von Karman Institute for Fluid Dynamics
Chaussée de Waterloo, 72
B - 1640 Rhode Saint Genése - Belgium

Project Report

Implementation of iterative Multigrid and Window Deformation
Schemes in the OpenPIV Python Package

T. Kaufer

Supervisors:
M. A. Mendez, von Karman Institute
A.Liberzon, Tel Aviv University

December 2019

Chapter 3

Advanced PIV interrogation using
the OpenPIV Python package

The implemented advanced interrogation techniques became part of the OpenPIV Python
package [8]. One can install it using pip or download it from GitHub here. The Iter-
ative Multigrid and Window Deformation Schemes algorithm uses a Python version of
the“smoothn” algorithm from D. Garcia [5]. The easiest way to set up and run a PIV
analysis using advanced interrogation techniques is to open the example_windef_run.py

file and enter the desired parameter.

3.1 The example_windef run.py

The example_windef_run.py is a setup file for the PIV interrogation. After modifying the
parameters according to one’s needs one just runs the script and the results are returned

in the specified folder. The available options are:

Data related settings

e settings.filepath_images: (type: string)
Here the file path to the folder that contains the images must be added. Note: If
one uses the absolute file path on a windows system “:\” can result in an error.
This can be solved by adding a second backslash like this “:\\”.

e settings.save_path: (type: string)
Here the file path must be inserted at which a folder with the results should be

created. Note: Be aware about the absolute file path issue mentioned above.

21

22

Advanced PIV interrogation in using the OpenPIV Python package

e settings.save_folder_suffix: (type: string)

Here a suflix can be added to customize the name of the results folder. The save
folder is named like:

” N

“OpenPIV _results.” +window size of the last pass+” " +settings.save_folder_suffix

settings.frame_pattern_a and settings.frame_pattern_b: (type: string)

These parameters should contain the pattern of the image’s names. An Exam-
ple: Assuming 200 images structured as 100 double frames and the images names
to be like A000a-A099a and A000b-A099b. In this case one would like to cor-
relate the image A000a with the image A000b and so on until all the images
are evaluated. This is automatized by using a pattern. For this example, the
settings.frame_pattern_a would look like A*a and settings.frame_pattern_b

would look like A*b. The asterisk is replacing the frame number.

Region Of Interest

e settings.ROI: (type: string or tuple with four int entries)

This option allows to select a certain Region Of Interest of the images. The ROI is
a square defined by the pixel coordinates like this (xmin, xmax, ymin, ymax)
with the image origin in the upper left corner of and the x-axis going to the right
and the y-axis going downwards. An example ROI could look like this (50, 300,
50, 300). Be aware that the ROI must not exceed the size of the image. In case
one would like to evaluate the whole image, one can replace the tuple with the

string ‘full’.

Image preprocessing

e settings.dynamic_masking method: (type: string) This option enables the im-

age preprocessing. One can choose between ‘None’, ‘edges’ and ‘intensity’ If ‘None’
is selected no preprocessing is done. If ‘edges’ is selected a filter is applied which
blurs out edges in the image. If ’intensity’ is selected, larger image areas which in-
tensity is above a threshold defined by settings.dynamic_masking_filter_size:

are masked out. A description of this tool is provided here.

settings.dynamic_masking_filter_size: (type: int) This parameter defines the

size of the filter used for the image prepossessing.

settings.dynamic_masking_threshold: (type: float) Here one can insert the

threshold for the image prepossessing.

Advanced PIV interrogation in using the OpenPIV Python package 23

Processing parameters

e settings.correlation_method: (type: string) One can choose between to differ-
ent cross-correlation options. The options are ’circular’ and ’linear’. If ’circular’ is
select circular cross-correlation is done which is faster but slightly less accurate. If
linear’ is the displacement evaluation is done using linear cross-correlation which

is slower.

e setting.iterations: (type: int)
This parameter determines the number of PIV-iterations. The minimum is one

iteration. Advanced interrogation techniques require at least two iterations.

e settings.windowsizes: (type: tuple of int)

(settings.windowsizes) allows to define the window size for each PIV-iteration. The
tuple needs at least as many entries as iterations performed. The first iteration
of the PIV evaluation is done using the window size with the index 0 and so
on. Only the first pass is affected by the one-quarter rule and the window size
of the following passes can be reduced to increase the dynamic range and the
spatial resolution. The window size should be a value with base two. Example:
(settings.windowsizes)=(64,32,16). Observe that if the tuple introduced is longer
than the number of iterations, the last values will be ignored.

e settings.overlap: (type: tuple of int)
settings.overlap allows one to define the overlap of the interrogation windows
for each PIV-iteration. The tuple needs at least as many entries as iterations
performed. In general, an overlap of half the interrogation window size is a solid
choice for most cases. They overlap should be a value with base two. Example:
(settings.overlap)=(32,16,8).

e settings.subpixel_method: (type: string)
This option allows one to select a fitting function for the subpixel estimation of the
correlation peak. One can choose between ‘gaussian’, ‘centroid’ and ‘parabolic’.

By default, ’gaussian’ is used.

e settings.interpolation_order: (type: int)
settings.interpolation_order defines the order of interpolation used for the im-
age deformation. It should be between three and five. Only used if more than one

iteration is executed.

24 Advanced PIV interrogation in using the OpenPIV Python package

e settings.scaling factor: (type: int)

pizel

meter
frame It

to frame*

The scaling factor is used to transform the displacement from
describes the relationship between the measurement plane and the camera sensor.
If no information is available, it is better to set this value to 1 and then leave the

measurement scaling to the post-processing stage.

e settings.dt: (type: int)
This parameter defines the time between the frames. It transforms the displace-
ment from }% to g%. In combination with the scaling factor, this results in

a velocity. If no information is available, as for the previous parameter, it is worth
setting it to 1.

Signal to noise ratio options (only for the last pass)

e setting.extract_sig2noise: (type: bool)
This setting lets one choose to extract the signal to noise ratio and export it.
Observe that the signal to noise ratio is only calculated for the last pass. It must
be enabled to do the signal to noise ratio validation. If this is set to false, the

signal to noise ratio column in the output is filled with NaNs.

e setting.sig2noise_method: (type: string)
Here one can choose between the method ‘peak2peak’ and ‘peak2mean’ to deter-
mine the signal to noise ratio. ‘peak2peak’ calculates the signal to noise ratio by
dividing the correlation value of the largest peak by the correlation value of the
second largest peak. ‘peak2mean’ calculates the signal to noise ratio by dividing

the largest peak by the averaged correlation value of the interrogation window.

e settings.sig2noise_mask: (type: int)
This parameter defines the size of the mask around the first peak. It only affects
the calculation of the signal to noise ratio if the option ‘peak2peak’ is chosen.
‘peak2peak’ calculates the signal to noise ratio by dividing the value of the largest
correlation peak with the value of the second largest peak. In the case of very
noisy cross-correlation maps, this function avoids that the second correlation peak
is too close the first. This is done by using a circled mask centered in the first
peak. This parameter is the radius of such a mask. By default, two is a sufficient

value.

Vector validation options

Advanced PIV interrogation in using the OpenPIV Python package 25

e setting.validation_first_pass (type: bool)
In the multi-pass approach, the first pass is always validated before proceeding
to the following ones. If Singlepass is chosen, the validation can be disabled by

setting this parameter to false.

Validation by minimal and maximal displacement

e settings.MinMax U _disp and settings.MinMax U _disp: (type: tuple
of float)
This option allows one to set a limit for the u and v displacement. The
values have to be inserted into a tuple like this (min, max). Displacement
vectors that exceed these limits will be marked as invalid. In case this kind of

validation is not desired, a very large value can be inserted. Important: the

pixel

input for this validation is in Frame"

Validation by standard deviation

e settings.std_threshold: (type: float)
This parameter sets the threshold for the validation by the global standard
deviation. Vectors are discarded if they differ from the global mean by a
certain value, in either of the components, which is larger than the specified
number of standard deviations. A sufficient value has to be chosen according
to the circumstances. Also, this validation can be disabled by entering very

large thresholds.
Validation by local median

e settings.median_threshold: (type: float)
This parameter sets the threshold for the validation by the local median. For
that, the local median of the v and v displacement is calculated independently.
In case the difference between the actual value and its local median exceeds
the threshold, the vector is masked as invalid. This validation is similar to
the popular median test but has no normalization. Like the others, it can be

disabled by choosing a large value.
Validation by signal to noise ratio

e settings.do_sig2noise_validation: (type: bool)
This enables or disables the validation by the signal to noise ratio by setting

it to True or False.

26 Advanced PIV interrogation in using the OpenPIV Python package

It is only available for the last pass and setting.extract_sig2noise has to
be enabled.

e settings.sig2noise_threshold: (type: float)
Sets the threshold for the signal to noise ratio. Displacement vectors that

exceed this threshold are marked as invalid and removed.

Outlier replacement or Smoothing options

e settings.replace_vectors: (type: bool)
This option enables or disables the outlier replacement by setting it to True or

False. This is only valid for the last pass.

e settings.smoothn: (type: bool)
This option enables or disables the smoothing of the velocity fields. This option
uses the famous smoothing function from Garcia, also used in PIVlab. It can be of

interest when spatial derivatives will be calculated on the instantaneous velocity
fields.

e settings.smoothn_p: (type: float)
This is the smoothing parameter from Garcia’s function. Low values produce little

smoothing, high values produce strong smoothing.

e settings.filter_method: (type: string)
This parameter stipulates the method used to replace the outlier vectors. One can
choose between ‘localmean’, ‘disk’ and ‘distance’. ‘localmean’ replaces the invalid
vector by the mean of a local square area around the invalid vector. ‘disk’ replaces
the invalid vector by the mean of a local circle around the invalid vector. ‘distance’
uses also a circular area around the invalid vector but weights the values according

to their distance from the center.

e settings.max_ filter_iteration: (type: int)
settings.max_filter_iteration defines the maximum number of filter iterations.
This kind of filter, documented in the OpenPIV package, is important when a clus-
ter of outliers is produced. In this case, the replacement starts from the boundaries
of the field and proceed towards the center using a number of iterations defined by
this parameter. If this value is set too high, the value used to replace the invalid
vector can significantly diverge from the actual displacement and it might be worth

considering different parameters for the analysis.

Advanced PIV interrogation in using the OpenPIV Python package 27

e settings.filter_kernel size (type: int) Here one can define the size of the area

used to calculate the vector replacement. Default: 2
Output options

e settings.save_plot: (type: bool) Decide whether one wants to save the plotted
vector fields by choosing between True and False. They are stored in the same

folder as the .txt files containing the results.

e settings.show_plot: (type: bool) Decide whether one wants to see the plotted
vector fields by choosing between True and False. Depending on the interrogation

setting the vector field may be instantly replaced by the following vector field.

e settings.scale_plot: Defines the arrow size of the plotted vector field. Larger

values result in smaller arrows.

The code of the script is shown below:

from openpiv import windef

settings = windef.Settings()

'Data related settings'

Folder with the images to process

settings.filepath_images = r'C:\Users\Theo\Desktop\VKI\Validaton\PIV_challenge_2003_A"
Folder for the outputs

settings.save_path = r'C:\Users\Theo\Desktop\VKI\Validaton\Vectorfields_2003A'

Root mame of the output Folder for Result Files

settings.save_folder_suffix = 'test'
Format and Image Sequence
settings.frame_pattern_a = 'Axa.tif'

settings.frame_pattern_b = 'Axb.tif'

'Region of interest'
(50,300,50,300) #Region of interest: (zmin,zmaz,ymin,ymaz) or 'full' for full <mage
settings .ROI = 'full'

'Image preprocessing'

'None' for mo masking, 'edges' for edges masking, 'intemsity' for intensity masking
WARNING: This part is under development so better mnot to use MASKS
settings.dynamic_masking_method = 'None'

settings.dynamic_masking_threshold = 0.005

settings.dynamic_masking_filter_size = 7

28 Advanced PIV interrogation in using the OpenPIV Python package

'Processing Parameters'

settings.correlation_method='circular' # 'circular' or 'linear'
settings.iterations = 2 # select the number of PIV passes

add the interroagtion window size for each pass.

For the moment, it should be a power of 2

settings.windowsizes = (64, 32, 16) # if longer than n iteration the rest is ignored
The overlap of the interroagtion window for each pass.

settings.overlap = (32, 16, 8) # This ts 50) overlap

Has to be a wvalue with base two. In general window size/2 is a good choice.

methode used for subpizel interpolation: 'gaussian', 'centroid’, 'parabolic’
settings.subpixel_method = 'gaussian'

order of the image interpolation for the window deformation
settings.interpolation_order = 3

settings.scaling_factor = 1 # scaling factor pizel/meter

settings.dt = 1 # time between to frames (in seconds)

'Signal to noise ratio options (only for the last pass)'

It is possible to dectide if the S/N should be computed (for the last pass) or not
settings.extract_sig2noise = False # 'True' or 'False' (only for the last pass)
method used to calculate the signal to noise rTatio 'peakZpeak' or 'peak2mean’
settings.sig2noise_method = 'peak2peak'

select the width of the mask to mask out pizels next to the main peak
settings.sig2noise_mask = 2

If extract_sigl2noise==False the wvalues in the signal to noise ratio

output column are set to Nal

'vector validation options'

choose wether you want to do validation of the first pass: True or False
settings.validation_first_pass = True

only effecting the first pass of the interrogation the following passes

in the multipass will be wvalidated

'Validation Parameters'

The wvalidation is done at each iteration based on three filters.

The first filter is based on the min/maxz ranges. Observe that these values are defined in
terms of minimum and mazimum displacement in pizel/frames.
settings.MinMax_U_disp = (-10, 5)

settings.MinMax_V_disp (-5, 5)

The second filter is based on the global STD threshold
settings.std_threshold = 7 # threshold of the std validation

The third filter is the median test (mot nmormalized at the moment)
settings.median_threshold = 5 # threshold of the median wvalidation

On the last iteration, an additional validation can be done based on the S/N.
settings.median_size=1 #defines the size of the local median

'Validation based on the signal to noise ratio'

Note: only avatlable when extract_siglnoise==True and only for the last

pass of the interrogation

Enable the signal to noise ratio validation. Options: True or False
settings.do_sig2noise_validation = False # This ©s time consuming

minmum signal to moise ratio that is need for a wvalid vector
settings.sig2noise_threshold = 1.2

Advanced PIV interrogation in using the OpenPIV Python package 29

'Outlier

replacement or Smoothing options'

Replacment options for wectors which are masked as invalid by the wvalidation

settings

select
settings

.replace_vectors = True # Enable the replacment. Chosse: True or False
settings.
settings.

smoothn=False #Enables smoothing of the displacemenet field
smoothn_p=0.1 # This %s a smoothing parameter
a method to replace the outliers: 'localmean', 'disk', 'distance'’

.filter_method = 'localmean'

mazimum tterations performed to replace the outliers
settings.max_filter_iteration = 4

settings.

filter_kernel_size = 2 # kernel size for the localmean method

'Output options'

Select

settings.

Choose

settings.
settings.

1f you want to save the plotted wvectorfield: True or False

save_plot = False

wether you want to see the wvectorfield or not :True or False

show_plot = True

scale_plot = 500 # select a value to scale the quiver plot of the wectorfield

run the script with the given settings

windef .piv(settings)

