Previous topic

markup

Next topic

nvd3

This Page

math2

additions to math standard library

math2.lcm(a, b)[source]

least common multiple

math2.accsum(it)[source]

Yield accumulated sums of iterable: accsum(count(1)) -> 1,3,6,10,...

math2.cumsum(it)

Yield accumulated sums of iterable: accsum(count(1)) -> 1,3,6,10,...

math2.dot(a, b)[source]

dot product

math2.product(nums)[source]

Product of nums

math2.vecadd(a, b, fillvalue=0)[source]

addition of vectors of inequal lengths

math2.vecsub(a, b, fillvalue=0)[source]

substraction of vectors of inequal lengths

math2.vecmul(a, b)[source]

product of vectors of inequal lengths

math2.vecdiv(a, b)[source]

quotient of vectors of inequal lengths

math2.veccompare(a, b)[source]

compare values in 2 lists. returns triple number of paris where [a<b, a==b, a==c]

math2.mean(data)[source]

mean of data

math2.variance(data, avg=None)[source]

variance of data

math2.stats(l)[source]

returns min,max,sum,sum2,avg,var of a list

math2.fibonacci()[source]

Generate fibonnacci serie

math2.factorial(num)[source]

Return factorial value of num (num!)

math2.is_integer(x, epsilon=1e-06)[source]

Return True if the float x “seems” an integer

math2.int_or_float(x, epsilon=1e-06)[source]
math2.divisors(n)[source]

Return all divisors of n: divisors(12) -> 1,2,3,6,12

math2.proper_divisors(n)[source]

Return all divisors of n except n itself.

math2.is_prime(n)[source]

Return True if n is a prime number (1 is not considered prime).

math2.get_primes(start=2, memoized=False)[source]

Yield prime numbers from ‘start’

math2.digits_from_num_fast(num)[source]

Get digits from num in base 10 (fast implementation)

math2.digits_from_num(num, base=10)[source]

Get digits from num in base ‘base’

math2.str_base(num, base, numerals='0123456789abcdefghijklmnopqrstuvwxyz')[source]

string representation of an ordinal in given base

math2.num_from_digits(digits, base=10)[source]

Get digits from num in base ‘base’

math2.is_palindromic(num, base=10)[source]

Check if ‘num’ in base ‘base’ is a palindrome, that’s it, if it can be read equally from left to right and right to left.

math2.prime_factors(num, start=2)[source]

Return all prime factors (ordered) of num in a list

math2.factorize(num)[source]

Factorize a number returning occurrences of its prime factors

math2.greatest_common_divisor(a, b)[source]

Return greatest common divisor of a and b

math2.least_common_multiple(a, b)[source]

Return least common multiples of a and b

math2.triangle(x)[source]

The nth triangle number is defined as the sum of [1,n] values. http://en.wikipedia.org/wiki/Triangular_number

math2.is_triangle(x)[source]
math2.pentagonal(n)[source]
math2.is_pentagonal(n)[source]
math2.hexagonal(n)[source]
math2.get_cardinal_name(num)[source]

Get cardinal name for number (0 to 1 million)

math2.is_perfect(num)[source]

Return -1 if num is deficient, 0 if perfect, 1 if abundant

math2.number_of_digits(num, base=10)[source]

Return number of digits of num (expressed in base ‘base’)

math2.is_pandigital(digits, through=[1, 2, 3, 4, 5, 6, 7, 8, 9])[source]

Return True if digits form a pandigital number

math2.sets_dist(a, b)[source]

http://stackoverflow.com/questions/11316539/calculating-the-distance-between-two-unordered-sets

math2.sets_levenshtein(a, b)[source]

levenshtein distance on sets @see: http://en.wikipedia.org/wiki/Levenshtein_distance

math2.levenshtein(seq1, seq2)[source]

return http://en.wikipedia.org/wiki/Levenshtein_distance distance between 2 iterables http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python

math2.ncombinations(n, k)[source]

Combinations of k elements from a group of n

math2.combinations_with_replacement(iterable, r)[source]

combinations_with_replacement(‘ABC’, 2) –> AA AB AC BB BC CC