
Author:
Francesco Bruno, Letizia Fiorucci

Version: 1.1.0

Documentation release date:
May 16, 2024

i

ii

Contents

1 Introduction 1

2 User guide 2
2.1 Installation . 2
2.2 Make the deconvolution of the spectra . 2
2.3 Writing the input file . 5
2.4 Starting the fit . 8
2.5 Results . 9

3 How does PYIHM work 10
3.1 Details about peak simulation . 10
3.2 Why the fit is in two steps? . 11

4 List of modules and functions 13
4.1 MODULE input_reading . 13

4.1.1 input_reading.read_input . 13
4.1.2 input_reading.read_input_file . 14
4.1.3 input_reading.select_regions . 15

4.2 MODULE spectra_reading . 16
4.2.1 spectra_reading.Multiplet . 16
4.2.2 spectra_reading.Spectr . 17
4.2.3 spectra_reading.main . 19

4.3 MODULE gen_param . 20
4.3.1 gen_param.as_par . 20
4.3.2 gen_param.main . 21
4.3.3 gen_param.multiplet2par . 22
4.3.4 gen_param.singlet2par . 23

4.4 MODULE fit_mixture . 24
4.4.1 fit_mixture.calc_spectra . 24
4.4.2 fit_mixture.calc_spectra_obj . 25
4.4.3 fit_mixture.f2min . 26
4.4.4 fit_mixture.f2min_align . 27
4.4.5 fit_mixture.main . 28
4.4.6 fit_mixture.main . 29
4.4.7 fit_mixture.pre_alignment . 30
4.4.8 fit_mixture.save_data . 31
4.4.9 fit_mixture.write_output . 32

4.5 MODULE plots . 33
4.5.1 plots.convergence_path . 33
4.5.2 plots.plot_iguess . 34
4.5.3 plots.plot_output . 35

iii

4.6 MODULE GUIs . 36
4.6.1 GUIs.cal_gui . 36
4.6.2 GUIs.calc_spectra . 37
4.6.3 GUIs.select_regions . 38

iv

1

1. Introduction

pyIHM is a python software designed in order to offer a comprehensive interface to perform quantitative
analyses on NMR spectra of mixtures, using the Indirect Hard Modelling1 approach.

The Indirect Hard Modelling consists into performing a deconvolution of the spectrum of the
mixture using the spectra of the individual components as basis set. Conceptually, the algorithm is
made of four steps:

1. fit the spectra of the components of the mixture with a hard model (e.g. Voigt);

2. read and process the spectrum of the mixture;

3. make the initial guess using the set of peaks generated at point 1;

4. get the relative concentrations of the components in the mixture.

The routines for reading and processing of the spectra and for the generation of the models rely
on the KLASSEZ2 package.

1Ernesto Kriesten et al. “Fully automated indirect hard modeling of mixture spectra”. In: Chemometrics and
Intelligent Laboratory Systems 91.2 (2008), pp. 181–193; Anton Duchowny et al. “Quantification of PVC plasticizer
mixtures by compact proton NMR spectroscopy and indirect hard modeling”. In: Analytica Chimica Acta 1229 (2022),
p. 340384.

2KLASSEZ: a package for the management of NMR data. 2023. url: https://github.com/MetallerTM/klassez.

https://github.com/MetallerTM/klassez

2

2. User guide

2.1 Installation

pyIHM can be installed from the associated PyPI repository using pip from the command line by
typing:

pip install pyihm

Alternatively, it is possible to download the .whl file, located in the dist/ folder of the GitHub
repository, and install it with pip:

pip install <filename>.whl

The dependencies of the program are downloaded and installed automatically.

2.2 Make the deconvolution of the spectra

A script for the deconvolution of the spectra is provided in table 2.1. It uses the KLASSEZ package
to read, process and deconvolve the spectrum. The script must be edited in order to adapt the
specific user’s need. At the end of the run, the .fvf file will be saved in the folder of the spectrum.
Alternatively, one can set a custom filename, for saving the .fvf files in different locations.

If you do not have an experimental spectrum of one (or more) component, you can simulate it
with KLASSEZ. You have to produce an input file like the one in table 2.2, then use it in the given
script. This generates a .fvf in the current working directory.

3

Table 2.1: Script for creating a .fvf file, to be used as input for pyIHM.

#! /usr/bin/env python3

import sys
import klassez as kz

filename = sys.argv[1] # Spectrum
spect = sys.argv[2] # Format
custom_filename = None # Custom filename for the files

Read the spectrum
S = kz.Spectrum_1D(filename, spect=spect)
Do FT
S.process()
Set "if 1" to phase correct
if 0:

S.adjph()

Create/read the initial guess for the deconvolution
S.F.iguess(input_file=custom_filename)

Perform the fit...
S.F.dofit(# ...with the following options:

u_tol=0.2, # variation on chemical shift /ppm
f_tol=2, # variation of FWHM /Hz
vary_phase=False, # Phase correction on the peaks
vary_xg=True, # Fraction of gaussianity

filename=custom_filename # Makes <custom_filename>.fvf
)

Save the figures of the fit, with the residuals
S.F.plot(’result’, show_res=True, res_offset=0.1, filename=custom_filename)

4

Table 2.2: Example of input file for kz.Spectrum_1D, used to simulate the spectrum of a component. The file consists
of two sections. In the first one, one must declare the experimental parameters to set up a virtual experiment, writing
them in a <key> <value> format. Then, the parameters of the signals follow. They must be declared as a sequence of
comma-separated values (<key> <value 1>, <value 2>, <value 3>, ...). KLASSEZ is able to simulate multiplets
according to their splitting structure, with the given scalar coupling constants. This file should be used in the script
provided at the bottom, for the conversion to a .fvf file to be used in pyIHM.

Input file:

PARAMETERS OF THE VIRTUAL SPECTROMETER
B0 16 # Magnetic field /T
nuc 1H # Observed nucleus
o1p 4.7 # Carrier position /ppm
SWp 50 # Spectral window /ppm
TD 2**16 # Number of sampled complex points

PARAMETERS OF THE SIGNALS
Chemical shifts /ppm
shifts 4.69, 3.22, 2.79, 8.36, 12.69, 8.43, 4.96, 3.30, 3.15, 1.53
FWHM /Hz
fwhm 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Intensities (area) of the signals, i.e. the number of nuclei the signals integrate for
amplitudes 1, 1, 1, 1, 1, 1, 1, 1, 1, 3
Fraction of Gaussianity (0 = pure Lorentzian, 1 = pure Gaussian)
x_g 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Multiplet structure: s = singlet, d = doublet, t = triplet, q = quartet
mult dqd, dd, dd, s, s, d, ddd, dd, dd, d
Scalar coupling constants /Hz. They must match the correspondant multiplet (e.g. mult=ddt requres three J constants)
Jconst [11.5, 3.5, 6.3], [17.5, 11.5], [17.5, 3.5], 0, 0, 6.9, [6.9, 7.4, 5.4], [14.2, 5.4], [14.2, 7.4], 6.3

Script:

#! /usr/bin/env python3

import sys
import klassez as kz

filename = sys.argv[1] # Path to the input file

Read the spectrum
S = kz.Spectrum_1D(filename, isexp=False)
Do FT
S.process()
Check if the spectrum looks like it should
S.plot()
Create <filename>.fvf file
S.to_vf()

5

2.3 Writing the input file

The input file for PYIHM is a plain text file that consists in a series of keywords, that act as separators,
followed by their arguments in the next lines. The sections of the file, identified by these keywords,
are separated by ONE empty line.

A template for the input file is shown in table 2.3. The order does not matter. Not all of them
are mandatory!

A detailed explanation of the keyword meanings and the syntax of the related parameters follows.
The mandatory keywords are marked with a '*' sign, whereas the default value for the optional ones
is reported after a '&'.

• BASE_FILENAME*
Root of the name of all files that the program will save. It can also be a relative/absolute path.

• MIX_PATH*
Path to the input spectrum (raw). The folder/file to be read is the first argument, followed
by comma-separated additional parameters. It is very important to specify the spectrometer
format to allow proper reading, using the spect=’format’ keyword. The accepted formats
are: bruker for Bruker, varian for Varian/Agilent, magritek for SpinSolve benchtop, oxford
for Oxford Instruments and general .jdx files.

• PROC_OPTS
Processing options for the mixture spectrum.

– wf & wf: no
Window function options. Syntax: wf: <mode>, <option>=<value>. Examples:

∗ Exponential modulation: wf: lb, lb=<broadening factor /Hz>
∗ Squared sine bell: wf: qsin, ssb=2
∗ Lorentzian to Gaussian: wf: gb, lb=-<sharpening factor /Hz>, gb=<gaussian
modulation /Hz>

– zf & Do not write
Zero-filling option. Syntax: zf: <final shape>

– blp & Do not write
Backward linear prediction. Syntax: blp: pred=<number of points to predict &
1>, order=<number of lp coefficients & 8>, N=<number of points of the FID to
use & 2048>

– pknl & Do not write
Correct the effect of the group delay with a 1st order phase correction. No extra options
required.

– adjph & Do not write
Apply manual phase correction on the spectrum. No extra options required.

• MIX_SPECTRUM_TXT & None
Path to a plain text file that contains the intensity values of the real part of the spectrum. This
has to be set if the mixture spectrum was processed with an external software: in this way you
can use your own. Note that calibration of the chemical shift scale will have no effect. The use
of this keyword overwrites all PROC_OPTS.

• COMP_PATH*
List of the .fvf files that contain the parameters of the signals of the components, generated
by KLASSEZ. See section 2.2 for details. Write one path per row. After the filename, place

6

a comma and write the number of nuclei that the spectrum integrates, followed by an 'H'.
Example: component1.fvf, 10H

• FIT_LIMITS & Interactive selection with GUI
Limits of the fitting region, in ppm, separated by a comma. Multiple regions can be selected
by writing them in multiple lines. If this parameter is not set in the input file, the program
starts a GUI to select them interactively.

• FIT_BDS*
Tolerances for the parameters during the fit.

– utol: tolerance for the chemical shifts, in ppm. Given the starting chemical shift δ, they
will vary in the interval [δ − utol, δ + utol]. If one of the boundaries happens to fall out
the fitting window, the limit of the fitting window il used instead.

– utol_sg: tolerance for the chemical shifts of the signals within the same group, in ppm.
Given the starting chemical shift δ, they will vary in the interval [δ − utol_sg, δ +
utol_sg].

– stol: tolerance for the linewidths. Given the starting linewitdh Γ, in Hz, they will vary
in the interval [Γ − stol,Γ + stol]. If the lower boundary happens to be negative, 0 is
used instead.

– ktol: tolerance for the relative intensities of the signals in the same spectrum. Given
the starting intensity k, they will vary in the interval [k − ktol, k + ktol]. If the lower
boundary happens to be negative, 0 is used instead.

• FIT_KWS & method=’leastsq’, max_nfev=10000, tol=1e-5
Parameters for lmfit.Minimizer.minimize.

• PLT_OPTS & ext=’tiff’, dpi=300
Set specific resolution (dpi) and format (ext) for the figures that will be saved.

7

Table 2.3: Example of the input file, used to run the test located in the test/ folder of the GitHub repository.

BASE_FILENAME
mix

MIX_PATH
test_spectrum.fid, spect=’varian’

PROC_OPTS
wf: em, lb=1
zf: 2**16
adjph

COMP_PATH
comp/bzac.fvf, 5H
comp/dmso.fvf, 6H
comp/EC.fvf, 4H

FIT_BDS
utol=0.1
utol_sg=0.01
stol=5
ktol=0.01

FIT_KWS
method=’leastsq’, tol=1e-5, max_nfev=10000

PLT_OPTS
ext=png, dpi=600

FIT_LIMITS
8.032, 7.858
7.676, 7.437
4.548, 4.412
2.553, 2.426

8

2.4 Starting the fit

The software can be operated from the command line by typing:

python3 -m pyihm --input <input_file> <options>

where <input_file> is the path to the input file that contains the parameters for the run, and
<options> are flags for specific functions (see below).

Multiple input files can be given at once, writing their paths in sequence without punctuation
signs between them.

python3 -m pyihm --input <input_file_1> <input_file_2> <input_file_3> <options>

Here, the possible options for a PYIHM run follow:

• --debug: during the fitting routines, a figure that shows how the optimization process is going
is saved in the current working directory and updated every 20 iterations.

• --cal: before to start the fit, the initial guess can be refined with a dedicated GUI, that allows
to shift the spectra to correct for field drifts, and provide a better estimation of the starting
intensities.

• --opt_method: optimization method for the core fit of pyIHM

– tight (default): two-step optimization, first with Nelder-Mead simplex and then with
Levenberg-Marquardt least-squares

– fast: single-step optimization with Levenberg-Marquardt least-squares

– custom: reads the 'FIT_KWS' section of the input file, and performs the optimization
accordingly

• --help: displays this message on the terminal.

9

2.5 Results

The following table contains a summary of the files saved by pyIHM at the end of each run.

Directory Filename Notes

Current working directory <filename>.out Summary of the fit result, which includes the com-
position of the mixture and the parameters of all the
peaks.

<filename>-DATA

<filename>_iguess.csv Initial guess. The columns contain, respectively: the
ppm scale, the mixture spectrum, the total fitting
function, and the simulated components.

<filename>_algn.csv Spectra after the alignment fit. The columns contain,
respectively: the ppm scale, the mixture spectrum,
the total fitting function, and the simulated compo-
nents.

<filename>_result.csv Spectra after the final fit. The columns contain, re-
spectively: the ppm scale, the mixture spectrum, the
total fitting function, and the simulated components.

<filename>.cnvg Convergence pathway, i.e. the value of the target
function of the main fit as function of the iteration
step.

<filename>-FIGURES

<filename>_iguess.<ext> Initial guess. The spectra relative to different com-
ponents are drawn in different colors.

<filename>-algn_total.<ext> Spectra after the alignment fit, only total trace, with
residuals.

<filename>-algn_wcomp.<ext> Spectra after the alignment fit, highlighted with dif-
ferent colors, without residuals.

<filename>-algn_rhist.<ext> Histogram of the residuals of the alignment fit, com-
pared to a Gaussian curve computed with the mean
and standard deviation of the residuals themselves.

<filename>_total.<ext> Spectra after the final fit, only total trace, with resid-
uals.

<filename>_wcomp.<ext> Spectra after the final fit, highlighted with different
colors, without residuals.

<filename>_rhist.<ext> Histogram of the residuals of the final fit, compared
to a Gaussian curve computed with the mean and
standard deviation of the residuals themselves.

<filename>_cnvg.<ext> Convergence path, i.e. log10 of the value of the target
function as function of the iteration step.

10

3. How does PYIHM work

3.1 Details about peak simulation

pyIHM represent a spectrum as a collection of kz.Peak objects. This means that they are simulated
in the time domain with the Voigt model, a mixed Lorentzian-Gaussian lineshape:

sVoigt(t) = I exp
[
iωt

]
exp

[
−(1− β)Γt/2

]
exp

[
−βσ2t2/2

]
σ =

Γ

2
√
2 ln 2

Each peak is described by four parameters:

• the position of the peak, ω, which translates in the chemical shift;

• the linewidth, or better, the full-width at half-maximum, Γ;

• the intensity, I;

• the fraction of gaussianity, β, which defines the lineshape.

The fifth parameter, the phase of the peak, is not included in this implementation, as the mixture
spectrum is supposed to be phased before to start the fit. Figure 3.1 shows the impact of the
aforementioned parameters on the final appearence of the peak, after the Fourier transform.

Figure 3.1: Simulated signal with a Voigt model after Fourier transform. The feature of the signal associated with
the Voigt parameters are highlighted with different colors.

11

When we simulate an entire spectrum as sum of peaks, in order to make the model as general as
possible, we factorize it as:

smixture(t) = Itot
peaks∑
k=1

Kk s
Voigt(t |ωk,Γk, βk)

where Kk is the relative intensity of the k-th peak, such that
∑# peaks

k=1 Kk = 1.

3.2 Why the fit is in two steps?

The biggest problem one encounters in a simulation of this kind is the alignment of the chemical
shifts.

Let us suppose that we know the structure of the multiplet and the relative intensities of the
splitted features. If we try to find the correct 'central' chemical shift that describes the multiplet
with a grid-search algorithm, we can draw the error surface associated to this parameter. Figure 3.2
depicts the problem very clearly: a little misalignment between the experimental and calculated
signal translates in a local minimum of the error surface, resulting in a sudden arrest of the searching
algorithm. Depending on the fine structure of the signal, the actual shape of the error surface may
change, but its roughness remains an ubiquitous characteristic.

In order to find the correct alignment, it is therefore needed to employ a target function that gives
rise to a smoother error surface. Figure 3.3 shows the error surface φalgn(δ) computed as the difference
between the integral (i.e. the cumulative sum) of the experimental and calculated spectrum.

(a) (b)

Figure 3.2: Simulated multiplet at 700MHz 1H Larmor frequency, centered at 5.00 ppm, with doublet of triplets
fine structure (Jd = 15Hz, Jt = 10Hz). In the bottom panels, the experimental multiplet is drawn in blue, and the
calculated one in red. The target function, calculated as the sum of the squared difference between the red and the
blue trace, is sketched in black in the top panels, with a red line that marks the current value of the investigated
parameter.

Of note, the alignment fit with this latter target function is insensitive to linewidth overestimates.
This means that a model with broader signals than the experimental spectrum will be aligned cor-
rectly at the end of the fit. The same cannot be said for sure for a model with narrower signals.

12

(a) (b)

Figure 3.3: Simulated multiplet at 700MHz 1H Larmor frequency, centered at 5.00 ppm, with doublet of triplets
fine structure (Jd = 15Hz, Jt = 10Hz). In the bottom panels, the experimental multiplet is drawn in blue, and the
calculated one in red. The target function, calculated as the sum of the squared difference between the integrals of
the red and the blue trace, is sketched in green in the top panels, with a red line that marks the current value of the
investigated parameter.

Technically speaking, the alignment fit is done by blocking all the parameters except for the chem-
ical shifts. Taken the experimental spectrum y, the model spectrum computed with only chemical
shifts, yc = M(ω⃗), and their cumulative sum Y and Yc respectively, the target function is computed
as:

φ(ω⃗) =
∑
points

[
A (Y − Yc) + q

]2
where A and q are the factors that satisfy the least-squares conditions:

A =
⟨Yc Y ⟩ − ⟨Yc⟩ ⟨Y ⟩

⟨Y 2
c ⟩ − ⟨Yc⟩2

q =
⟨Yc⟩2 ⟨Y ⟩ − ⟨Yc⟩ ⟨Yc Y ⟩

⟨Y 2
c ⟩ − ⟨Yc⟩2

Once the chemical shifts are aligned, the optimization of the classic target function (i.e. φ =∑
(y − yc)

2) is straightforward. The only feature that needs a little bit of explanation is how the
chemical shifts of multiplets are treated. We decided not to hard-model a fine structure with the
proper splitting given by multiplication of the FID times cos(2πJ), hence optimizing the J constants
during the fit, because of the possible imperfections that might be present in the experimental dataset,
especially at low fields. Therefore, peaks in the same spectrum that have the same 'group' attribute
are recognized as part of the same multiplet.

Let us suppose that we have a multiplet composed of M features. Then, in the dictionary of
parameters, the key 'U ' identifies the central chemical shift of the multiplet, whereas the keys oj for
j = 1, . . . ,M are the offset of the j-th feature of the multiplet with respect to U . The parameters
uj, i.e. the actual chemical shifts of the signals, are not optimized, but computed on the fly during
the fitting as uj = U + oj.

In this framework, the U parameters are treated as singlets, and therefore obey the utol bound-
aries. By contrast, the oj parameters are more or less fixed with respect to their U , hence they move
according to the utol_sg ≤ utol boundaries.

13

4. List of modules and functions

4.1 MODULE input_reading

4.1.1 input_reading.read_input(filename)

Reads the input file to get all the information to perform the fit. The values read from the file are
double-checked, and the missing entries are replaced with default values, so not to leave space to
stupid mistakes.

Parameters:

• filename: str
Path to the input file

Returns:

• base_filename: str
Root of the name of all the files that the program will save

• mix_path: str
Path to the mixture spectrum

• mix_kws: dict of keyworded arguments
Additional instructions to be passed to kz.Spectrum_1D.__init__

• mix_spectrum_txt: str or None
Path to a .txt file that contains a replacement spectrum for the mixture

• comp_path: list
Path to the .fvf files to be used for building the spectra of the components

• fit_lims: tuple
Limits of the fitting region, in ppm

• fit_bds: dict
Boundaries for the fitting parameters. The keywords are:

– utol = allowed displacement for singlets and whole multiplets, in ppm (absolute)

– utol_sg = allowed displacement for the peaks that are part of the same multiplet relatively
to the center, in ppm (absolute)

– stol = allowed variation for the linewidth, in Hz (relative)

– ktol = allowed variation for the relative intensities within the same spectrum(relative)

14

4.1.2 input_reading.read_input_file(filename)

Runs over the input file, looks for specific keywords, and interpret them accordingly.

Parameters:

• filename: str
Path to the input file

Returns:

• dic: dict
Read values, organized

15

4.1.3 input_reading.select_regions(ppm_scale, spectrum, full_calc)

Interactively select the slices that will be used in the fitting routine.

Parameters:

• ppm_scale: 1darray
ppm scale of the spectrum

• spectrum: 1darray
Spectrum of the mixture

Returns:

• regions: list of tuple
Limits, in ppm

16

4.2 MODULE spectra_reading

4.2.1 spectra_reading.Multiplet class

Class that represent a multiplet as a collection of peaks.

Attributes:

• acqus: dict
Dictionary of acquisition parameters

• peaks: dict
Dictionary of kz.fit.Peak objects

• U: float
Mean chemical shift of the multiplet

• u_off: dict
Chemical shift of the components of the multiplet, expressed as offset from self.U

Methods:

__init__(self, acqus, *peaks)

Initialize the class.

Parameters:

• acqus: dict
Dictionary of acquisition parameters

• peaks: kz.fit.Peak objects
Peaks that are part of the multiplet. They must have an attribute ’idx’ which serves as label

__call__(self)

Compute the trace correspondant to the multiplet.

Returns:

• trace: 1darray
Sum of the components

par(self)

Computes a summary dictioanary of all the parameters of the multiplet.

Returns:

• dic: dict of dict
The keys of the inner dictionary are the parameters of each single peak, the outer keys are the
labels of the single components

17

4.2.2 spectra_reading.Spectr class

Class that represents a spectrum as a collection of peaks and multiplets.

Attributes:

• acqus: dict
Acquisition parameters

• peaks: dict
Dictionary of peaks object, labelled according to the 'idx' attribute of each single peak

• unique_groups: list
Identifier labels for the multiplets, without duplicates

• p_collections: dict
Dictionary of kz.fit.Peak and Multiplet objects, labelled according to the group they belong
to. In particular, self.p_collections[0] is a list of kz.fit.Peak objects, whereas all the remaining
entries consist of a single Multiplet object.

• total: 1darray
Placeholder for the trace of the spectrum, as sum of all the peaks.

Methods:

__init__(self, acqus, *peaks)

Initialize the class.

Parameters:

• acqus: dict
Dictionary of acquisition parameters

• peaks: kz.fit.Peak objects
Peaks that are part of the multiplet. They must have an attribute ’idx’ which serves as label

__call__(self, I=1)

Compute the total spectrum, multiplied by I.

Parameters:

• I: float
Intensity value that multiplies the spectrum

Returns:

• total: 1darray
Computed spectrum

calc_total(self)

Computes the sum of all the peaks to make the spectrum

18

Returns:

• total: 1darray
Computed spectrum

19

4.2.3 spectra_reading.main(M, spectra_dir, Hs, lims=None)

Reads the .fvf files, containing the fitted parameters of the peaks of a series of spectra. Then,
computes a list of Spectr objects with those parameters, and returns it. The relative intensities are
referred to the total intensity of the whole spectrum, not to the ones of the fitted regions. Employs
kz.fit.read_vf to read the .fvf files and generate the parameters.

Parameters:

• M: kz.Spectrum_1D object
Mixture spectrum. Used to get the spectral parameters for the kz.fit.Peak objects

• spectra_dir: list of str
Sequence of the locations of the .fvf files to be read

• lims: tuple
Borders of the fitting window, in ppm (left, right)

Returns:

• collections: list of Spectr objects
Spectra of pure components, treated as collections of peaks.

20

4.3 MODULE gen_param

4.3.1 gen_param.as_par(name, value, lims=0, rel=True, minthresh=None)

Creates a lmfit.Parameter object using the given parameters.

Parameters:

• name: str
Label of the parameter

• value: float or str
If it is float, it is the value of the parameter. If it is a str, it is put in the ’expr’ attribute of
the lmfit.Parameter object.

• lims: float or tuple
Determines the boundaries. If it is a tuple, the boundaries are min(lims) and max(lims). If it
is a single float, the boundaries are (value-lims, value+lims). Not read if value is str

• rel: bool
Relative boundaries. If it is True and lims is a float, the boundaries are set to value-lims*value,
value+lims*value.

• minthresh: float
If given, overwrite the minimum threshold with this value, if the calculated one is lower than
it.

Returns:

• p: lmfit.Parameter object
Object created according to the given parameter

21

4.3.2 gen_param.main(M, components, bds, lims, Hs)

Create the lmfit.Parameters objects needed for the fitting procedure.

Parameters:

• M: kz.Spectrum_1D object
Mixture spectrum

• components: list
List of Spectra objects

• bds: dict
Boundaries for the fitting parameters.

• lims: list of tuple
Borders of the fitting windows, in ppm (left, right)

• Hs: list
Number of protons each spectrum integrates for

Returns:

• param: lmfit.Parameters object
Actual parameters for the fit

22

4.3.3 gen_param.multiplet2par(item, spect, group, bds)

Converts a Multiplet object into a list of lmfit.Parameter objects. The keys are of the form ’S#_p?’
where # is 'spect' and '?' is the index of the peak.

• p = U is the mean chemical shift

• p = o is the offset from U

• p = u is the absolute chemical shift, computed as u = U + o, set as expression.

Parameters:

• item: fit.Peak object
Peak to convert into Parameter. Make sure the .idx attribute is set!

• spect: int
Label of the spectrum to which the peak belongs to

• group: int
Label of the multiplet group

• bds: dict
Contains the parameters’ boundaries

Returns:

• p: list
List of lmfit.Parameter objects

23

4.3.4 gen_param.singlet2par(item, spect, bds)

Converts a fit.Peak object into a list of lmfit.Parameter objects: the chemical shift (u), the linewidth
(s), and intensity (k). The keys are of the form ’S#_p?’ where '#' is spect and '?' is the index of
the peak.

Parameters:

• item: kz.fit.Peak object
Peak to convert into Parameter. Make sure the .idx attribute is set!

• spect: int
Label of the spectrum to which the peak belongs to

• bds: dict
Contains the parameters’ boundaries

Returns:

• p: list
List of lmfit.Parameter objects

24

4.4 MODULE fit_mixture

4.4.1 fit_mixture.calc_spectra(param, N_spectra, acqus, N)

Computes the spectra to be used as components for the fitting procedure, in form of lists of 1darrays.
Each array is the sum of all the peaks. This function is called at each iteration of the fit.

Parameters:

• param: lmfit.Parameters object
Actual parameters

• N_spectra: int
Number of spectra to be used as components

• acqus: dict
Dictionary of acquisition parameters

• N: int
Number of points for zero-filling, i.e. final dimension of the arrays

Returns:

• spectra: list of 1darray
Computed components of the mixture, weighted for their relative intensity

25

4.4.2 fit_mixture.calc_spectra_obj(param, N_spectra, acqus, N)

Computes the spectra to be used as components for the fitting procedure, in form of lists of kz.fit.Peak
objects.

Parameters:

• param: lmfit.Parameters object
Actual parameters

• N_spectra: int
Number of spectra to be used as components

• acqus: dict
Dictionary of acquisition parameters

• N: int
Number of points for zero-filling, i.e. final dimension of the arrays

Returns:

• spectra: list of kz.fit.Peak objects
Computed components of the mixture, weighted for their relative intensity

26

4.4.3 fit_mixture.f2min(param, N_spectra, acqus, N, exp, I, plims, cnvg_path,
method=’leastsq’, debug=False)

Function to compute the quantity to be minimized by the fit.

Parameters:

• param: lmfit.Parameters object
actual parameters

• N_spectra: int
Number of spectra to be used as components

• acqus: dict
Dictionary of acquisition parameters

• N: int
Number of points for zero-filling, i.e. final dimension of the arrays

• exp: 1darray
Experimental spectrum

• I: float
Intensity correction for the calculated spectrum. Used to maintain the relative intensity small.

• plims: slice
Delimiters for the fitting region. The residuals are computed only in this regio. They must be
given as point indices

• cnvg_path: str
Path for the file where to save the convergence path

• debug: bool
If True, saves a figurte of the ongoing fit in the current working directory every 20 iterations

Returns:

• target: float or 1darray
For Levenberg-Marquardt (method=’leastsq’), array of the residuals, else

∑
[(exp/I − calc)2]

27

4.4.4 fit_mixture.f2min_align(param, N_spectra, acqus, N, exp, plims,
debug=False)

Function to compute the quantity to be minimized by the fit.

Parameters:

• param: lmfit.Parameters object
actual parameters

• N_spectra: int
Number of spectra to be used as components

• acqus: dict
Dictionary of acquisition parameters

• N: int
Number of points for zero-filling, i.e. final dimension of the arrays

• exp: 1darray
Experimental spectrum

• plims: slice
Delimiters for the fitting region. The residuals are computed only in this regio. They must be
given as point indices

• debug: bool
True for saving a figure of the ongoing fit every 20 iterations

Returns:

• target: float∑
[(exp− I ∗ calc)2]

28

4.4.5 fit_mixture.main(M, components, bds, lims, Hs)

Create the lmfit.Parameters objects needed for the fitting procedure.

Parameters:

• M: kz.Spectrum_1D object
Mixture spectrum

• components: list
List of Spectra objects

• bds: dict
Boundaries for the fitting parameters.

• lims: list of tuple
Borders of the fitting windows, in ppm (left, right)

• Hs: list
Number of protons each spectrum integrates for

Returns:

• param: lmfit.Parameters object
Actual parameters for the fit

29

4.4.6 fit_mixture.main(M, N_spectra, Hs, param, lims=None, fit_kws={},
filename=’fit’, CAL_FLAG=False, DEBUG_FLAG=False, ext=’tiff’,
dpi=600)

Core of the fitting procedure. It computes the initial guess, save the figure, then starts the fit. After
the fit, writes the output file and saves the figures of the result. Summary of saved files:

• '<filename>.out': fit report

• '<filename>_iguess.<ext>': figure of the initial guess

• '<filename>_total.<ext>': figure that contains the experimental spectrum, the total fitting
function, and the residuals

• '<filename>_wcomp.<ext>': figure that contains the experimental spectrum, the total fitting
function, and the components in different colors. The residuals are not shown

• '<filename>_rhist.<ext>': histogram of the residual, with a gaussian function drawn on top
according to its statistical parameters.

Parameters:

• M: kz.Spectrum_1D object
Mixture spectrum

• N_spectra: int
Number of spectra to be used as fitting components

• Hs: list
Number of protons each spectrum integrates for

• param: lmfit.Parameters object
Actual parameters

• lims: list of tuple or None
Delimiters of the fitting region, in ppm. If None, the whole spectrum is used.

• fit_kws: dict of keyworded arguments
Additional parameters for the lmfit.Minimizer.minimize function

• filename: str
Root of the names for the names of the files that will be saved.

• CAL_FLAG: bool
True for adjusting the initial guess before starting the fit

• DEBUG_FLAG: bool
True for saving a figure of the ongoing fit every 20 iterations

• ext: str
Format of the figures

• dpi: int
Resolution of the figures, in dots per inches

30

4.4.7 fit_mixture.pre_alignment(exp, acqus, N_spectra, N, plims, param,
DEBUG_FLAG=False)

Makes a fit with all the parameters blocked, except for the chemical shifts, on the target function of
the integral. Used to improve the initial guess in case of misplacements of the signals.

Parameters:

• exp: 1darray
Experimental spectrum

• acqus: dict
Dictionary of acquisition parameters

• N_spectra: int
Number of spectra to be used as components

• N: int
Number of points for zero-filling, i.e. final dimension of the arrays

• plims: list of slice
Delimiters for the fitting region. The residuals are computed only in these regions. They must
be given as point indices

• param: lmfit.Parameters object
actual parameters

• DEBUG_FLAG: bool
True for saving a figure of the ongoing fit every 20 iterations

Returns:

• popt: lmfit.Parameters object
Parameters with optimal chemical shifts

31

4.4.8 fit_mixture.save_data(filename, ppm_scale, exp, *opt_spectra)

Saves the ppm scale, the experimental spectrum, the total trace and the components in .csv files, to
be opened with excel, origin, or whatever.

Parameters:

• filename: str
Location of the filename to be saved, without the .csv extension.

• ppm_scale: 1darray
PPM scale of the experimental spectrum

• exp: 1darray
Experimental spectrum, real part

• opt_spectra: sequence of 1darray
Spectra of the components

32

4.4.9 fit_mixture.write_output(M, I, K, spectra, n_comp, lims, filename=’fit.report’)

Write a report of the performed fit in a file. The parameters of the single peaks are saved using the
kz.fit.write_vf function.

Parameters:

• M: kz.Spectrum_1D object
Mixture spectrum

• I: float
Absolute intensity for the calculated spectrum

• K: sequence
Relative intensities of the spectra in the mixture

• spectra: list of kz.fit.Peak objects
Computed components of the mixture, weighted for their relative intensity

• n_comp: list
Indices of the components of the mixture

• lims: tuple
Upper and lower boundaries of the fit region

• filename: str
Name of the file where to write the files.

33

4.5 MODULE plots

4.5.1 plots.convergence_path(conv_path, filename=’conv’, ext=’tiff’, dpi=600)

Makes the figures of the final fitted spectrum and saves them. Three figures are made: look at the
fitting.main function documentation for details.

Parameters:

• conv_path: str
Path to the file of the convergence path

• filename: str
Filename of the final figure

• ext: str
Format of the figure

• dpi: int
Resolution of the figure, in dots per inches

34

4.5.2 plots.plot_iguess(ppm_scale, exp, total, components, lims=None,
X_label=’δ /ppm’, filename=’fit’, ext=’tiff’, dpi=600)

Makes the figure of the initial guess and saves it.

Parameters:

• ppm_scale: 1darray
PPM scale of the spectrum

• exp: 1darray
Mixture spectrum, real part

• total: 1darray
Fitting function

• components: list of 1darray
Spectra used as components, real part

• lims: tuple or None
Delimiters of the fitting region, in ppm. If None, the whole spectrum is used.

• X_label: str
Label for the X_axis

• filename: str
The name of the figure will be <filename>_iguess.<ext>

• ext: str
Format of the figures

• dpi: int
Resolution of the figures, in dots per inches

35

4.5.3 plots.plot_output(ppm_scale, exp, total, components, lims=None,
plims=None, X_label=’δ /ppm’, filename=’fit’, ext=’tiff’,
dpi=600)

Makes the figures of the final fitted spectrum and saves them. Three figures are made: look at the
fitting.main function documentation for details.

Parameters:

• ppm_scale: 1darray
PPM scale of the spectrum

• exp: 1darray
Mixture spectrum, real part

• total: 1darray
Fitting function

• components: list of 1darray
Spectra used as components, real part

• lims: tuple or None
Delimiters of the fitting region, in ppm. If None, the whole spectrum is used.

• X_label: str
Label for the X_axis

• filename: str
Root filename for the figures

• ext: str
Format of the figures

• dpi: int
Resolution of the figures, in dots per inches

36

4.6 MODULE GUIs

Module that contains graphical user interfaces.

4.6.1 GUIs.cal_gui(ppm_scale, exp, param, N_spectra, acqus, N, I)

Corrects the chemical shifts and the intensities of the spectra to be employed during the fit.

Parameters:

• ppm_scale: 1darray
Chemical shift scale of the spectrum

• exp: 1darray
Experimental spectrum

• param: lmfit.Parameters object
Parameters of the fit, as generated by gen_param

• N_spectra: int
Number of components of the mixture

• acqus: dict
Dictionary of acquisition parameters

• N: int
Number of points that the final calculated spectum should have

• I: float
Intensity correction for the experimental spectrum

Returns:

• param: lmfit.Parameters object
Updated parameters

37

4.6.2 GUIs.calc_spectra(param, N_spectra, acqus, N)

Computes the spectra to be used as components for the fitting procedure, in form of lists of 1darrays.
Each array is the sum of all the peaks. This function is called at each iteration of the fit.

Parameters:

• param: lmfit.Parameters object
Actual parameters

• N_spectra: int
Number of spectra to be used as components

• acqus: dict
Dictionary of acquisition parameters

• N: int
Number of points for zero-filling, i.e. final dimension of the arrays

Returns:

• spectra: list of 1darray
Computed components of the mixture, weighted for their relative intensity

38

4.6.3 GUIs.select_regions(ppm_scale, spectrum, full_calc)

Interactively select the slices that will be used in the fitting routine.

Parameters:

• ppm_scale: 1darray
ppm scale of the spectrum

• spectrum: 1darray
Spectrum of the mixture

Returns:

• regions: list of tuple
Limits, in ppm

	Introduction
	User guide
	Installation
	Make the deconvolution of the spectra
	Writing the input file
	Starting the fit
	Results

	How does PYIHM work
	Details about peak simulation
	Why the fit is in two steps?

	List of modules and functions
	MODULE input_reading
	input_reading.read_input
	input_reading.read_input_file
	input_reading.select_regions

	MODULE spectra_reading
	spectra_reading.Multiplet
	spectra_reading.Spectr
	spectra_reading.main

	MODULE gen_param
	gen_param.as_par
	gen_param.main
	gen_param.multiplet2par
	gen_param.singlet2par

	MODULE fit_mixture
	fit_mixture.calc_spectra
	fit_mixture.calc_spectra_obj
	fit_mixture.f2min
	fit_mixture.f2min_align
	fit_mixture.main
	fit_mixture.main
	fit_mixture.pre_alignment
	fit_mixture.save_data
	fit_mixture.write_output

	MODULE plots
	plots.convergence_path
	plots.plot_iguess
	plots.plot_output

	MODULE GUIs
	GUIs.cal_gui
	GUIs.calc_spectra
	GUIs.select_regions

