Maximum Coupled Entropy Principle

Maximum Coupled Entropy

Use of Lagrange Method to determine one-dimensional Maximum Entropy distribution

nesi:= $Assumptions = n € PositiveIntegers && {x, a, o, ZP, A, W} € Reals &&
O<Kk<o&&0<0<0&8&O<ZP < 0&& 0O <A< 0&&0O < W< o}
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Table|p;i 1x,{i,1,n}
(#P[x_,a_,n_]:= [o = L.
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Table[p1~1+:+_i, {i, 1, n}]
P[x_,a_,n_] := 5
ZP

Investigation clarified that a is determined by the highest power of the constraint. Given a requirement

that the coupled entropy converge to the Shannon entropy for k - 0 and all @ a multiplier by iis

needed for both the entropy and the constraint. This investigation is limited to just two constraints, the

sum of probabilities is one, and one of the coupled moments.
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ni= Solve[D[¢[x, 1, o, 31, p1] = 0, pi1]

. Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution
information.
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If x;=i—- 1, then ZP is (however, unable to solve since ZP is part of solution)
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But given the structure of the solution, can determine the normalization
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Solution for a =2 with Coupled Variance Constraint
In order to ensure that the correct form of the probability is achieved, either
1) the %needs to be removed from the coupled entropy, or

2)a %needs to multiply the coupled variance constraint term
Di¢[x, 2, o, 3]1 // FullSimplify
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Solve[D[¢[x, 2, o, 3], pP1] == O, pi1]

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution
information.
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So indeed the factor of 2 division causes a problem in correctly specifying the coupled variance con-
straint; however, | next need to examine whether the entropy function should change or the constraint

should change.
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Solution for a with a constraint

n-1- ¢Alpha[k_, a_, o_, n_] &=
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n-1= D[¢Alpha[x, a, o, 3], p1] // FullSimplify
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Scaling Properties of Coupled Entropy

Hanel, Thurner have written a series of papers on the broadest generalization of entropies relaxing the
assumption of additivity. They formulated a ¢,d-entropy in which c and d relate to different scaling
properties of the generalized entropy. The parameter c is equal to Tsallis’ q parameter, and thus
c=qg=1+ ﬁ‘ The parameter d relates to raising the generalized logarithm to a power. Following the
scaling derivation in R. Hanel and S. Thurner, “A classification of complex statistical systems in terms of
their stability and a thermodynamical derivation of their entropy and distribution functions,” 2010., we
have the following properties for the Coupled Entropy.
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I. ASYMPTOTIC PROPERTIES OF
NON-ADDITIVE ENTROPIES

We now discuss 2 scaling properties of generalized en-
tropies of the form S =~ g(p;) assuming the validity of
the first 3 Khinchin axioms.

The first asymptotic property is found from the scaling
relation
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in the limit W — oo, i.e. by defining the scaling function
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f(z) = lim @) (O<z<1) . (4)

The scaling function f for systems satisfying K1,K2, K3,
but not K4, can only be a power f(z) = 2¢, with 0 <
¢ <1, given f being continuous. This is shown in the SI
(Theorem 1). Inserting Eq. (&) in Eq. (3) gives the first
asymptotic law
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From this it is clear that
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As 0 £ K £ oo, the scaling ranges from 0 < 12—’( < 1 which is consistent with the specifications given by
+K

Hanel, Thurner. Also note, that -1 < kK < 0 the scaling is faster than exponential and could be governed
by the k=0 case. If we solve for ¢, we havec=1- 12+—’f(, whichis not q. Ratherc=1-(-1+g)=2+gand
g =c - 2. This seems inconsistent in that for 0 < ¢ < 1, then -2 < g < -1. There must be another transfor-
mation, for instance the Q =2 - g, which switches the domains of g. Substituting g - 2 - Q, gives

¢ =4-Q,which is not helpful, but if c » 2 - Q, then have g = -Q. If we take the relationship to be
c=2-0Q,thenfor0<c<1,2>Q=1.This leaves out the domain 2 < Q < 3; however, it is closer to the
intent of the heavy-tail scaling.

Examination of the Coupled Entropy with a Root

Investigation of Alternative Forms of Coupled Entropy and
its Constraints
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