric  class. For example, for
the FLRW metric we get:

FLRW.riemann().list(exact=True)

Notice two things here. First, we did not save the result in a variable. The reason is that the results of the
riemann()  method, and in fact all similar methods such as christoffel() , are cached. This means

that the next time we call FLRW.riemann() , we will get the exact same tensor - indeed, it won't just be
another tensor with the same components, it will be a reference to the exact same object we got the first
time.

Second, calculating the Riemann tensor requires first calculating the Christoffel symbols, which we did
not do. Behind the scenes, the riemann()  method obtains the Christoffel symbols by calling the
christoffel()  method. In turn, the christoffel()  checks if the Christoffel symbols have already

been calculated. If so, it returns the cached results, and if not, it calculated, caches, and returns the
results.

Rtrtr = −Rtrrt = −Rrttr = Rrtrt = −

Rtθtθ = −Rtθθt = −Rθttθ = Rθtθt =

Rtϕtϕ = −Rtϕϕt = −Rϕttϕ = Rϕtϕt =

Rrθrθ = −Rrθθr = −Rθrrθ = Rθrθr =

Rrϕrϕ = −Rrϕϕr = −Rϕrrϕ = Rϕrϕr =

Rθϕθϕ = −Rθϕϕθ = −Rϕθθϕ = Rϕθϕθ = 2Mr sin2 (θ)

2M
r3

M (−2M + r)

r2

M (−2M + r) sin2 (θ)

r2

M

2M − r

M sin2 (θ)

2M − r

Rt
rtr = −Rt

rrt = −Rt
θtθ = −Rt

θθt = −Rt
ϕtϕ = −Rt

ϕϕt = −Rr
ttr = −Rr

trt = −Rθ
ttθ = −Rθ

tθt = −

Rr
θrθ = −Rr

θθr =

Rr
ϕrϕ = −Rr

ϕϕr = R

Rθ
rrθ = −Rθ

rθr =



As a result, even though we did not call FLRW.christoffel()  before, the Christoffel symbols have in
fact already been calculated and cached for us, so if we call it now we will get the result immediately:

~FLRW.christoffel()

The same principle also applies to the other built-in methods for calculating curvature tensors, which we
will present below; they always calculate and cache any intermediate tensors in their definitions
automatically as needed.

Standard practice when using OGRePy is to never save the Christoffel symbols, Riemann tensor,
etc. in their own variables. Instead, you must call the christoffel() , riemann() , etc. methods
every time you want to access these tensors.

The reason behind this is to maintain consistency between the metric and its curvature tensors. For
example, let's say we decided to redefine the FLRW metric. Since tensor components in OGRePy are
immutable, meaning they cannot be changed after the tensor object is created, this means we actually
create a new Metric  object and save it in the same FLRW  variable. If we previously calculated the
Christoffel symbols and saved them in a variable called FLRWChristoffel , that variable now stores the
Christoffel symbols for the old FLRW metric, and is therefore inconsistent with the new one. On the other
hand, if we simply use the FLRW.christoffel()  method, we are guaranteed to always get the correct
Christoffel symbols for the metric stored in the FLRW  variable.

In this documentation, we will continue to create variables for curvature tensors because we will be
calculating them explicitly and therefore they are not cached, but in normal use you should instead
simply rely on OGRePy's comprehensive caching algorithms.

The Kretschmann scalar
The Kretschmann scalar is a curvature invariant calculated by contracting all the indices of the Riemann
tensor with itself:

Γt
rr = ∂taa

Γt
θθ = ∂taar

2

Γt
ϕϕ = ∂taar

2 sin2 (θ)

Γr
tr = Γr

rt = Γθ
tθ = Γθ

θt = Γϕ
tϕ = Γϕ

ϕt =

Γr
θθ = −r

Γr
ϕϕ = −r sin2 (θ)

Γθ
rθ = Γθ

θr = Γϕ
rϕ = Γϕ

ϕr =

Γθ
ϕϕ = −

Γϕ
θϕ = Γϕ

ϕθ =

∂ta

a

1
r

sin (2θ)

2
1

tan (θ)



Recall that above, we gave the Kretschmann scalar for the Schwarzschild metric as an example of a scalar.
Now that we have the Riemann tensor, and the ability to contract tensors, we can actually calculate the
Kretschmann scalar from scratch:

Schwarzschild.riemann(rho, sigma, mu, nu) @ Schwarzschild.riemann(rho, sigma, mu, nu)

Note that like the christoffel()  method, the riemann()  method allows you to pass an index
specification for use in calculations. As usual, OGRePy allows you to calculate this curvature tensor
directly, using the method kretschmann()  of the Metric  class, without typing the formula explicitly.

This method follows the same caching algorithm as christoffel()  and riemann() : it will calculate
the Riemann tensor (and as a side effect, the Christoffel symbols) if they have not already been
calculated, otherwise it will use the cached results, and it will cache its own result for later use.

The Ricci tensor and scalar
The Ricci tensor  is the trace of the first and third indices of the Riemann tensor:

Therefore, we can calculate it by taking the trace, with the usual OGRePy syntax. For the Schwarzschild
metric, the Ricci tensor vanishes:

~Schwarzschild.riemann(lamda, mu, lamda, nu)

We can also use the convenience method ricci_tensor()  of the Metric  class. For example, here is
the Ricci tensor for the FLRW metric:

~FLRW.ricci_tensor()

K = RρσνμR
ρσνμ.

RμνρσR
μνρσ∣

∣
∣(t,r,θ,ϕ)

=
48M 2

r6

Rμν

Rμν = Rλ
μλν.

No non-zero elements.



The Ricci scalar is the trace of the Ricci tensor:

We can calculate it from the Ricci tensor by taking the trace:

FLRW.ricci_tensor(mu, mu)

Or, as usual, we can simply use the shorthand method ricci_scalar()  to calculate it directly from the
metric:

FLRW.ricci_scalar()

The Einstein tensor
The Einstein tensor  is given by:

As with all other curvature tensors, we can calculate it by combining the previously calculated tensors
with the usual syntax:

~(FLRW.ricci_tensor(mu, nu) - T.s.Rational(1, 2) * FLRW.ricci_scalar() @ FLRW(mu, nu))

Rtt = −

Rrr = 2∂ta
2 + a ∂ta

Rθθ = r2 (2∂ta
2 + a ∂ta)

Rϕϕ = r2 (2∂ta
2 + a ∂ta) sin2 (θ)

3 ∂ta
d
dt

a
d
dt

d
dt
d
dt

R = Rλ
λ = gμνRμν

Rμ
μ∣
∣
∣(t,r,θ,ϕ)

=
6(∂ta

2 + a ∂ta)d
dt

a2

R
∣
∣
∣(t,r,θ,ϕ)

=
6(∂ta

2 + a ∂ta)d
dt

a2

Gμν

Gμν = Rμν − Rgμν.
1
2



Or we can use the built-in module einstein() :

~FLRW.einstein()

Covariant derivatives
The partial derivative has limited use in general relativity, as it does not transform like a tensor.
Therefore, it is only used in special cases, such as calculating the Christoffel symbols and the Riemann
tensor. The covariant derivative  is a generalization of the partial derivative, which does transform
like a tensor (as long as it acts on a proper tensor). It is defined as follows:

On a scalar , the covariant derivative acts as .
On a vector , the covariant derivative acts as .

On a covector , the covariant derivative acts as .

More generally, on a rank  tensor with components , the covariant derivative
 is defined as follows:

The first term will be the partial derivative .
We add one term  for each upper index .

We subtract one term  for each lower index .

Note that even though the covariant derivative is made from ingredients that do not transform like
tensors - the partial derivative and the Christoffel symbols - the unwanted terms in the transformations
of these ingredients cancel each other exactly, so that in the end, the entire sum does transform like a
tensor.

Rtt − Rgtt =

Rrr − Rgrr = −∂ta
2 − 2a ∂ta

Rθθ − Rgθθ = r2 (−∂ta
2 − 2a ∂ta)

Rϕϕ − Rgϕϕ = r2 (−∂ta
2 − 2a ∂ta) sin2 (θ)

1
2

3∂ta
2

a2

1
2

d
dt

1
2

d
dt

1
2

d
dt

Gtt =

Grr = −∂ta
2 − 2a ∂ta

Gθθ = r2 (−∂ta
2 − 2a ∂ta)

Gϕϕ = r2 (−∂ta
2 − 2a ∂ta) sin2 (θ)

3∂ta
2

a2

d
dt

d
dt
d
dt

∇μ

Φ ∇μΦ = ∂μΦ
vμ ∇μv

ν = ∂μv
ν + Γν

μλv
λ

wμ ∇μwν = ∂μwν − Γλ
μνwλ

(p, q) T ν1⋯νp
σ1⋯σq

∇μT
ν1⋯νp

σ1⋯σq

∂μT
ν1⋯νp

σ1⋯σq

Γνi
μλT

ν1⋯λ⋯νp
σ1⋯σq νi

Γλ
μσiT

ν1⋯νp
σ1⋯λ⋯σq σi



As usual, we can, of course, write down the covariant derivative manually. For example, the covariant
divergence of the metric is:

It should vanish, by definition, for any metric; this is what we meant when we said the Levi-Civita
connection preserves the metric. Indeed, we have for the Schwarzschild metric:

from OGRePy.abc import alpha, beta

~(T.PartialD(mu) @ Schwarzschild(alpha, beta) - Schwarzschild.christoffel(lamda, mu, alpha) @ 

Much more conveniently, the covariant derivative is represented in OGRePy using the class
CovariantD . It will automatically add the correct terms, as detailed above, for each of the tensor's

indices, using the (possibly cached) Christoffel symbols of the tensor's associated metric. To use it, simply
contract it with any tensor, just like PartialD . For example, we can check that the covariant derivative
of the FLRW metric also vanishes:

~(T.CovariantD(mu) @ FLRW(mu, nu))

The covariant divergence of the Einstein tensor is:

Note that it involves a contraction in the index , which becomes a trace in the first Christoffel symbol.
This expression vanishes because of the Bianchi identity:

To calculate it in OGRePy, we simply write:

~(T.CovariantD(mu) @ FLRW.einstein(mu, nu))

Finally, for a non-trivial result, let us recall that the stress-energy tensor should be conserved:

This follows from the fact that , combined with the Einstein equation:

∇μgαβ = ∂μgαβ − Γλ
μαgλβ − Γλ

μβ
gαλ.

No non-zero elements.

No non-zero elements.

∇μG
μν = ∂μG

μν + Γμ

μλG
λν + Γν

μλG
μλ.

μ

∇μR
μν = ∇νR ⟹ ∇μG

μν = 0.
1
2

No non-zero elements.

∇μT
μν = ∂μT

μν + Γμ
μλT

λν + Γν
μλT

μλ = 0.

∇μG
μν = 0

Gμν = κTμν,



where  and  is Newton's gravitational constant. However, unlike , the relation
 is not an identity; it is an energy-momentum conservation equation. To derive the

equation for the FLRW metric, let us first define the rest-frame fluid 4-velocity in this spacetime:

RestVelocity = T.Tensor(metric=FLRW, coords=Spherical, indices=(1,), components=[1, 0, 0, 0], 

Using the 4-velocity and the metric, we redefine the perfect fluid stress tensor in the FLRW spacetime
using the formula , and give  and  spacetime dependence:

rho_t_r_t_p = T.func("rho")(t, r, theta, phi)
p_t_r_t_p = T.func("p")(t, r, theta, phi)
PerfectFluidFLRW = T.calc(
    formula=(rho_t_r_t_p + p_t_r_t_p) * RestVelocity(mu) @ RestVelocity(nu) + p_t_r_t_p * FLRW
    symbol="T",
)

Finally, we take the covariant derivative of the stress tensor:

~(T.CovariantD(mu) @ PerfectFluidFLRW(mu, nu))

From demanding that the  component vanishes, we get the following equation:

κ = 8πG G ∇μG
μν = 0

∇μT
μν = 0

uμ
∣
∣
∣(t,r,θ,ϕ)

=

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠

T μν = (ρ + p)uμuν + pgμν ρ p

Tμν∣
∣
∣(t,r,θ,ϕ)

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

ρ(t, r, θ,ϕ) 0 0 0

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

p

a2

p

a2r2

p

a2r2 sin2 (θ)

∇μT
μt =

∇μT
μr =

∇μT
μθ =

∇μT
μϕ =

∂tρ(t, r, θ,ϕ)a + 3∂ta (p + ρ(t, r, θ,ϕ))
a

∂rp

a2

∂θp

a2r2

∂ϕp

a2r2 sin2 (θ)

t

ρ̇ = −3(ρ + p) .
ȧ

a



We see that in an expanding universe, energy is not conserved, but rather, the energy density changes
with time in a way that depends on the scale factor. If the universe is not expanding, that is, , then
energy will be conserved.

Curves and geodesics

The curve Lagrangian
Consider a curve, which is a function  on the manifold where  is called the curve parameter. The
curve Lagrangian of a metric is defined as the norm-squared of the tangent to the curve:

where  is the first derivative of  with respect to the curve parameter  (in Newton dot notation). We
can calculate it using the method lagrangian()  of the Metric  class. For example:

Minkowski.lagrangian()

Schwarzschild.lagrangian()

FLRW.lagrangian()

Alcubierre.lagrangian()

Notice how show()  (and list()  as well) use Newton dot notation for the derivatives of the
coordinate functions, for improved readability. To get the full expressions with the explicit derivatives, we
can use components() . For example:

Minkowski.lagrangian().components()

ȧ = 0

xμ(λ) λ

L = gμνẋ
μẋν,

ẋμ xμ λ

L
∣
∣
∣(t,x,y,z)

= −ṫ
2

+ ẋ2 + ẏ2 + ż2

L
∣
∣
∣(t,r,θ,ϕ)

=
−ṙ2r2 + ṫ

2
(2M − r)2 + r3 (2M − r)(ϕ̇2

sin2 (θ) + θ̇
2)

r (2M − r)

L
∣
∣
∣(t,r,θ,ϕ)

= ϕ̇
2
a2r2 sin2 (θ) + θ̇

2
a2r2 + ṙ2a2 − ṫ

2

L
∣
∣
∣(t,x,y,z)

= ṫ
2 (f 2v2 − 1)− 2ṫ żfv + ẋ2 + ẏ2 + ż2



OGRePy: Using default coordinate system Cartesian  and default index configuration ().

Geodesic equations from the Lagrangian
By applying the Euler-Lagrange equations to the curve Lagrangian:

we can obtain the geodesic equations for our spacetime. This is done using the method
geodesic_from_lagrangian()  of the Metric  class. For the Minkowski metric, the geodesic

equations are:

~Minkowski.geodesic_from_lagrangian()

Note that this method only calculates the left-hand side of the Euler-Lagrange equations; if we equate
the result to zero, we will get the actual geodesics equations. This is hinted at visually by setting the
resulting tensor's symbol to 0, so that you actually see the equations when using list() . It is trivial to
see that the solution to these equations is simply a curve with a constant velocity; in a flat Minkowski
spacetime, particles experience no gravitational force, and thus no acceleration (unless some other force
acts on them, of course).

The derivatives with respect to the curve parameter  are kept unevaluated in the output of
geodesic_from_lagrangian() , by using the SymPy Derivative  class and passing doit=False  to
simplify() . This simplifies the equations, and can sometimes help solve them by inspection. In this

simple example, since SymPy simplifies the second derivatives even if doit=False  is used, the second
derivatives are actually evaluated (except from the first one, due to the minus sign), but in more
complicated metrics they will remain unevaluated.

If we want to activate the derivatives, we simply need to apply the doit()  method to them. Recall that
list()  and show()  can apply a function to the tensor's components before displaying them, so we

just need to pass a lambda  function that executes the doit()  method on each component:

Minkowski.geodesic_from_lagrangian().list(function=lambda x: x.doit())

[−( t(λ))
2

+ ( x(λ))
2

+ ( y(λ))
2

+ ( z(λ))
2
]d

dλ

d

dλ

d

dλ

d

dλ

( ) − = 0,
d

dλ
∂L
∂ẋμ

∂L
∂xμ

0t = −∂λ (−ṫ )

0x = −ẍ

0y = −ÿ

0z = −z̈

λ



Now the derivatives have been activated.

As with the Lagrangian itself, the geodesic equations are displayed in compact notation when using
list() . If we want the full expressions with the explicit derivatives, for example in order to pass them

to dsolve()  and actually solve the equations, we can use components()  - remembering to apply
doit()  to activate the derivatives:

Minkowski.geodesic_from_lagrangian().components().doit()

OGRePy: Using default coordinate system Cartesian  and default index configuration (1,).

This is a SymPy Array  where each of the 4 components is a differential equation (with  assumed). It
can be easily solved by passing it to SymPy's dsolve() :

T.s.Array(T.s.dsolve(Minkowski.geodesic_from_lagrangian().components().doit()))

OGRePy: Using default coordinate system Cartesian  and default index configuration (1,).

Note that this will return a list of solutions, so we converted it back to a SymPy Array  so it will be
displayed nicely in the notebook.

We can similarly find the geodesic equations of other metrics. For example, here they are for the
Schwarzschild metric:

~Schwarzschild.geodesic_from_lagrangian()

0t = ẗ

0x = −ẍ

0y = −ÿ

0z = −z̈

[ t(λ) − x(λ) − y(λ) − z(λ) ]d2

dλ2

d2

dλ2

d2

dλ2

d2

dλ2

= 0

[ t(λ) = C1 + C2λ x(λ) = C3 + C4λ y(λ) = C5 + C6λ z(λ) = C7 + C8λ ]

0t = −∂λ( )

0r =

0θ = − ∂λ (θ̇r2)

0ϕ = −∂λ (ϕ̇r2 sin2 (θ))

ṫ (2M − r)
r

−4M 3ṫ
2

+ 4M 2ϕ̇
2
r3 sin2 (θ) + 4M 2θ̇

2
r3 + 4M 2ṫ

2
r − 4M 2∂λ (− ) r2 − 4Mϕ̇

2
r4 sin2 (θ) −

− ∂λ (− ) r4

ṙr

2M−r

ṙr

2M−r

r2 (4M 2 − 4Mr + r2)

ϕ̇
2
r2 sin (2θ)

2



(Note that the  component is very long, ugly, and complicated. In the Mathematica version of OGRe, we get a much shorter
and nicer expression, but if the two expressions are compared by exporting this expression from SymPy to Mathematica
(which can be done using the mathematica()  method), it turns out that the SymPy expression is in fact correct, just not
simplified properly. This appears to be an issue with SymPy's simplify()  function, but it could perhaps be resolved by
using specific SymPy simplification functions, and it is possible that in the future SymPy's simplification algorithms will
improve.)

As another example, here are the geodesic equations for the FLRW metric:

~FLRW.geodesic_from_lagrangian()

And finally, here they are for the Alcubierre metric:

~Alcubierre.geodesic_from_lagrangian()

The latter is a good example of how we can solve the geodesic equations by inspection. Indeed, it is easy
to see that

is a solution to this system of equations, since then we have  and , and both
terms in each equation vanish (the last term in the first equation will reduce to , which is of
course zero). We can check this solution by replacing the coordinate functions with their solutions; since
we will be left with  in the first equation, we must also activate the derivative.

However, for this we have to write the coordinates explicitly as functions of the curve parameter, even
when they are arguments of a function; for example,  should be instead be . Luckily, OGRePy
offers several ways to simplify this process. The Coordinates  class contains the method of_param() ,
which returns the coordinates as functions of the curve parameter:

Cartesian.of_param()

[t(\lambda), x(\lambda), y(\lambda), z(\lambda)]

r

0t = ϕ̇
2
∂taar

2 sin2 (θ) + θ̇
2
∂taar

2 + ṙ2∂taa − ∂λ (−ṫ )

0r = ϕ̇
2
a2r sin2 (θ) + θ̇

2
a2r − ∂λ (ṙa2)

0θ = − ∂λ (θ̇a2r2)

0ϕ = −∂λ (ϕ̇a2r2 sin2 (θ))

ϕ̇
2
a2r2 sin (2θ)

2

0t = ṫ
2
fv (∂tfv + ∂tvf) − ṫ ż∂tfv − ṫ ż∂tvf − ∂λ (ṫ (f 2v2 − 1)− żfv)

0x = −ẍ + ṫ
2∂xffv

2 − ṫ ż∂xfv

0y = −ÿ + ṫ
2∂yffv

2 − ṫ ż∂yfv

0z = ṫ
2∂zffv

2 − ṫ ż∂zfv − ∂λ (−ṫ fv + ż)

ẋμ = (1, 0, 0, vf)

ẋ = ẏ = 0 (fvṫ − ż) = 0
∂λ(−1)

∂λ(−1)

v(t) v(t(λ))

https://github.com/bshoshany/OGRe
https://docs.sympy.org/latest/modules/simplify/simplify.html


However, what we really want is an easy way to replace the coordinates with functions of the curve
parameter. We can obtain a list of such replacements using the method of_param_dict() :

param = Cartesian.of_param_dict()

{t: t(\lambda), x: x(\lambda), y: y(\lambda), z: z(\lambda)}

Similarly, of_param_dot()  returns the first derivatives of the coordinates:

Cartesian.of_param_dot()

[Derivative(t(\lambda), \lambda),
 Derivative(x(\lambda), \lambda),
 Derivative(y(\lambda), \lambda),
 Derivative(z(\lambda), \lambda)]

But again, what we really want is a dictionary of replacements, obtained using of_param_dot_dict() :

dot = Cartesian.of_param_dot_dict()

{t: Derivative(t(\lambda), \lambda),
 x: Derivative(x(\lambda), \lambda),
 y: Derivative(y(\lambda), \lambda),
 z: Derivative(z(\lambda), \lambda)}

We can now use the param  dictionary as an argument to the subs()  method to replace the
arguments in the function  and :

display(v_t.subs(param))
display(f_t_x_y_z.subs(param))

The explicit solution is given by

Let us define a dictionary of replacements which maps each derivative of the coordinates to its solution:

solution = {dot[t]: 1, dot[x]: 0, dot[y]: 0, dot[z]: v_t.subs(param) * f_t_x_y_z.subs(param)}

{Derivative(t(\lambda), \lambda): 1,
 Derivative(x(\lambda), \lambda): 0,
 Derivative(y(\lambda), \lambda): 0,
 Derivative(z(\lambda), \lambda): f(t(\lambda), x(\lambda), y(\lambda), z(\lambda))*v(t(\lamb
da))}

v f

v(t(λ))

f(t(λ),x(λ), y(λ), z(λ))

ṫ (λ) = 1,
ẋ(λ) = 0,
ẏ(λ) = 0,
ż(λ) = v(t(λ)) × f(t(λ),x(λ), y(λ), z(λ)).



Now all we need to do is perform these substitution, and then simplify. We can do this by passing the
dictionary as the value of the replace  argument to instruct list() , and setting simplify=True  to
the expression after doing the replacement. Note that simplify()  will also automatically call doit()
to evaluate the derivatives with respect to :

Alcubierre.geodesic_from_lagrangian().list(replace=solution, simplify=True)

Since this solution zeros all the elements, it must be the correct solution to the geodesic equations. We
could use a substitution procedure similar to the one we used here to verify solutions to any geodesic
equations.

This solution indicates that we are traveling with velocity  in the  direction; the warp bubble (inside
which, as you recall, ) moves whatever is inside it, such as a spaceship, through space at the
velocity , but there is no limit on  - it can even be faster than light!

Geodesic equations from the Christoffel symbols
Another way of obtaining the geodesic equations is using the covariant derivative, and thus the
Christoffel symbols:

In OGRePy, we can calculate the left-hand side of this equation using the
geodesic_from_christoffel()  method of the Metric  class. For example:

~Minkowski.geodesic_from_christoffel()
~Schwarzschild.geodesic_from_christoffel()
~FLRW.geodesic_from_christoffel()
~Alcubierre.geodesic_from_christoffel()

λ

No non-zero elements.

v z

f = 1
v v

ẋρ∇ρẋ
σ = 0 ⟹ ẍσ + Γσ

μνẋ
μẋν = 0.

0t = ẗ

0x = ẍ

0y = ÿ

0z = z̈



Often, you will find that the Lagrangian method produces simpler equations, which can even be solved
by inspection, as we did for the Alcubierre metric. This is due to the possibility of leaving the  derivative
unevaluated. However, in other cases, the Christoffel method might produce simpler equations. We can
clearly see that by comparing the geodesics equations for the Schwarzschild metric obtained via the
Lagrangian vs. Christoffel methods.

The best thing to do is to try both methods and see which one produces simpler or nicer results for the
specific metric in question. Note that the system of equations obtained using
geodesic_from_lagrangian()  will often be different from the one obtained using
geodesic_from_christoffel() , but both systems will always have the same solutions.

Geodesics equations in terms of the time coordinate
If the metric is a spacetime metric, it is often convenient to obtain the geodesic equations in terms of the
time parameter, instead of an affine curve parameter. It can be shown that the geodesic equations in
terms of the time coordinate are given by

0t =

0r =

0θ = θ̈ − +

0ϕ = ϕ̈ + +

−2Mṙṫ + ẗ r (2M − r)

r (2M − r)

Mṙ2r2 − Mṫ
2
(2M − r)2 + r3 (2M − r)(r̈ + ϕ̇

2
(2M − r) sin2 (θ) + θ̇

2
(2M − r))

r3 (2M − r)

ϕ̇
2

sin (2θ)

2
2θ̇ ṙ
r

2ϕ̇θ̇

tan (θ)

2ϕ̇ṙ
r

0t = ẗ + ϕ̇
2
∂taar

2 sin2 (θ) + θ̇
2
∂taar

2 + ṙ2∂taa

0r = r̈ − ϕ̇
2
r sin2 (θ) − θ̇

2
r +

0θ = θ̈ − + +

0ϕ = ϕ̈ + + +

2ṙ ṫ∂ta

a

ϕ̇
2

sin (2θ)

2
2θ̇ ṙ
r

2θ̇ ṫ∂ta

a

2ϕ̇θ̇

tan (θ)

2ϕ̇ṙ
r

2ϕ̇ṫ∂ta

a

0t = ẗ + ṫ
2
∂zff

2v3 − ṫ ẋ∂xffv
2 − ṫ ẏ∂yffv

2 − 2ṫ ż∂zffv
2 + ẋż∂xfv + ẏ ż∂yfv + ż2∂zfv

0x = ẍ − ṫ
2
∂xffv

2 + ṫ ż∂xfv

0y = ÿ − ṫ
2∂yffv

2 + ṫ ż∂yfv

0z = z̈ + ṫ
2 (−∂tfv − ∂tvf + ∂zff

3v4 − ∂zffv
2)− ṫ ẋ∂xfv (f 2v2 + 1)− ṫ ẏ∂yfv (f 2v2 + 1)− 2ṫ ż∂zf

λ



where we are assuming the time coordinate is  and it is the first (zero) coordinate. These equations can
be obtained using the geodesic_time_param()  method of the Metric  class. Note that
geodesic_time_param()  assumes time is the first coordinate, but the coordinate does not need to

have the symbol . As an example, the equations for the FLRW metric in Cartesian coordinates in terms of
a curve parameter are:

FLRW.geodesic_from_christoffel().list(coords=Cartesian)

But in terms of , we only need 3 equations:

FLRW.geodesic_time_param().list(coords=Cartesian)

These equations are easier to solve. For simplicity, assume that we are only moving along the x
coordinate. Then we only have one equation to solve:

FLRW_eq = FLRW.geodesic_time_param().components(coords=Cartesian, indices=(1,))[1]

We are assuming that , so let us remove them from the equation. First, let us get
dictionaries mapping the coordinates to functions of time. This is identical to what we did above for the
Alcubierre metric, except that this time we pass  to the of_param  functions so we get functions of 
instead of :

param = Cartesian.of_param_dict(t)

+ (Γσ
μν − Γ0

μν ) = 0,
d2xσ

dt2

dxσ

dt
dxμ

dt
dxν

dt

t

t

0t = ẗ + ẋ2∂taa + ẏ2∂taa + ż2∂taa

0x = ẍ +

0y = ÿ +

0z = z̈ +

2ṫ ẋ∂ta

a

2ṫ ẏ∂ta

a

2ṫ ż∂ta

a

t

0x = ẍ − ẋ3∂t (a) a − ẋẏ2∂t (a) a − ẋż2∂t (a) a +

0y = ÿ − ẋ2ẏ∂t (a) a − ẏ3∂t (a) a − ẏ ż2∂t (a) a +

0z = z̈ − ẋ2ż∂t (a) a − ẏ2ż∂t (a) a − ż3∂t (a) a +

2ẋ∂t (a)
a

2ẏ∂t (a)
a

2ż∂t (a)
a

−a(t) a(t)( x(t))
3

− a(t) a(t) x(t)( y(t))
2

− a(t) a(t) x(t)( z(t))
2

+ x(t) +
d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d2

dt2

2 a(t)d

dt

a(t

ẏ(t) = ż(t) = 0

t t

λ



{t: t(t), x: x(t), y: y(t), z: z(t)}

dot = Cartesian.of_param_dot_dict(t)

{t: Derivative(t(t), t),
 x: Derivative(x(t), t),
 y: Derivative(y(t), t),
 z: Derivative(z(t), t)}

If we now substitute  in the equation, it simplifies considerably:

FLRW_eq.subs({dot[y]: 0, dot[z]: 0})

The solution can be obtained using dsolve()  in terms of an integral over , passing  in the
second argument as the function to solve for. The command to do that is all_solutions = 
T.s.Array(T.s.dsolve(FLRWEq.subs({dot[y]: 0, dot[z]: 0}), param[x])) , but I did not
include it in the notebook because it takes a very long time to run. The solution found by SymPy is (after
some beautification):

We can use the rhs  property to obtain the right-hand side of the equation, selecting the positive
solution (at position 1 of the array): all_solutions[1].rhs . By taking the derivative with respect to ,
all_solutions[1].rhs.diff(t) , we can get the coordinate velocity  along :

Changing the curve parameter
By default, the curve parameter is . This can be seen by extracting the components of a tensor that uses
the curve parameter, such as the Lagrangian:

Minkowski.lagrangian().components()

OGRePy: Using default coordinate system Cartesian  and default index configuration ().

However, sometimes we want to use another parameter - for example,  for proper time. To change the
parameter, we can set T.options.curve_parameter  to a symbol of our choice, whether as a string, a
TeX symbol, or a SymPy Symbol . As an example, let us change it to :

ẏ(t) = ż(t) = 0

−a(t) a(t)( x(t))
3

+ x(t) +
d

dt

d

dt

d2

dt2

2 a(t) x(t)d

dt

d

dt

a(t)

a(t) x(t)

x(t) = C1 ± ∫ dt
1

a(t)√1 + C2a2(t)

t

ẋ x

ẋ(t) =
1

a(t)√1 + C2a2(t)

λ

[−( t(λ))
2

+ ( x(λ))
2

+ ( y(λ))
2

+ ( z(λ))
2
]d

dλ

d

dλ

d

dλ

d

dλ

τ

τ



T.options.curve_parameter = "tau"

Changing the curve parameter applies retroactively to any tensors previously calculated. Behind the
scenes, the curve parameter is stored only as a placeholder, which is replaced dynamically with the user's
chosen symbol when the components are displayed with show()  or list()  or extracted with
components() . If we now display the components of the Lagrangian again, the curve parameter will be

changed to :

Minkowski.lagrangian().components()

OGRePy: Using default coordinate system Cartesian  and default index configuration ().

About the project

Bug reports and feature requests
This package is under continuous and active development. If you encounter any bugs, or if you would
like to request any additional features, please feel free to open a new issue on GitHub and I will look into
it as soon as I can.

Contribution and pull request policy
Contributions are always welcome. However, I release my projects in cumulative updates after editing
and testing them locally on my system, so my policy is to never accept any pull requests. If you open a
pull request, and I decide to incorporate your suggestion into the project, I will first modify your code to
comply with the project's coding conventions (formatting, syntax, naming, comments, programming
practices, etc.), and perform some tests to ensure that the change doesn't break anything. I will then
merge it into the next release of the project, possibly together with some other changes. The new release
will also include a note in CHANGELOG.md  with a link to your pull request, and modifications to the
documentation in README.md  as needed.

To create a development environment for this package, download the source code directly from the
GitHub repository, then create a virtual environment in the root folder of the repository as explained
above, activate it, and run pip install jupyterlab jupytext playwright sympy  to install the
development packages, then run playwright install  to install the browser binaries for HTML to PDF
conversion (if desired).

For your convenience, a PowerShell script, update_packages.ps1, is provided in the GitHub repository to
allow easily updating all outdated packages. A Python script, compile_docs.py, is used to compile the
documentation in README.md  to .ipynb , .html , and .pdf  formats. Finally, cleanup.py is used to
clean up Python and Jupyter cache folders.

τ

[−( t(τ))
2

+ ( x(τ))
2

+ ( y(τ))
2

+ ( z(τ))
2
]d

dτ

d

dτ

d

dτ

d

dτ

https://github.com/bshoshany/OGRePy/issues
https://github.com/bshoshany/OGRePy
https://github.com/bshoshany/OGRePy/blob/master/tasks/update_packages.ps1
https://github.com/bshoshany/OGRePy/blob/master/tasks/compile_docs.py
https://github.com/bshoshany/OGRePy/blob/master/tasks/cleanup.py


This package was developed in Visual Studio Code. The .vscode  folder is provided in the GitHub
repository for your convenience, including tasks for running the above scripts. It is highly recommended
to install the following linters:

Pyright: install the Pylance VS Code extension.
Ruff: pip install ruff  and install the VS Code extension.
Pylint: pip install pylint  and install the VS Code extension.

Configurations for all 3 linters are included in the pyproject.toml  file in the GitHub repository.

Starring the repository
If you found this project useful, please consider starring it on GitHub! This allows me to see how many
people are using my code, and motivates me to keep working to improve it.

Acknowledgements
I would like to thank my student Jared Wogan, whose undergraduate research project, a preliminary
Python port of my Mathematica package OGRe, motivated and inspired me to eventually write my own
port, OGRePy. I acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC), RGPIN-2024-04063.

Copyright and citing
Copyright (c) 2024 Barak Shoshany. Licensed under the MIT license.

If you use this package in published software or research, please provide a link to the GitHub repository
in the source code and documentation.

Other projects to check out
This package is a Python port of OGRe: An Object-Oriented General Relativity Package for Mathematica.
You may also be interested in BS::thread_pool : a fast, lightweight, and easy-to-use C++17 thread
pool library for high-performance scientific computing.

https://code.visualstudio.com/
https://github.com/microsoft/pyright
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://github.com/astral-sh/ruff
https://marketplace.visualstudio.com/items?itemName=charliermarsh.ruff
https://www.pylint.org/
https://marketplace.visualstudio.com/items?itemName=ms-python.pylint
https://github.com/bshoshany/OGRePy/stargazers
https://baraksh.com/
https://github.com/bshoshany/OGRePy/blob/master/LICENSE.txt
https://github.com/bshoshany/OGRePy
https://github.com/bshoshany/OGRe
https://github.com/bshoshany/thread-pool

