
MLZ Documentation
Release 1.0

Matias Carrasco Kind

May 02, 2014

CONTENTS

1 References 3

2 Contact 5

3 Now on GitHub 7

4 Contents 9
4.1 Requirements . 9
4.2 Installation . 10
4.3 Machine Learning routines . 11
4.4 Other routines . 26
4.5 Run MLZ . 32
4.6 Running a test . 34
4.7 Sparse Representation (new!) . 39

5 Indices and tables 45

Python Module Index 47

Index 49

i

ii

MLZ Documentation, Release 1.0

About

MLZ, “Machine Learning and photo-Z” is a parallel python framework that computes fast and robust photo-
metric redshift PDFs using Machine Learning algorithms. In particular, it uses a supervised technique with
prediction trees and random forest through TPZ or a unsupervised methods with self organizing maps and ran-
dom atlas through SOMz. It can be easily extended to other regression or classification problems. We recently
have added an additional feature that allows high compressed representation of the photo-z PDFs using sparse
representation. This allow to efficiently store and handle a large number of PDF from different techniques

CONTENTS 1

MLZ Documentation, Release 1.0

2 CONTENTS

CHAPTER

ONE

REFERENCES

These are the references related to this framework where detailed information about these methods can be
found.

• Carrasco Kind, M., & Brunner, R. J., 2013 “TPZ : Photometric redshift PDFs and ancillary infor-
mation by using prediction trees and random forests”, MNRAS, 432, 1483 (Link)

• Carrasco Kind, M., & Brunner, R. J., 2014, “SOMz : photometric redshift PDFs with self organizing
maps and random atlas” , MNRAS, 438, 3409 (Link)

• Carrasco Kind, M., & Brunner, R. J., 2014, “Exhausting the Information: Novel Bayesian Combi-
nation of Photometric Redshift PDFs”, MNRAS submitted (Link)

• Carrasco Kind, M., & Brunner, R. J., 2014, “Sparse Representation of Photometric Redshift PDFs:
Preparing for Petascale Astronomy”, MNRAS in press. (Link)

3

http://adsabs.harvard.edu/abs/2013MNRAS.432.1483C
http://adsabs.harvard.edu/abs/2014MNRAS.438.3409C
http://adsabs.harvard.edu/abs/2014arXiv1403.0044C
http://adsabs.harvard.edu/abs/2014arXiv1404.6442C

MLZ Documentation, Release 1.0

4 Chapter 1. References

CHAPTER

TWO

CONTACT

Here you can find my contact information for questions or comments.

5

https://sites.google.com/site/mgckind/

MLZ Documentation, Release 1.0

6 Chapter 2. Contact

CHAPTER

THREE

NOW ON GITHUB

We have uploaded MLZ to GitHub

7

https://github.com/mgckind/MLZ

MLZ Documentation, Release 1.0

8 Chapter 3. Now on GitHub

CHAPTER

FOUR

CONTENTS

This is a brief documentation of MLZ and the routines included

4.1 Requirements

The standard requirements for MLZ are the following python libraries:

• numpy

• scipy

• matplotlib

• mpi4py (for parallel running)

• healpy (for spherical coordinates) optional but recommended

• f2py (a fortran wrapper) optional but recommended

• pyfits (for storage) optional but recommended

4.1.1 Parallel MLZ

MLZ can run on a single node but it is strongly recommended to install MPI libraries and mpi4py.

In order to run in parallel MPI libraries must be present and the mpi4py module which can be obtained
from http://mpi4py.scipy.org/ . A first you might get it easy by trying:

[sudo] easy_install install mpi4py

ot via pip:

[sudo] pip install mpi4py

with sudo permissions, or locally using:

easy_install --user install mpi4py

or:

pip install mpi4py --user

9

http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
http://mpi4py.scipy.org/
http://healpy.readthedocs.org/en/latest/
https://code.google.com/p/f2py/
http://www.stsci.edu/institute/software_hardware/pyfits
http://mpi4py.scipy.org/
http://mpi4py.scipy.org/
http://mpi4py.scipy.org/

MLZ Documentation, Release 1.0

4.2 Installation

4.2.1 Download

You can get the latest version of the code from: https://pypi.python.org/pypi/MLZ/1.1

The simplest way to get MLZ is using pip:

[sudo] pip install MLZ

or:

pip install MLZ --user

or even:

easy_install --user MLZ

which will install and copy all the files to a local directory which can be specified by using the
--prefix=<path> flag. Open python and check if the module is present:

>>> import mlz

The code can also be installed manually, by getting the tar file and then uncompress the file:

tar -zxf MLZ-1.0.tar.gz

and install using:

python setup.py install --user

which is not required for the code to run via standard way. This will create a copy of the code in a local
directory and a few executable files will be copied to a local script folder (usually at $HOME/.local/bin).
This also compiles automatically the fortran routines needed for better performance.

4.2.2 Fortran routines

If the installation did not work via setup.py as shown, some fortran libraries will not be present, these
can be manually compiled using the f2py wrapper. In the mlz folder, go to the ml_codes folder where you
will find the file som.f90 in that folder:

f2py -c -m somF som.f90

And the library somF.so will be created. The code still works even this step is not accomplished as
these routines aid the code to run more efficiently.

4.2.3 Release Note

MLZ is an open source code released and licensed under the University of Illinois/NCSA Open Source
License and it is distributed without any warranty.

4.2.4 Acknowledgement

Please, acknowledge the use of MLZ in your own work with this (or similar) with these references

10 Chapter 4. Contents

https://pypi.python.org/pypi/MLZ/1.1
https://code.google.com/p/f2py/
http://opensource.org/licenses/NCSA
http://opensource.org/licenses/NCSA

MLZ Documentation, Release 1.0

4.2.5 Uninstall

You can uninstall MLZ by deleting the files manually with:

python setup.py install --user --record installed_files.txt
cat installed_files.txt | xargs rm -rf
rm -rf installed_files

Then proceed to delete mlz folder in the local installation.

Or you can use:

pip uninstall MLZ

4.3 Machine Learning routines

MLZ uses two methods to compute, primarily, photometric redshift PDFs. It uses a supervised technique
called TPZ 1 which uses prediction trees and random forest methods to make predictions in a regression
or classification problem. We also have implemented a unsupervised methods using self organizing maps
and introducing random atlas called SOMz 2.

Both method can be called from the main routine to obtain results from different points of view, we are
currently working on how efficiently combine these and other methods taking advantage of their strengths.

The methods included are the following:

4.3.1 TPZ: Trees for Photo-Z

TPZ 3 is a supervised machine learning, parallel algorithm that uses prediction trees and random forest
techniques to produce both robust photometric redshift PDFs and ancillary information for a galaxy sam-
ple. A prediction tree is built by asking a sequence of questions that recursively split the input data taken
from the spectroscopic sample, frequently into two branches, until a terminal leaf is created that meets a
stopping criterion (e.g., a minimum leaf size or a variance threshold).

The dimension in which the data is divided is chosen to be the one with highest information gain among
the random subsample of dimensions obtained at every point. This process produces less correlated trees
and allows to explore several configurations within the data.

The small region bounding the data in the terminal leaf node represents a specific subsample of the entire
data with similar properties. Within this leaf, a model is applied that provides a fairly comprehensible
prediction, especially in situations where many variables may exist that interact in a nonlinear manner as
is often the case with photo-z estimation.

1 Carrasco Kind, M., & Brunner, R. J., 2013 “TPZ : Photometric redshift PDFs and ancillary information by using prediction trees and random
forests”, MNRAS, 432, 1483 (Link)

2 Carrasco Kind, M., & Brunner, R. J., 2014, “SOMz : photometric redshift PDFs with self organizing maps and random atlas” , MNRAS, 438,
3409 (Link)

3 Carrasco Kind, M., & Brunner, R. J., 2013 “TPZ : Photometric redshift PDFs and ancillary information by using prediction trees and random
forests”, MNRAS, 432, 1483 (Link)

4.3. Machine Learning routines 11

http://adsabs.harvard.edu/abs/2013MNRAS.432.1483C
http://adsabs.harvard.edu/abs/2014MNRAS.438.3409C
http://adsabs.harvard.edu/abs/2013MNRAS.432.1483C

MLZ Documentation, Release 1.0

In the code TPZ is implemented as a module which has 2 important classes: TPZ.Rtree for regression and
TPZ.Ctree for classification. Both are documented in the code and listed below. For more information please
refer to the TPZ paper

Regression Tree Class

This is the TPZ.Rtree class in some detail, refer to the source code for mode information and methods.

Module author: Matias Carrasco Kind

class TPZ.Rtree(X, Y, minleaf=4, forest=’yes’, mstar=2, dict_dim=’‘)
Creates a regression tree class instance

Parameters

• X (float or int array, 1 row per object) – Preprocessed attributes array (all columns are
considered)

• Y (float) – Attribute to be predicted

• minleaf (int, def = 4) – Minimum number of objects on terminal leaf

• forest (str, ‘yes’/’no’) – Random forest key

• mstar (int) – Number of random subsample of attributes if forest is used

• dict_dim (dict) – dictionary with attributes names

get_branch(line)
Get the branch in string format given a line search, where the line is a vector of attributes per individual
object

Parameters line (float) – input data line to look in the tree, same dimensions as input X

Returns str – branch array in string format, ex., [’L’,’L’,’R’]

get_vals(line)
Get the predictions given a line search, where the line is a vector of attributes per individual object

Parameters line (float) – input data line to look in the tree, same dimensions as input X

Returns float – array with the leaf content

leaves()
Return an array with all branches in string format ex: [’L’,’R’,’L’] is a branch of depth 3 where L and R
are the left or right branches

Returns str – Array of all branches in the tree

leaves_dim()
Returns an array of the used dimensions for all the the nodes on all the branches

Returns int – Array of all the dimensions for each node on each branch

plot_tree(itn=-1, fileout=’TPZ’, path=’‘, save_png=’no’)
Plot a tree using dot (Graphviz) Saves it into a png file by default

Parameters

• itn (int) – Number of tree to be included on path, use -1 to ignore this number

• fileout (str) – Name of file for the png files

• path (str) – path for the output files

• save_png (str) – save png created by Graphviz (‘yes’/’no’)

12 Chapter 4. Contents

http://adsabs.harvard.edu/abs/2013MNRAS.432.1483C

MLZ Documentation, Release 1.0

print_branch(branch)
Returns the content of a leaf on a branch (given in string format)

save_tree(itn=-1, fileout=’TPZ’, path=’‘)
Saves the tree

Parameters

• itn (int) – Number of tree to be included on path, use -1 to ignore this number

• fileout (str) – Name of output file

• path (str) – path for the output file

Classification Trees Class

This is the TPZ.Ctree class in some detail, refer to the source code for mode information and methods.

Module author: Matias Carrasco Kind

class TPZ.Ctree(X, Y, minleaf=4, forest=’yes’, mstar=2, dict_dim=’‘, impurity=’entropy’,
nclass=array([0, 1]))

Creates a classification tree class instance

Parameters

• X (float or int array, 1 row per object) – Preprocessed attributes array (all columns are
considered)

• Y (int array) – Attribute to be predicted

• minleaf (int, def = 4) – Minimum number of objects on terminal leaf

• forest (str, ‘yes’/’no’) – Random forest key

• mstar (int) – Number of random subsample of attributes if forest is used

• impurity – ‘entropy’/’gini’/’classE’ to compute information gain

• nclass (int array) – classes array (labels)

• dict_dim (dict) – dictionary with attributes names

get_branch(line)
Same as Rtree.get_branch()

get_vals(line)
Same as Rtree.get_vals()

leaves()
Same as Rtree.leaves()

leaves_dim()
Same as Rtree.leaves_dim()

plot_tree(itn=-1, fileout=’TPZ’, path=’‘, save_png=’no’)
Same as Rtree.plot_tree()

print_branch(branch)
Same as Rtree.print_branch()

save_tree(itn=-1, fileout=’TPZ’, path=’‘)
Same as Rtree.save_tree()

4.3. Machine Learning routines 13

MLZ Documentation, Release 1.0

Warning: In order to visualize the created trees you need to have installed Graphviz, usually is installed by default
on Linux and Mac OS systems You don’t needed it in order to run MLZ

Example 1

This is a simple example on how to use the TPZ.Rtree, visualize a tree and make a simple prediction.
To see an example of using this properly in a problem under the MLZ framework , see Running a test

from numpy import *
import os, sys

path_src = os.path.abspath(os.path.join(os.getcwd(), ’../../’))
if not path_src in sys.path: sys.path.insert(1, path_src)
from mlz.ml_codes import *

#X and Y can be anything, in this case SDSS mags and colors for X and photo-z for Y
X = loadtxt(’SDSS_MGS.train’, usecols=(1, 2, 3, 4, 5, 6, 7), unpack=True).T
Y = loadtxt(’SDSS_MGS.train’, unpack=True, usecols=(0,))

#this dictionary is optional for this example
#for plotting the color labels
#(automatically included in MLZ)
d = {’u’: {’ind’: 0}, ’g’: {’ind’: 1}, ’r’: {’ind’: 2}, ’i’: {’ind’: 3}, ’z’: {’ind’: 4}, ’u-g’: {’ind’: 5},

’g-r’: {’ind’: 6}}

#Calls the Regression Tree mode
T = TPZ.Rtree(X, Y, minleaf=30, mstar=3, dict_dim=d)
T.plot_tree()
#get a list of all branches
branches = T.leaves()
#print first branch, in this case left ,left, left, etc...
print ’branch = ’, branches[0]
#print content of branch
content = T.print_branch(branches[0])
print ’branch content’
print content
#get prediction values for a test data (just an example on how to do it)
#using a train objetc
values = T.get_vals(X[10])
print ’predicted values from tree’
print values
print
print ’mean value from prediction’, mean(values)
print ’real value’, Y[10]
#Note we use a shallow tree and only one tree for example purposes and there
#is a random subsmaple so answer changes every time

14 Chapter 4. Contents

http://www.graphviz.org/

MLZ Documentation, Release 1.0

4.3. Machine Learning routines 15

MLZ Documentation, Release 1.0

g i
u-gru g-rz

If you download this example and run it on a python console you would get the following output, although the final
line would change slightly as there is a random process involved which would also change the figures:

16 Chapter 4. Contents

MLZ Documentation, Release 1.0

>>> branches = T.leaves()
>>> print ’branch = ’, branches[0]
branch = [’L’, ’L’, ’L’, ’L’, ’L’]
>>> content = T.print_branch(branches[0])
>>> print ’brach content’
branch content
>>> print content
[0.024914 0.029343 0.005126 0.017902 0.019716 0.02609 0.004404

0.006451 0.003074 0.034597 0.005701 0.003923 0.032468 0.031017
0.023015 0.038875 0.010996 0.018425 0.007773 0.013524 0.024911
0.003017 0.013113 0.006682 0.007372 0.021268]

>>> values = T.get_vals(X[10])
>>> print ’predicted values from tree’
>>> print values
[0.120684 0.118015 0.108008 0.103931 0.11477 0.099268 0.106299

0.114634 0.11031 0.115252 0.102601 0.132789 0.12069 0.125127
0.115067 0.086241 0.115476 0.112288 0.096661 0.105071 0.108449
0.119887 0.111333 0.120343 0.130859 0.104452 0.126068 0.095225
0.102079 0.123717 0.118518 0.116976 0.094429 0.107744 0.111157
0.095198 0.127612 0.114376 0.105994 0.117298 0.105951 0.09058
0.118837 0.108803 0.114075 0.159866 0.116929 0.086987 0.099276
0.088263 0.117582 0.119883 0.126069 0.117097 0.110187 0.099429
0.102188 0.105896 0.107781]

>>> print ’mean value from prediction’, mean(values)
mean value from prediction 0.111365677966
>>> print ’real value’, Y[10]
real value 0.120684

Example 2

This is a simple example on how to use the TPZ.Ctree, to visualize a tree and to make a simple
classification, in this case we classify from low and high redshift. Note the differences with these tree as
leaf are painted according to different classes.

from numpy import *
import os, sys

path_src = os.path.abspath(os.path.join(os.getcwd(), ’../../’))
if not path_src in sys.path: sys.path.insert(1, path_src)
from mlz.ml_codes import *

#X and Y can be anything, in this case SDSS mags and colors for X and photo-z for Y
X = loadtxt(’SDSS_MGS.train’, usecols=(1, 2, 3, 4, 5, 6, 7), unpack=True).T
Y = loadtxt(’SDSS_MGS.train’, unpack=True, usecols=(0,))

#make two classes by separating Y in low and high redhisft for example

Y = where((Y > 0.15), 1, 0)

#0: low redshift, 1: high redshift

#this dictionary is optional for this example
#for plotting the color labels
#(automatically included in MLZ)
d = {’u’: {’ind’: 0}, ’g’: {’ind’: 1}, ’r’: {’ind’: 2}, ’i’: {’ind’: 3}, ’z’: {’ind’: 4}, ’u-g’: {’ind’: 5},

’g-r’: {’ind’: 6}}

4.3. Machine Learning routines 17

MLZ Documentation, Release 1.0

#Calls the Classification Tree mode
T = TPZ.Ctree(X, Y, minleaf=20, mstar=3, dict_dim=d, nclass=array([0, 1], dtype=’int’))
T.plot_tree()
#get a list of all branches
branches = T.leaves()
#print first branch, in this case left ,left, left, etc...
print ’branch = ’, branches[0]
#print content of branch
content = T.print_branch(branches[0])
print ’branch content’
print content
#get prediction values for a test data (just an example on how to do it)
#using a train objetc
values = T.get_vals(X[20])
print ’predicted values from tree’
print values
print
print ’mean value from prediction’, int(round(mean(values)))
print ’real value’, Y[20]
#Note we use a shallow tree and only one tree for example purposes and there
#is a random subsmaple so answer changes every time

18 Chapter 4. Contents

MLZ Documentation, Release 1.0

g i
u-gru g-rz

References

4.3. Machine Learning routines 19

MLZ Documentation, Release 1.0

4.3.2 SOMz: Self Organizing Maps and random atlas

SOMz 4 is a unsupervised machine learning technique that also computes photometric redshift PDFs.
Specifically, we have developed a new framework that we have named random atlas, which mimics the
random forest approach by replacing the prediction trees with self organizing maps (SOMs). A SOM is
essentially a neural network that maps a large training set via a process of competitive learning from a
high dimensional input space to a two-dimensional surface. The mapping process retains the topology
of the input data, thereby revealing potential unknown correlations between input parameters, which can
provide important insights into the data.

This is an unsupervised learning method as no prediction attributes are included in the mapping process,
only the non-prediction attributes are included. The output values from the training data are only used
after the map has been constructed as they can be used to generate the prediction model for each cell in the
map. In our implementation , we first construct a suite of maps that each use a random subset of the full
attributes and the randomized training data we developed for the random forest, and we then aggregate
the map predictions together to make our final prediction (via the random atlas).

Figure 4.1: A schematic representation of a self organized map. The color of the map encodes the organization of
groups of objects with similar properties. The main feature of the SOM is that produces a nonlinear mapping from a
m-dimensional space of attributes to a two-dimensional lattices of neurons

In the code SOMz is implemented as a module SOMZ to create, evaluate, plot and make prediction. Given the nature
of the algorithm this can also be used for both, regression and classifcatin it just a matter of changing the attributes
when evaluating. For more details refer to the SOMz paper

Somz module

This is the SOMZ class in some detail, refer to the source code for more information and methods.

Module author: Matias Carrasco Kind
4 Carrasco Kind, M., & Brunner, R. J., 2014, “SOMz : photometric redshift PDFs with self organizing maps and random atlas” , MNRAS, 438,

3409 (Link)

20 Chapter 4. Contents

http://adsabs.harvard.edu/abs/2013arXiv1312.5753C
http://adsabs.harvard.edu/abs/2014MNRAS.438.3409C

MLZ Documentation, Release 1.0

class SOMZ.SelfMap(X, Y, topology=’grid’, som_type=’online’, Ntop=28, iterations=30, periodic=’no’,
dict_dim=’‘, astart=0.8, aend=0.5, importance=None)

Create a som class instance

Parameters

• X (float) – Attributes array (all columns used)

• Y (float) – Attribute to be predicted (not really needed, can be zeros)

• topology (str) – Which 2D topology, ‘grid’, ‘hex’ or ‘sphere’

• som_type (str) – Which updating scheme to use ‘online’ or ‘batch’

• Ntop (int) – Size of map, for grid Size=Ntop*Ntop, for hex Size=Ntop*(Ntop+1[2]) if Ntop
is even[odd] and for sphere Size=12*Ntop*Ntop and top must be power of 2

• iterations (int) – Number of iteration the entire sample is processed

• periodic (str) – Use periodic boundary conditions (‘yes’/’no’), valid for ‘hex’ and ‘grid’
only

• dict_dim (dict) – dictionary with attributes names

• astar (float) – Initial value of alpha

• aend (float) – End value of alpha

• importance (str) – Path to the file with importance ranking for attributes, default is none

create_map(evol=’no’, inputs_weights=’‘)
This is same as above but uses python routines instead

create_mapF(evol=’no’, inputs_weights=’‘)
This functions actually create the maps, it uses random values to initialize the weights It uses a Fortran
subroutine compiled with f2py

evaluate_map(inputX=’‘, inputY=’‘)
This functions evaluates the map created using the input Y or a new Y (array of labeled attributes) It uses
the X array passed or new data X as well, the map doesn’t change

Parameters

• inputX (float) – Use this if another set of values for X is wanted using the weigths already
computed

• inputY (float) – One dimensional array of the values to be assigned to each cell in the map
based on the in-memory X passed

get_best(line)
Get the predictions given a line search, where the line is a vector of attributes per individual object for
THE best cell

Parameters line (float) – input data to look in the tree

Returns array with the cell content

get_vals(line)
Get the predictions given a line search, where the line is a vector of attributes per individual object fot the
10 closest cells.

Parameters line (float) – input data to look in the tree

Returns array with the cell content

plot_map(min_m=-100, max_m=-100, colbar=’yes’)
Plots the map after evaluating, the cells are colored with the mean value inside each one of them

4.3. Machine Learning routines 21

MLZ Documentation, Release 1.0

Parameters

• min_m (float) – Lower limit for coloring the cells, -100 uses min value

• max_m (float) – Upper limit for coloring the cells, -100 uses max value

• colbar (str) – Include a colorbar (‘yes’,’no’)

save_map(itn=-1, fileout=’SOM’, path=’‘)
Saves the map

Parameters

• itn (int) – Number of map to be included on path, use -1 to ignore this number

• fileout (str) – Name of output file

• path (str) – path for the output file

save_map_dict(path=’‘, fileout=’SOM’, itn=-1)
Saves the map in dictionary format

Parameters

• itn (int) – Number of map to be included on path, use -1 to ignore this number

• fileout (str) – Name of output file

• path (str) – path for the output file

som_best_cell(inputs, return_vals=1)
Return the closest cell to the input object It can return more than one value if needed

SOMZ.geometry(top, Ntop, periodic=’no’)
Pre-compute distances between cells in a given topology and store it on a distLib array

Parameters

• top (str) – Topology (‘grid’,’hex’,’sphere’)

• Ntop (int) – Size of map, for grid Size=Ntop*Ntop, for hex Size=Ntop*(Ntop+1[2]) if Ntop
is even[odd] and for sphere Size=12*Ntop*Ntop and top must be power of 2

• periodic (str) – Use periodic boundary conditions (‘yes’/’no’), valid for ‘hex’ and ‘grid’
only

Returns 2D array with distances pre computed between cells and total number of units

Return type 2D float array, int

SOMZ.get_alpha(t, alphas, alphae, NT)
Get value of alpha at a given time

SOMZ.get_ns(ix, iy, nx, ny, index=False)
Get neighbors for rectangular grid given its coordinates and size of grid

Parameters

• ix (int) – Coordinate in the x-axis

• iy (int) – Coordinate in the y-axis

• nx (int) – Number fo cells along the x-axis

• ny (int) – Number fo cells along the y-axis

• index (bool) – Return indexes in the map format

Returns Array of indexes for direct neighbors

22 Chapter 4. Contents

MLZ Documentation, Release 1.0

SOMZ.get_ns_hex(ix, iy, nx, ny, index=False)
Get neighbors for hexagonal grid given its coordinates and size of grid Same parameters as get_ns()

SOMZ.get_sigma(t, sigma0, sigmaf, NT)
Get value of sigma at a given time

SOMZ.h(bmu, mapD, sigma)
Neighborhood function which quantifies how much cells around the best matching one are modified

Parameters

• bmu (int) – best matching unit

• mapD (float) – array of distances computed with geometry()

SOMZ.is_power_2(value)
Check if passed value is a power of 2

Example

This is a simple example on how to use the SOMZ, visualize a map and make a simple prediction. To see
an example of using this properly in a problem under the MLZ framework , see Running a test

from numpy import *
import os, sys

path_src = os.path.abspath(os.path.join(os.getcwd(), ’../../’))
if not path_src in sys.path: sys.path.insert(1, path_src)
from mlz.ml_codes import *

#X and Y can be anything, in this case SDSS mags and colors for X and photo-z for Y
X = loadtxt(’SDSS_MGS.train’, usecols=(1, 2, 3, 4, 5, 6, 7), unpack=True).T
Y = loadtxt(’SDSS_MGS.train’, unpack=True, usecols=(0,))

#Calls the SOMZ mode
M = SOMZ.SelfMap(X,Y,topology=’hex’,Ntop=15,iterations=100,periodic=’yes’)
#creates a map
M.create_mapF()
#evaluates it with the Y entered, or anyoher desired colum
M.evaluate_map()
#plots the map
M.plot_map()
#get prediction values for a test data (just an example on how to do it)
#using a train objetc
values = M.get_vals(X[10])
print
print ’mean value from prediction (hex)’, mean(values)
print ’real value’, Y[10]
#Note we use a low-resoution map and only one map for example purposes
#evaluate other column, for example the ’g’ magnitude
M.evaluate_map(inputY=X[:,1])
M.plot_map()

#Try other topology
M = SOMZ.SelfMap(X,Y,topology=’sphere’,Ntop=4,iterations=100,periodic=’yes’)
#creates a map
M.create_mapF()

4.3. Machine Learning routines 23

MLZ Documentation, Release 1.0

#evaluates it with the Y entered, or anyoher desired colum
M.evaluate_map()
#plots the map
M.plot_map()
#get prediction values for a test data (just an example on how to do it)
#using a train objetc
values = M.get_vals(X[10])
print
print ’mean value from prediction (sphere)’, mean(values)
print ’real value’, Y[10]

24 Chapter 4. Contents

MLZ Documentation, Release 1.0

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225

14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5

4.3. Machine Learning routines 25

MLZ Documentation, Release 1.0

0.025186 0.206006

You can download this example and run it on a python console to see the outputs and try different topologies,
properties and resolutions.

References

References

4.4 Other routines

Here we list other modules used by MLZ that help the code to run efficiently. for a more detailed please
refer to the source code, these are samples of some important routines used by the code. Check Running
a test for an example on how to run MLZ for a SDSS sample of galaxies

26 Chapter 4. Contents

MLZ Documentation, Release 1.0

4.4.1 Data module

This is the data class in some detail, this class is useful to read the data in a specified format and to read
the inputs parameters as specified in the input-file.

Module author: Matias Carrasco Kind

data.bootstrap_index(N, SS)
Returns bootstrapping indexes of sample N from array of indices

Parameters

• N (int) – size of boostrap sample

• SS (int) – extract indexes from 0 to SS

Returns array of bootstrap indices

Return type int array

class data.catalog(Pars, cat_type=’train’, L1=0, L2=-1, rank=0)
Creates a catalog instance for training or testing

Parameters

• Pars (class) – Class of parameters read from inputs files

• cat_type (str) – ‘train’ or ‘test’ file (names are taken from Pars class)

• L1 (int) – keep only entries between L1 and L2

• L2 (int) – keep only entries between L1 and L2

get_XY(curr_at=’all’, bootstrap=’no’)
Creates X and Y methods based on catalog, using random realization or bootstrapping, after this both X
and Y are loaded and ready to be used

Parameters

• curr_at (dict) – dictionary of attributes to be used (like a subsample of them), ‘all’ by
default

• bootstrap (str) – Bootstrapping sample? (‘yes’/’no’)

Returns Saves X, Y oob (and no-oob) data if required and original catalog

has_X()
Is X already loaded in memory?

Returns Boolean

has_Y()
Is Y already loaded in memory?

Returns Boolean

load_random()
Loads the random catalog with the realizations

make_random(outfileran=’‘, ntimes=-1)
Actually makes the random realizations :param str outfileran: output file (not needed) :param int ntimes:
taken from class Pars unless otherwise indicated

oob_data(frac=0.0)
Creates oob data and separates it from the no-oob data for further tests :param float frac: Fraction of the
data to be separated, taken from class Pars (default is 1/3)

4.4. Other routines 27

MLZ Documentation, Release 1.0

sample_dim(nsample)
Samples from the list of attributes

Parameters nsample (int) – size of subsample

Returns dictionary with subsample attributes and their locations

data.create_random_realizations(AT, F, N, keyatt)
Create random realizations using error in magnitudes, saves a temporarily file on train data directory. Uses
normal distribution

Parameters

• AT (dict) – dictionary with columns names and colum index

• F (float) – Training data

• N (int) – Number of realizations

• keyatt (str) – Attribute name to be predicted or classifed

Returns Returns an array with random realizations

data.make_AT(cols, attributes, keyatt)
Creates dictionary used on all routines

Note: Make sure all columns have different names, and error columns are the same as attribute
columns with a ‘e’ in front of it, ex. ‘mag_u’ and ‘emag_u’

Parameters

• cols (str) – str array with column names from file

• attributes (str) – attributes to be used from those columns

• keyatt (str) – Attribute to be predicted or classified

Returns dictionary, each key correspond to an attribute and itself a dictionary where ‘ind’ is the col-
umn index and ‘eind’ is the error column for the same attribute, ex., A={u:{‘ind’=1, ‘eind’=6}}

Return type dict

data.read_catalog(filename, myrank=0, check=’no’)
Read the catalog, either for training or testing currently accepting ascii tables, numpy tables

Parameters

• filename (str) – Filename of the catalod

• myrank (int) – current processor id, for parallel reading (not implemented)

• check (str) – To check the code, only uses 50 lines of catalog

Returns The whole catalog

Return type float array

4.4.2 Utils

This is the utils_mlz module in some detail, this class contains some useful routines used by MLZ.

Module author: Matias Carrasco Kind

28 Chapter 4. Contents

MLZ Documentation, Release 1.0

class utils_mlz.Stopwatch(verb=’yes’)
Stopwatch and some time procedures

Parameters verb (str) – ‘yes’ or ‘no’ (verbose?)

elapsed(only_sec=False, verbose=True)
Prints and saves elapsed time

Parameters

• only_sec (bool) – set this to True for the elapsed time prints in seconds only

• verbose (bool) – Prints on screen

restart(verb=’Restart’, verbose=True)
Set the counter to zero, keeps tracking of starting time

Parameters verb (str) – ‘Start’ (default) or ‘Restart’ (set the counter to zero and the starting

time to current time, keeps the initial starting in self.start0)

class utils_mlz.bias(zs, zb, name, zmin, zmax, nbins, mode=1, d_z=<function <lambda> at
0x4084e60>, verb=True)

Creates a instance to compute some metrics for the photo-z calculation for quick analysis

Parameters

• zs (float) – Spectrocopic redshift array

• zb (float) – Photometric redshift

• name (str) – name for identification

• zmin (float) – Minimum redshift for binning

• zmax (float) – Maximum redshift for binning

• nbins (int) – Number of bins used

• mode (int) – 0 (binning in spec-z) or 1 (binning in photo-z)

• d_z (function) – function to be applied on z_phot and z_spec, default (z_phot-z_spec)

• verb (bool) – verbose?

utils_mlz.compute_error(z, pdf, zv)
Computes the error in the PDF calculation using a reference values from PDF it computes the 68% percentile
limit around this value

Parameters

• z (float) – redshift

• pdf (float) – photo-z PDF

• zv (float) – Reference value from PDF (can be mean, mode, median, etc.)

Returns error associated to reference value

Return type float

utils_mlz.compute_zConf(z, pdf, zv, sigma)
Computes the confidence level of the pdf with respect a reference value as the area between zv-sigma(1+zv) and
zv+sigma(1+zv)

Parameters

• z (float) – redshift

4.4. Other routines 29

MLZ Documentation, Release 1.0

• pdf (float) – photo-z PDF

• zv (float) – reference value

• sigma (float) – extent of confidence

Returns zConf

Return type float

class utils_mlz.conf(zconf, zb, zmin, zmax, nbins)
Computes confidence level (zConf) as a function of photometric redshift

Parameters

• zconf (float) – zConf array for galaxies

• zb (float) – Photometric redshifts

• zmin (float) – Minimum redshift for binning

• zmax (float) – Maximum redshift for binning

• nbins (int) – Number of bins used

utils_mlz.get_area(z, pdf, z1, z2)
Compute area under photo-z Pdf between z1 and z2, PDF must add to 1

Parameters

• z (float) – redshift

• pdf (float) – photo-z PDF

• z1 (float) – Lower boundary

• z2 (float) – Upper boundary

Returns area between z1 and z2

Return type float

utils_mlz.get_limits(ntot, Nproc, rank)
Get limits for farming an array to multiple processors

Parameters

• ntot (int) – Number of objects in array

• Nproc (int) – number of processor

• rank (int) – current processor id

Returns L1,L2 the limits of the array for given processor

Return type int, int

utils_mlz.percentile(Nvals, percent)
Find the percentile of a list of values. :param float Nvals: list of values :param float percent: a percentile value
between 0 and 1. :return: percentile value :rtype: float

utils_mlz.print_dtpars(DTpars, outfile)
Prints the values from class Pars to a file

Parameters

• DTpars (class) – class Pars from input file

• outfile (str) – output filename

30 Chapter 4. Contents

MLZ Documentation, Release 1.0

utils_mlz.read_dt_pars(filein, verbose=True, myrank=0)
Read parameters to be used by the program and convert them into integers/float if necessary, returning a class

Parameters

• filein (str) – name of inputs file, check format here input-file

• verbose (bool) – True or False

• myrank (int) – processor id for multi-core capabilities

utils_mlz.zconf_dist(conf, nbins)
Computes the distribution of Zconf for different bins between 0 and 1

Parameters

• conf (float) – zConf values

• nbins (int) – number of bins

Returns zConf dist, bins

Return type float,float

4.4.3 Plotting

This is the plotting class in some detail, this is used for plotting some results for the photometric
redshift problem. Check Running a test to check a quick view on how to use this.

Module author: Matias Carrasco Kind

class plotting.Qplot(inputs_file)
Creates a qplot instance to produce a set of useful plot for quick analysis

Parameters inputs_file (str) – path to input file where all information and parameters are declared
input-file

plot_importance(result_id=0, Nzb=10)
Plot ranking of importance of attributes used during the training/testing process

Note: The key OobError and VarImportance in input-file must be set to ‘yes’ to compute these quantities

Parameters

• results_id (int) – Result id number as the output on the results folder, default 0

• Nzb (int) – Number of redshift bins

plot_map(nmap=0, colbar=’yes’, min_m=-100, max_m=-100)
Plot a map created during the training process,

Parameters

• nmap (int) – Number of created map, default is 0

• min_m (float) – Lower limit for coloring the cells, -100 uses min value

• max_m (float) – Upper limit for coloring the cells, -100 uses max value

• colbar (str) – Include a colorbar (‘yes’,’no’)

4.4. Other routines 31

MLZ Documentation, Release 1.0

plot_pdf_use(result_id=0)
PLots the redshift distribution using PDFs and using one single estimator and a map of zphot vs zspec
using also PDFs.

Note: The code utils/use_pdfs must be run first in order to create the needed files, it can be run in parallel

Parameters result_id (int) – result id (run number) as appears on the results , default = 0

plot_results(result_1=0, zconf_1=0.0, result_2=0, zconf_2=0.0)
Plots a summary of main results for photometric redshifts, it has user interactive plots.

Parameters

• result_1 (int) – result id (run number) as appears on the results , default = 0 (uses mean of
PDF for metrics)

• zconf_1 (float) – confidence level cut for file 1

• result_2 (int) – result id (run number) as appears on the results folder for a second optional
file , default shows file 1 instead using the mode for the metrics

• zconf_2 (float) – confidence level cut for file 2

plot_sparse(result_id=0, kgal=-1)
Plot original and sparse representation of a random select galaxy

Note: Both the original and the spare rep. files must exist

Parameters

• results_id (int) – Result id number as the output on the results folder, default 0

• kgal (int) – Id for specific galaxy

plot_tree(ntree=0, save_files=’no’, fileroot=’TPZ’, path=’‘)
Plot a tree created during the training process, uses the Graphviz package (dot and neato)

Parameters

• ntree (int) – Number of created tree, default is 0

• save_files (str) – Saves the created files from Graphviz (the .png and the .dot files)
‘yes’/’no’

• fileroot (str) – root name for saved files

• path (str) – path name for output files

4.5 Run MLZ

4.5.1 Input file

A brief explanation on how to run MLZ. The main code is included as a executable and can be called
directly or its directory, its content can be viewed here

32 Chapter 4. Contents

MLZ Documentation, Release 1.0

A self-explanatory view of the input-file is helpful to look at before running the code. This file can be
used as a template for other files, the parameters can be checked in advance by setting CheckOnly to
yes.

Note that the names of the variables are case insensitive but all of them need to be present.

4.5.2 Prepare data

Both the training file and test file must have the attributes (magnitudes, colors, etc.) and (optimally) their
errors. If errors are not present assume a very small value is used. For now ascii files and numpy files
(.npy) are valid. Spectroscopic redshifts must be included on the training file, if present on the test file
they can be used for testing the performance of MLZ, although it is not required.

Add the full path relative to the working directory of these file to the input file and define a output folder
for the results.

There are 3 very important variables on the input file to specify the columns and the attributes to use by
separating them using comas. Make sure to indicate the spectroscopic redshift by its name in the KeyAtt
variable. Also always indicate the name of the error columns by adding the letter e in front of the name
of the attribute (see the input-file for an example)

In the Att variable, indicate the attributes to use to make a compute photo-z, you can add or remove
attributes but make sure they are present on the columns names. Order is not important, but order in
columns name are important

4.5.3 Some hidden parameters

In order to make the input-file not too busy, there are some hidden parameters in the
utils/utils_mlz.py file that are not frequently used and can be manually modified, among the
most important ones:

• oobfraction: fraction of data used for cross-validation, default is 1/3

• dotrain: The training of the trees/maps is carried out, default is yes, set it to no if want to use same
trees or maps on a separate data set, it can save some time for large training data

• dotest: The test phase is carried out, default is yes, set it to no if only training is desired

• writepdf: Write the PDF? default if yes, if not needed can be set to no

4.5.4 Run the code

Check the Running a test for a example use of the code on SDSS data including with the distribution.

To run the code, if using mpi4py from the main folder type:

$ mpirun -n <cores> ./runMLZ <input file>

Where <cores> is the number of processors desired to use and <input file> is the name of the input-file. If
not using mpi4py, type:

$./runMLZ <input file>

Or if distribution is build or installed using pip, just type:

$ runMLZ <input file>

4.5. Run MLZ 33

MLZ Documentation, Release 1.0

This will create two folder on the output directory, one named trees (or maps) where several files for trees
or maps are stored for further analysis and the other folder named results where the main results are stored
as well as the parameters used. The .mlz file contains 7 columns (zspec, zmode, zmean, zconf_mode,
zcond_mean, error_mode, error_mean) which summarizes the results if no PDF is further needed. The
PDF for all the galaxies are also stored in the same folder.

4.5.5 Machine learning approach

MLZ can be used through TPZ or SOMz and whichever is used is set on the input-file under the
PredictionMode variable. Whether is a classification or a Regression problem this is set on the
PredictionClass variable. There are some variables common for both approaches and other exclu-
sively used by one of them. For classification labels you can must use integers can can use the variable
MinZ and MaxZ to enclose the range of values. OOB and cross-validation data are computed when the
variable OobError is set to yes and a ranking of variable importance can be computed if the variable
VarImportance is set to yes.

4.5.6 Preview of results

Some routines are provided to preview some results. See the Running a test and plotting for more
information and some examples of figures that can be created

4.6 Running a test

4.6.1 Run on SDSS data

This distribution comes with a test folder where a example training set and a example testing set are
located. This example correspond to a random subset of galaxies taken from the Main Galaxy Sample
(MGS) from the SDSS. Each file has 5000 galaxies with spectroscopic redshift and magnitudes (model
mag) and colors corrected by extinction in the 5 bands, u, g, r, i and z as well as their associated errors,
making a total of 9 attributes. Make sure you look at Run MLZ for a general information on running MLZ

Note: This is a very small subsample of the whole catalog to illustrate the use of the MLZ and its capabilities. Also
only few trees or maps are created for illustration, ideally hundreds of trees and maps are necessary

To run MLZ, type:

$./runMLZ test/SDSS_MGS.inputs

To run this example you must be located at the tpz/ folder, if using mpi4py type:

$ mpirun -n <cores> ./runMLZ test/SDSS_MGS.inputs

Make sure <cores> matches your system. A view of the input file is here. The results are located in the
folder mlz/test/results/ and the trees (or maps) are saved in tpz/test/trees/. There are some other parameters
to control what phase to run or to manage the outputs.

4.6.2 Preview of results

MLZ comes with some plotting routines, check plotting for some of them and their parameters. It
includes an interactive routine to preview the results. Within the main folder type:

34 Chapter 4. Contents

http://www.sdss.org/

MLZ Documentation, Release 1.0

$./plot/plot_results test/SDSS_MGS.inputs 0 0

The first argument is the run number (every time TPZ increase this number by one) and the second
argument is the confidence level zConf (see these references) for more information on this parameter and
here for this routine plotting.Qplot.plot_results

Note: you can compare different runs (using different parameters for example) by adding two extra arguments with
the number of the run and zConf for these results like ./plotting/plot_results.py test/SDSS_MGS.inputs 0 0 1 0 will
show a comparison between the first and the second run with no zConf applied. If only 2 arguments are present after
the input file, it shows a comparison for the mode and the mean for those results.

Three figures like the following are displayed for a summary of the results, with shape of PDFs, statistics
etc

These figures have some user interaction as explained in the help window (shown below). For example
by clicking different points in the zphot vs zspec figure is possible to visualize its PDF, or the colormap
can be changed in figure 3, or change between zspec or zphot in the binning, etc...

All figures:

* Q: close all figures

* q: close current figure

Figure 1:

- Top Panel

* m, M: change color map

* +,- : change levels of countours
- Bottom Panel

* r/n : Toggle on/off Normal distribution
with N(0,1)

4.6. Running a test 35

MLZ Documentation, Release 1.0

Figure 2:

* p/t : Toggle plots in photo bins and spectroscopic bins

* o : Toggle on/off oob data when available

Figure 3:

* Click on points to see its PDF

4.6.3 Some PDF examples

Some examples on how to use the PDF to compute N(z) or a zphot vs zspec map there are some analysis
routines for them, first we need to run some pre-analysis routine, if using mpi4py type:

$ mpirun -n <cores> ./utils/use_pdfs test/SDSS_MGS.inputs 0 0.1 30

Making sure to enter the right number of cores, if using a serial version type:

$./utils/use_pdfs test/SDSS_MGS.inputs

After this two extra files are created in the results folder with N(z) dist and a map, you can change the
binning by changing the last argument in the command line , by default is 30. To plot these you can check
plotting.Qplot.plot_pdf_use and type:

$./plot/plot_pdf_use test/SDSS_MGS.inputs

And then you will see two figures like the following:

36 Chapter 4. Contents

MLZ Documentation, Release 1.0

4.6.4 Plotting a tree or a map

You can plot one of the created tree during the process in order to visualize how would it look like:

$./plot/plot_tree test/SDSS_MGS.inputs 0

Or if you used SOMz instead you can also plot a map using the following:

$./plot/plot_map test/SDSS_MGS.inputs 0

Check plotting.Qplot.plot_tree and plotting.Qplot.plot_map for information. The
previous commands will generate figures like the following:

4.6. Running a test 37

MLZ Documentation, Release 1.0

4.6.5 Ancillary information

If the extra information is set on the input-file, i.e., OobError and VarImportance are set to yes,
then extra information can be plotted as well, note thar these variables are independent and setting only
OobError to yes is always recommended as is a unbiased version of the performance on the same
training set which serves a s a cross-validation and can be very useful. To plot the importance check first
plotting.Qplot.plot_importance and type within the main folder:

$./plot/plot_importance test/SDSS_MGS.inputs

Which generated two plots like the following:

38 Chapter 4. Contents

MLZ Documentation, Release 1.0

4.6.6 Extra notes

These figures and commands are only an example on how to run and visualize the data, these are not the
optimal set of parameters for every data sets, look at the references for more information on what are the
best parameters and suggestion to take advantage of MLZ, increasing the number of trees or the resolution
for SOMz (Ntop) always help, Natt is also important, for TPZ one could start with the square root of
the number of attributes and for SOM with 2/3 of the number of attributes. Email me at mcarras2 at
illinois.edu for questions or comments

4.7 Sparse Representation (new!)

Sparse Representation of photometric redshift PDFs 5 is a novel technique to represent and store these
PDFs in an efficient way without losing resolution or information. It works by creating a over determined
dictionary of basis with Gaussian and Voigt profiles which cover the redshift space for several values for
the center and width for these distributions. Usually we create less than 2^16 bases so we can represent
them using 16 bits integers. By using an Orthogonal Matching Pursuit algorithm we look to minimize the
number of bases used, without repetition, and the coefficients for each base can be also represented using
another 16 bits integer. In this way, we can represent a PDF using only 32-bits integers per base when
only 10-20 bases is necessary.

Figure 4.2: A single four-byte integer scheme to store a single basis function in the sparse representation method. The
first sixteen bits store the coefficients (including sign), while the second sixteen bits store the location of the bases in
the dictionary.

5 Carrasco Kind, M., & Brunner, R. J., 2014, “Sparse Representation of Photometric Redshift PDFs: Preparing for Petascale Astronomy”,
MNRAS in press. (Link)

4.7. Sparse Representation (new!) 39

http://en.wikipedia.org/wiki/Voigt_profile
http://adsabs.harvard.edu/abs/2014arXiv1404.6442C

MLZ Documentation, Release 1.0

Figure 4.3: A illustration of the bases used in the dictionary, each shaded region is composed by several functions
of different widths, those colored shaded regions are full of bases. In a real dictionary the spacing between these
functions is much tighter (~200 points in the redshift range)

The number of bases and parameters depend strongly on the data based used, the module pdf_storage contains most of the
functions used to make the representation, for more information check our Sparse represenation paper

4.7.1 PDF storage module

This is the pdf_storage module in some detail, refer to the source code for more information and
methods.

pdf_storage.combine_int(Ncoef, Nbase)
combine index of base (up to 62500 bases) and value (16 bits integer with sign) in a 32 bit integer First half of
word is for the value and second half for the index

Parameters

• Ncoef (int) – Integer with sign to represent the value associated with a base, this is a sign 16
bits integer

• Nbase (int) – Integer representing the base, unsigned 16 bits integer

Returns 32 bits integer

pdf_storage.create_gaussian_dict(zfine, mu, Nmu, sigma, Nsigma, cut=1e-05)
Creates a gaussian dictionary only

Parameters

• zfine (float) – the x-axis for the PDF, the redshift resolution

• mu (float) – [min_mu, max_mu], range of mean for gaussian

• Nmu (int) – Number of values between min_mu and max_mu

• sigma (float) – [min_sigma, max_sigma], range of variance for gaussian

• Nsigma (int) – Number of values between min_sigma and max_sigma

40 Chapter 4. Contents

http://adsabs.harvard.edu/abs/2014arXiv1404.6442C

MLZ Documentation, Release 1.0

• cut (float) – Lower cut for gaussians

Returns Dictionary as numpy array with shape (len(zfine), Nmu*Nsigma)

Return type float

pdf_storage.create_voigt_dict(zfine, mu, Nmu, sigma, Nsigma, Nv, cut=1e-05)
Creates a gaussian-voigt dictionary at the same resolution as the original PDF

Parameters

• zfine (float) – the x-axis for the PDF, the redshift resolution

• mu (float) – [min_mu, max_mu], range of mean for gaussian

• Nmu (int) – Number of values between min_mu and max_mu

• sigma (float) – [min_sigma, max_sigma], range of variance for gaussian

• Nsigma (int) – Number of values between min_sigma and max_sigma

• Nv – Number of Voigt profiles per gaussian at given position mu and sigma

• cut (float) – Lower cut for gaussians

Returns Dictionary as numpy array with shape (len(zfine), Nmu*Nsigma*Nv)

Return type float

pdf_storage.errf(P, x, y)
Error function to be minimized during fitting

pdf_storage.fit_multi_gauss(z, pdf, tolerance=1.49e-08)
Fits a multi gaussian function to the pdf, given a tolerance

pdf_storage.get_N(longN)
Extract coefficients fro the 32bits integer, Extract Ncoef and Nbase from 32 bit integer return (longN >> 16),
longN & 0xffff

Parameters longN (int) – input 32 bits integer

Returns Ncoef, Nbase both 16 bits integer

pdf_storage.get_npeaks(z, pdf)
Get the number of peaks for a given PDF

Parameters

• z (float) – the redhisft values of the PDF

• pdf (float) – the values of the PDF

Returns The number of peaks, positions of the local maximums, local minimums and inflexion
points

pdf_storage.initial_guess(z, pdf)
Computes a initial guess based on local maxima and minima, it adds an extra gaussian to the number of peaks

pdf_storage.multi_gauss(P, x)
Muti-Gaussian function

Parameters

• P (float) – array with values for amplitud, mean and sigma, P=[A0,mu0,sigma0, A1,mu1,
sigma1, ...]

• x (float) – x values

4.7. Sparse Representation (new!) 41

MLZ Documentation, Release 1.0

Returns The multi gaussian

pdf_storage.read_header(fits_file)
Reads the header from a fits file that stores the sparse indices

Parameters fits_file (str) – Name of fits file

Returns Dictionary of header to be used to reconstruct PDF

pdf_storage.reconstruct_pdf(index, vals, zfine, mu, Nmu, sigma, Nsigma, cut=1e-05)
This function reconstruct the pdf from the indices and values and parameters used to create the dictionary with
Gaussians only

Parameters

• index (int) – List of indices in the dictionary for the selected bases

• vals (float) – values or coefficients corresponding to the listed indices

• zfine (float) – redshift values from the original pdf or used during the sparse representation

• mu (float) – [min_mu, max_mu] values used to create the dictionary

• Nmu (int) – Number of mu values used to create the dictionary

• sigma (float) – [min_sigma, mas_sigma] sigma values used to create the dictionary

• Nsigma (int) – Number of sigma values

• cut (float) – cut threshold when creating the dictionary

Returns the pdf normalized so it sums to one

pdf_storage.reconstruct_pdf_f(index, vals, zfine, mu, Nmu, sigma, Nsigma)
This function returns the reconstructed pdf in a functional analytical form, to be used in a analytical form”

Parameters

• index (int) – List of indices in the dictionary for the selected bases

• vals (float) – values or coefficients corresponding to the listed indices

• zfine (float) – redshift values from the original pdf or used during the sparse representation

• mu (float) – [min_mu, max_mu] values used to create the dictionary

• Nmu (int) – Number of mu values used to create the dictionary

• sigma (float) – [min_sigma, mas_sigma] sigma values used to create the dictionary

• Nsigma (int) – Number of sigma values

Returns a function representing the pdf

pdf_storage.reconstruct_pdf_int(long_index, header, cut=1e-05)
This function reconstruct the pdf from the integer indices only and the parameters used to create the dictionary
with Gaussians and Voigt profiles

Parameters

• long_index (int) – List of indices including coefficients (32bits integer array)

• header (dict) – Dictionary of the fits file header with information used to create dictionary
and sparse indices

• cut (float) – cut threshold when creating the dictionary

Returns the pdf normalized so it sums to one

42 Chapter 4. Contents

MLZ Documentation, Release 1.0

pdf_storage.reconstruct_pdf_v(index, vals, zfine, mu, Nmu, sigma, Nsigma, Nv, cut=1e-05)
This function reconstruct the pdf from the indices and values and parameters used to create the dictionary with
Gaussians and Voigt profiles

Parameters

• index (int) – List of indices in the dictionary for the selected bases

• vals (float) – values or coefficients corresponding to the listed indices

• zfine (float) – redshift values from the original pdf or used during the sparse representation

• mu (float) – [min_mu, max_mu] values used to create the dictionary

• Nmu (int) – Number of mu values used to create the dictionary

• sigma (float) – [min_sigma, mas_sigma] sigma values used to create the dictionary

• Nsigma (int) – Number of sigma values

• Nv (int) – Number of Voigt profiles used to create dictionary

• cut (float) – cut threshold when creating the dictionary

Returns the pdf normalized so it sums to one

pdf_storage.sparse_basis(dictionary, query_vec, n_basis, tolerance=None)
Compute sparse representation of a vector given Dictionary (basis) for a given tolerance or number of basis. It
uses Cholesky decomposition to speed the process and to solve the linear operations adapted from Rubinstein,
R., Zibulevsky, M. and Elad, M., Technical Report - CS Technion, April 2008

Parameters

• dictionary (float) – Array with all basis on each column, must has shape (len(vector), total
basis) and each column must have euclidean l-2 norm equal to 1

• query_vec (float) – vector of which a sparse representation is desired

• n_basis (int) – number of desired basis

• tolerance (float) – tolerance desired if n_basis is not needed to be fixed, must input a large
number for n_basis to assure achieving tolerance

Returns indices, values (2 arrays one with the position and the second with the coefficients)

pdf_storage.voigt(x, x_mean, sigma, gamma)
Voigt profile V(x,sig,gam) = Re(w(z)), w(z) Faddeeva function z = (x+j*gamma)/(sigma*sqrt(2))

Parameters

• x (float) – the x-axis values (redshift)

• x_mean (float) – Mean of the gaussian or Voigt

• sigma (float) – Sigma of the original Gaussian when gamma=0

• gamma (float) – Gamma parameter for the Lorentzian profile (Voigt)

Returns The real values of the Voigt profile at points x

4.7.2 Example Case

Based on our previous example on the SDSS data. we have added additional keys on the ref:input-file,
including a key for computing the sparse representation. If this key is set to yes then MLZ will run longer
but it will produce a fits file with the extension .Psparse.fits which have all information necessary on its
header and have the representation for each galaxy, to visualize an example, type:

4.7. Sparse Representation (new!) 43

MLZ Documentation, Release 1.0

$./plot/plot_sparse test/SDSS_MGS.inputs 0

where a random galaxy will be displayed as well as the bases used. An example is shown below. To get a
specific galaxy just add an extra argument at the end with the galaxy id, like:

$./plot/plot_sparse test/SDSS_MGS.inputs 0 100

Which will display the 100th galaxy from the sample.

References

44 Chapter 4. Contents

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

45

MLZ Documentation, Release 1.0

46 Chapter 5. Indices and tables

PYTHON MODULE INDEX

d
data, 27

p
pdf_storage, 40
plotting, 31

s
SOMZ, 20

t
TPZ, 12

u
utils_mlz, 28

47

MLZ Documentation, Release 1.0

48 Python Module Index

INDEX

B
bias (class in utils_mlz), 29
bootstrap_index() (in module data), 27

C
catalog (class in data), 27
combine_int() (in module pdf_storage), 40
compute_error() (in module utils_mlz), 29
compute_zConf() (in module utils_mlz), 29
conf (class in utils_mlz), 30
create_gaussian_dict() (in module pdf_storage), 40
create_map() (SOMZ.SelfMap method), 21
create_mapF() (SOMZ.SelfMap method), 21
create_random_realizations() (in module data), 28
create_voigt_dict() (in module pdf_storage), 41
Ctree (class in TPZ), 13

D
data (module), 27

E
elapsed() (utils_mlz.Stopwatch method), 29
errf() (in module pdf_storage), 41
evaluate_map() (SOMZ.SelfMap method), 21

F
fit_multi_gauss() (in module pdf_storage), 41

G
geometry() (in module SOMZ), 22
get_alpha() (in module SOMZ), 22
get_area() (in module utils_mlz), 30
get_best() (SOMZ.SelfMap method), 21
get_branch() (TPZ.Ctree method), 13
get_branch() (TPZ.Rtree method), 12
get_limits() (in module utils_mlz), 30
get_N() (in module pdf_storage), 41
get_npeaks() (in module pdf_storage), 41
get_ns() (in module SOMZ), 22
get_ns_hex() (in module SOMZ), 22
get_sigma() (in module SOMZ), 23

get_vals() (SOMZ.SelfMap method), 21
get_vals() (TPZ.Ctree method), 13
get_vals() (TPZ.Rtree method), 12
get_XY() (data.catalog method), 27

H
h() (in module SOMZ), 23
has_X() (data.catalog method), 27
has_Y() (data.catalog method), 27

I
initial_guess() (in module pdf_storage), 41
is_power_2() (in module SOMZ), 23

L
leaves() (TPZ.Ctree method), 13
leaves() (TPZ.Rtree method), 12
leaves_dim() (TPZ.Ctree method), 13
leaves_dim() (TPZ.Rtree method), 12
load_random() (data.catalog method), 27

M
make_AT() (in module data), 28
make_random() (data.catalog method), 27
multi_gauss() (in module pdf_storage), 41

O
oob_data() (data.catalog method), 27

P
pdf_storage (module), 40
percentile() (in module utils_mlz), 30
plot_importance() (plotting.Qplot method), 31
plot_map() (plotting.Qplot method), 31
plot_map() (SOMZ.SelfMap method), 21
plot_pdf_use() (plotting.Qplot method), 31
plot_results() (plotting.Qplot method), 32
plot_sparse() (plotting.Qplot method), 32
plot_tree() (plotting.Qplot method), 32
plot_tree() (TPZ.Ctree method), 13
plot_tree() (TPZ.Rtree method), 12

49

MLZ Documentation, Release 1.0

plotting (module), 31
print_branch() (TPZ.Ctree method), 13
print_branch() (TPZ.Rtree method), 13
print_dtpars() (in module utils_mlz), 30

Q
Qplot (class in plotting), 31

R
read_catalog() (in module data), 28
read_dt_pars() (in module utils_mlz), 30
read_header() (in module pdf_storage), 42
reconstruct_pdf() (in module pdf_storage), 42
reconstruct_pdf_f() (in module pdf_storage), 42
reconstruct_pdf_int() (in module pdf_storage), 42
reconstruct_pdf_v() (in module pdf_storage), 42
restart() (utils_mlz.Stopwatch method), 29
Rtree (class in TPZ), 12

S
sample_dim() (data.catalog method), 27
save_map() (SOMZ.SelfMap method), 22
save_map_dict() (SOMZ.SelfMap method), 22
save_tree() (TPZ.Ctree method), 13
save_tree() (TPZ.Rtree method), 13
SelfMap (class in SOMZ), 20
som_best_cell() (SOMZ.SelfMap method), 22
SOMZ (module), 20
sparse_basis() (in module pdf_storage), 43
Stopwatch (class in utils_mlz), 28

T
TPZ (module), 12, 13

U
utils_mlz (module), 28

V
voigt() (in module pdf_storage), 43

Z
zconf_dist() (in module utils_mlz), 31

50 Index

	References
	Contact
	Now on GitHub
	Contents
	Requirements
	Installation
	Machine Learning routines
	Other routines
	Run MLZ
	Running a test
	Sparse Representation (new!)

	Indices and tables
	Python Module Index
	Index

