simuPOP Reference Manual
Release 1.1.7 (Rev: 5000)

Bo Peng

December 2004

Last modified
January 20, 2016

Department of Epidemiology, U.T. M.D. Anderson Cancer Center
Email: bpeng@mdanderson.org

URL: http://simupop.sourceforge.net

Mailing List: simupop-list@lists.sourceforge.net

© 2004-2008 Bo Peng

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that the sections entitled Copying and GNU General
Public License are included exactly as in the original, and provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations
of this manual into another language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by the Free Software Foundation.

Abstract

simuPOP is a general-purpose individual-based forward-time population genetics simulation environment. Unlike
coalescent-based programs, simuPOP evolves populations forward in time, subject to arbitrary number of genetic and
environmental forces such as mutation, recombination, migration and population/subpopulation size changes. In con-
trast to competing applications that use command-line options or configuration files to direct the execution of a limited
number of predefined evolutionary scenarios, users of simuPOP’s scripting interface could make use of many of its
unique features, such as customized chromosome types, arbitrary nonrandom mating schemes, virtual subpopulations,
information fields and Python operators, to construct and study almost arbitrarily complex evolutionary scenarios.

simuPOP is provided as a number of Python modules, which consist of a large number of Python objects and functions,
including population, mating schemes, operators (objects that manipulate populations) and simulators to coordinate
the evolutionary processes. It is the users’ responsibility to write a Python script to glue these pieces together and form
a simulation. At a more user-friendly level, an increasing number of functions and scripts contributed by simuPOP
users is available in the online simuPOP cookbook. They provide useful functions for different applications (e.g. load
and manipulate HapMap samples, import and export files from another application) and allow users who are unfamiliar
with simuPOP to perform a large number of simulations ranging from basic population genetics models to generating
datasets under complex evolutionary scenarios.

This document provides complete references to all classes and functions of simuPOP and its utility modules. Please
refer to the simuPOP user’s guide for a detailed introduction to simuPOP concepts, and a number of examples on how
to use simuPOP to perform various simulations. All resources, including a pdf version of this guide and a mailing list
can be found at the simuPOP homepage http://simupop.sourceforge.net.

How to cite simuPOP:

Bo Peng and Marek Kimmel (2005) simuPOP: a forward-time population genetics simulation environ-
ment. bioinformatics, 21 (18): 3686-3687.

Bo Peng and Christopher Amos (2008) Forward-time simulations of nonrandom mating populations using
simuPOP. bioinformatics, 24 (11): 1408-1409.

Contents

1

1.1

1.2

1.3

1.4

simuPOP Components 1
Individual, Population, pedigree and Simulator 1
1.1.1 Class GenoStruTrait v v v v v i e e e e e e e e e e e e e e e e e 1
[1.1.2 Class Individual. . . . o v v v v vt e e e et e e e e e e e e e e e 3
1.1.3 Class Population v v v v v v o e e e e e e e e e e e 5
1.1.4 Class Pedigree v v v v v o e e e e e e e e e e e e e e e e 11
115 Class Simulator v o v v e e e e e e e e e e e e e e e e e 13
Virtual SpItters o e e e e 15
1.2.1 Class BaseVspSplitter . . . v v v v v v o e e e e e e e e e e e e e e e e e 15
1.2.2 Class SexSpLitter . . . v v v v v o o e e e e e e e e e e e 15
1.2.3 Class AffectionSplitter v v v v v i o e e e e e e e e e e e e e 15
1.2.4 Class InfoSplitter v v v v e e e e e e e e e e e e e e e e e e 16
1.2.5 Class ProportionSplitter v v v v v i e e e e e e e e e e e e e e 16
1.2.6 Class RangeSplitter v o v v i e e e e e e e e 16
1.2.7 Class GenotypeSplitter v v v v v i e e e e e e e e e e e 17
1.2.8 Class CombinedSplitter v v v v v v et e e e e e e e e e 17
1.2.9 Class ProductSplitter v i i i i e e e e e e e e e e e e e e e 18
Mating Schemes e e e e e e 18
1.3.1 Class MatingScheme v v v i e e e e e e e e e e e e 18
1.3.2 ClasS HOMOMAting . . v v v v v v v v e e e e e e e e e e e e e e e e 18
1.3.3 ClasS HeteroMating v v v v v v i i e e e e e e e e e e e e e e 19
1.3.4 Class ConditionalMating v v v v v v i e et e e e e e e e e e e e e 19
1.3.5 Class PedigreeMating v . v v v i i e e e e e e e e e e e e e e e e 19
1.3.6 Class SequentialParentChooSer v v v v v v v v e e e e e e e e e e e 20
1.3.7 Class SequentialParentsCho0SEr . . . v v v v v v v v i e e e e e e e e e e e e 20
1.3.8 Class RandomParentChooSer v v v v v v v e e et e e e e e e e e e e e e e e e 20
1.3.9 Class RandomParentsCho0Ser v v v v v v v v e e e e e e e e e e e e e e e e e 21
1.3.10 Class PolyParentsChoOSEr v v v v v v e e e e e e e e e e e e e e e e e e 21
1.3.11 Class CombinedParentsChooSer v v v v v v i v e et e e e e e e e e e e 21
1.3.12 Class PyParentsChoOSEr . . v v v v v v v v e e e e e e e e e e e e e e e e e e 22
1.3.13 Class 0ffspringGenerator v v v v v v i e i e e e e e e e e e e 22
1.3.14 Class ControlledOffspringGenerator v v v v v v v v e e e e e e e e e e e 23
Pre-defined mating schemes oL e 24
1.4.1 Class CloneMating v v v v v e e e e e e e e e e e e e e e e 24
1.4.2 Class RandomSelection v v v i i i e e e e e e e e e e e e e e e 24
1.4.3 ClassSRandomMating . . . v v v v v v v e e e e e e e e e e e e e e e 24
1.4.4 Class MonogamousMating v v v v v v i e e e e e e e e e e e e e e 24
1.4.5 Class PolygamousMating v v v v v i e e e e e e e e e e e e e e 25
1.4.6 Class HaplodiploidMating v i v i i i i e e e e e e e e e e e e 25
1.4.7 Class SelfMating . . . v v v v v e e e e e e e e e e e e e 25
1.4.8 Class HermaphroditicMating v v v v v v e e e e e e e e e e e e e e 25
1.4.9 Class ControlledRandomMating v v v v v v v v e e e e e e e e e e e 26

1.5 Utility Classes o o oot e e e e e e e e 26
1.5.1 ClasSWithArgs . . . v o v v o e e e e e e e e e e e e e e 26

1.5.2 Class WithMode . . v v v v v i o i e e e e e e e e e e e e e e e e e e e 26

1.53 CIasSRNG . . . v v v o e 26

1.5.4 Class WeightedSampler v v v v v i i e e e e e e e e e e e e 27

1.6 Global functions e e e e e e e e e e e e e 28
1.6.1 Function closeOutput v v v v i e e e e e e e e e e e e e e 28

1.6.2 Function describeEVOIPrOCeSS « v v v v v v v o v e e e e e e e e e e e e e e e e e e e 28

1.6.3 Function loadPopulation o i i i i e e e e e e e e e e 28

1.6.4 Function loadPedigree v o v i i i e e e e e e e e e e e e e e e 28

1.6.5 Function moduleInfot i v i i e e e e e e e e e e e 29

1.6.6 Function getRNG v v v v v o e e e e e e e e e e e e 29

1.6.7 Function setRNG v v v v v i i e e i e e e e e e e e e e e e e e e e e e 29

1.6.8 Function setOptions v v v i i e e e e e e e e e e e e e e e e 29

1.6.9 Function turnOnDebug v o i e e e e e e e e e e e e e e 30
1.6.10 Function turn0ffDebug« v v v v v v e e e e e e e e e e e e e e e e e e e 30

2 Operator References 31
2.1 Baseclassforalloperators e 31
2.1.1 ClasS Baselperator v v v v v i e e e e e e e e e e e e e e 31

2.2 Initialization e 32
22,1 CIasS INItSeX . v v v v v o e 32

222 ClasS INItINTO . . v v v v v e o e 32

2.2.3 Class InitGenotype . . . v v v v v i e e e e e e e e e e e e e e e e e e 33

224 ClassS InitLineage . . . v v v v v v e e e e e e e e e e e e e e e e e 33

2.3 Expression and Statementso et e e e e e e e e e 33
2.3.1 ClasS PYOUTPUL © v v v v v o o e e e e e e e e e e e e e e 34

232 ClasS PYEVAl . . . v v v vt e e e e e e e e e e e e e 34

2.3.3 CLaSS PYEXEC .« v v v v o e e e e e e e e e e e e e e e 34

234 ClassS INTOEVAl . . . v v vt i e e e e e e e e e e e e e e e e e e 34

2.3.5 CIaSsS INTOEXEC . « & v v v o e 35

2.4 Demographicmodels e e e e e e 35
2.4.1 ClasS Migrator . . . v v v v o o e e e e e e e e e e e e 35

2.4.2 Class BackwardMigrator v v v v v v i e e e e e e e e e e e e e e e e e 36

2.4.3 Class SPLAitSUBPOPS « v v v v v e e e e e e e e e e e e e e e e e e e 37

2.4.4 ClasS MergeSubPopS . v v v v v e v e e e e e e e e e e e e e e 37

2.4.5 ClasS ReSizeSUDPOPS « v v v v v v v v e e e e e e e e e e e e e e e 37

2.5 Genotype tranSMIters v v v v v v v e 38
2.5.1 Class GenoTransmitter . . . v v v v v v v e 38

2.5.2 Class CloneGenoTransmitter v v v v v v e e e e e e e e e e e e e e e 38

2.5.3 Class MendelianGenoTransmitter v v v v v v i e e e e e e e e e e e 39

2.5.4 Class SelfingGenoTransmitter v v v v v v v e e e e e e e e e e e e e 39

2.5.5 Class HaplodiploidGenoTransmitter v v v v v v i e e e e e e e e e e e e 39

2.5.6 Class MitochondrialGenoTransmitter v v v v v v v v e e e e e e e e e e e e 39

2.5.7 Class Recombinator v i v i i e e e e e e e e e e e e 40

2.6 MUtation e e e e e e e e e e e e e e e e 41
2.6.1 Class BaseMutator v v v v v it e e e e e e e e e e e e e e e 41

2.6.2 Class MatrixMUutator v v v v v i e e e e e e e e e e e e e e e e e e e 42

2.6.3 Class KATLeleMUtator . . . v v v v v o v e 42

2.6.4 Class StepwiseMutator v v v v v e e e e e e e e e e e e e e e e e 43

2.6.5 Class PyMUtator v v v v e e e e e e e e e e e e e e e e e e 43

2.6.6 Class MixedMutator v i v i v i e e e e e e e e e e e e e 44

2.6.7 Class ContextMutator v v v v v it e e e e e e e e e e e e e e e e e e 44

2.6.8 Class PointMutator v v v v v i e 44

2.7

2.8

29

2.10

2.12

2.13

2.14

2.15

2.6.9 Class SNPMULATOr . v v v v v v e e e e e e e e e e e e e e e 44

2.6.10 Class AcgtMutator v v v v i e e e e e e e e e e e e e e e e 45
2.6.11 Class RevertFixedSites . . .« v v v v v v v v o e e e e e e e e e e e e e e e e e e 45
Penetrance e e e e e e e e e 45
2.7.1 Class BasePenetranCe v v v v v v v e e e e e e e e e e e e e e e e e e e 45
2.7.2 ClasS MapPenetrance v v v v v v v e e e e e e e e e e e e e e 46
2.7.3 ClasS MaPenetranCe v v v v v vt e e e e e e e e e e e e e e e e e e e 46
2.7.4 ClasS MIPENetrance . . . v v v v v v e 46
2.7.5 Class PyPenetrance v v v v v v i e e e e e e e e e e e e e e e 47
2.7.6 Class PyMIPENetranCe . . . v v v v v v i e e e e e e e e e e e e 47
Quantitative Trait e e e e e e e 48
2.8.1 Class BaseQuUanTrait v v v v v v v i e e e e e e e e e e e e e e e e 48
2.8.2 Class PyQuanTrait v v v v v o e e e e e e e e e e e e 48
Natural selection o e e e e 48
2.9.1 Class BaseSeleCtor . . v v v v v v o e 49
2.9.2 Class MapSelector v v v v v v e 50
2.93 ClasS MaSelector v v v v v i e e e e e e e e e e e e e e e e e 50
2.9.4 ClasS MISElector . . v v v v v v e 50
295 ClassS PySelector . . . v v v v v v e e e e e e e e e e e 51
2.9.6 Class PyMISelector . . . v v v v v v e e e e e e e e e e e e e e e e e e e 51
Tagging operators i e e e e e e 52
2.10.1 ClasS IdTagger . . . v v v v v e e e e e e e e e e e e e e 52
2.10.2 Class InheritTagger . . . v v v v v v e e e e e e e e e e e e e e 52
2.10.3 Class SummaryTagger . . v v v v v v e e e e e e e e e e e e e e e 52
2.10.4 Class ParentsTagger v v v v v v e e e e e e e e e e e e e e e e e e e 53
2.10.5 Class 0ffspringTagger . . . v v v v v v e 53
2.10.6 Class PedigreeTagger . . . v v v v v v v e e e e e e e e e e e e e e e e 53
2.10.7 ClasS PYTagger . v v v v v v v e e e e e e e e e e e e e e e 54
Statistics Calculation L L e e e e e e e e e e 54
2010 CIass Stat . . v v v v o e e e e e e e e e e e e e e e e e 54
Conditional operators e e e 61
2021 CIaSS IFEUSE & v v v v v o e 61
2.12.2 Class TerminateIf v v v v v o e e e e e e e e e e e e e e e e e e e 62
2123 ClassS RevertIf . . . v v v v v i e 62
2124 Class DiscardIf v v v v v i e 62
The Python operator e 63
2.13.1 Class PyOperator. v v v v v e e e e e e e e e e e e e e 63
Miscellaneous Operators v v it e e e e e e e e e e 63
2.14.1 CIasSNONEOP . « v v v v v e e e e e e e e e e e 63
2142 ClasSDUMPEr . . v v v v v e e e e e e e e e e e 63
2.14.3 Class SavePopulation v v v v i e e e e e e e e e e e e e e e e e e 64
2144 ClasS Pause . . v v v v v i i e e e e e e e e e e e e e e e e 64
2145 ClasSTicTOC . & v v v v v o e e e e e e e e e e e e e e 64
Function form of operators L 65
2.15.1 Function acgtMutate v v i e e e e e e e e e e e e e e e e e e 65
2.15.2 Function contextMutate v v v v v v e 65
2.15.3 Function discardIf v i v i i i e 65
2.15.4 Function dump e e e e e e 65
2.15.5 Function infoEval v v v v i i e 65
2.15.6 Function infoEXeC v v v v i v i e 65
2.15.7 Function initGenotype v v v v i e e e e e e e e e e 65
2.15.8 Function initInfo v v it i e 66
2.15.9 Function initSex v v v v v i i e e e e e e e e e e e e e e e e e e e 66
2.15.10 Function kKATleleMutate v o v i v i e e e e e e e e e e e e e e e e e 66

2.15.11 Function maPenetrance v v v v v i e e e e e e e e e e e e e e e e e 66
2.15.12 Function mapPenetrance v v v v v vt e e e e e e e e e e e e e 66
2.15.13 Function matrixMutate v v v v v i e 66
2.15.14 Function mergeSubPops . . . v v . v v i e 66
2.15.15 Function migrate o . i i e e e e e e e e 66
2.15.16 Function backwardMigrate v v v i e e e e e e e e e e e e e e 66
2.15.17 Function mixedMutate v v v v v i e e e e e e e e e e e e e e e e e e e 67
2.15.18 Function mlPenetrance v v v v v v v e e e e e e e e e e e e e e e e e e e 67
2.15.19 Function pointMutate v v v v i i e 67
2.15.20 Function pyEval i i e e e e e e e e e e e e e e 67
2.15.21 Function pyEXeC . . . v v v v v i e e e e e e e e e e e e 67
2.15.22 Function pyMutate o v o i e e e e e e e e e e e e e e e e e 67
2.15.23 Function pyPenetrance v v v v v v v e e e e e e e e e e e e e e 67
2.15.24 Function pyMIPenetrance v v v v v v v i e e e e e e e e e e e e e e e 67
2.15.25 Function pyQuanTrait v v v v i e e e e e e e e e e e e e e e e e e e 68
2.15.26 Function resizeSubPops v v v v v v e e e e e e e e e e e e e e e e 68
2.15.27 Function snpMutate v v v e e e e e e e e e e e e e e e e e 68
2.15.28 Function splitSubPops . . v v v v v v v e e e e e e e e e e e e e e 68
2.15.29 Function stat v v v it e 68
2.15.30 Function stepwiseMutate v i i i i e e e e e e e e e e e e 68
2.15.31 Function tagID v i e e e e e e e e e e 68
3 Utility Modules 69
3.1 Module simulpt L e e e e e e e e e e 69
3.1.1 Function setOptions o . v i i i i e e e e e e e e e e e 69
3.1.2 ClasSParams . . . v v v o e e e e e e e e e e e e e e e e e e 70
3.1.3 Function paramt i e e e e e e e e e e 72
3.1.4 Function valueNot v v v v v o e 73
3.1.5 Function valuedr o i i i e e e e e e e 73
3.1.6 Function valueAnd v v v i i e 73
3.1.7 Function valueOneOf v i i i e e e e e e e e e e e e e e 73
3.1.8 Function valueTrueFalse v v v v v v e e e e e e e e e e e e e e e e e e 73
3.1.9 Function valueBetween v . v v v v v i e e e e e e e e e e e e e e e e e e 73
3.1.10 Function valueGT v v v o e 73
3111 Function valueGE v v v i e 73
3.1.12 Function valuelT . . v . v v v v e 73
3.1.13 Function valueLE v v o v e 74
3.1.14 Function valueEqual v v v v v o e e e e e e e e e e 74
3.1.15 Function valueNotEqual v v v v vt e e e e e e e e e e e e e e 74
3.1.16 Function valueIsNum v v v v v e e e e e e e e e e e e e e 74
3.1.17 Function valueIsINteger v v v v v v v e e e e e e e e e e e e e e e 74
3.1.18 Function valueIsList v i v i i i e e e e e e e e e e e e e e e 74
3.1.19 Function valueListOf o v i v i e 74
3.1.20 Function valueSumTo v v v v v o v e 74
3.1.21 Function valueValidDir o i v i i e e e e e e e e e e e e 75
3.1.22 Function valueValidFile i v v i it e e e e e e e e e 75
3.2 Module simuPOP.utils v . i e e e e e e e e e e e 75
3.2.1 Class Trajectory . . v v v v v i e e e e e e e e e e e e 75
3.2.2 Class TrajectorySimulator . . . v v v v v v v e e e e e e e e e e e e e 76
3.2.3 Function simulateForwardTrajectory v . v v v v v v i e e e e e e e e 77
3.2.4 Function simulateBackwardTrajectory v v v v v v v i e e e e e e e e e e 77
3.2.5 ClasS ProgressBar . . . v v v v vt e e e e e e e e e e e 78
3.2.6 Function viewVars i it i e e e e e e e e e e e e e e e e e e 78
3.277 Function saveCSV o v v v i e 78

33

34

35

3.6

Index

3.2.8 ClasS EXPOrter . . v v v v v i e e e e e e e e e e e e e e 79
3.2.9 Function importPopulation v v v v e e e e e e e e e e e e e e 82
3.2.10 Function export v v it e e e e e e e e 82
Module simuPOP.demography o i e e e e e e e e e e e e e e e e e 83
3.3.1 Function migrIslandRates v v v v v v v i e e e e e e e e e e e e e 83
3.3.2 Function migrHierarchicalIslandRates v v v v v v v v e e e e e e e 83
3.3.3 Function migrSteppingStoneRates v v o i i e e e e e e e e e e e 83
3.3.4 Function migrtwoDSteppingStoneRates v v v v v i e e e e e e e e e e e e e 84
3.3.5 Class EventBasedModel v v v v v i e e e e e e e e e e e e e e e e e e 84
3.3.6 Class DemographiCEVent i i i i e e e e e 84
3.3.7 Class EXpansionEVENt . . . v v v v v i e e e e e e e e e e e e e e e e e 84
3.3.8 ClasSReSIZEEVENT . . & v v v v v i e e e e e e e e e e e e e e e e e e e 85
3.3.9 ClassS SPLItEVENT . . v v v v v e e e e e e e e e e e e 85
3.3.10 Class MergeEVent v v v v v e e e e e e e e e 85
3.3.11 Class AdmixtureEVENt v v v v i e i e e e e e e e e e e e e e e e e e e e 85
3.3.12 Class InstantChangeModel v v v v v v v i e e e e e e e e e e e e e 86
3.3.13 Class ExponentialGrowthModel v v v v v v i e e e e e e e e e e 86
3.3.14 Class LinearGrowthModel v v v v v v i i e e e e e e e e e e e e e e e e 86
3.3.15 Class MultiStageModel . . . v v v v v i e e e e e e e e e e e e e 87
3.3.16 Class OutOfAfricaModel v v v vt it e e e e e e e e e e e e e e e e e 87
3.3.17 Class SettlementOfNewWorldModel v v v v v v i i e e e e e e e e e e e e 88
3.3.18 Class CosiModel v v v v v i e e e e e e e e e e e e e e e e e 88
Module simuPOP.PLOTTEr . v . v v v v e e e e e e e e e e e e e e e e e e 89
341 ClassVarPlotter . . . v v v v e o e 89
3.4.2 Class ScatterPlotter v v i v i e e e e e e e e e e e e e e 90
Module simuPOP.samplingt v e e e e e e e e e e e e e e e 91
3.5.1 Class BaseSampler v v v v v v e 91
3.5.2 Class RandomSampler . . . v v v v v v o e e e e e e e e e e e e e e e 92
3.5.3 Function drawRandomSample v v vt e e e e e e e e e e e e e e e e 92
3.5.4 Function drawRandomSamples v v v vt e e e e e e e e e e e e e e e e e e 92
3.5.5 Class CaseControlSampler v v v v v v v i e e e e e e e e e e e e e e e 92
3.5.6 Function drawCaseControlSamplet v v i v i it e e e e e e e e 93
3.5.7 Function drawCaseControlSamples v v v v v v v v i e e e e e e e e e 93
3.5.8 Class PedigreeSampler v v v v v i e e e e e e e e e e e e e e e 93
3.5.9 Class AffectedSibpairSampler v v v v v e e e e e e e e e e e e 93
3.5.10 Function drawAffectedSibpairSample v v it i e e e e e e e 94
3.5.11 Function drawAffectedSibpairSamples i i i e 94
3.5.12 Class NuclearFamilySampler v v v i v i e e e e e e e e e e e e e e e e 94
3.5.13 Function drawNuclearFamilySample v v v v v i e e e e e e e e e e e 94
3.5.14 Function drawNuclearFamilySamples v v v v v v v v e e e e e e e e e e e e e 95
3.5.15 Class ThreeGenFamilySampler v v v v v v v i e e e e e e e e e e e e e e 95
3.5.16 Function drawThreeGenFamilySample « v v v v v vt v e e e e e e e e e e e 95
3.5.17 Function drawThreeGenFamilySamples v v v v vt v i e e e e e e e e e 96
3.5.18 Class CombinedSampler v v v v i e e e e e e e e e e e e e e e 96
3.5.19 Function drawCombinedSample v v v vt e e e e e e e e e e e e e e e e 96
3.5.20 Function drawCombinedSamples v v v v v v e e e e e e e e e e e e e e e e 96
Module simuPOP.gsl i i e e e e e e e e e e e e e e e e e 96

99

Vi

Chapter 1

simuPOP Components

1.1 Individual, Population, pedigree and Simulator

1.1.1 Class GenoStruTrait

All individuals in a population share the same genotypic properties such as number of chromosomes, number and posi-
tion of loci, names of markers, chromosomes, and information fields. These properties are stored in this GenoStruTrait
class and are accessible from both Individual and Population classes. Currently, a genotypic structure consists of

e Ploidy, namely the number of homologous sets of chromosomes, of a population. Haplodiploid population is
also supported.

e Number of chromosomes and number of loci on each chromosome.

e Positions of loci, which determine the relative distance between loci on the same chromosome. No unit is
assumed so these positions can be ordinal (1, 2, 3, ..., the default), in physical distance (bp, kb or mb), or in map
distance (e.g. centiMorgan) depending on applications.

e Names of alleles, which can either be shared by all loci or be specified for each locus.
e Names of loci and chromosomes.

e Names of information fields attached to each individual.

In addition to basic property access functions, this class provides some utility functions such as locusByName, which
looks up a locus by its name.

class GenoStruTrait()
A GenoStruTrait object is created with the construction of a Population object and cannot be initialized directly.

absLocusIndex(chrom, locus)
Return the absolute index of locus locus on chromosome chrom. c.f. chromLocusPair.

alleleName (allele, locus=0)
Return the name of allele allele at Icous specified by the alleleNames parameter of the Population function.
locus could be ignored if alleles at all loci share the same names. If the name of an allele is unspecified,
its value ('0’, '1’, '2’, etc) is returned.

alleleNames (locus=0)
Return a list of allele names at given by the alleleNames parameter of the Population function. locus could
be ignored if alleles at all loci share the same names. This list does not have to cover all possible allele
states of a population so alleleNames () [allele] might fail (use alleleNames(allele) instead).

chromBegin (chrom)
Return the index of the first locus on chromosome chrom.

chromByName (name)
Return the index of a chromosome by its name.

chromEnd (chrom)
Return the index of the last locus on chromosome chrom plus 1.

chromLocusPair (locus)
Return the chromosome and relative index of a locus using its absolute index locus. c.f. absLocusIndex.

chromName (chrom)
Return the name of a chromosome chrom.

chromNames ()
Return a list of the names of all chromosomes.

chromType (chrom)
Return the type of a chromosome chrom (CUSTOMIZED, AUTOSOME, CHROMOSOME_X, CHROMOSOME_Y Or MITOCHONDRIAL.

chromTypes ()
Return the type of all chromosomes (CUSTOMIZED, AUTOSOME, CHROMOSOME_X, CHROMOSOME_Y, Or MITOCHONDRIAL).

indexesOfLoci(loci=ALL_AVAIL)
Return the indexes of loci with positions positions (list of (chr, pos) pairs). Raise a valueError if any of the
loci cannot be found.

infoField (idx)
Return the name of information field idx.

infoFields ()
Return a list of the names of all information fields of the population.

infoldx (name)
Return the index of information field name. Raise an IndexError if name is not one of the information
fields.

lociByNames (names)
Return the indexes of loci with names names. Raise a valueError if any of the loci cannot be found.

locibist(locusi, locus2)
Return the distance between loci locus! and locus2 on the same chromosome. A negative value will be
returned if locus] is after locus2.

lociNames ()
Return the names of all loci specified by the lociNames parameter of the Population function. An empty
list will be returned if lociNames was not specified.

lociPos ()
Return the positions of all loci, specified by the lociPos prameter of the Population function. The default
positions are 1, 2, 3, 4, ... on each chromosome.

locusByName (name)
Return the index of a locus with name name. Raise a valueError if no locus is found. Note that empty
strings are used for loci without name but you cannot lookup such loci using this function.

locusName (locus)
Return the name of locus locus specified by the lociNames parameter of the Population function. An empty
string will be returned if no name has been given to locus locus.

locusPos (locus)
Return the position of locus locus specified by the lociPos parameter of the Population function.

numChrom ()
Return the number of chromosomes.

Chapter 1. simuPOP Components

numLoci (chrom)
Return the number of loci on chromosome chrom.

numLoci()
Return a list of the number of loci on all chromosomes.

ploidy()
Return the number of homologous sets of chromosomes, specified by the ploidy parameter of the
Population function. Return 2 for a haplodiploid population because two sets of chromosomes are stored
for both males and females in such a population.

ploidyName()
Return the ploidy name of this population, can be one of haploid, diploid, haplodiploid, triploid,
tetraploid or #-ploid where # is the ploidy number.

totNumLoci()
Return the total number of loci on all chromosomes.

1.1.2 Class Individual

A Population consists of individuals with the same genotypic structure. An Individual object cannot be created inde-
pendently, but refences to inidividuals can be retrieved using member functions of a Population object. In addition to
structural information shared by all individuals in a population (provided by class GenoStruTrait), the Individual class
provides member functions to get and set genotype, sex, affection status and information fields of an individual.

Genotypes of an individual are stored sequentially and can be accessed locus by locus, or in batch. The alleles are
arranged by position, chromosome and ploidy. That is to say, the first allele on the first chromosome of the first
homologous set is followed by alleles at other loci on the same chromsome, then markers on the second and later
chromosomes, followed by alleles on the second homologous set of the chromosomes for a diploid individual. A
consequence of this memory layout is that alleles at the same locus of a non-haploid individual are separated by
Individual::totNumLoci() loci. It is worth noting that access to invalid chromosomes, such as the Y chromosomes of
female individuals, is not restricted.

class Individual()
An Individual object cannot be created directly. It has to be accessed from a Population object using functions
such as Population::Individual(idx).

affected()
Return True if this individual is affected.

allele(idx, ploidy=-1, chrom=-1)
Return the current allele at a locus, using its absolute index idx. If a ploidy ploidy and/or a chromosome
indexes is given, idx is relative to the beginning of specified homologous copy of chromosomes (if chrom=-
1) or the beginning of the specified homologous copy of specified chromosome (if chrom >= 0).

alleleChar (idx, ploidy=-1, chrom=-1)
Return the name of allele(idx, ploidy, chrom). If idx is invalid (e.g. second homologus copy of chromo-
some Y), ’_’ is returned.

alleleLineage (idx, ploidy=-1, chrom=-1)
Return the lineage of the allele at a locus, using its absolute index idx. If a ploidy ploidy and/or a chromo-
some indexes is given, idx is relative to the beginning of specified homologous copy of chromosomes (if
chrom=-1) or the beginning of the specified homologous copy of specified chromosome (if chrom >= 0).
This function returns 0 for modules without lineage information.

__cmp—(rhs)
A python function used to compare the individual objects

genotype (ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
Return an editable array (a carray object) that represents all alleles of an individual. If ploidy or chroms is
given, only alleles on the specified chromosomes and homologous copy of chromosomes will be returned.

1.1. Individual, Population, pedigree and Simulator 3

If multiple chromosomes are specified, there should not be gaps between chromosomes. This function
ignores type of chromosomes so it will return unused alleles for sex and mitochondrial chromosomes.

info (field)
Return the value of an information field filed (by index or name). ind.info(name) is equivalent to ind.name
although the function form allows the use of indexes of information fieldes.

lineage (ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
Return an editable array (a carray_lineage object) that represents the lineages of all alleles of an individ-
ual. If ploidy or chroms is given, only lineages on the specified chromosomes and homologous copy of
chromosomes will be returned. If multiple chromosomes are specified, there should not be gaps between
chromosomes. This function ignores type of chromosomes so it will return lineage of unused alleles for sex
and mitochondrial chromosomes. A None object will be returned for modules without lineage information.

mutants (ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
Return an itertor that iterate through all mutants (non-zero alleles) of an individual. Each mutant is pre-
sented as a tuple of (index, value) where index is the index of mutant ranging from zero to totNumLoci()
* ploidy() - 1, so you will have to adjust indexes to check multiple alleles at a locus. If ploidy or chroms is
given, only alleles on the specified chromosomes and homologous copy of chromosomes will be iterated.
If multiple chromosomes are specified, there should not be gaps between chromosomes. This function
ignores type of chromosomes so it will return unused alleles for sex and mitochondrial chromosomes.

setAffected (affected)
Set affection status to affected (True or False).

setAllele(allele, idx, ploidy=-1, chrom=-1)
Set allele allele to a locus, using its absolute index idx. If a ploidy ploidy and/or a chromosome indexes
are given, idx is relative to the beginning of specified homologous copy of chromosomes (if chrom=-1) or
the beginning of the specified homologous copy of specified chromosome (if chrom >= 0).

setAllelelineage (lineage, idx, ploidy=-1, chrom=-1)
Set lineage lineage to an allele, using its absolute index idx. If a ploidy ploidy and/or a chromosome indexes
are given, idx is relative to the beginning of specified homologous copy of chromosomes (if chrom=-1) or
the beginning of the specified homologous copy of specified chromosome (if chrom >= 0). This function
does nothing for modules without lineage information.

setGenotype(geno, ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
Fill the genotype of an individual using a list of alleles geno. If parameters ploidy and/or chroms are
specified, alleles will be copied to only all or specified chromosomes on selected homologous copies of
chromosomes. geno will be reused if its length is less than number of alleles to be filled. This function
ignores type of chromosomes so it will set genotype for unused alleles for sex and mitochondrial chromo-
somes.

setInfo(value, field)
Set the value of an information field field (by index or name) to value. ind.setInfo(value, field) is
equivalent to ind. field = value although the function form allows the use of indexes of information fieldes.

setLineage (lineage, ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
Fill the lineage of an individual using a list of IDs lineage. If parameters ploidy and/or chroms are spec-
ified, lineages will be copied to only all or specified chromosomes on selected homologous copies of
chromosomes. lineage will be reused if its length is less than number of allelic lineage to be filled. This
function ignores type of chromosomes so it will set lineage to unused alleles for sex and mitochondrial
chromosomes. It does nothing for modules without lineage information.

setSex(sex)
Set individual sex to MALE or FEMALE.

sex()
Return the sex of an individual, 1 for male and 2 for female.

Chapter 1. simuPOP Components

1.1.3 Class Population

A simuPOP population consists of individuals of the same genotypic structure, organized by generations, subpop-
ulations and virtual subpopulations. It also contains a Python dictionary that is used to store arbitrary population
variables.

In addition to genotypic structured related functions provided by the GenoStruTrait class, the population class provides
a large number of member functions that can be used to

Create, copy and compare populations.

Manipulate subpopulations. A population can be divided into several subpopulations. Because individuals only
mate with individuals within the same subpopulation, exchange of genetic information across subpopulations
can only be done through migration. A number of functions are provided to access subpopulation structure
information, and to merge and split subpopulations.

Define and access virtual subpopulations. A virtual subpopulation splitter can be assigned to a population,
which defines groups of individuals called virtual subpopulations (VSP) within each subpopulation.

Access individuals individually, or through iterators that iterate through individuals in (virtual) subpopulations.

Access genotype and information fields of individuals at the population level. From a population point of
view, all genotypes are arranged sequentially individual by individual. Please refer to class Individual for an
introduction to genotype arragement of each individual.

Store and access ancestral generations. A population can save arbitrary number of ancestral generations. It is
possible to directly access an ancestor, or make an ancestral generation the current generation for more efficient
access.

Insert or remove loci, resize (shrink or expand) a population, sample from a population, or merge with other
populations.

Manipulate population variables and evaluate expressions in this local namespace.

Save and load a population.

class Population(size=[], ploidy=2, loci=[], chromTypes=[], lociPos=[], ancGen=0, chromNames=[], allele-

Names=[], lociNames=[], subPopNames=[], infoFields=[])
The following parameters are used to create a population object:
size: A list of subpopulation sizes. The length of this list determines the number of subpopulations of this
population. If there is no subpopulation, size=[popSize] can be written as size=popSize.

ploidy: Number of homologous sets of chromosomes. Default to 2 (diploid). For efficiency considerations, all
chromosomes have the same number of homologous sets, even if some customized chromosomes or some
individuals (e.g. males in a haplodiploid population) have different numbers of homologous sets. The
first case is handled by setting chromTypes of each chromosome. Only the haplodiploid populations are
handled for the second case, for which ploidy=HAPLODIPLOID should be used.

loci: A list of numbers of loci on each chromosome. The length of this parameter determines the number of
chromosomes. If there is only one chromosome, numLoci instead of [numLoci] can be used.

chromTypes: A list that specifies the type of each chromosome, which can be AUTOSOME, CHROMOSOME_X,
CHROMOSOME_Y, or CUSTOMIZED. All chromosomes are assumed to be autosomes if this parameter is ignored.
Sex chromosome can only be specified in a diploid population where the sex of an individual is deter-
mined by the existence of these chromosomes using the xx (FEMALE) and Xy (MALE) convention. Both sex
chromosomes have to be available and be specified only once. Because chromosomes x and Y are treated
as two chromosomes, recombination on the pseudo-autosomal regions of the sex chromsomes is not sup-
ported. cusTOMIZED chromosomes are special chromosomes whose inheritance patterns are undefined. They
rely on user-defined functions and operators to be passed from parents to offspring. Multiple customized
chromosomes have to be arranged consecutively.

1.1.

Individual, Population, pedigree and Simulator 5

lociPos: Positions of all loci on all chromosome, as a list of float numbers. Default to 1, 2, ... etc on each
chromosome. lociPos should be arranged chromosome by chromosome. If lociPos are not in order within
a chromosome, they will be re-arranged along with corresponding lociNames (if specified).

ancGen: Number of the most recent ancestral generations to keep during evolution. Default to 6, which means
only the current generation will be kept. If it is set to -1, all ancestral generations will be kept in this
population (and exhaust your computer RAM quickly).

chromNames: A list of chromosome names. Default to ” for all chromosomes.

alleleNames: A list or a nested list of allele names. If a list of alleles is given, it will be used for all loci in this
population. For example, alleleNames=('A’,’C’,’'T’,’'G’) gives names A, C, T, and G to alleles o, 1, 2, and 3
respectively. If a nested list of names is given, it should specify alleles names for all loci.

lociNames: A list of names for each locus. It can be empty or a list of unique names for each locus. If loci are
not specified in order, loci names will be rearranged according to their position on the chromosome.

subPopNames: A list of subpopulation names. All subpopulations will have name ” if this parameter is not
specified.

infoFields: Names of information fields (named float number) that will be attached to each individual.

absIndIndex(idx, subPop)
Return the absolute index of an individual idx in subpopulation subPop.

addchrom(lociPos, lociNames=[], chromName="", alleleNames=[], chromType=AUTOSOME)
Add chromosome chromName with given type chromType to a population, with loci lociNames inserted
at position lociPos. lociPos should be ordered. lociNames and chromName should not exist in the current
population. Allele names could be specified for all loci (a list of names) or differently for each locus (a
nested list of names), using parameter alleleNames. Empty loci names will be used if lociNames is not
specified. The newly added alleles will have zero lineage in modules wiht lineage information.

addChromFrom(pop)
Add chromosomes in population pop to the current population. population pop should have the same
number of individuals as the current population in the current and all ancestral generations. Chromosomes
of pop, if named, should not conflict with names of existing chromosome. This function merges genotypes
on the new chromosomes from population pop individual by individual.

addIndFrom(pop)
Add all individuals, including ancestors, in pop to the current population. Two populations should have
the same genotypic structures and number of ancestral generations. Subpopulations in population pop are
kept.

addInfoFields (fields, init=0)
Add a list of information fields fields to a population and initialize their values to init. If an information
field alreay exists, it will be re-initialized.

addLoci (chrom, pos, lociNames=[], alleleNames=[])

Insert loci lociNames at positions pos on chromosome chrom. These parameters should be lists of the same
length, although names may be ignored, in which case empty strings will be assumed. Single-value input
is allowed for parameter chrom and pos if only one locus is added. Alleles at inserted loci are initialized
with zero alleles. Note that loci have to be added to existing chromosomes. If loci on a new chromosome
need to be added, function addchrom should be used. Optionally, allele names could be specified either for
all loci (a single list) or each loci (a nested list). This function returns indexes of the inserted loci. Newly
inserted alleles will have zero lineage in modules with lineage information.

addLociFrom(pop, byName=False)
Add loci from population pop. By default, chromosomes are merged by index and names of merged
chromosomes of population pop will be ignored (merge of two chromosomes with different names will
yield a warning). If byName is set to True, chromosomes in pop will be merged to chromosomes with
identical names. Added loci will be inserted according to their position. Their position and names should
not overlap with any locus in the current population. population pop should have the same number of

Chapter 1. simuPOP Components

individuals as the current population in the current and all ancestral generations. Allele lineages are also
copied from pop in modules with lineage information.

ancestor (idx, gen, subPop=[])
Return a reference to individual idx in ancestral generation gen. The correct individual will be returned even
if the current generation is not the present one (see also useAncestralGen). If a valid subPop is specified,
index is relative to that subPop. Virtual subpopulation is not supported. Note that a float idx is acceptable
as long as it rounds closely to an integer.

ancestralGens()
Return the actual number of ancestral generations stored in a population, which does not necessarily equal
to the number set by setAncestralDepth().

clone()
Create a cloned copy of a population. Note that Python statement popl = pop only creates a reference to an
existing population pop.

__cmp—(rhs)
A python function used to compare the population objects

dvars (subPop=[])
Return a wrapper of Python dictionary returned by vars (subPop) so that dictionary keys can be accessed as
attributes.

extractIndividuals (indexes=[], IDs=[], idField="ind_id", filter=None)

Extract individuals with given absolute indexes (parameter indexes), IDs (parameter /Ds, stored in infor-
mation field idField, default to ind_id), or a filter function (parameter filter). If a list of absolute indexes
are specified, the present generation will be extracted and form a one-generational population. If a list
of IDs are specified, this function will look through all ancestral generations and extract individuals with
given ID. Individuals with shared IDs are allowed. In the last case, a user-defined Python function should
be provided. This function should accept parameter "ind" or one or more of the information fields. All
individuals, including ancestors if there are multiple ancestral generations, will be passed to this function.
Individuals that returns True will be extracted. Extracted individuals will be in their original ancestral gen-
erations and subpopulations, even if some subpopulations or generations are empty. An IndexError will be
raised if an index is out of bound but no error will be given if an invalid ID is encountered.

extractSubPops (subPops=ALL_AVAIL, rearrange=False)

Extract a list of (virtual) subpopulations from a population and create a new population. If rearrange is
False (default), structure and names of extracted subpopulations are kept although extracted subpopulations
can have fewer individuals if they are created from extracted virtual subpopulations. (e.g. it is possible
to extract all male individuals from a subpopulation using a SexSplitter()). If rearrange is True, each
(virtual) subpopulation in subPops becomes a new subpopulation in the extracted population in the order at
which they are specified. Because each virtual subpopulation becomes a subpopulation, this function could
be used, for example, to separate male and female individuals to two subpopulations (subPops=[(0,0),
(0,1)1). If overlapping (virtual) subpopulations are specified, individuals will be copied multiple times.
This function only extract individuals from the present generation.

genotype (subPop=[])
Return an editable array of the genotype of all individuals in a population (if subPop=[1, default), or indi-
viduals in a subpopulation subPop. Virtual subpopulation is unsupported.

indByID(id, ancGens=ALL_AVAIL, idField="ind_id")

Return a reference to individual with id stored in information field idField (default to ind_id). This function
by default search the present and all ancestral generations (ancGen=ALL_AVAIL), but you can limit the search
in specific generations if you know which generations to search (ancGens=[0,1] for present and parental
generations) or UNSPECIFIED to search only the current generation. If no individual with id is found, an
IndexError will be raised. A float id is acceptable as long as it rounds closely to an integer. Note that
this function uses a dynamic searching algorithm which tends to be slow. If you need to look for multiple
individuals from a static population, you might want to convert a population object to a pedigree object
and use function Pedigree.indByID.

1.1.

Individual, Population, pedigree and Simulator 7

indInfo (field, subPop=[])
Return the values (as a list) of information field field (by index or name) of all individuals (if subPop=I[1,
default), or individuals in a (virtual) subpopulation (if subPop=sp or (sp, vsp)).

individual(idx, subPop=[])
Return a refernce to individual idx in the population (if subPop=[1, default) or a subpopulation (if subPop=sp).
Virtual subpopulation is not supported. Note that a float idx is acceptable as long as it rounds closely to an
integer.

individuals (subPop=[])
Return an iterator that can be used to iterate through all individuals in a population (if subPop=[1, default),
or a (virtual) subpopulation (subPop=spID or (spID, vspID)). If you would like to iterate through multiple
subpopulations in multiple ancestral generations, please use function Population.allIndividuals().

lineage (subPop=[])
Return an editable array of the lineage of alleles for all individuals in a population (if subPop=[1, default),
or individuals in a subpopulation subPop. Virtual subpopulation is unsupported. This function returns
None for modules without lineage information.

mergeSubPops (subPops=ALL_AVAIL, name="", toSubPop=-1)
Merge subpopulations subPops. If subPops is ALL_AVAIL (default), all subpopulations will be merged.
subPops do not have to be adjacent to each other. They will all be merged to the subpopulation with the
smallest subpopulation ID, unless a subpopulation ID is specified using parameter toSubPop. Indexes of
the rest of the subpopulation may be changed. A new name can be assigned to the merged subpopulation
through parameter name (an empty name will be ignored). This function returns the ID of the merged
subpopulation.

mutants (subPop=[])
Return an iterator that iterate through mutants of all individuals in a population (if subPop=[1, default), or
individuals in a subpopulation subPop. Virtual subpopulation is unsupported. Each mutant is presented as
a tuple of (index, value) where index is the index of mutant (from 0 to totNumLoci()*ploidy()) so you will
have to adjust its value to check multiple alleles at a locus. This function ignores type of chromosomes so
non-zero alleles in unused alleles of sex and mitochondrial chromosomes are also iterated.

numSubPop ()
Return the number of subpopulations in a population. Return 1 if there is no subpopulation structure.

numVirtualSubPop()
Return the number of virtual subpopulations (VSP) defined by a VSP splitter. Return o if no VSP is
defined.

popSize(ancGen=-1)
Return the total number of individuals in all subpopulations of the current generation (default) or the an
ancestral generation ancGen.

push(pop)
Push population pop into the current population. Both populations should have the same genotypic struc-
ture. The current population is discarded if ancestralDepth (maximum number of ancestral generations
to hold) is zero so no ancestral generation can be kept. Otherise, the current population will become the
parental generation of pop. If ancGen of a population is positive and there are already ancGen ances-
tral generations (c.f. ancestralGens()), the greatest ancestral generation will be discarded. In any case,
Populationpop becomes invalid as all its individuals are absorbed by the current population.

recodeAlleles (alleles, loci=ALL_AVAIL, alleleNames=[])
Recode alleles at loci (can be a list of loci indexes or names, or all loci in a population (ALL_AVAIL)) to other
values according to parameter alleles. This parameter can a list of new allele numbers for alleles o, 1, 2, ...
(allele x will be recoded to newAlleles[x], x outside of the range of newAlleles will not be recoded, although
a warning will be given if DBG_WARNING is defined) or a Python function, which should accept one or both
parameters allele (existing allele) and locus (index of locus). The return value will become the new allele.
This function is intended to recode some alleles without listing all alleles in a list. It will be called once for
each existing allele so it is not possible to recode an allele to different alleles. A new list of allele names

Chapter 1. simuPOP Components

could be specified for these loci. Different sets of names could be specified for each locus if a nested list
of names are given. This function recode alleles for all subpopulations in all ancestral generations.

removeIndividuals(indexes=[], IDs=[], idField="ind_id", filter=None)

Remove individual(s) by absolute indexes (parameter index) or their IDs (parameter IDs), or using a filter
function (paramter filter). If indexes are used, only individuals at the current generation will be removed.
If IDs are used, all individuals with one of the IDs at information field idField (default to "ind_id") will
be removed. Although "ind_id" usually stores unique IDs of individuals, this function is frequently used
to remove groups of individuals with the same value at an information field. An IndexError will be raised
if an index is out of bound, but no error will be given if an invalid ID is specified. In the last case, a
user-defined function should be provided. This function should accept parameter "ind" or one or more of
the information fields. All individuals, including ancestors if there are multiple ancestral generations, will
be passed to this function. Individuals that returns True will be removed. This function does not affect
subpopulation structure in the sense that a subpopulation will be kept even if all individuals from it are
removed.

removeInfoFields (fields)
Remove information fields fields from a population.

removeLoci (loci=UNSPECIFIED, keep=UNSPECIFIED)
Remove loci (absolute indexes or names) and genotypes at these loci from the current population. Alter-
natively, a parameter keep can be used to specify loci that will not be removed.

removeSubPops (subPops)
Remove (virtual) subpopulation(s) subPops and all their individuals. This function can be used to remove
complete subpopulations (with shifted subpopulation indexes) or individuals belonging to virtual subpop-
ulations of a subpopulation. In the latter case, the subpopulations are kept even if all individuals have been
removed. This function only handles the present generation.

resize(sizes, propagate=False)
Resize population by giving new subpopulation sizes sizes. individuals at the end of some subpopulations
will be removed if the new subpopulation size is smaller than the old one. New individuals will be ap-
pended to a subpopulation if the new size is larger. Their genotypes will be set to zero (default), or be
copied from existing individuals if propagate is set to True. More specifically, if a subpopulation with
3 individuals is expanded to 7, the added individuals will copy genotypes from individual 1, 2, 3, and 1
respectively. Note that this function only resizes the current generation.

save (filename)
Save population to a file filename, which can be loaded by a global function loadPopulation(filename).

setAncestralDepth(depth)
Set the intended ancestral depth of a population to depth, which can be o (does not store any ancestral
generation), -1 (store all ancestral generations), and a positive number (store depth ancestral generations.
If there exists more than depth ancestral generations (if depth > 0), extra ancestral generations are removed.

setGenotype(geno, subPop=[])
Fill the genotype of all individuals in a population (if subPop=[1) or in a (virtual) subpopulation subPop
(if subPop=sp or (sp, vsp)) using a list of alleles geno. geno will be reused if its length is less than
subPopSize (subPop)*totNumLoci()*ploidy().

setIndInfo(values, field, subPop=[])
Set information field field (specified by index or name) of all individuals (if subPop=[], default), or indi-
viduals in a (virtual) subpopulation (subPop=sp or (sp, vsp)) to values. values will be reused if its length is
smaller than the size of the population or (virtual) subpopulation.

setInfoFields (fields, init=0)
Set information fields fields to a population and initialize them with value init. All existing information
fields will be removed.

setLineage(geno, subPop=[])
Fill the lineage of all individuals in a population (if subPop=[1) or in a (virtual) subpopulation subPop
(if subPop=sp or (sp, vsp)) using a list of IDs lineage. lineage will be reused if its length is less than

1.1.

Individual, Population, pedigree and Simulator 9

subPopSize(subPop)+totNumLoci()*ploidy (). This function returns directly for modules without lineage in-
formation.

setSubPopByIndInfo (field)
Rearrange individuals to their new subpopulations according to their integer values at information field
field (value returned by Individual::info(field)). individuals with negative values at this field will be
removed. Existing subpopulation names are kept. New subpopulations will have empty names.

setSubPopName (name, subPop)
Assign a name name to subpopulation subPop. Note that subpopulation names do not have to be unique.

setVirtualSplitter (splitter)
Set a VSP splitter to the population, which defines the same VSPs for all subpopulations. If different VSPs
are needed for different subpopulations, a CombinedSplitter can be used to make these VSPs available to
all subpopulations.

sortIndividuals (infoFields, reverse=False)
Sort individuals according to values at specified information fields (infoFields). Individuals will be sorted
at an increasing order unless reverse is set to true.

splitSubPop (subPop, sizes, names=[])
Split subpopulation subPop into subpopulations of given sizes, which should add up to the size of subpop-
ulation subPop or 1, in which case sizes are treated as proportions. If subPop is not the last subpopulation,
indexes of subpopulations after subPop are shifted. If subPop is named, the same name will be given to
all new subpopulations unless a new set of names are specified for these subpopulations. This function
returns the IDs of split subpopulations.

subPopBegin (subPop)
Return the index of the first individual in subpopulation subPop.

subPopByName (name)
Return the index of the first subpopulation with name name. An Indextrror will be raised if subpopula-
tions are not named, or if no subpopulation with name name is found. Virtual subpopulation name is not
supported.

subPopEnd (subPop)
Return the index of the last individual in subpopulation subPop plus 1, so that range (subPopBegin (subPop),
subPopEnd (subPop) can iterate through the index of all individuals in subpopulation subPop.

subPopIndPair (idx)
Return the subpopulation ID and relative index of an individual, given its absolute index idx.

subPopName (subPop)
Return the "spName - vspName" (virtual named subpopulation), "" (unnamed non-virtual subpopulation),
"spName" (named subpopulation) or "vspName" (unnamed virtual subpopulation), depending on whether
subpopulation is named or if subPop is virtual.

"nn

subPopNames ()
Return the names of all subpopulations (excluding virtual subpopulations). An empty string will be re-
turned for unnamed subpopulations.

subPopSizes (ancGen=-1)
Return the sizes of all subpopulations at the current generation (default) or specified ancestral generation
ancGen. Virtual subpopulations are not considered.

swap (rhs)
Swap the content of two population objects, which can be handy in some particular circumstances. For
example, you could swap out a population in a simulator.

updateInfoFieldsFrom(fields, pop, fromFields=[], ancGens=ALL_AVAIL)
Update information fields fields from fromFields of another population (or Pedigree) pop. Two populations
should have the same number of individuals. If fromFields is not specified, it is assumed to be the same as
fields. If ancGens is not ALL_AVAIL, only the specified ancestral generations are updated.

10

Chapter 1. simuPOP Components

useAncestralGen (idx)
Making ancestral generation idx (o for current generation, 1 for parental generation, 2 for grand-parental
generation, etc) the current generation. This is an efficient way to access Population properties of an
ancestral generation. useAncestralGen(0) should always be called afterward to restore the correct order of
ancestral generations.

vars (subPop=[])
Return variables of a population as a Python dictionary. If a valid subpopulation subPop is specified, a
dictionary vars()["subPop"][subPop] is returned. A valueError will be raised if key subPop does not exist
in vars(), or if key subPop does not exist in vars () ["subPop"].

virtualSplitter()
Return the virtual splitter associated with the population, None will be returned if there is no splitter.

asPedigree (idField="ind_id’, fatherField="father_id’, motherField="mother_id’)
Convert the existing population object to a pedigree. After this function pedigree function should magically
be usable for this function.

subPopSize (subPop=[], ancGen=-1)
Return the size of a subpopulation (subPopSize(sp)) or a virtual subpopulation (subPopSize([sp, vspl))
in the current generation (default) or a specified ancestral generation ancGen. If no subpop is given, it
is the same as popSize(ancGen). Population and virtual subpopulation names can be used. <group>2-
subpopsize</grouplociList()>

allIndividuals(subPops=ALL_AVAIL, ancGens=True)
Return an iterator that iterat through all (virtual) subpopulations in all ancestral generations. A list of (vir-
tual) subpopulations (*subPops*) and a list of ancestral generations (*ancGens*, can be a single number)
could be specified to iterate through only selected subpopulation and generations. Value “ALL_AVAIL*
is acceptable in the specification of “sp* and/or “vsp* in specifying a virtual subpopulation “(sp, vsp)* for
the iteration through all or specific virtual subpopulation in all or specific subpopulations.

evolve(initOps=[], preOps=[], matingScheme=MatingScheme(), postOps=[], finalOps=[], gen=-1, dryrun=False)
Evolve the current population *gen* generations using mating scheme *matingScheme* and operators
initOps (applied before evolution), *preOps* (applied to the parental population at the beginning of each
life cycle), *postOps* (applied to the offspring population at the end of each life cycle) and *finalOps*
(applied at the end of evolution). More specifically, this function creates a *Simulator* using the current
population, call its *evolve* function using passed parameters and then replace the current population with
the evolved population. Please refer to function “Simulator.evolve* for more details about each parameter.

1.1.4 Class Pedigree

The pedigree class is derived from the population class. Unlike a population class that emphasizes on individual
properties, the pedigree class emphasizes on relationship between individuals. An unique ID for all individuals is
needed to create a pedigree object from a population object. Compared to the Population class, a Pedigree object
is optimized for access individuals by their IDs, regardless of population structure and ancestral generations. Note
that the implementation of some algorithms rely on the fact that parental IDs are smaller than their offspring because
individual IDs are assigned sequentially during evolution. Pedigrees with manually assigned IDs should try to obey
such a rule.

class pedigree (pop, loci=[], infoFields=[], ancGens=ALL_AVAIL, idField="ind_id", fatherField="father_id", moth-

erField="mother_id", stealPop=False)
Create a pedigree object from a population, using a subset of loci (parameter loci, can be a list of loci indexes,

names, or ALL_AVAIL, default to no locus), information fields (parameter infoFields, default to no information
field besides idField, fatherField and motherField), and ancestral generations (parameter ancGens, default to all
ancestral generations). By default, information field father_id (parameter fatherField) and mother_id (parameter
motherField) are used to locate parents identified by ind_id (parameter idField), which should store an unique

1.1. Individual, Population, pedigree and Simulator 11

ID for all individuals. Multiple individuls with the same ID are allowed and will be considered as the same
individual, but a warning will be given if they actually differ in genotype or information fields. Operators
IdTagger and PedigreeTagger are usually used to assign such IDs, although function sampling.indexToID could
be used to assign unique IDs and construct parental IDs from index based relationship recorded by operator
ParentsTagger. A pedigree object could be constructed with one or no parent but certain functions such as
relative tracking will not be available for such pedigrees. In case that your are no longer using your population
object, you could steal the content from the population by setting stealPop to True.

clone()
Create a cloned copy of a Pedigree.

identifyAncestors (IDs=ALL_AVAIL, subPops=ALL_AVAIL, ancGens=ALL_AVAIL)

If a list of individuals (IDs) is given, this function traces backward in time and find all ancestors of these
individuals. If IDs is ALL_AVAIL, ancestors of all individuals in the present generation will be located. If a
list of (virtual) subpopulations (subPops) or ancestral geneartions (ancGens) is given, the search will be
limited to individuals in these subpopulations and generations. This could be used to, for example, find all
fathers of IDs. This function returns a list of IDs, which includes valid specified IDs. Invalid IDs will be
silently ignored. Note that parameters subPops and ancGens will limit starting IDs if IDs is set to ALL_AVAIL,
but specified IDs will not be trimmed according to these parameters.

identifyFamilies (pedField="", subPops=ALL_AVAIL, ancGens=ALL_AVAIL)
This function goes through all individuals in a pedigree and group related individuals into families. If
an information field pedField is given, indexes of families will be assigned to this field of each family
member. The return value is a list of family sizes corresponding to families 0, 1, 2, ... etc. If a list of
(virtual) subpopulations (parameter subPops) or ancestral generations are specified (parameter ancGens),
the search will be limited to individuals in these subpopulations and generations.

identify0ffspring(IDs=[], subPops=ALL_AVAIL, ancGens=ALL_AVAIL)
This function traces forward in time and find all offspring of individuals specified in parameter IDs. If a
list of (virtual) subpopulations (subPops) or ancestral geneartions (ancGens) is given, the search will be
limited to individuals in these subpopulations and generations. This could be used to, for example, find all
male offspring of IDs. This function returns a list of IDs, which includes valid starting /Ds. Invalid IDs are
silently ignored. Note that parameters subPops and ancGens will limit search result but will not be used to
trim specified IDs.

indByID(id)
Return a reference to individual with id. An IndexError will be raised if no individual with id is found. An
float id is acceptable as long as it rounds closely to an integer.

individualsWithRelatives (infoFields, sex=[], affectionStatus=[], subPops=ALL_AVAIL, ancGens=ALL_AVAIL)
Return a list of IDs of individuals who have non-negative values at information fields infoFields. Ad-
ditional requirements could be specified by parameters sex and affectionStatus. sex can be ANY_SEX (de-
fault), MALE_ONLY, FEMALE_ONLY, SAME_SEX or OPPOSITE_SEX, and affectionStatus can be AFFECTED, UNAFFECTED Or
ANY_AFFECTION_STATUS (default). This function by default check all individuals in all ancestral generations,
but you could limit the search using parameter subPops (a list of (virtual) subpopulations) and ances-
tral generations ancGens. Relatives fall out of specified subpopulations and ancestral generaions will be
considered invalid.

locateRelatives(relType, resultFields=[], sex=ANY_SEX, affectionStatus=ANY_AFFECTION_STATUS,

Gens=ALL_AVAIL)
This function locates relatives (of type relType) of each individual and store their IDs in information fields

relFields. The length of relFields determines how many relatives an individual can have.
Parameter relType specifies what type of relative to locate, which can be
o5SPoUSE locate spouses with whom an individual has at least one common offspring.
®0QUTBRED_SPOUSE locate non-slibling spouses, namely spouses with no shared parent.
o0FFSPRING all offspring of each individual.

®COMMON_OFFSPRING common offspring between each individual and its spouse (located by SPOUSE or
OUTBRED_SPOUSE). relFields should consist of an information field for spouse and m-1 fields for offspring
where m is the number of fields.

12

Chapter 1. simuPOP Components

anc-

®FULLSIBLING siblings with common father and mother,
®SIBLING siblings with at least one common parent.

Optionally, you can specify the sex and affection status of relatives you would like to locate, using parame-
ters sex and affectionStatus. sex can be ANY_SEX (default), MALE_ONLY, FEMALE_ONLY, SAME_SEX Or OPPOSITE SEX,
and affectionStatus can be AFFECTED, UNAFFECTED Oor ANY_AFFECTION_STATUS (default). Only relatives with
specified properties will be located.

This function will by default go through all ancestral generations and locate relatives for all individuals.
This can be changed by setting parameter ancGens to certain ancestral generations you would like to
process.

save(filename, infoFields=[], loci=[])

Save a pedigree to file filename. This function goes through all individuals of a pedigree and outputs in
each line the ID of individual, IDs of his or her parents, sex (‘M’ or 'F’), affection status (*A’ or 'U’),
values of specified information fields infoFields and genotypes at specified loci (parameter loci, which
can be a list of loci indexes, names, or ALL_AVAIL). Allele numbers, instead of their names are outputed.
Two columns are used for each locus if the population is diploid. This file can be loaded using function
loadPedigree although additional information such as names of information fields need to be specified.
This format differs from a .ped file used in some genetic analysis software in that there is no family ID and
IDs of all individuals have to be unique. Note that parental IDs will be set to zero if the parent is not in the
pedigree object. Therefore, the parents of individuals in the top-most ancestral generation will always be
Zero.

traceRelatives (fieldPath, sex=[], affectionStatus=[], resultFields=[], ancGens=ALL_AVAIL)
Trace a relative path in a population and record the result in the given information fields resultFields. This
function is used to locate more distant relatives based on the relatives located by function locateRelatives.
For example, after siblings and offspring of all individuals are located, you can locate mother’s sibling’s
offspring using a relative path, and save their indexes in each individuals information fields resultFields.
A relative path consits of a fieldPath that specifies which information fields to look for at each step,
a sex specifies sex choices at each generation, and a affectionStatus that specifies affection status at each
generation. fieldPath should be a list of information fields, sex and affectionStatus are optional. If specified,
they should be a list of ANY_SEX, MALE_ONLY, FEMALE_ONLY, SAME_SEX and OppsiteSex for parameter sex, and a
list of UNAFFECTED, AFFECTED and ANY_AFFECTION_STATUS for parameter affectionStatus.
For exannple,if fieldPath = [[’'father_id’, ’'mother_id’], [’sibl’, ’sib2’], [’offl’, 'off2’]], and sex
= [ANY_SEX, MALE_ONLY, FEMALE_ONLY1, this function will locate father_id and mother_id for each individual,
find all individuals referred by father_id and mother_id, find informaton fields sibl and sib2 from these
parents and locate male individuals referred by these two information fields. Finally, the information fields
offl and off2 from these siblings are located and are used to locate their female offspring. The results are
father or mother’s brother’s daughters. Their indexes will be saved in each individuals information fields
resultFields. If a list of ancestral generations is given in parameter ancGens is given, only individuals in
these ancestral generations will be processed.

asPopulation()
Convert the existing pedigree object to a population. This function will behave like a regular population
after this function call.

1.1.5 Class Simulator

A simuPOP simulator is responsible for evolving one or more populations forward in time, subject to various operators.
Populations in a simulator are created from one or more replicates of specified populations. A number of functions are
provided to access and manipulate populations, and most importantly, to evolve them.

class simulator(pops, rep=1, stealPops=True)
Create a simulator with rep (default to 1) replicates of populations pops, which is a list of populations although a
single population object is also acceptable. Contents of passed populations are by default moved to the simulator
to avoid duplication of potentially large population objects, leaving empty populations behind. This behavior
can be changed by setting stealPops to False, in which case populations are copied to the simulator.

1.1. Individual, Population, pedigree and Simulator 13

add (pop, stealPop=True)
Add a population pop to the end of an existing simulator. This function by default moves pop to the
simulator, leaving an empty population for passed population object. If steal is set to False, the population
will be copied to the simulator, and thus unchanged.

clone()
Clone a simulator, along with all its populations. Note that Python assign statement simul = simu only
creates a symbolic link to an existing simulator.

__cmp_—(rhs)
A Pyton function used to compare the simulator objects Note that mating schemes are not tested.

dvars(rep, subPop=[])
Return a wrapper of Python dictionary returned by vars(rep, subPop) so that dictionary keys can be ac-
cessed as attributes.

evolve(initOps=[], preOps=[], matingScheme=MatingScheme, postOps=[], finalOps=[], gen=-1, dryrun="False)
Evolve all populations gen generations, subject to several lists of operators which are applied at different
stages of an evolutionary process. Operators initOps are applied to all populations (subject to applicability
restrictions of the operators, imposed by the rep parameter of these operators) before evolution. They are
used to initialize populations before evolution. Operators finalOps are applied to all populations after the
evolution.

Operators preOps, and postOps are applied during the life cycle of each generation. These operators can be
applied at all or some of the generations, to all or some of the evolving populations, depending the begin,
end, step, at and reps parameters of these operators. These operators are applied in the order at which they
are specified. populations in a simulator are evolved one by one. At each generation, operators preOps
are applied to the parental generations. A mating scheme is then used to populate an offspring generation.
For each offspring, his or her sex is determined before during-mating operators of the mating scheme are
used to transmit parental genotypes. After an offspring generation is successfully generated and becomes
the current generation, operators postOps are applied to the offspring generation. If any of the preOps
and postOps fails (return False), the evolution of a population will be stopped. The generation number of
a population, which is the variable "gen" in each populations local namespace, is increased by one if an
offspring generation has been successfully populated even if a post-mating operator fails. Another variable
“rep" will also be set to indicate the index of each population in the simulator. Note that populations in a
simulator does not have to have the same generation number. You could reset a population’s generation
number by changing this variable.

Parameter gen can be set to a non-negative number, which is the number of generations to evolve. If a
simulator starts at the beginning of a generation g (for example 0), a simulator will stop at the beginning
(instead of the end) of generation g + gen (for example gen). If gen is negative (default), the evolution will
continue indefinitely, until all replicates are stopped by operators that return False at some point (these
operators are called terminators). At the end of the evolution, the generations that each replicates have
evolved are returned. Note that finalOps are applied to all applicable population, including those that have
stopped before others.

If parameter dryrun is set to True, this function will print a description of the evolutionary process generated
by function describeEvolProcess() and exits.

extract(rep)
Extract the rep-th population from a simulator. This will reduce the number of populations in this simulator
by one.

numRep ()
Return the number of replicates.

population(rep)
Return a reference to the rep-th population of a simulator. The reference will become invalid once the
simulator starts evolving or becomes invalid (removed). If an independent copy of the population is needed,
you can use population.clone() to create a cloned copy or simulator.extract() to remove the population
from the simulator.

14 Chapter 1. simuPOP Components

populations()
Return a Python iterator that can be used to iterate through all populations in a simulator.

vars (rep, subPop=[])
Return the local namespace of the rep-th population, equivalent to x.Population(rep).vars(subPop).

1.2 Virtual splitters

1.2.1 Class BaseVspSplitter

This class is the base class of all virtual subpopulation (VSP) splitters, which provide ways to define groups of individ-
uals in a subpopulation who share certain properties. A splitter defines a fixed number of named VSPs. They do not
have to add up to the whole subpopulation, nor do they have to be distinct. After a splitter is assigned to a population,
many functions and operators can be applied to individuals within specified VSPs.

Each VSP has a name. A default name is determined by each splitter but you can also assign a name to each VSP. The
name of a VSP can be retrieved by function BaseVspSplitter.name() Or Population.subPopName().

Only one VSP splitter can be assigned to a population, which defined VSPs for all its subpopulations. If different
splitters are needed for different subpopulations, a CombinedSplitter can be used.

class BaseVspSplitter (names=[])
This is a virtual class that cannot be instantiated.

clone()
All VSP splitter defines a clone() function to create an identical copy of itself.

name (Vsp)
Return the name of VSP vsp (an index between 6 and numVvirtualSubPop()).

numVirtualSubPop()
Return the number of VSPs defined by this splitter.

vspByName (name)
Return the index of a virtual subpopulation from its name. If multiple virtual subpopulations share the
same name, the first vsp is returned.

1.2.2 Class SexSplitter

This splitter defines two VSPs by individual sex. The first VSP consists of all male individuals and the second VSP
consists of all females in a subpopulation.

class sexSplitter(names=/[])
Create a sex splitter that defines male and female VSPs. These VSPs are named Male and Female unless a new
set of names are specified by parameter names.

name (Vsp)
Return "Matle" if vsp=0 and "Female" otherwise, unless a new set of names are specified.

numVirtualSubPop()
Return 2.

1.2.3 Class AffectionSplitter

This class defines two VSPs according individual affection status. The first VSP consists of unaffected invidiauls and
the second VSP consists of affected ones.

1.2. Virtual splitters 15

class AffectionSplitter (names=/[])
Create a splitter that defined two VSPs by affection status.These VSPs are named Unaffected and Affected unless
a new set of names are specified by parameter names.

name (Vsp)
Return "unaffected" if vsp=0 and "Affected" if vsp=1, unless a new set of names are specified.

numVirtualSubPop()
Return 2.

1.2.4 Class InfoSplitter

This splitter defines VSPs according to the value of an information field of each indivdiual. A VSP is defined either
by a value or a range of values.

class Infosplitter(field, values=[], cutoff=[], ranges=[], names=[])

Create an infomration splitter using information field field. If parameter values is specified, each item in this
list defines a VSP in which all individuals have this value at information field field. If a set of cutoff values are
defined in parameter cutoff, individuals are grouped by intervals defined by these cutoff values. For example,
cutoff=[1,2] defines three VSPs with v < 1,1 <= v < 2 and v >=2 where v is the value of an individual at infor-
mation field field. If parameter ranges is specified, each range defines a VSP. For example, ranges=[[1, 3], [2,
511 defines two VSPs with 1 <= v < 3 and 2 <= 3 < 5. Of course, only one of the parameters values, cutoff and
ranges should be defined, and values in cutoff should be distinct, and in an increasing order. A default set of
names are given to each VSP unless a new set of names is given by parameter names.

name (Vsp)
Return the name of a VSP vsp, which is field = value if VSPs are defined by values in parameter values,
or field < value (the first VSP), v1 <= field < v2 and field >= v (the last VSP) if VSPs are defined by
cutoff values. A user-specified name, if specified, will be returned instead.

numVirtualSubPop()
Return the number of VSPs defined by this splitter, which is the length parameter values or the length of
cutoff plus one, depending on which parameter is specified.

1.2.5 Class ProportionSplitter

This splitter divides subpopulations into several VSPs by proportion.

class ProportionSplitter (proportions=[], names=[])
Create a splitter that divides subpopulations by proportions, which should be a list of float numbers (between
0 and 1) that add up to 1. A default set of names are given to each VSP unless a new set of names is given by
parameter names.

name (Vsp)
Return the name of VSP vsp, which is "Prop p* where p=propotions[vsp]l. A user specified name will be
returned if specified.

numVirtualSubPop()
Return the number of VSPs defined by this splitter, which is the length of parameter proportions.

1.2.6 Class RangeSplitter

This class defines a splitter that groups individuals in certain ranges into VSPs.

class RangeSplitter(ranges, names=/[])
Create a splitter according to a number of individual ranges defined in ranges. For example,
RangeSplitter(ranges=[[0, 201, [40, 50]]) defines two VSPs. The first VSP consists of individuals o, 1, ...,
19, and the sceond VSP consists of individuals 40, 41, ..., 49. Note that a nested list has to be used even if only

16 Chapter 1. simuPOP Components

one range is defined. A default set of names are given to each VSP unless a new set of names is given by
parameter names.

name(Vsp)
Return the name of VSP vsp, which is "Range [a, b)" where [a, b) is range ranges[vsp]. A user specified
name will be returned if specified.

numVirtualSubPop()
Return the number of VSPs, which is the number of ranges defined in parameter ranges.

1.2.7 Class GenotypeSplitter

This class defines a VSP splitter that defines VSPs according to individual genotype at specified loci.

class GenotypeSplitter (loci, alleles, phase=False, names=[])
Create a splitter that defines VSPs by individual genotype at loci (can be indexes or names of one or more loci).
Each list in a list allele defines a VSP, which is a list of allowed alleles at these loci. If only one VSP is defined,
the outer list of the nested list can be ignored. If phase if true, the order of alleles in each list is significant. If
more than one set of alleles are given, Individuals having either of them is qualified.

For example, in a haploid population, loci=1, alleles=[0, 1] defines a VSP with individuals having allele o or
1atlocus 1, alleles=[[0, 1], [2]] defines two VSPs with indivdiuals in the second VSP having allele 2 at locus
1. If multiple loci are involved, alleles at each locus need to be defined. For example, VSP defined by loci=[o,
1], alleles=[0, 1, 1, 1] consists of individuals having alleles [o, 1] or [1, 1] atloci [0, 1].

In a haploid population, loci=1, alleles=[0, 1] defines a VSP with individuals having genotype [0, 1] or [1,
0] at locus 1. alleles[[0, 1], [2, 2]] defines two VSPs with indivdiuals in the second VSP having genotype
[2, 2] at locus 1. If phase is set to True, the first VSP will only has individuals with genotype [0, 1]. In the
multiple loci case, alleles should be arranged by haplotypes, for example, loci=[0, 1], alleles=[0, 0, 1, 1],
phase=True defines a VSP with individuals having genotype -0-0-, -1-1- atloci e and 1. If phase=False (default),
genotypes -1-1-, -0-0-, -0-1- and -1-0- are all allowed.

A default set of names are given to each VSP unless a new set of names is given by parameter names.

name (Vsp)
Return name of VSP vsp, which is "Genotype locl,loc2:genotype” as defined by parameters loci and alleles.
A user provided name will be returned if specified.

numVirtualSubPop()
Number of virtual subpops of subpopulation sp

1.2.8 Class CombinedSplitter

This splitter takes several splitters and stacks their VSPs together. For example, if the first splitter defines 3 VSPs and
the second splitter defines 2, the two VSPs from the second splitter become the fourth (index 3) and the fifth (index
4) VSPs of the combined splitter. In addition, a new set of VSPs could be defined as the union of one or more of the
original VSPs. This splitter is usually used to define different types of VSPs to a population.

class combinedSplitter (splitters=[], vspMap=[], names=[])

Create a combined splitter using a list of splitters. For example, CombinedSplitter([SexSplitter(),
AffectionSplitter()]) defines a combined splitter with four VSPs, defined by male (vsp 0), female (vsp 1),
unaffected (vsp 2) and affected individuals (vsp 3). Optionally, a new set of VSPs could be defined by parameter
vspMap. Each item in this parameter is a list of VSPs that will be combined to a single VSP. For example,
vspMap=[(0, 2), (1, 3)] in the previous example will define two VSPs defined by male or unaffected, and fe-
male or affected individuals. VSP names are usually determined by splitters, but can also be specified using
parameter names.

name (Vsp)
Return the name of a VSP vsp, which is the name a VSP defined by one of the combined splitters unless a
new set of names is specified. If a vspMap was used, names from different VSPs will be joined by "or".

1.2. Virtual splitters 17

numVirtualSubPop()
Return the number of VSPs defined by this splitter, which is the sum of the number of VSPs of all combined
splitters.

1.2.9 Class ProductSplitter

This splitter takes several splitters and take their intersections as new VSPs. For example, if the first splitter defines 3
VSPs and the second splitter defines 2, 6 VSPs will be defined by splitting 3 VSPs defined by the first splitter each to
two VSPs. This splitter is usually used to define finer VSPs from existing VSPs.

class ProductSplitter (splitters=[], names=[])

Create a product splitter using a list of splitters. For example, ProductSplitter([SexSplitter(),
AffectionSplitter()]) defines four VSPs by male unaffected, male affected, female unaffected, and female
affected individuals. VSP names are usually determined by splitters, but can also be specified using parameter
names.

name (VSp)

Return the name of a VSP vsp, which is the names of indivdual VSPs separated by a comma, unless a new
set of names is specified for each VSP.

numVirtualSubPop()
Return the number of VSPs defined by this splitter, which is the sum of the number of VSPs of all combined
splitters.

1.3 Mating Schemes

1.3.1 Class MatingScheme

This mating scheme is the base class of all mating schemes. It evolves a population generation by generation but does
not actually transmit genotype.

class MatingScheme (subPopSize=[])

Create a base mating scheme that evolves a population without transmitting genotypes. At each generation,
this mating scheme creates an offspring generation according to parameter subPopSize, which can be a list of
subpopulation sizes (or a number if there is only one subpopulation) or a Python function which will be called
at each generation, just before mating, to determine the subpopulation sizes of the offspring generation. The
function should be defined with one or both parameters of gen and pop where gen is the current generation
number and pop is the parental population just before mating. The return value of this function should be a
list of subpopulation sizes for the offspring generation. A single number can be returned if there is only one
subpopulation. The passed parental population is usually used to determine offspring population size from
parental population size but you can also modify this population to prepare for mating. A common practice is
to split and merge parental populations in this function so that you demographic related information and actions
could be implemented in the same function.

1.3.2 Class HomoMating

A homogeneous mating scheme that uses a parent chooser to choose parents from a prental generation, and an offspring
generator to generate offspring from chosen parents. It can be either used directly, or within a heterogeneous mating
scheme. In the latter case, it can be applied to a (virtual) subpopulation.

class HomoMating(chooser, generator, subPopSize=[], subPops=ALL_AVAIL, weight=0)
Create a homogeneous mating scheme using a parent chooser chooser and an offspring generator generator.

If this mating scheme is used directly in a simulator, it will be responsible for creating an offspring population
according to parameter subPopSize. This parameter can be a list of subpopulation sizes (or a number if there is

18 Chapter 1. simuPOP Components

only one subpopulation) or a Python function which will be called at each generation to determine the subpop-
ulation sizes of the offspring generation. Please refer to class MatingScheme for details about this parameter.

If this mating shcme is used within a heterogeneous mating scheme. Parameters subPops and weight are used
to determine which (virtual) subpopulations this mating scheme will be applied to, and how many offspring this
mating scheme will produce. Please refer to mating scheme HeteroMating for the use of these two parameters.

1.3.3 Class HeteroMating

A heterogeneous mating scheme that applies a list of homogeneous mating schemes to different (virtual) subpopula-
tions.

class HeteroMating (matingSchemes, subPopSize=[], shuffleOffspring=True)
Create a heterogeneous mating scheme that will apply a list of homogeneous mating schemes matingSchemes to
different (virtual) subpopulations. The size of the offspring generation is determined by parameter subPopSize,
which can be a list of subpopulation sizes or a Python function that returns a list of subpopulation sizes at each
generation. Please refer to class MatingScheme for a detailed explanation of this parameter.

Each mating scheme defined in matingSchemes can be applied to one or more (virtual) subpopulation. If pa-
rameter subPops is not specified, a mating scheme will be applied to all subpopulations. If a list of (virtual)
subpopulation is specified, the mating scheme will be applied to specific (virtual) subpopulations.

If multiple mating schemes are applied to the same subpopulation, a weight (parameter weight) can be given
to each mating scheme to determine how many offspring it will produce. The default for all mating schemes
are 0. In this case, the number of offspring each mating scheme produces is proportional to the size of its
parental (virtual) subpopulation. If all weights are negative, the numbers of offspring are determined by the
multiplication of the absolute values of the weights and their respective parental (virtual) subpopulation sizes.
If all weights are positive, the number of offspring produced by each mating scheme is proportional to these
weights. Mating schemes with zero weight in this case will produce no offspring. If both negative and positive
weights are present, negative weights are processed before positive ones.

If multiple mating schemes are applied to the same subpopulation, offspring produced by these mating schemes
are shuffled randomly. If this is not desired, you can turn off offspring shuffling by setting parameter shuffleOff-
spring to False.

1.3.4 Class conditionalMating

A conditional mating scheme that applies different mating schemes according to a condition (similar to operator
IfElse). The condition can be a fixed condition, an expression or a user-defined function, to determine which mating
scheme to be used.

class ConditionalMating(cond, ifMatingScheme, elseMatingScheme)
Create a conditional mating scheme that applies mating scheme ifMatingScheme if the condition cond is True, or
elseMatingScheme if cond is False. If a Python expression (a string) is given to parameter cond, the expression
will be evalulated in parental population’s local namespace. When a Python function is specified, it accepts
parameter pop for the parental population. The return value of this function should be True or False. Otherwise,
parameter cond will be treated as a fixed condition (converted to True or False) upon which ifMatingScheme or
elseMatingScheme will alway be applied.

1.3.5 Class PedigreeMating

This mating scheme evolves a population following an existing pedigree structure. If the Pedigree object has N an-
cestral generations and a present generation, it can be used to evolve a population for N generations, starting from the
topmost ancestral generation. At the k-th generation, this mating scheme produces an offspring generation accord-
ing to subpopulation structure of the N-k-1 ancestral generation in the pedigree object (e.g. producing the offspring
population of generation 0 according to the N-1 ancestral generation of the pedigree object). For each offspring, this

1.3. Mating Schemes 19

mating scheme copies individual ID and sex from the corresponing individual in the pedigree object. It then locates
the parents of each offspring using their IDs in the pedigree object. A list of during mating operators are then used to
transmit parental genotype to the offspring. The population being evolved must have an information field "ind_id’.

class PedigreeMating (ped, ops, idField="ind_id")
Creates a pedigree mating scheme that evolves a population according to Pedigree object ped. The evolved
population should contain individuals with ID (at information field idField, default to ’'ind_id’) that match
those individual in the topmost ancestral generation who have offspring. After parents of each individuals are
determined from their IDs, a list of during-mating operators ops are applied to transmit genotypes. The return
value of these operators are not checked.

parallelizable()
FIXME: No document

1.3.6 Class sequentialParentChooser

This parent chooser chooses a parent from a parental (virtual) subpopulation sequentially. Natural selection is not
considered. If the last parent is reached, this parent chooser will restart from the beginning of the (virtual) subpopula-
tion.

class sequentialParentChooser (sexChoice=ANY_SEX)
Create a parent chooser that chooses a parent from a parental (virtual) subpopulation sequentially. Parameter
choice can be ANY_SEX (default), MALE_ONLY and FEMALE_ONLY. In the latter two cases, only male or female individ-
uals are selected. A RuntimeError will be raised if there is no male or female individual from the population.

chooseParents ()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

1.3.7 Class SequentialParentsChooser

This parent chooser chooses two parents (a father and a mother) sequentially from their respective sex groups. Selec-
tion is not considered. If all fathers (or mothers) are exhausted, this parent chooser will choose fathers (or mothers)
from the beginning of the (virtual) subpopulation again.

class SsequentialParentsChooser()
Create a parent chooser that chooses two parents sequentially from a parental (virtual) subpopulation.

1.3.8 Class RandomParentChooser

This parent chooser chooses a parent randomly from a (virtual) parental subpopulation. Parents are chosen with or
without replacement. If parents are chosen with replacement, a parent can be selected multiple times. If individual
fitness values are assigned to individuals (stored in an information field selectionField (default to "fitness"), individ-
uals will be chosen at a probability proportional to his or her fitness value. If parents are chosen without replacement,
a parent can be chosen only once. An RuntimeError will be raised if all parents are exhausted. Natural selection is
disabled in the without-replacement case.

class RandomParentChooser (replacement=True, selectionField="fitness", sexChoice=ANY_SEX)
Create a random parent chooser that choose parents with or without replacement (parameter replacement, default
to True). If selection is enabled and information field selectionField exists in the passed population, the proba-
bility that a parent is chosen is proportional to his/her fitness value stored in selectionField. This parent chooser
by default chooses parent from all individuals (ANY_SEX), but it can be made to select only male (MALE_ONLY) or
female (FEMALE_ONLY) individuals by setting parameter sexChoice.

20 Chapter 1. simuPOP Components

chooseParents ()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

1.3.9 Class RandomParentsChooser

This parent chooser chooses two parents, a male and a female, randomly from a (virtual) parental subpopulation.
Parents are chosen with or without replacement from their respective sex group. If parents are chosen with replace-
ment, a parent can be selected multiple times. If individual fitness values are assigned (stored in information field
selectionField, default to "fitness", the probability that an individual is chosen is proportional to his/her fitness value
among all individuals with the same sex. If parents are chosen without replacement, a parent can be chosen only once.
An RuntimeError will be raised if all males or females are exhausted. Natural selection is disabled in the without-
replacement case.

class RandomParentsChooser (replacement=True, selectionField="fitness")
Create a random parents chooser that choose two parents with or without replacement (parameter replacement,
default to True). If selection is enabled and information field selectionField exists in the passed population, the
probability that a parent is chosen is proportional to his/her fitness value stored in selectionField.

chooseParents ()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

1.3.10 Class PolyParentsChooser

This parent chooser is similar to random parents chooser but instead of selecting a new pair of parents each time, one of
the parents in this parent chooser will mate with several spouses before he/she is replaced. This mimicks multi-spouse
mating schemes such as polygyny or polyandry in some populations. Natural selection is supported for both sexes.

class PolyParentsChooser (polySex=MALE, polyNum=1, selectionField="fitness")
Create a multi-spouse parents chooser where each father (if polySex is MALE) or mother (if polySex is FE-
MALE) has polyNum spouses. The parents are chosen with replacement. If individual fitness values are assigned
(stored to information field selectionField, default to "fitness"), the probability that an individual is chosen is
proportional to his/her fitness value among all individuals with the same sex.

chooseParents()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

1.3.11 Class combinedParentsChooser

This parent chooser accepts two parent choosers. It takes one parent from each parent chooser and return them as
father and mother. Because two parent choosers do not have to choose parents from the same virtual subpopulation,
this parent chooser allows you to choose parents from different subpopulations.

class CombinedParentsChooser (fatherChooser, motherChooser, allowSelfing=True)
Create a Python parent chooser using two parent choosers fatherChooser and motherChooser. It takes one
parent from each parent chooser and return them as father and mother. If two valid parents are returned, the
first valid parent (father) will be used for fatherChooser, the second valid parent (mother) will be used for
motherChooser. Although these two parent choosers are supposed to return a father and a mother respectively,
the sex of returned parents are not checked so it is possible to return parents with the same sex using this parents

1.3. Mating Schemes 21

chooser. This choose by default allows the selection of the same parents as father and mother (self-fertilization),
unless a parameter allowSelfing is used to disable it.

chooseParents()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

1.3.12 Class PyParentsChooser

This parent chooser accepts a Python generator function that repeatedly yields one or two parents, which can be
references to individual objects or indexes relative to each subpopulation. The parent chooser calls the generator
function with parental population and a subpopulation index for each subpopulation and retrieves parents repeatedly
using the iterator interface of the generator function.

This parent chooser does not support virtual subpopulation directly. However, because virtual subpopulations are
defined in the passed parental population, it is easy to return parents from a particular virtual subpopulation using
virtual subpopulation related functions.

class PyParentsChooser (generator)
Create a Python parent chooser using a Python generator function parentsGenerator. This function should
accept one or both of parameters pop (the parental population) and subPop (index of subpopulation) and return
the reference or index (relative to subpopulation) of a parent or a pair of parents repeatedly using the iterator
interface of the generator function.

chooseParents ()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

1.3.13 Class 0ffspringGenerator

An offspring generator generates offspring from parents chosen by a parent chooser. It is responsible for creating a
certain number of offspring, determinning their sex, and transmitting genotypes from parents to offspring.

class offspringGenerator (ops, numOffspring=1, sexMode=RANDOM_SEX)
Create a basic offspring generator. This offspring generator uses ops genotype transmitters to transmit genotypes
from parents to offspring.

A number of during-mating operators (parameter ops) can be used to, among other possible duties such as
setting information fields of offspring, transmit genotype from parents to offspring. This general offspring gen-
erator does not have any default during-mating operator but all stock mating schemes use an offspring generator
with a default operator. For example, a mendelian0ffspringGenerator is used by RandomMating to trasmit geno-
types. Note that applicability parameters begin, step, end, at and reps could be used in these operators but
negative population and generation indexes are unsupported.

Parameter numOffspring is used to control the number of offspring per mating event, or in another word the
number of offspring in each family. It can be a number, a Python function or generator, or a mode parameter
followed by some optional arguments. If a number is given, given number of offspring will be generated at each
mating event. If a Python function is given, it will be called each time when a mating event happens. When a
generator function is specified, it will be called for each subpopulation to provide number of offspring for all
mating events during the populating of this subpopulation. Current generation number will be passed to this
function or generator function if parameter "gen" is used in this function. In the last case, a tuple (or a list) in
one of the following forms can be given:

® (GEOMETRIC_DISTRIBUTION, p)
® (POISSON_DISTRIBUTION, p),p > 0

22 Chapter 1. simuPOP Components

® (BINOMIAL_DISTRIBUTION, p, N),0<p<=1,N>0
® (UNIFORM_DISTRIBUTION, a, b), 0 <=a<=b.

In this case, the number of offspring will be determined randomly following the specified statistical distributions.
Because families with zero offspring are silently ignored, the distribution of the observed number of offspring
per mating event (excluding zero) follows zero-truncated versions of these distributions.

Parameter numOffspring specifies the number of offspring per mating event but the actual surviving offspring
can be less than specified. More spefically, if any during-mating operator returns False, an offspring will be
discarded so the actually number of offspring of a mating event will be reduced. This is essentially how during-
mating selector works.

Parameter sexMode is used to control the sex of each offspring. Its default value is usually RANDOM_SEX
which assign MALE or FEMALE to each individual randomly, with equal probabilities. If NO_SEX is given, offspring
sex will not be changed. sexMode can also be one of

® (PROB_OF_MALES, p) where p is the probability of male for each offspring,

® (NUM_OF_MALES, n) where n is the number of males in a mating event. If n is greater than or equal to the
number of offspring in this family, all offspring in this family will be MALE.

® (NUM_OF_FEMALES, n) where n is the number of females in a mating event,

® (SEQUENCE_OF_SEX, s1, s2 ...) where s1, s2 etc are MALE or FEMALE. The sequence will be used for
each mating event. It will be reused if the number of offspring in a mating event is greater than the length
of sequence.

® (GLOBAL_SEQUENCE_OF_SEX, s1, s2, ...) where s1, s2 etc are MALE or FEMALE. The sequence will be
used across mating events. It will be reused if the number of offspring in a subpopulation is greater than
the length of sequence.

Finally, parameter sexMode accepts a function or a generator function. A function will be called whenever an
offspring is produced. A generator will be created at each subpopulation and will be used to produce sex for all
offspring in this subpopulation. No parameter is accepted.

1.3.14 Class Controlled0ffspringGenerator

This offspring generator populates an offspring population and controls allele frequencies at specified loci. At each
generation, expected allele frequencies at these loci are passed from a user defined allele frequency trajectory function.
The offspring population is populated in two steps. At the first step, only families with disease alleles are accepted
until until the expected number of disease alleles are met. At the second step, only families with wide type alleles
are accepted to populate the rest of the offspring generation. This method is described in detail in "Peng et al, (2007)
PLoS Genetics".

class ControlledoffspringGenerator (loci, alleles, freqFunc, ops=[], numOffspring=1, sexMode=RANDOM_SEX)

Create an offspring generator that selects offspring so that allele frequency at specified loci in the offspring
generation reaches specified allele frequency. At the beginning of each generation, expected allele frequency of
alleles at loci is returned from a user-defined trajectory function freqFunc. Parameter loci can be a list of loci
indexes, names, or ALL_AVAIL. If there is no subpopulation, this function should return a list of frequencies
for each locus. If there are multiple subpopulations, freqFunc can return a list of allele frequencies for all
subpopulations or combined frequencies that ignore population structure. In the former case, allele frequencies
should be arranged by locO_sp0, loc1_sp0, ... locO_spl, locl_spl, ..., and so on. In the latter case, overall
expected number of alleles are scattered to each subpopulation in proportion to existing number of alleles in
each subpopulation, using a multinomial distribution.

After the expected alleles are calculated, this offspring generator accept and reject families according to their
genotype at loci until allele frequecies reach their expected values. The rest of the offspring generation is then
filled with families without only wild type alleles at these loci.

This offspring generator is derived from class OffspringGenerator. Please refer to class OffspringGenerator for
a detailed description of parameters ops, numOffspring and sexMode.

1.3. Mating Schemes 23

1.4 Pre-defined mating schemes

1.4.1 Class CloneMating

A homogeneous mating scheme that uses a sequential parent chooser and a clone offspring generator.

class CloneMating (numOffspring=1, sexMode=None, ops=CloneGenoTransmitter(), subPopSize=[], sub-
Pops=ALL_AVAIL, weight=0, selectionField=None)
Create a clonal mating scheme that clones parents to offspring using a CloneGenoTransmitter. Please refer to
class 0ffspringGenerator for parameters ops and numOffspring, and to class HomoMating for parameters subPop-
Size, subPops and weight. Parameters sexMode and selectionField are ignored because this mating scheme
does not support natural selection, and CloneGenoTransmitter copies sex from parents to offspring. Note that
CloneGenoTransmitter by default also copies all parental information fields to offspring.

1.4.2 Class RandomSelection

A homogeneous mating scheme that uses a random single-parent parent chooser with replacement, and a clone off-
spring generator. This mating scheme is usually used to simulate the basic haploid Wright-Fisher model but it can also
be applied to diploid populations.

class RandomSelection (numOffspring=1, sexMode=None, ops=CloneGenoTransmitter(), subPopSize=[], sub-
Pops=ALL_AVAIL, weight=0, selectionField="fitness’)
Create a mating scheme that select a parent randomly and copy him or her to the offspring population. Please
refer to class RandomParentChooser for parameter selectionField, to class 0ffspringGenerator for parameters ops
and numOffspring, and to class HomoMating for parameters subPopSize, subPops and weight. Parameter sexMode
is ignored because clone0ffspringGenerator copies sex from parents to offspring.

1.4.3 Class RandomMating

A homogeneous mating scheme that uses a random parents chooser with replacement and a Mendelian offspring
generator. This mating scheme is widely used to simulate diploid sexual Wright-Fisher random mating.

class RandomMating (numOffspring=1, sexMode=RANDOM_SEX, ops=MendelianGenoTransmitter(), subPopSize=[],

subPops=ALL_AVAIL, weight=0, selectionField="fitness’)
Creates a random mating ssheme that selects two parents randomly and transmit genotypes according

to Mendelian laws. Please refer to class RandomParentsChooser for parameter selectionField, to class
0ffspringGenerator for parameters ops, sexMode and numOffspring, and to class HomoMating for parameters sub-
PopSize, subPops and weight.

1.4.4 Class MonogamousMating

A homogeneous mating scheme that uses a random parents chooser without replacement and a Mendelian offspring
generator. It differs from the basic random mating scheme in that each parent can mate only once so there is no
half-sibling in the population.

class MonogamousMating (numOffspring=1, sexMode=RANDOM_SEX, ops=MendelianGenoTransmitter(), subPop-

Size=[], subPops=ALL_AVAIL, weight=0, selectionField=None)
Creates a monogamous mating scheme that selects each parent only once. Please refer to class

0ffspringGenerator for parameters ops, sexMode and numOffspring, and to class HomoMating for parameters sub-
PopSize, subPops and weight. Parameter selectionField is ignored because this mating scheme does not support
natural selection.

24 Chapter 1. simuPOP Components

1.4.5 Class PolygamousMating

A homogeneous mating scheme that uses a multi-spouse parents chooser and a Mendelian offspring generator. It
differs from the basic random mating scheme in that each parent of sex polySex will have polyNum spouses.

class PolygamousMating (polySex=MALE, polyNum=1, numOffspring=1, sexMode=RANDOM_SEX,
ops=MendelianGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, se-

lectionField="fitness’)
Creates a polygamous mating scheme that each parent mates with multiple spouses. Please refer to class

PolyParentsChooser for parameters polySex, polyNum and selectionField, to class 0ffspringGenerator for param-
eters ops, sexMode and numOffspring, and to class HomoMating for parameters subPopSize, subPops and weight.

1.4.6 Class HaplodiploidMating

A homogeneous mating scheme that uses a random parents chooser with replacement and a haplodiploid offspring
generator. It should be used in a haplodiploid population where male individuals only have one set of homologous
chromosomes.

class HaplodiploidMating (numOffspring=1.0, sexMode=RANDOM_SEX, ops=HaplodiploidGenoTransmitter(), sub-

PopSize=[], subPops=ALL_AVAIL, weight=0, selectionField="fitness’)
Creates a mating scheme in haplodiploid populations. Please refer to class RandomParentsChooser for param-

eter selectionField, to class 0ffspringGenerator for parameters ops, sexMode and numOffspring, and to class
HomoMating for parameters subPopSize, subPops and weight.

1.4.7 Class SelfMating

A homogeneous mating scheme that uses a random single-parent parent chooser with or without replacement (param-
eter replacement) and a selfing offspring generator. It is used to mimic self-fertilization in certain plant populations.

class selfMating(replacement=True, numOffspring=1, sexMode=RANDOM_SEX, ops=SelfingGenoTransmitter(),

subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField="fitness’)
Creates a selfing mating scheme where two homologous copies of parental chromosomes are transmitted to

offspring according to Mendelian laws. Please refer to class RandomParentChooser for parameter replacement
and selectionField, to class 0ffspringGenerator for parameters ops, sexMode and numOffspring, and to class
HomoMating for parameters subPopSize, subPops and weight.

1.4.8 Class HermaphroditicMating

A hermaphroditic mating scheme that chooses two parents randomly from the population regardless of sex. The
parents could be chosen with or without replacement (parameter replacement). Selfing (if the same parents are chosen)
is allowed unless allowSelfing is set to False

class HermaphroditicMating (replacement=True, allowSelfing=True, numOffspring=1, sexMode=RANDOM _SEX,
ops=MendelianGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, se-

lectionField="fitness’)
Creates a hermaphroditic mating scheme where individuals can serve as father or mother, or both (self-

fertilization). Please refer to class CombinedParentsChooser for parameter allowSelfing“, to “RandomPar-
entChooser* for parameter *replacement and selectionField, to class 0ffspringGenerator for parameters ops,
sexMode and numOffspring, and to class HomoMating for parameters subPopSize, subPops and weight.

1.4. Pre-defined mating schemes 25

1.4.9 Class controlledRandomMating

A homogeneous mating scheme that uses a random sexual parents chooser with replacement and a controlled offspring
generator using Mendelian genotype transmitter. It falls back to a regular random mating scheme if there is no locus
to control or no trajectory is defined.

class ControlledRandomMating(loci=[], alleles=[], freqFunc=None, numOffspring=1, sexMode=RANDOM_SEX,
ops=MendelianGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0,

selectionField="fitness’)
Creates a random mating scheme that controls allele frequency at loci loci. At each generation, function

freqFunc will be called to called to obtain intended frequencies of alleles alleles at loci loci. The con-
trolled offspring generator will control the acceptance of offspring so that the generation reaches desired al-
lele frequencies at these loci. If loci is empty or freqgFunc is None, this mating scheme works identically to a
RandomMating scheme. Rationals and applications of this mating scheme is described in details in a paper Peng
et al, 2007 (PLoS Genetics). Please refer to class RandomParentsChooser for parameters selectionField, to class
ControlledoffspringGenerator for parameters loci, alleles, freqFunc, to class 0ffspringGenerator for parameters
ops, sexMode and numOffspring, and to class HomoMating for parameters subPopSize, subPops and weight.

1.5 Utility Classes

1.5.1 Class withArgs

This class wraps around a user-provided function and provides an attribute args so that simuPOP knows which param-
eters to send to the function. This is only needed if the function can not be defined with allowed parameters.

class withArgs (func, args)
Return a callable object that wraps around function func. Parameter args should be a list of parameter names.

1.5.2 Class withMode

This class wraps around a user-provided output string, function or file handle (acceptable by parameter output of
operators) so that simuPOP knows which mode the output should be written to. For example, if the output of the
operator is a binary compressed stream, WithMode(output, 'b’) could be used to tell the operators to output bytes
instead of string. This is most needed for Python 3 because files in Python 2 accepts string even if they are opened in
binary mode.

class withMode (output, mode=")
Return an object that wraps around output and tells simuPOP to output string in mode. This class currently only
support mode="" for text mode and mode="b" for binary output.

1.5.3 Class RNG

This random number generator class wraps around a number of random number generators from GNU Scientific
Library. You can obtain and change the RNG used by the current simuPOP module through the getRNG() function, or
create a separate random number generator and use it in your script.

class RNG (name=None, seed=0)
Create a RNG object using specified name and seed. If rng is not given, environmental variable GSL_RNG_TYPE
will be used if it is available. Otherwise, generator mt19937 will be used. If seed is not given, /dev/urandom,
/dev/random, or other system random number source will be used to guarantee that random seeds are used even
if more than one simuPOP sessions are started simultaneously. Names of supported random number generators
are available from moduleInfo()[’availableRNGs’].

26 Chapter 1. simuPOP Components

name ()
Return the name of the current random number generator.

randBinomial(#n, p)
Generate a random number following a binomial distribution with parameters n and p.

randChisq(nu)
Generate a random number following a Chi-squared distribution with nu degrees of freedom.

randExponential (mu)
Generate a random number following a exponential distribution with parameter mu.

randGamma(d, b)
Generate a random number following a gamma distribution with a shape parameters a and scale parameter
b.

randGeometric(p)
Generate a random number following a geometric distribution with parameter p.

randInt(n)
Return a random number in the range of [0, 1, 2, ... n-1]

randMultinomial (N, p)
Generate a random number following a multinomial distribution with parameters N and p (a list of proba-
bilities).

randNormal (mu, sigma)
Generate a random number following a normal distribution with mean mu and standard deviation sigma.

randPoisson (/i)
Generate a random number following a Poisson distribution with parameter mu.

randTruncatedBinomial(n, p)
Generate a positive random number following a zero-truncated binomial distribution with parameters n
and p.

randTruncatedPoisson (/1)
Generate a positive random number following a zero-truncated Poisson distribution with parameter mu.

randUniform()
Generate a random number following a rng_uniform [0, 1) distribution.

seed ()
Return the seed used to initialize the RNG. This can be used to repeat a previous session.

set(name=None, seed=0)
Replace the existing random number generator using RNGname with seed seed. If seed is 0, a random
seed will be used. If name is empty, use the existing RNG but reset the seed.

1.5.4 Class WeightedSampler

A random number generator that returns e, 1, ..., k-1 with probabilites that are proportional to their weights. For exam-
ple, a weighted sampler with weights 4, 3, 2 and 1 will return numbers o, 1, 2 and 3 with probabilities 0.4, 0.3, 0.2 and
0.1, respectively. If an additional parameter N is specified, the weighted sampler will return exact proportions of num-
bers if N numbers are returned. The version without additional parameter is similar to the sample(prob, replace=FALSE)
function of the R statistical package.

class weightedSampler (weights=[], N=0)
Creates a weighted sampler that returns o, 1, ... k-1 when a list of k weights are specified (weights). weights do
not have to add up to 1. If a non-zero N is specified, exact proportions of numbers will be returned in N returned
numbers.

draw()
Returns a random number between 0 and k-1 with probabilities that are proportional to specified weights.

1.5. Utility Classes 27

drawSamples (n=1)
Returns a list of » random numbers

1.6 Global functions

1.6.1 Function closeOutput

n
)

closeOutput (output=
Output files specified by '>’ are closed immediately after they are written. Those specified by '>>' and ’>>>’
are closed by a simulator after Simulator.evolve(). However, these files will be kept open if the operators are
applied directly to a population using the operators’ function form. In this case, function closeOutput can be
used to close a specific file output, and close all unclosed files if output is unspecified. An exception will be
raised if output does not exist or it has already been closed.

1.6.2 Function describeEvolProcess

describeEvolProcess (initOps=[], preOps=[], matingScheme=MatingScheme, postOps=[], finalOps=[], gen=-1, num-
Rep=1)
This function takes the same parameters as Simulator.evolve and output a description of how an evolutionary
process will be executed. It is recommended that you call this function if you have any doubt how your simula-
tion will proceed.

1.6.3 Function loadPopulation

loadPopulation (file)
Load a population from a file saved by Population::save().

1.6.4 Function loadPedigree

loadPedigree (file, idField="ind_id", fatherField="father_id", motherField="mother_id", ploidy=2, loci=[], chrom-
Types=[], lociPos=[], chromNames=[], alleleNames=[], lociNames=[], subPopNames=[], in-

foFields=[])
Load a pedigree from a file saved by operator PedigreeTagger or function Pedigree.save. This file contains the

ID of each offspring and their parent(s) and optionally sex ("M’ or ’F’), affection status (A’ or *U’), values of
information fields and genotype at some loci. IDs of each individual and their parents are loaded to information
fields idField, fatherField and motherField. Only numeric IDs are allowed, and individual IDs must be unique
across all generations.

Because this file does not contain generation information, generations to which offspring belong are determined
by the parent-offspring relationships. Individuals without parents are assumed to be in the top-most ancestral
generation. This is the case for individuals in the top-most ancestral generation if the file is saved by function
Pedigree.save(), and for individuals who only appear as another individual’s parent, if the file is saved by oper-
ator pedigreeTagger. The order at which offsprng is specified is not important because this function essentially
creates a top-most ancestral generation using IDs without parents, and creates the next generation using off-
spring of these parents, and so on until all generations are recreated. That is to say, if you have a mixture of
pedigrees with different generations, they will be lined up from the top most ancestral generation.

If individual sex is not specified, sex of of parents are determined by their parental roles (father or mother)
but the sex of individuals in the last generation can not be determined so they will all be males. If additional
information fields are given, their names have to be specified using parameter infoFields. The rest of the columns
are assued to be alleles, arranged ploidy consecutive columns for each locus. If paraemter loci is not specified,
the number of loci is calculated by number of columns divided by ploidy (default to 2). All loci are assumed

28 Chapter 1. simuPOP Components

to be on one chromosome unless parameter loci is used to specified number of loci on each chromosome.
Additional parameters such as ploidy, chromTypes, lociPos, chromNames, alleleNames, lociNames could be
used to specified the genotype structured of the loaded pedigree. Please refer to class Population for details
about these parameters.

1.6.5 Function moduleInfo

moduleInfo()
Return a dictionary with information regarding the currently loaded simuPOP module. This dictionary has the
following keys:
erevision: revision number.
eversion: simuPOP version string.
eoptimized: Is this module optimized (True or False).
ealleleType: Allele type of the module (short, long or binary).

emaxAllele: the maximum allowed allele state, which is 1 for binary modules, 255 for short modules and
65535 for long modules.

ecompiler: the compiler that compiles this module.

edate: date on which this module is compiled.

epython: version of python.

eplatform: platform of the module.

ewordsize: size of word, can be either 32 or 64.

ealleleBits: the number of bits used to store an allele

emaxNumSubPop: maximum number of subpopulations.

emaxIndex: maximum index size (limits population size * total number of marker).

edebug: A dictionary with debugging codes as keys and the status of each debugging code (True or False)
as their values.

1.6.6 Function getRNG

getRNG()
Return the currently used random number generator

1.6.7 Function setRNG

setRNG (name=", seed=0)
Set random number generator. This function is obsolete but is provided for compatibility purposes. Please use
setOptions instead

1.6.8 Function setOptions

setOptions (numThreads=-1, name=None, seed=0)
First argument is to set number of thread in openMP. The number of threads can be be positive, integer (number
of threads) or 0, which implies all available cores, or a number set by environmental variable OMP_NUM_THREADS.
Second and third argument is to set the type or seed of existing random number generator using RNGname with
seed. If using openMP, it sets the type or seed of random number generator of each thread.

1.6. Global functions 29

1.6.9 Function turnonDebug

"
)

turnOnDebug(code=
Set debug code code. More than one code could be specified using a comma separated string. Name of available
codes are available from moduleInfo()[’debug’].keys().

1.6.10 Function turn0offDebug
turnoffbebug(code="DBG_ALL")

Turn off debug code code. More than one code could be specified using a comma separated string. Default to
turn off all debug codes.

30 Chapter 1. simuPOP Components

Chapter 2

Operator References

2.1 Base class for all operators

2.1.1 Class BaseOperator

Operators are objects that act on populations. They can be applied to populations directly using their function forms,
but they are usually managed and applied by a simulator. In the latter case, operators are passed to the evolve function
of a simulator, and are applied repeatedly during the evolution of the simulator.

The BaseOperator class is the base class for all operators. It defines a common user interface that specifies at which
generations, at which stage of a life cycle, to which populations and subpopulations an operator is applied. These
are achieved by a common set of parameters such as begin, end, step, at, stage for all operators. Note that a specific
operator does not have to honor all these parameters. For example, a Recombinator can only be applied during mating
so it ignores the stage parameter.

An operator can be applied to all or part of the generations during the evolution of a simulator. At the beginning of an
evolution, a simulator is usually at the beginning of generation o. If it evolves 10 generations, it evolves generations 0,
1, ,,,., and 9 (10 generations) and stops at the begging of generation 10. A negative generation number a has generation
number 10 + a, with -1 referring to the last evolved generation 9. Note that the starting generation number of a
simulator can be changed by its setGen() member function.

Output from an operator is usually directed to the standard output (sys.stdout). This can be configured using a output
specification string, which can be ” for no output, ’'>’ standard terminal output (default), a filename prefixed by one
or more '>’ characters or a Python expression indicated by a leading exclamation mark (’!expr’). In the case of
'>filename’ (or equivalently ’filename’), the output from an operator is written to this file. However, if two operators
write to the same file filename, or if an operator writes to this file more than once, only the last write operation will
succeed. In the case of '>>filename’, file filename will be opened at the beginning of the evolution and closed at the
end. Outputs from multiple operators are appended. >>>filename works similar to >>filename but filename, if it already
exists at the beginning of an evolutionary process, will not be cleared. If the output specification is prefixed by an
exclamation mark, the string after the mark is considered as a Python expression. When an operator is applied to a
population, this expression will be evaluated within the population’s local namespace to obtain a population specific
output specification. As an advanced feature, a Python function can be assigned to this parameter. Output strings will
be sent to this function for processing. Lastly, if the output stream only accept a binary output (e.g. a gzip stream),
WithMode (output, ’'b’) should be used to let simuPOP convert string to bytes before writing to the output.
class BaseOperator (output, begin, end, step, at, reps, subPops, infoFields)

The following parameters can be specified by all operators. However, an operator can ignore some parameters

and the exact meaning of a parameter can vary.

output: A string that specifies how output from an operator is written, which can be ” (no output), ’> (standard
output), ’'filename’ prefixed by one or more *>’, or an Python expression prefixed by an exclamation mark

31

("texpr’). If a file object, or any Python object with a write function is provided, the output will be write
to this file. Alternatively, a Python function or a file object (any Python object with a write function) can
be given which will be called with a string of output content. A global function withMode can be used to let
simuPOP output bytes instead of string.

begin: The starting generation at which an operator will be applied. Default to 8. A negative number is inter-
preted as a generation counted from the end of an evolution (-1 being the last evolved generation).

end: The last generation at which an operator will be applied. Default to -1, namely the last generation.
step: The number of generations between applicable generations. Default to 1.

at: Alist of applicable generations. Parameters begin, end, and step will be ignored if this parameter is specified.
A single generation number is also acceptable.

reps: A list of applicable replicates. A common default value ALL_AVAIL is interpreted as all replicates in a
simulator. Negative indexes such as -1 (last replicate) is acceptable. rep=idx can be used as a shortcut for
rep=[idx].

subPops: A list of applicable (virtual) subpopulations, such as subPops=[spl, sp2, (sp2, vspl)]. subPops=[spl]
can be simplied as subPops=spl. Negative indexes are not supported. A common default value (ALL_AVAIL)
of this parameter reprents all subpopulations of the population being aplied. Suport for this parameter vary
from operator to operator and some operators do not support virtual subpopulations at all. Please refer to
the reference manual of individual operators for their support for this parameter.

infoFields: A list of information fields that will be used by an operator. You usually do not need to specify this
parameter because operators that use information fields usually have default values for this parameter.

apply (pop)

Apply an operator to population pop directly, without checking its applicability.
clone()

Return a cloned copy of an operator. This function is available to all operators.

2.2 Initialization

2.2.1 Class InitSex

This operator initializes sex of individuals, either randomly or use a list of sexes.

class InitSex(maleFreq=0.5, maleProp=-1, sex=[], begin=0, end=-1, step=1I1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create an operator that initializes individual sex to MALE or FEMALE. By default, it assigns sex to individuals
randomly, with equal probability of having a male or a female. This probabability can be adjusted through
parameter maleFreq or be made to exact proportions by specifying parameter maleProp. Alternatively, a fixed
sequence of sexes can be assigned. For example, if sex=[MALE, FEMALE], individuals will be assigned MALE and
FEMALE successively. Parameter maleFreq or maleProp are ignored if sex is given. If a list of (virtual) subpop-
ulation is specified in parameter subPop, only individuals in these subpopulations will be initialized. Note that
the sex sequence, if used, is assigned repeatedly regardless of (virtual) subpopulation boundaries so that you can
assign sex to all individuals in a population.

2.2.2 C(Class InitInfo

This operator initializes given information fields with a sequence of values, or a user-provided function such as

random. random.

class InitInfo(values, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
Create an operator that initialize individual information fields infoFields using a sequence of values or a user-
defined function. If a list of values are given, it will be used sequentially for all individuals. The values will

32 Chapter 2. Operator References

be reused if its length is less than the number of individuals. The values will be assigned repeatedly regardless
of subpopulation boundaries. If a Python function is given, it will be called, without any argument, whenever
a value is needed. If a list of (virtual) subpopulation is specified in parameter subPop, only individuals in these
subpopulations will be initialized.

2.2.3 Class InitGenotype

This operator assigns alleles at all or part of loci with given allele frequencies, proportions or values. This operator
initializes all chromosomes, including unused genotype locations and customized chromosomes.

class InitGenotype(freq=/[], genotype=[], prop=[], haplotypes=[], loci=ALL_AVAIL, ploidy=ALL_AVAIL, begin=0,
end=1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

This function creates an initializer that initializes individual genotypes with random alleles or haplotypes with
specified frequencies (parameter freq) or proportions (parameter prop). If parameter haplotypes is not specified,
freq specifies the allele frequencies of alleles o, 1, ... respectively. Alternatively, you can use parameter prop to
specified the exact proportions of alleles o, 1, ..., although alleles with small proportions might not be assigned
at all. Values of parameter prob or prop should add up to 1. In addition to a vector, parameter prob and prop can
also be a function that accepts optional parameters loc, subPop or vsp and returns a list of requencies for alleles o,
1, etc, or a number for frequency of allele 0 as a speciail case for each locus, subpopulation (parameter subPop),
or virtual subpopulations (parameter vsp, pass as a tuple). If parameter haplotypes is specified, it should contain
a list of haplotypes and parameter prob or prop specifies frequencies or proportions of each haplotype (possibly
diferently for each subpopulation but not each locus if the function form is used). If loci, ploidy and/or subPop
are specified, only specified loci, ploidy, and individuals in these (virtual) subpopulations will be initialized.
Parameter loci can be a list of loci indexes, names or ALL_AVAIL. If the length of a haplotype is not enough to fill
all loci, the haplotype will be reused. If a list (or a single) haplotypes are specified without freq or prop, they are
used with equal probability.

In the last case, if a sequence of genotype is specified, it will be used repeatedly to initialize all alleles sequen-
tially. This works similar to function Population.setGenotype() except that you can limit the initialization to
certain loci and ploidy.

2.2.4 Class InitLineage

This operator assigns lineages at all or part of loci with given values. This operator initializes all chromosomes,
including unused lineage locations and customized chromosomes.

class InitLineage(lineage=[], mode=PER_ALLELE, loci=ALL_AVAIL, ploidy=ALL_AVAIL, begin=0, end=1, step=1,
at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields="ind_id")

This function creates an initializer that initializes lineages with either a specified set of values or from the
field infoFields (default to ind_id), whose value will be saved as the lineage of modified alleles. If a list of
values is specified in parameter lineage, each value in this list is applied to one or more alleles so that each
allele (PER_ALLELE, default mode), alleles on each chromosome (PER_CHROMOSOME), on chromosomes of each ploidy
(PER_PLOIDY), or for each individual (PER_INDIVIDUAL) have the same lineage. A single value is allowed and values
in lineage will be re-used if not enough values are provided. If an empty list is provided, values 1, 2, 3, .. will
be used to provide an unique identify for each allele, genotype, chromosome, etc. If a valid field is specified
(default to ind_id), the value of this field will be used for all alleles of each individual if mode is set to FROM_INFO,
or be adjusted to produce positive values for alleles on the frist ploidy, and negative values for the second ploidy
(and so on) if mode equals to FROM_INFO_SIGNED. If loci, ploidy and/or subPops are specified, only specified loci,
ploidy, and individuals in these (virtual) subpopulations will be initialized.

2.3 Expression and Statements

2.3. Expression and Statements 33

2.3.1 Class Pyoutput

This operator outputs a given string when it is applied to a population.

class Pyoutput (msg="", output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=[])
Creates a PyOutput operator that outputs a string msg to output (default to standard terminal output) when it
is applied to a population. Please refer to class BaseOperator for a detailed description of common operator
parameters such as stage, begin and output.

2.3.2 Class PyEval

A PyEval operator evaluates a Python expression in a population’s local namespace when it is applied to this population.
The result is written to an output specified by parameter output.

class PyEval(expr="", stmts="", exposePop="", output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=Py_False, infoFields=[])

Create a pyEval operator that evaluates a Python expression expr in a population’s local namespaces when it
is applied to this population. This namespace can either be the population’s local namespace (pop.vars()), or
namespaces subPop[sp] for (virtual) subpop (pop.vars(subpop)) in specified subPops. If Python statements stmts
is given (a single or multi-line string), the statement will be executed before expr. If exposePop is set to an non-
empty string, the current population will be exposed in its own local namespace as a variable with this name.
This allows the execution of expressions such as 'pop.individual(0).allele(0)’'. The result of expr will be sent
to an output stream specified by parameter output. The exposed population variable will be removed after expr
is evaluated. Please refer to class BaseOperator for other parameters.

Note Although the statements and expressions are evaluated in a population’s local namespace, they have access
to a global namespace which is the module global namespace. It is therefore possible to refer to any module
variable in these expressions. Such mixed use of local and global variables is, however, strongly discouraged.

2.3.3 Class PyExec

This operator executes given Python statements in a population’s local namespace when it is applied to this popula-
tion.

i "

class PyExec (stmts="", exposePop="", output=">", begin=0, end=-1, step=1I1, at=[], reps=ALL_AVAIL, sub-
Pops=Py_False, infoFields=[])
Create a PyExec operator that executes statements stmts in a population’s local namespace when it is applied
to this population. This namespace can either be the population’s local namespace (pop.vars()), or namespaces
subPop[sp] for each (virtual) subpop (pop.vars (subpop)) in specified subPops. If exposePop is given, current pop-
ulation will be exposed in its local namespace as a variable named by exposePop. Although multiple statements
can be executed, it is recommended that you use this operator to execute short statements and use PyOperator for
more complex once. Note that exposed population variables will be removed after the statements are executed.

2.3.4 Class InfoEval

Unlike operator PyEval and PyExec that work at the population level, in a population’s local namespace, operator
InfoEval works at the individual level, working with individual information fields. When this operator is applied to
a population, information fields of eligible individuals are put into the local namespace of the population. A Python
expression is then evaluated for each individual. The result is written to an output.

" " " "

class InfoEval(expr="", stmts="", usePopVars=False, exposelnd="", output=">", begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
Create an operator that evaluate a Python expression expr using individual information fields and population
variables as variables. If exposelnd is not empty, the individual itself will be exposed in the population’s local
namespace as a variable with name specified by exposelnd.

34 Chapter 2. Operator References

A Python expression (expr) is evaluated for each individual. The results are converted to strings and are written
to an output specified by parameter output. Optionally, a statement (or several statements separated by newline)
can be executed before expr is evaluated. The evaluation of this statement may change the value of information
fields.

Parameter usePopVars is obsolete because population variables are always usable in such expressions.

2.3.5 Class InfoExec

Operator InfoExec is similar to InfoEval in that it works at the individual level, using individual information fields as
variables. This is usually used to change the value of information fields. For example, "b=ax2" will set the value of
information field b to axa for all individuals.

i "

class InfoExec(stmts="", usePopVars=False, exposelnd="", output=
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
Create an operator that executes Python statements stmts using individual information fields and population
variables as variables. If exposelnd is not empty, the individual itself will be exposed in the population’s local
namespace as a variable with name specified by exposelnd.

"
>

begin=0, end=-1, step=1, at=[],

One or more python statements (stmts) are executed for each individual. Information fields of these individuals
are then updated from the corresponding variables. For example, a=1 will set information field a of all individuals
to 1, a=b will set information field a of all individuals to information field b or a population variable b if b is not
an information field but a population variable, and a=ind.sex() will set information field a of all individuals to
its sex (needs exposeInd='ind’.

Parameter usePopVars is obsolete because population variables will always be usable.

2.4 Demographic models

2.4.1 Class Mmigrator

This operator migrates individuals from (virtual) subpopulations to other subpopulations, according to either pre-
specified destination subpopulation stored in an information field, or randomly according to a migration matrix.

In the former case, values in a specified information field (default to migrate_to) are considered as destination subpop-
ulation for each individual. If subPops is given, only individuals in specified (virtual) subpopulations will be migrated
where others will stay in their original subpopulation. Negative values are not allowed in this information field because
they do not represent a valid destination subpopulation ID.

In the latter case, a migration matrix is used to randomly assign destination subpoulations to each individual. The
elements in this matrix can be probabilities to migrate, proportions of individuals to migrate, or exact number of
individuals to migrate.

By default, the migration matrix should have m by m elements if there are m subpopulations. Element (i, j) in this
matrix represents migration probability, rate or count from subpopulation i to j. If subPops (length m) and/or toSub-
Pops (length n) are given, the matrix should have m by n elements, corresponding to specified source and destination
subpopulations. Subpopulations in subPops can be virtual subpopulations, which makes it possible to migrate, for
example, males and females at different rates from a subpopulation. If a subpopulation in toSubPops does not exist, it
will be created. In case that all individuals from a subpopulation are migrated, the empty subpopulation will be kept.

If migration is applied by probability, the row of the migration matrix corresponding to a source subpopulation is
intepreted as probabilities to migrate to each destination subpopulation. Each individual’s detination subpopulation is
assigned randomly according to these probabilities. Note that the probability of staying at the present subpopulation
is automatically calculated so the corresponding matrix elements are ignored.

If migration is applied by proportion, the row of the migration matrix corresponding to a source subpopulation is
intepreted as proportions to migrate to each destination subpopulation. The number of migrants to each destination

2.4. Demographic models 35

subpopulation is determined before random indidividuals are chosen to migrate.

If migration is applied by counts, the row of the migration matrix corresponding to a source subpopulation is intepreted
as number of individuals to migrate to each detination subpopulation. The migrants are chosen randomly.

This operator goes through all source (virtual) subpopulations and assign detination subpopulation of each individual to
an information field. Unexpected results may happen if individuals migrate from overlapping virtual subpopulations.

class Migrator(rate=[], mode=BY_PROBABILITY, toSubPops=ALL_AVAIL, begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields="migrate_to")
Create a Migrator that moves individuals from source (virtual) subpopulations subPops (default to migrate from
all subpopulations) to destination subpopulations toSubPops (default to all subpopulations), according to exist-
ing values in an information field infoFields[0], or randomly according to a migration matrix rate. In the latter
case, the size of the matrix should match the number of source and destination subpopulations.

Depending on the value of parameter mode, elements in the migration matrix (rate) are interpreted as either
the probabilities to migrate from source to destination subpopulations (mode = BY_PROBABILITY), proportions
of individuals in the source (virtual) subpopulations to the destination subpopulations (mode = BY_PROPORTION),
numbers of migrants in the source (virtual) subpopulations (mode = BY_COUNTS), or ignored completely (mmode =
BY_IND_INFO). In the last case, parameter subPops is respected (only individuals in specified (virtual) subpopula-
tions will migrate) but foSubPops is ignored.

Please refer to operator BaseOperator for a detailed explanation for all parameters.

2.4.2 Class BackwardMigrator

This operator migrates individuals between all available or specified subpopulations, according to a backward mi-
gration matrix. It differs from Migrator in how migration matrixes are interpreted. Due to the limit of this model,
this operator does not support migration by information field, migration by count (mode = BY_COUNT), migration from
virtual subpopulations, migration between different number of subpopulations, and the creation of new subpopulation,
as operator Migrator provides.

In contrast to a forward migration matrix where m;; is considered the probability (proportion or count) of individuals
migrating from subpopulation i to j, elements in a reverse migration matrix m;; is considered the probability (pro-
portion or count) of individuals migrating from subpopulation j to i, namely the probability (proportion or count) of
individuals originats from subpopulation j.

If migration is applied by probability, the row of the migration matrix corresponding to a destination subpopulation
is intepreted as probabilities to orignate from each source subpopulation. Each individual’s source subpopulation is
assigned randomly according to these probabilities. Note that the probability of originating from the present subpop-
ulation is automatically calculated so the corresponding matrix elements are ignored.

If migration is applied by proportion, the row of the migration matrix corresponding to a destination subpopulation
is intepreted as proportions to originate from each source subpopulation. The number of migrants from each source
subpopulation is determined before random indidividuals are chosen to migrate.

Unlike the forward migration matrix that describes how migration should be performed, the backward migration matrix
describes the result of migration. The underlying forward migration matrix is calculated at each generation and is in
theory not the same across generations.

This operator calculates the corresponding forward migration matrix from backward matrix and current population
size. This process is not always feasible so an error will raise if no valid ending population size or forward migration
matrix could be determined. Please refer to the simuPOP user’s guide for an explanation of the theory behind forward
and backward migration matrices.
class BackwardMigrator (rate=[], mode=BY_PROBABILITY, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields="migrate_to")
Create a BackwardMigrator that moves individuals between subPop subpopulations randomly according to a
backward migration matrix rate. The size of the matrix should match the number of subpopulations.

Depending on the value of parameter mode, elements in the migration matrix (rate) are interpreted as either

36 Chapter 2. Operator References

the probabilities to originate from source subpopulations (mode = BY_PROBABILITY) or proportions of individuals
originate from the source (virtual) subpopulations (mode = BY_PROPORTION). Migration by count is not supported
by this operator.

Please refer to operator BaseOperator for a detailed explanation for all parameters.

2.4.3 Class splitSubPops

Split a given list of subpopulations according to either sizes of the resulting subpopulations, proportion of individuals,
or an information field. The resulting subpopulations will have the same name as the original subpopulation.

class SplitSubPops (subPops=ALL_AVAIL, sizes=[], proportions=[], names=[], randomize=True, begin=0, end=-1,

step=1, at=[], reps=ALL_AVAIL, infoFields=[])
Split a list of subpopulations subPops into finer subpopulations. A single subpopulation is acceptable but virtual

subpopulations are not allowed. All subpopulations will be split if subPops is not specified.

The subpopulations can be split in three ways:

olf parameter sizes is given, each subpopulation will be split into subpopulations with given size. The sizes
should add up to the size of all orignal subpopulations.

olf parameter proportions is given, each subpopulation will be split into subpopulations with corresponding
proportion of individuals. proportions should add up to 1.

olf an information field is given (parameter infoFields), individuals having the same value at this information
field will be grouped into a subpopulation. The number of resulting subpopulations is determined by the
number of distinct values at this information field.

If parameter randomize is True (default), individuals will be randomized before a subpopulation is split. This
is designed to remove artificial order of individuals introduced by, for example, some non- random mating
schemes. Note that, however, the original individual order is not guaranteed even if this parameter is set to
False.

Unless the last subpopulation is split, the indexes of existing subpopulations will be changed. If a subpopu-
lation has a name, this name will become the name for all subpopulations separated from this subpopulation.
Optionally, you can assign names to the new subpopulations using a list of names specified in parameter names.
Because the same set of names will be used for all subpopulations, this parameter is not recommended when
multiple subpopulations are split.

Please refer to operator BaseOperator for a detailed explanation for all parameters.

Note Unlike operator Migrator, this operator does not require an information field such as migrate_to.

2.4.4 Class MergeSubPops

This operator merges subpopulations subPops to a single subpopulation. If subPops is ignored, all subpopulations will
be merged. Virtual subpopulations are not allowed in subPops.
class MergeSubPops (subPops=ALL_AVAIL, name="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, in-

foFields=[])
Create an operator that merges subpopulations subPops to a single subpopulation. If subPops is not given, all

subpopulations will be merged. The merged subpopulation will take the name of the first subpopulation being
merged unless a new name is given.

Please refer to operator BaseOperator for a detailed explanation for all parameters.
2.4.5 Class ResizeSubPops

This operator resizes subpopulations to specified sizes. individuals are added or removed depending on the new
subpopulation sizes.

2.4. Demographic models 37

class ResizeSubPops (subPops=ALL_AVAIL, sizes=[], proportions=[], propagate=True, begin=0, end=-1, step=1,
at=[], reps=ALL_AVAIL, infoFields=[])
Resize given subpopulations subPops to new sizes size, or sizes proportional to original sizes (parameter pro-
portions). All subpopulations will be resized if subPops is not specified. If the new size of a subpopulation
is smaller than its original size, extra individuals will be removed. If the new size is larger, new individuals
with empty genotype will be inserted, unless parameter propagate is set to True (default). In this case, existing
individuals will be copied sequentially, and repeatedly if needed.

Please refer to operator BaseOperator for a detailed explanation for all parameters.

2.5 Genotype transmitters

2.5.1 Class GenoTransmitter

This during mating operator is the base class of all genotype transmitters. It is made available to users because it
provides a few member functions that can be used by derived transmitters, and by customized Python during mating
operators.

class GenoTransmitter (output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=[])
Create a base genotype transmitter.
clearChromosome (ind, ploidy, chrom)
Clear (set alleles to zero) chromosome chrom on the ploidy-th homologous set of chromosomes of indi-
vidual ind. It is equivalent to ind.setGenotype([0], ploidy, chrom), except that it also clears allele lineage
if it is executed in a module with lineage allele type.

copyChromosome (parent, parPloidy, offspring, ploidy, chrom)
Transmit chromosome chrom on the parPloidy set of homologous chromosomes from
parent to the ploidy set of homologous chromosomes of offspring. It is equivalent to
offspring.setGenotype(parent.genotype(parPloidy, chrom), polidy, chrom), except that it also copies
allelic lineage when it is executed in a module with lineage allele type.

copyChromosomes (parent, parPloidy, offspring, ploidy)
Transmit the parPloidy set of homologous chromosomes from parent to the ploidy set of homol-
ogous chromosomes of offspring. Customized chromosomes are not copied. It is equivalent to
offspring.setGenotype(parent.genotype(parPloidy), ploidy), except that it also copies allelic lineage when
it is executed in a module with lineage allele type.

2.5.2 Class CloneGenoTransmitter

This during mating operator copies parental genotype directly to offspring. This operator works for all mating schemes
when one or two parents are involved. If both parents are passed, maternal genotype are copied. In addition to
genotypes on all non-customized or specified chromosomes, sex and information fields are by default also coped
copied from parent to offspring.

class CloneGenoTransmitter (output="", chroms=ALL_AVAIL, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=ALL_AVAIL)

Create a clone genotype transmitter (a during-mating operator) that copies genotypes from parents to offspring.
If two parents are specified, genotypes are copied maternally. After genotype transmission, offspring sex and
affection status is copied from the parent even if sex has been determined by an offspring generator. All or spec-
ified information fields (parameter infoFields, default to ALL_AVAIL) will also be copied from parent to offspring.
Parameters subPops is ignored. This operator by default copies genotypes on all autosome and sex chromo-
somes (excluding customized chromosomes), unless a parameter chroms is used to specify which chromosomes
to copy. This operator also copies allelic lineage when it is executed in a module with lineage allele type.

38 Chapter 2. Operator References

2.5.3 Class MendelianGenoTransmitter

This Mendelian offspring generator accepts two parents and pass their genotypes to an offspring following Mendel’s
laws. Sex chromosomes are handled according to the sex of the offspring, which is usually determined in advance by
an offspring generator. Customized chromosomes are not handled.

"

class MendelianGenoTransmitter (output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])
Create a Mendelian genotype transmitter (a during-mating operator) that transmits genotypes from parents to
offspring following Mendel’s laws. Autosomes and sex chromosomes are handled but customized chromosomes
are ignored. Parameters subPops and infoFields are ignored. This operator also copies allelic lineage when it is
executed in a module with lineage allele type.

transmitGenotype (parent, offspring, ploidy)
Transmit genotype from parent to offspring, and fill the ploidy homologous set of chromosomes. This
function does not set genotypes of customized chromosomes and handles sex chromosomes properly,
according to offspring sex and ploidy.

2.5.4 Class selfingGenoTransmitter

A genotype transmitter (during-mating operator) that transmits parental genotype of a parent through self-fertilization.
That is to say, the offspring genotype is formed according to Mendel’s laws, only that a parent serves as both maternal
and paternal parents.

class selfingGenoTransmitter (output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
infoFields=[])
Create a self-fertilization genotype transmitter that transmits genotypes of a parent to an offspring through self-
fertilization. Cutsomized chromosomes are not handled. Parameters subPops and infoFields are ignored. This
operator also copies allelic lineage when it is executed in a module with lineage allele type.

2.5.5 Class HaplodiploidGenoTransmitter

A genotype transmitter (during-mating operator) for haplodiploid populations. The female parent is considered as
diploid and the male parent is considered as haploid (only the first homologous copy is valid). If the offspring is
FEMALE, she will get a random copy of two homologous chromosomes of her mother, and get the only paternal copy
from her father. If the offspring is MALE, he will only get a set of chromosomes from his mother.

i

class HaplodiploidGenoTransmitter (output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])
Create a haplodiploid genotype transmitter (during-mating operator) that transmit parental genotypes from par-
ents to offspring in a haplodiploid population. Parameters subPops and infoFields are ignored. This operator
also copies allelic lineage when it is executed in a module with lineage allele type.

2.5.6 Class MitochondrialGenoTransmitter

This geno transmitter transmits the first homologous copy of a Mitochondrial chromosome. If no mitochondrial chro-
mosome is present, it assumes that the first homologous copy of several (or all) Customized chromosomes are copies
of mitochondrial chromosomes. This operator transmits the mitochondrial chromosome from the female parent to
offspring for sexsual reproduction, and any parent to offspring for asexual reproduction. If there are multiple chro-
mosomes, the organelles are selected randomly. If this transmitter is applied to populations with more than one
homologous copies of chromosomes, it transmits the first homologous copy of chromosomes and clears alleles (set to
zero) on other homologous copies.

class MitochondrialGenoTransmitter (output="", chroms=ALL_AVAIL, begin=0, end=-1, step=1, at=[],

reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
Createa a mitochondrial genotype transmitter that treats the Mitochondiral chromosome, or Customized chro-

2.5. Genotype transmitters 39

mosomes if no Mitochondrial chromosome is specified, or a list of chromosomes specified by chroms, as human
mitochondrial chromosomes. These chromosomes should have the same length and the same number of loci.
This operator transmits these chromosomes randomly from the female parent to offspring of both sexes. It also
copies allelic lineage when it is executed in a module with lineage allele type.

2.5.7 Class Recombinator

A genotype transmitter (during-mating operator) that transmits parental chromosomes to offspring, subject to recom-
bination and gene conversion. This can be used to replace MendelianGenoTransmitter and SelfingGenoTransmitter. It
does not work in haplodiploid populations, although a customized genotype transmitter that makes uses this operator
could be defined. Please refer to the simuPOP user’s guide or online cookbook for details.

Recombination could be applied to all adjacent markers or after specified loci. Recombination rate between two
adjacent markers could be specified directly, or calculated using physical distance between them. In the latter case, a
recombination intensity is multiplied by physical distance between markers.

Gene conversion is interpreted as double-recombination events. That is to say, if a recombination event happens, it has
a certain probability (can be 1) to become a conversion event, namely triggering another recombination event down
the chromosome. The length of the converted chromosome can be controlled in a number of ways.

Note:

simuPOP does not assume any unit to loci positions so recombination intensity could be explained differntly (e.g.
cM/Mb, Morgan/Mb) depending on your intepretation of loci positions. For example, if basepair is used for loci
position, intensity=10-8 indicates 10+8 per basepair, which is equivalent to 1022 per Mb or 1 cM/Mb. If Mb is used for
physical positions, the same recombination intensity could be achieved by intensity=0.01.

class Recombinator (rates=[], intensity=-1, loci=ALL_AVAIL, convMode=NO_CONVERSION, output="", begin=0,

end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
Create a Recombinator (a mendelian genotype transmitter with recombination and gene conversion) that passes

genotypes from parents (or a parent in case of self-fertilization) to offspring.

Recombination happens by default between all adjacent markers but can be limited to a given set of loci, which
can be a list of loci indexes, names, list of chromosome position pairs, ALL_AVAIL, or a function with optional
parameter pop that will be called at each ganeeration to determine indexes of loci. Each locus in this list specifies
a recombination point between the locus and the locus immediately after it. Loci that are the last locus on each
chromosome are ignored.

If a single recombination rate (parameter rates) is specified, it will used for all loci (all loci or loci specified by
parameter loci), regardless of physical distances between adjacent loci.

If a list of recombination rates are specified in rates, different recombination rates could be applied after a list of
specified loci (between loci and their immediate neighbor to the right). The loci should be specified by parameter
loci as a list with the same length as rates, or ALL_AVAIL (default) in which case the length of rates should equal
to the total number of loci. Note that recombination rates specified for the last locus on each chromosome are
ignored because simuPOP assumes free recombination between chromosomes.

A recombination intensity (intensity) can be used to specify recombination rates that are proportional to physical
distances between adjacent markers. If the physical distance between two markers is d, the recombination rate
between them will be intensity * d. No unit is assume for loci position and recombination intensity.

Gene conversion is controlled using parameter convMode, which can be

eNoConversion: no gene conversion (default).

® (NUM_MARKERS, prob, n): With probability prob, convert a fixed number (n) of markers if a recombination
event happens.

® (GEOMETRIC_DISTRIBUTION, prob, p): With probability prob, convert a random number of markers if a re-
combination event happens. The number of markes converted follows a geometric distribution with prob-
ability p.

40 Chapter 2. Operator References

® (TRACT_LENGTH, prob, n): With probability prob, convert a region of fixed tract length (n) if a recombination
event happens. The actual number of markers converted depends on loci positions of surrounding loci. The
starting position of this tract is the middle of two adjacent markers. For example, if four loci are located at
0, 1, 2, 3respectively, a conversion event happens between 0 and 1, with a tract length 2 will start at 0.5
and end at 2.5, covering the second and third loci.

® (EXPONENTIAL _DISTRIBUTION, prob, p): With probability prob, convert a region of random tract length if
a recombination event happens. The distribution of tract length follows a exponential distribution with
probability p. The actual number of markers converted depends on loci positions of surrounding loci.

simuPOP uses this probabilistic model of gene conversion because when a recombination event happens, it may
become a recombination event if the if the Holliday junction is resolved/repaired successfully, or a conversion
event if the junction is not resolved/repaired. The probability, however, is more commonly denoted by the ratio
of conversion to recombination events in the literature. This ratio varies greatly from study to study, ranging
from 0.1 to 15 (Chen et al, Nature Review Genetics, 2007). This translate to 0.1/0.90.1 to 15/160.94 of the gene
conversion probability.

A Recombinator usually does not send any output. However, if an information field is given (parameter in-
foFields), this operator will treat this information field as an unique ID of parents and offspring and out-
put all recombination events in the format of offspring_id parent_id starting ploidy locl loc2 ... where
starting_ploidy indicates which homologous copy genotype replication starts from (@ or 1), locl, loc2 etc are
loci after which recombination events happens. If there are multiple chromosomes on the genome, you will see
a lot of (fake) recombination events because of independent segregation of chromosomes. Such a record will be
generated for each set of homologous chromosomes so an diploid offspring will have two lines of output. Note
that individual IDs need to be set (using a IdTagger operator) before this Recombinator is applied.

In addition to genotypes, this operator also copies alleleic lineage if it is executed in a module with lineage allele
type.
Note There is no recombination between sex chromosomes (Chromosomes X and Y), although recombination
is possible between pesudoautosomal regions on these chromosomes. If such a feature is required, you will have
to simulate the pesudoautosomal regions as separate chromosomes.
transmitGenotype (parent, offspring, ploidy)
This function transmits genotypes from a parent to the ploidy-th homologous set of chromosomes of an
offspring. It can be used, for example, by a customized genotype transmitter to use sex-specific recombi-
nation rates to transmit parental genotypes to offspring.

2.6 Mutation

2.6.1 Class BaseMutator

Class mutator is the base class of all mutators. It handles all the work of picking an allele at specified loci from certain
(virtual) subpopulation with certain probability, and calling a derived mutator to mutate the allele. Alleles can be
changed before and after mutation if existing allele numbers do not match those of a mutation model.

class BaseMutator(rates=[], loci=ALL_AVAIL, mapln=[], mapOut=[], context=0, output="", begin=0, end=-
1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields="ind_id", lineage-

Mode=FROM_INFO)
A mutator mutates alleles from one state to another with given probability. This base mutator does not perform

any mutation but it defines common behaviors of all mutators.

By default, a mutator mutates all alleles in all populations of a simulator at all generations. A number of pa-
rameters can be used to restrict mutations to certain generations (parameters begin, end, step and at), replicate
populations (parameter rep), (virtual) subpopulations (parameter subPops) and loci (parameter loci). Parameter
loci can be a list of loci indexes, names, list of chromosome position pairs, ALL_AVAIL, or a function with op-
tional parameter pop that will be called at each ganeeration to determine indexes of loci. Please refer to class
BaseOperator for a detailed explanation of these parameters.

2.6. Mutation 441

Parameter rate or its equivalence specifies the probability that a a mutation event happens. The exact form and
meaning of rate is mutator-specific. If a single rate is specified, it will be applied to all loci. If a list of mutation
rates are given, they will be applied to each locus specified in parameter loci. Note that not all mutators allow
specification of multiple mutation rate, especially when the mutation rate itself is a list or matrix.

Alleles at a locus are non-negative numbers 0, 1, ... up to the maximum allowed allele for the loaded module (1
for binary, 255 for short and 65535 for long modules). Whereas some general mutation models treat alleles as
numbers, other models assume specific interpretation of alleles. For example, an AcgtMutator assumes alleles o,
1, 2 and 3 as nucleotides A, ¢, 6 and T. Using a mutator that is incompatible with your simulation will certainly
yield erroneous results.

If your simulation assumes different alleles with a mutation model, you can map an allele to the allele used
in the model and map the mutated allele back. This is achieved using a mapln list with its i-th item being
the corresponding allele of real allele i, and a mapOut list with its i-th item being the real allele of allele i
assumed in the model. For example mapIn=[0, 0, 1] and mapOut=[1, 2] would allow the use of a SNPMutator to
mutate between alleles 1 and 2, instead of 0 and 1. Parameters mapln and mapQOut also accept a user-defined
Python function that returns a corresponding allele for a given allele. This allows easier mapping between a
large number of alleles and advanced models such as random emission of alleles.

If a valid information field is specified for parameter infoFields (default to ind_id) for modules with lineage allele
type, the lineage of the mutated alleles will be the ID (stored in the first field of infoFields) of individuals that
harbor the mutated alleles if lineageMode is set to FROM_INFO (default). If lineageMode is set to FROM_INFO_SIGNED,
the IDs will be assigned a sign depending on the ploidy the mutation happens (1 for ploidy 0, -1 for ploidy 1,
etc). The lineage information will be transmitted along with the alleles so this feature allows you to track the
source of mutants during evolution.A

A mutator by default does not produce any output. However, if an non-empty output is specified, the operator
will output generation number, locus, ploidy, original allele, mutant, and values of all information field specified
by parameter infoFields (e.g. individual ID if ind_id is specified).

Some mutation models are context dependent. Namely, how an allele mutates will depend on its adjecent alleles.
Whereas most simuPOP mutators are context independent, some of them accept a parameter context which is
the number of alleles to the left and right of the mutated allele. For example context=1 will make the alleles
to the immediate left and right to a mutated allele available to a mutator. These alleles will be mapped in if
parameter mapln is defined. How exactly a mutator makes use of these information is mutator dependent.

2.6.2 Class MatrixMutator

A matrix mutator mutates alleles o, 1, ..., n-1 using a n by n matrix, which specifies the probability at which each allele
mutates to another. Conceptually speaking, this mutator goes through all mutable allele and mutate it to another state
according to probabilities in the corresponding row of the rate matrix. Only one mutation rate matrix can be specified
which will be used for all specified loci. #

class MatrixMutator(rate, loci=ALL_AVAIL, mapln=[], mapOut=[], output="", begin=0, end=-1, step=1, at=[],

reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields="ind_id", lineageMode=FROM_INFO)
Create a mutator that mutates alleles o, 1, ..., n-1 using a n by n matrix rate. Item (i, j) of this matrix specifies the
probability at which allele i mutates to allele j. Diagnal items (i, i) are ignored because they are automatically
determined by other probabilities. Only one mutation rate matrix can be specified which will be used for all
loci in the applied population, or loci specified by parameter loci. If alleles other than e, 1, ..., n-1 exist in the
population, they will not be mutated although a warning message will be given if debugging code DBG_WARNING is
turned on. Please refer to classes mutator and BaseOperator for detailed explanation of other parameters.

2.6.3 Class KAlleleMutator

This mutator implements a k-allele mutation model that assumes k allelic states (alleles 0, 1, 2, ..., k-1) at each locus.
When a mutation event happens, it mutates an allele to any other states with equal probability.

42

Chapter 2. Operator References

class KAlleleMutator(k, rates=[], loci=ALL_AVAIL, mapIn=[], mapOut=[], output="", begin=0, end=-
1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields="ind_id", lineage-

Mode=FROM_INFO)
Create a k-allele mutator that mutates alleles to one of the other k-1 alleles with equal probability. This mutator

by default applies to all loci unless parameter loci is specified. A single mutation rate will be used for all loci
if a single value of parameter rates is given. Otherwise, a list of mutation rates can be specified for each locus
in parameter loci. If the mutated allele is larger than or equal to k, it will not be mutated. A warning message
will be displayed if debugging code DBG_WARNING is turned on. Please refer to classes mutator and BaseOperator
for descriptions of other parameters.

2.6.4 Class stepwiseMutator

A stepwise mutation model treats alleles at a locus as the number of tandem repeats of microsatellite or minisatellite
markers. When a mutation event happens, the number of repeats (allele) either increase or decrease. A standard step-
wise mutation model increases of decreases an allele by 1 with equal probability. More complex models (generalized
stepwise mutation model) are also allowed. Note that an allele cannot be mutated beyond boundaries (0 and maximum
allowed allele).

class stepwiseMutator (rates=[], loci=ALL_AVAIL, incProb=0.5, maxAllele=0, mutStep=[], mapln=[], mapOut=[],
output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-

foFields="ind_id", lineageMode=FROM_INFO)
Create a stepwise mutation mutator that mutates an allele by increasing or decreasing it. This mutator by default

applies to all loci unless parameter loci is specified. A single mutation rate will be used for all loci if a single
value of parameter rates is given. Otherwise, a list of mutation rates can be specified for each locus in parameter
loci.

When a mutation event happens, this operator increases or decreases an allele by mutStep steps. Acceptable
input of parameter mutStep include

oA number: This is the default mode with default value 1.
® (GEOMETRIC_DISTRIBUTION, p): The number of steps follows a a geometric distribution with parameter p.

oA Python function: This user defined function accepts the allele being mutated and return the steps to
mutate.

The mutation process is usually neutral in the sense that mutating up and down is equally likely. You can adjust
parameter incProb to change this behavior.

If you need to use other generalized stepwise mutation models, you can implement them using a pyMutator. If
performance becomes a concern, I may add them to this operator if provided with a reliable reference.

2.6.5 Class pyMutator

This hybrid mutator accepts a Python function that determines how to mutate an allele when an mutation event hap-
pens.

class PyMutator (rates=[], loci=ALL_AVAIL, func=None, context=0, mapIn=[], mapOut=[], output="", begin=0,
end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields="ind_id", lineage-

Mode=FROM_INFO)
Create a hybrid mutator that uses a user-provided function to mutate an allele when a mutation event happens.

This function (parameter func) accepts the allele to be mutated as parameter allele, locus index locus, and
optional array of alleles as parameter context, which are context alleles the left and right of the mutated allele.
Invalid context alleles (e.g. left allele to the first locus of a chromosome) will be marked by -1. The return
value of this function will be used to mutate the passed allele. The passed, returned and context alleles might
be altered if parameter mapin and mapOut are used. This mutator by default applies to all loci unless parameter
loci is specified. A single mutation rate will be used for all loci if a single value of parameter rates is given.
Otherwise, a list of mutation rates can be specified for each locus in parameter loci. Please refer to classes
mutator and BaseOperator for descriptions of other parameters.

2.6. Mutation 43

2.6.6 Class MixedMutator

This mixed mutator accepts a list of mutators and use one of them to mutate an allele when an mutation event happens.

class MixedMutator (rates=[], loci=ALL_AVAIL, mutators=[], prob=[], mapIln=[], mapOut=[], context=0, output="",
begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields="ind_id",

lineageMode=FROM_INFO)
Create a mutator that randomly chooses one of the specified mutators to mutate an allele when a mutation event

happens. The mutators are choosen according to a list of probabilities (prob) that should add up to 1. The passed
and returned alleles might be changed if parameters mapIn and mapQOut are used. Most parameters, including
loci, mapIn, mapOut, rep, and subPops of mutators specified in parameter mutators are ignored. This mutator
by default applies to all loci unless parameter loci is specified. Please refer to classes mutator and BaseOperator
for descriptions of other parameters.

2.6.7 Class contextMutator

This context-dependent mutator accepts a list of mutators and use one of them to mutate an allele depending on the
context of the mutated allele.

class ContextMutator (rates=[], loci=ALL_AVAIL, mutators=[], contexts=[], mapIn=[], mapOut=[], output="", be-
gin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields="ind_id",

lineageMode=FROM_INFO)
Create a mutator that choose one of the specified mutators to mutate an allele when a mutation event happens.

The mutators are choosen according to the context of the mutated allele, which is specified as a list of alleles to
the left and right of an allele (contexts). For example, contexts=[(0,0), (0,1), (1,1)] indicates which mutators
should be used to mutate allele X in the context of exe, 6x1, and 1X1. A context can include more than one alleles
at both left and right sides of a mutated allele but all contexts should have the same (even) number of alleles. If
an allele does not have full context (e.g. when a locus is the first locus on a chromosome), unavailable alleles
will be marked as -1. There should be a mutator for each context but an additional mutator can be specified as
the default mutator for unmatched contexts. If parameters mapln is specified, both mutated allele and its context
alleles will be mapped. Most parameters, including loci, mapln, mapOut, rep, and subPops of mutators specified
in parameter mutators are ignored. This mutator by default applies to all loci unless parameter loci is specified.
Please refer to classes mutator and BaseOperator for descriptions of other parameters.

2.6.8 Class PointMutator

A point mutator is different from all other mutators because mutations in this mutator do not happen randomly. Instead,
it happens to specific loci and mutate an allele to a specific state, regardless of its original state. This mutator is usually
used to introduce a mutant to a population.
class PointMutator (loci, allele, ploidy=[], 0, inds=[], output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
subPops=0, infoFields="ind_id", lineageMode=FROM_INFO)
Create a point mutator that mutates alleles at specified loci to a given allele of individuals inds. If there are mul-
tiple alleles at a locus (e.g. individuals in a diploid population), only the first allele is mutated unless indexes of
alleles are listed in parameter ploidy. This operator is by default applied to individuals in the first subpopulation
but you can apply it to a different or more than one (virtual) subpopulations using parameter subPops (AllAvail
is also accepted). Please refer to class BaseOperator for detailed descriptions of other parameters.

2.6.9 Class SNPMutator

A mutator model that assumes two alleles 0 and 1 and accepts mutation rate from O to 1, and from 1 to O alleles.

class sNPMutator (u=0, v=0, loci=True, mapln=[], mapOut=[], output="", begin=0, end=-1, step=1, at=[], reps=True,
subPops=ALL_AVAIL, infoFields=["ind_id’], lineageMode=115)
Return a MatrixMutator with proper mutate matrix for a two-allele mutation model using mutation rate from

44 Chapter 2. Operator References

allele O to 1 (parameter u) and from 1 to O (parameter v)

2.6.10 Class AcgtMutator

This mutation operator assumes alleles 0, 1, 2, 3 as nucleotides A, ¢, G and T and use a 4 by 4 mutation rate matrix
to mutate them. Although a general model needs 12 parameters, less parameters are needed for specific nucleotide
mutation models (parameter model). The length and meaning of parameter rate is model dependent.

class AcgtMutator (rate=[], model="general’, loci=True, mapln=[], mapOut=[], output=", begin=0, end=-1, step=1,

at=[], reps=True, subPops=ALL_AVAIL, infoFields=["ind_id’], lineageMode=115)
Create a mutation model that mutates between nucleotides A, ¢, 6, and T (alleles are coded in that order as O, 1,

2 and 3). Currently supported models are Jukes and Cantor 1969 model (3c69), Kimura’s 2-parameter model
(k80), Felsenstein 1981 model (F81), Hasgawa, Kishino and Yano 1985 model (HkY85), Tamura 1992 model (192),
Tamura and Nei 1993 model (TnN93), Generalized time reversible model (GTR), and a general model (general) with
12 parameters. Please refer to the simuPOP user’s guide for detailed information about each model.

2.6.11 Class RevertFixedSites

This operator checks all or specified loci of a population and revert all mutants at loci to wildtype alleles if they are
fixed in the population. If a list of (virtual) subpopulations are specified, alleles are reverted if they are fixed in each
subpopulation, regardless if the alleles are fixed in other subpopulations.

class RevertFixedSites (loci=ALL_AVAIL, output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields="ind_id")
Create an operator to set all alleles to zero at specified (parameter loci) or all loci if they are fixed (having one
non-zero allele) at these loci. If parameter subPops are specified, only individuals in these subpopulations are
considered.

2.7 Penetrance

2.7.1 Class BasePenetrance

A penetrance model models the probability that an individual has a certain disease provided that he or she has certain
genetic (genotype) and environmental (information field) riske factors. A penetrance operator calculates this proba-
bility according to provided information and set his or her affection status randomly. For example, an individual will
have probability 0.8 to be affected if the penetrance is 0.8. This class is the base class to all penetrance operators and
defines a common interface for all penetrance operators.

A penetrance operator can be applied at any stage of an evolutionary cycle. If it is applied before or after mating, it
will set affection status of all parents and offspring, respectively. If it is applied during mating, it will set the affection
status of each offspring. You can also apply a penetrance operator to an individual using its applyToIndividual member
function.

By default, a penetrance operator assigns affection status of individuals but does not save the actual penetrance value.
However, if an information field is specified, penetrance values will be saved to this field for future analysis.

When a penetrance operator is applied to a population, it is only applied to the current generation. You can, however,
use parameter ancGens to set affection status for all ancestral generations (ALL_AVAIL), or individuals in specified
generations if a list of ancestral generations is specified. Note that this parameter is ignored if the operator is applied
during mating.
class BasePenetrance(ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])
Create a base penetrance operator. This operator assign individual affection status in the present generation (de-
fault). If ALL_AVAIL or a list of ancestral generations are spcified in parameter ancGens, individuals in specified

2.7. Penetrance 45

ancestral generations will be processed. A penetrance operator can be applied to specified (virtual) subpopula-
tions (parameter subPops) and replicates (parameter reps). If an informatio field is given, penetrance value will
be stored in this information field of each individual.

apply(pop)
Set penetrance to all individuals and record penetrance if requested

applyToIndividual(ind, pop=None)
Apply the penetrance operator to a single individual ind and set his or her affection status. A population
reference can be passed if the penetrance model depends on population properties such as generation
number. This function returns the affection status.

2.7.2 Class MapPenetrance

This penetrance operator assigns individual affection status using a user-specified penetrance dictionary.
class MapPenetrance (loci, penetrance, ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,

subPops=ALL_AVAIL, infoFields=[])

Create a penetrance operator that get penetrance value from a dictionary penetrance with genotype at loci as
keys, and penetrance as values. For each individual, genotypes at loci are collected one by one (e.g. pO_locO,
pl_locO, p0_locl, p1_locl... for a diploid individual) and are looked up in the dictionary. Parameter loci can be
a list of loci indexes, names, list of chromosome position pairs, ALL_AVAIL, or a function with optional parameter
pop that will be called at each ganeeration to determine indexes of loci. If a genotype cannot be found, it will
be looked up again without phase information (e.g. (1,0) will match key (e, 1)). If the genotype still can not be
found, a valueError will be raised. This operator supports sex chromosomes and haplodiploid populations. In
these cases, only valid genotypes should be used to generator the dictionary keys.

2.7.3 Class MaPenetrance

This operator is called a *multi-allele’ penetrance operator because it groups multiple alleles into two groups: wildtype
and non-wildtype alleles. Alleles in each allele group are assumed to have the same effect on individual penetrance. If
we denote all wildtype alleles as A, and all non-wildtype alleles a, this operator assign Individual penetrance according
to genotype AA, Aa, aa in the diploid case, and A and a in the haploid case.

class MaPenetrance(loci, penetrance, wildtype=0, ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[],

reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Creates a multi-allele penetrance operator that groups multiple alleles into a wildtype group (with alleles wild-
type, default to [0]), and a non-wildtype group. A list of penetrance values is specified through parameter pene-
trance, for genotypes at one or more loci. Parameter loci can be a list of loci indexes, names, list of chromosome
position pairs, ALL_AVAIL, or a function with optional parameter pop that will be called at each ganeeration to de-
termine indexes of loci. If we denote wildtype alleles using capital letters A, B ... and non-wildtype alleles using
small letters a, b ..., the penetrance values should be for

egenotypes A and a for the haploid single-locus case,

egenotypes AB, Ab, aB and bb for haploid two=locus cases,

egenotypes AA, Aa and aa for diploid single-locus cases,

egenotypes AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and aabb for diploid two-locus cases,

eand in general 2**n for diploid and 3**n for haploid cases if there are n loci.

This operator does not support haplodiploid populations and sex chromosomes.

2.7.4 Class MlPenetrance

This penetrance operator is created by a list of penetrance operators. When it is applied to an individual, it applies
these penetrance operators to the individual, obtain a list of penetrance values, and compute a combined penetrance

46

Chapter 2. Operator References

value from them and assign affection status accordingly. ADDITIVE, multiplicative, and a heterogeneour multi-locus
model are supported. Please refer to Neil Rish (1989) "Linkage Strategies for Genetically Complex Traits" for some
analysis of these models.

class MlPenetrance (ops, mode=MULTIPLICATIVE, ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
Create a multiple-locus penetrance operator from a list penetrance operator ops. When this operator is applied
to an individual (parents when used before mating and offspring when used during mating), it applies these
operators to the individual and obtain a list of (usually single-locus) penetrance values. These penetrance values
are combined to a single penetrance value using

eProd(f_i), namely the product of individual penetrance if mode = MULTIPLICATIVE,
esum(f_i) if mode = ADDITIVE, and

o]-Prod(1 - f_i) if mode = HETEROGENEITY

0 or 1 will be returned if the combined penetrance value is less than zero or greater than 1.

Applicability parameters (begin, end, step, at, reps, subPops) could be used in both MlSelector and selectors in
parameter ops, but parameters in MlSelector will be interpreted first.

2.7.5 Class PyPenetrance

This penetrance operator assigns penetrance values by calling a user provided function. It accepts a list of loci (param-
eter loci), and a Python function func which should be defined with one or more of parameters geno, mut, gen, ind, pop,
or names of information fields. When this operator is applied to a population, it passes genotypes or mutants (non-zero
alleles) at specified loci at specified loci, generation number, a reference to an individual, a reference to the current
population (usually used to retrieve population variables) and values at specified information fields to respective pa-
rameters of this function. Genotypes of each individual are passed as a tuple of alleles arranged locus by locus (in the
order of A1,A2,B1,B2 for loci A and B). Mutants are passed as a default dictionary of loci index (with respect to all
genotype of individuals, not just the first ploidy) and alleles. The returned penetrance values will be used to determine
the affection status of each individual.

class PyPenetrance (func, loci=[], ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])
Create a Python hybrid penetrance operator that passes genotype at specified loci, values at specified information
fields (if requested), and a generation number to a user-defined function func. Parameter /oci can be a list of
loci indexes, names, list of chromosome position pairs, ALL_AVAIL, or a function with optional parameter pop that
will be called at each ganeeration to determine indexes of loci. The return value will be treated as Individual
penetrance.

2.7.6 Class pyMilPenetrance

This penetrance operator is a multi-locus Python penetrance operator that assigns penetrance values by combining
locus and genotype specific penetrance values. It differs from a PyPenetrance in that the python function is responsible
for penetrance values values for each gentoype type at each locus, which can potentially be random, and locus or
gentoype-specific.

class pyMiPenetrance (func, mode=MULTIPLICATIVE, loci=ALL_AVAIL, ancGens=UNSPECIFIED, output="", be-

gin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
Create a penetrance operator that assigns individual affection status according to penetrance values combined

from locus-specific penetrance values that are determined by a Python call-back function. The callback function
accepts parameter loc, alleles (both optional) and returns location- or genotype-specific penetrance values that
can be constant or random. The penetrance values for each genotype will be cached so the same penetrance
values will be assigned to genotypes with previously assigned values. Note that a function that does not examine
the genotype naturally assumes a dominant model where genotypes with one or two mutants have the same
penetrance value. Because genotypes at a locus are passed separately and in no particular order, this function

2.7. Penetrance 47

is also responsible for assigning consistent fitness values for genotypes at the same locus (a class is usually
used). This operator currently ignores chromosome types so unused alleles will be passed for loci on sex or
mitochondrial chromosomes. This operator also ignores the phase of genotype so genotypes (a,b) and (b,a) are
assumed to have the same fitness effect.

Individual penetrance will be combined in ADDITIVE, MULTIPLICATIVE, Or HETEROGENEITY mode from penetrance
values of loci with at least one non-zero allele (See MlPenetrance for details).

2.8 Quantitative Trait

2.8.1 Class BaseQuanTrait

A quantitative trait in simuPOP is simply an information field. A quantitative trait model simply assigns values to one
or more information fields (called trait fields) of each individual according to its genetic (genotype) and environmental
(information field) factors. It can be applied at any stage of an evolutionary cycle. If a quantitative trait operator is
applied before or after mating, it will set the trait fields of all parents and offspring. If it is applied during mating, it
will set the trait fields of each offspring.

When a quantitative trait operator is applied to a population, it is only applied to the current generation. You can,
however, use parameter ancGen=-1 to set the trait field of all ancestral generations, or a generation index to apply to
only ancestral generation younger than ancGen. Note that this parameter is ignored if the operator is applied during
mating.
class BaseQuanTrait (ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])
Create a base quantitative trait operator. This operator assigns one or more quantitative traits to trait fields in
the present generation (default). If ALL_AVAIL or a list of ancestral generations are specified, this operator will
be applied to individuals in these generations as well. A quantitative trait operator can be applied to specified
(virtual) subpopulations (parameter subPops) and replicates (parameter reps).

apply(pop)
Set gtrait to all individual

2.8.2 Class PyQuanTrait

This quantitative trait operator assigns a trait field by calling a user provided function. It accepts a list of loci (parameter
loci), and a Python function func which should be defined with one or more of parameters geno, mut, gen, ind, or names
of information fields. When this operator is applied to a population, it passes genotypes or mutants (non-zero alleles)
of each individual at specified loci, generation number, a reference to an individual, and values at specified information
fields to respective parameters of this function. Genotypes of each individual are passed as a tuple of alleles arranged
locus by locus (in the order of A1,A2,B1,B2 for loci A and B). Mutants are passed as a default dictionary of loci index
(with respect to all genotype of individuals, not just the first ploidy) and alleles. The return values will be assigned to
specified trait fields.

class PyQuanTrait (func, loci=[], ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])
Create a Python hybrid quantitative trait operator that passes genotype at specified loci, optional values at spec-
ified information fields (if requested), and an optional generation number to a user-defined function func. Pa-
rameter loci can be a list of loci indexes, names, or ALL_AVAIL. The return value will be assigned to specified
trait fields (infoField). If only one trait field is specified, a number or a sequence of one element is acceptable.
Otherwise, a sequence of values will be accepted and be assigned to each trait field.

2.9 Natural selection

48 Chapter 2. Operator References

2.9.1 Class BaseSelector

This class is the base class to all selectors, namely operators that perform natural selection. It defines a common
interface for all selectors.

A selector can be applied before mating or during mating. If a selector is applied to one or more (virtual) subpopula-
tions of a parental population before mating, it sets individual fitness values to all involved parents to an information
field (default to fitness). When a mating scheme that supports natural selection is applied to the parental population, it
will select parents with probabilities that are proportional to individual fitness stored in an information field (default
to fitness). Individual fitness is considered relative fitness and can be any non-negative number. This simple process
has some implications that can lead to advanced usages of natural selection in simuPOP:

e It is up to the mating scheme how to handle individual fitness. Some mating schemes do not support natural
selection at all.

e A mating scheme performs natural selection according to fitness values stored in an information field. It does
not care how these values are set. For example, fitness values can be inherited from a parent using a tagging
operator, or set directly using a Python operator.

e A mating scheme can treat any information field as fitness field. If an specified information field does not exist,
or if all individuals have the same fitness values (e.g. 0), the mating scheme selects parents randomly.

e Multiple selectors can be applied to the same parental generation. individual fitness is determined by the last
fitness value it is assigned.

e A selection operator can be applied to virtual subpopulations and set fitness values only to part of the individuals.

e individuals with zero fitness in a subpopulation with anyone having a positive fitness value will not be selected
to produce offspring. This can sometimes lead to unexpected behaviors. For example, if you only assign fitness
value to part of the individuals in a subpopulation, the rest of them will be effectively discarded. If you migrate
individuals with valid fitness values to a subpopulation with all individuals having zero fitness, the migrants will
be the only mating parents.

e It is possible to assign multiple fitness values to different information fields so that different homogeneous
mating schemes can react to different fitness schemes when they are used in a heterogeneous mating scheme.

e You can apply a selector to the offspring generation using the postOps parameter of Simulator.evolve, these
fitness values will be used when the offspring generation becomes parental generation in the next generation.

Alternatively, a selector can be used as a during mating operator. In this case, it caculates fitness value for each
offspring which will be treated as absolute fitness, namely the probability for each offspring to survive. This process
uses the fact that an individual will be discarded when any of the during mating operators returns False. It is important
to remember that:

e individual fitness needs to be between 0 and 1 in this case.

Fitness values are not stored so the population does not need an information field fitness.

This method applies natural selection to offspring instead of parents. These two implementation can be identical
or different depending on the mating scheme used.

Seleting offspring is less efficient than the selecting parents, especially when fitness values are low.

e Parameter subPops are applied to the offspring population and is used to judge if an operator should be applied.
It thus does not make sense to apply a selector to a virtual subpopulation with affected individuals.

class BaseSelector (output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=ALL_AVAIL)
Create a base selector object. This operator should not be created directly.

2.9. Natural selection 49

2.9.2 Class MapSelector

This selector assigns individual fitness values using a user-specified dictionary. This operator can be applied to popu-
lations with arbitrary number of homologous chromosomes.

class MapSelector(loci, fitness, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=ALL_AVAIL)
Create a selector that assigns individual fitness values using a dictionary fitness with genotype at loci as keys,

and fitness as values. Parameter loci can be a list of indexes, loci names, list of chromosome position pairs,
ALL_AVAIL, or a function with optional parameter pop that will be called at each ganeeration to determine indexes
of loci. For each individual (parents if this operator is applied before mating, and offspring if this operator is
applied during mating), genotypes at loci are collected one by one (e.g. p0_loc0, p1_loc0O, p0_locl, pl_locl...
for a diploid individual, with number of alleles varying for sex and mitochondrial DNAs) and are looked up
in the dictionary. If a genotype cannot be found, it will be looked up again without phase information (e.g.
(1,0) will match key (o,1)). If the genotype still can not be found, a valueError will be raised. This operator
supports sex chromosomes and haplodiploid populations. In these cases, only valid genotypes should be used
to generator the dictionary keys.

2.9.3 Class MaSelector

This operator is called a *multi-allele’ selector because it groups multiple alleles into two groups: wildtype and non-
wildtype alleles. Alleles in each allele group are assumed to have the same effect on individual fitness. If we denote
all wildtype alleles as A, and all non-wildtype alleles a, this operator assign individual fitness according to genotype
AA, Aa, aa in the diploid case, and A and a in the haploid case.

class MaSelector (loci, fitness, wildtype=0, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
infoFields=ALL_AVAIL)

Creates a multi-allele selector that groups multiple alleles into a wildtype group (with alleles wildtype, default
to [0]), and a non-wildtype group. A list of fitness values is specified through parameter fitness, for genotypes
at one or more loci. Parameter loci can be a list of indexes, loci names , list of chromosome position pairs,
ALL_AVAIL, or a function with optional parameter pop that will be called at each ganeeration to determine indexes
of loci. If we denote wildtype alleles using capital letters A, B ... and non-wildtype alleles using small letters a, b
..., the fitness values should be for

egenotypes A and a for the haploid single-locus case,

egenotypes AB, Ab, aB and bb for haploid two=locus cases,

egenotypes AA, Aa and aa for diploid single-locus cases,

egenotypes AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and aabb for diploid two-locus cases,

eand in general 2**n for diploid and 3**n for haploid cases if there are n loci.

This operator does not support haplodiploid populations, sex and mitochondrial chromosomes.

2.9.4 Class MiSelector

This selector is created by a list of selectors. When it is applied to an individual, it applies these selectors to the
individual, obtain a list of fitness values, and compute a combined fitness value from them. ADDITIVE, multiplicative,
and a heterogeneour multi-locus model are supported.

class Miselector(ops, mode=MULTIPLICATIVE, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-

Pops=ALL_AVAIL, infoFields=ALL_AVAIL)
Create a multiple-locus selector from a list selection operator selectors. When this operator is applied to an

individual (parents when used before mating and offspring when used during mating), it applies these operators
to the individual and obtain a list of (usually single-locus) fitness values. These fitness values are combined to a
single fitness value using

50 Chapter 2. Operator References

eProd(f_i), namely the product of individual fitness if mode = MULTIPLICATIVE,
o/-sum(1 - f_i) if mode = ADDITIVE,
o/-Prod(1 - f_i) if mode = HETEROGENEITY, and

eexp(- sum(1 - f_i)) if mode = EXPONENTIAL,

zero will be returned if the combined fitness value is less than zero.

Applicability parameters (begin, end, step, at, reps, subPops) could be used in both MiSelector and selectors in
parameter ops, but parameters in MlSelector will be interpreted first.

2.9.5 Class PySelector

This selector assigns fitness values by calling a user provided function. It accepts a list of loci (parameter loci) and
a Python function func which should be defined with one or more of parameters geno, mut, gen, ind, pop or names of
information fields. Parameter loci can be a list of loci indexes, names, list of chromosome position pairs, ALL_AVAIL, or
a function with optional parameter pop that will be called at each ganeeration to determine indexes of loci. When this
operator is applied to a population, it passes genotypes or mutants at specified loci, generation number, a reference to
an individual, a reference to the current population (usually used to retrieve population variable), and values at specified
information fields to respective parameters of this function. Genotypes are passed as a tuple of alleles arranged locus
by locus (in the order of A1,A2,B1,B2 for loci A and B). Mutants are passed as a default dictionary of loci index (with
respect to all genotype of individuals, not just the first ploidy) and alleles. The returned value will be used to determine
the fitness of each individual.

class PySelector (func, loci=[], begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, output="", subPops=ALL_AVAIL,
infoFields=ALL_AVAIL)
Create a Python hybrid selector that passes genotype at specified loci, values at specified information fields (if
requested) and a generation number to a user-defined function func. The return value will be treated as individual
fitness.

2.9.6 Class pyMiSelector

This selector is a multi-locus Python selector that assigns fitness to individuals by combining locus and genotype
specific fitness values. It differs from a PySelector in that the python function is responsible for assigning fitness
values for each gentoype type at each locus, which can potentially be random, and locus or gentoype-specific.

class pyMiselector (func, mode=EXPONENTIAL, loci=ALL_AVAIL, output="", begin=0, end=-1, step=1I, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)
Create a selector that assigns individual fitness values by combining locus-specific fitness values that are de-

termined by a Python call-back function. The callback function accepts parameter loc, alleles (both optional)
and returns location- or genotype-specific fitness values that can be constant or random. The fitness values for
each genotype will be cached so the same fitness values will be assigned to genotypes with previously assigned
values. Note that a function that does not examine the genotype naturally assumes a dominant model where
genotypes with one or two mutants have the same fitness effect. Because genotypes at a locus are passed sep-
arately and in no particular order, this function is also responsible for assigning consistent fitness values for
genotypes at the same locus (a class is usually used). This operator currently ignores chromosome types so
unused alleles will be passed for loci on sex or mitochondrial chromosomes. It also ignores phase of genotype
so it will use the same fitness value for genotype (a,b) and (b,a).

Individual fitness will be combined in ADDITIVE, MULTIPLICATIVE, HETEROGENEITY, Or EXPONENTIAL mode from fitness
values of loci with at least one non-zero allele (See MiSelector for details). If an output is given, location,
genotype, fitness and generation at which the new genotype is assgined the value will be written to the output,
in the format of ’loc al a2 fitness gen’ for loci on autosomes of diploid populations.

2.9. Natural selection 51

2.10 Tagging operators

2.10.1 Class 1dTagger

An IdTagger gives a unique ID for each individual it is applies to. These ID can be used to uniquely identify an
individual in a multi-generational population and be used to reliably reconstruct a Pedigree.

To ensure uniqueness across populations, a single source of ID is used for this operator. individual IDs are assigned
consecutively starting from 1. Value 1 instead of 0 is used because most software applications use 0 as missing values
for parentship. If you would like to reset the sequence or start from a different number, you can call the reset(startID)
function of any IdTagger.

An IdTagger is usually used during-mating to assign ID to each offspring. However, if it is applied directly to a
population, it will assign unique IDs to all individuals in this population. This property is usually used in the preops
parameter of function Simulator.evolve to assign initial ID to a population.
class IdTagger(begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", in-
foFields="ind_id")
Create an IdTagger that assign an unique ID for each individual it is applied to. The IDs are created sequentially
and are stored in an information field specified in parameter infoFields (default to ind_id). This operator is
considered a during-mating operator but it can be used to set ID for all individuals of a population when it is
directly applied to the population.

reset(startID=1)
Reset the global individual ID number so that IdTaggers will start from id (default to 1) again.

2.10.2 Class InheritTagger

An inheritance tagger passes values of parental information field(s) to the corresponding fields of offspring. If there
are two parental values from parents of a sexual mating event, a parameter mode is used to specify how to assign
offspring information fields.

class InheritTagger(mode=PATERNAL, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
output="", infoFields=[])

Creates an inheritance tagger that passes values of parental information fields (parameter infoFields) to the
corresponding fields of offspring. If there is only one parent, values at the specified information fields are
copied directly. If there are two parents, parameter mode specifies how to pass them to an offspring. More
specifically,

emode=MATERNAL Passing the value from mother.

emode=PATERNAL Passing the value from father.

emode=MEAN Passing the average of two values.

emode=MAXIMUM Passing the maximum value of two values.

emode=MINIMUM Passing the minimum value of two values.

emode=SUMMATION Passing the summation of two values.

emode=MULTIPLICATION Passing the multiplication of two values.

An RuntimeError will be raised if any of the parents does not exist. This operator does not support parameter
subPops and does not output any information.

2.10.3 Class SummaryTagger

A summary tagger summarize values of one or more parental information field to another information field of an
offspring. If mating is sexual, two sets of parental values will be involved.

52 Chapter 2. Operator References

class summaryTagger (mode=MEAN, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, out-
put="", infoFields=[])

Creates a summary tagger that summarize values of one or more parental information field (infoFields[:-1]) to

an offspring information field (infoFields[-1]). A parameter mode specifies how to pass summarize parental

values. More specifically,

emode=MEAN Passing the average of values.
emode=MAXIMUM Passing the maximum value of values.
emode=Minumum Passing the minimum value of values.
emode=SUMMATION Passing the sum of values.

emode=MULTIPLICATION Passing the multiplication of values.

This operator does not support parameter subPops and does not output any information.

2.10.4 Class ParentsTagger

This tagging operator records the indexes of parents (relative to the parental generation) of each offspring in specified
information fields (default to father_idx and mother_idx). Only one information field should be specified if an asexsual
mating scheme is used so there is one parent for each offspring. Information recorded by this operator is intended to
be used to look up parents of each individual in multi-generational Population.

class ParentsTagger (begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", in-

foFields=["father_idx", "mother_idx"])
Create a parents tagger that records the indexes of parents of each offspring when it is applied to an offspring

during-mating. If two information fields are specified (parameter infoFields, with default value [’ father_idx’,
'mother_idx’]), they are used to record the indexes of each individual’s father and mother. Value -1 will be
assigned if any of the parent is missing. If only one information field is given, it will be used to record the index
of the first valid parent (father if both parents are valid). This operator ignores parameters output and subPops.

2.10.5 Class offspringTagger

This tagging operator records the indexes of offspring within a family (sharing the same parent or parents) in specified
information field (default to offspring_idx). This tagger can be used to control the number of offspring during mating.

class offspringTagger (begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", in-

foFields=ALL_AVAIL)
Create an offspring tagger that records the indexes of offspring within a family. The index is determined by

successful production of offspring during a mating events so the it does not increase the index if a previous
offspring is discarded, and it resets index even if adjacent families share the same parents. This operator ignores
parameters stage, output, and subPops.

2.10.6 Class PedigreeTagger

This tagging operator records the ID of parents of each offspring in specified information fields (default to father_id
and mother_id). Only one information field should be specified if an asexsual mating scheme is used so there is
one parent for each offspring. Information recorded by this operator is intended to be used to record full pedigree
information of an evolutionary process.

class PedigreeTagger (idField="ind_id", output="", outputFields=[], outputLoci=[], begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["father_id", "mother_id"])

Create a pedigree tagger that records the ID of parents of each offspring when it is applied to an offspring

during-mating. If two information fields are specified (parameter infoFields, with default value [’father_id’,

"mother_id’]), they are used to record the ID of each individual’s father and mother stored in the idField (default

2.10. Tagging operators 53

to ind_id) field of the parents. Value -1 will be assigned if any of the parent is missing. If only one information
field is given, it will be used to record the ID of the first valid parent (father if both pedigree are valid).

This operator by default does not send any output. If a valid output stream is given (should be in the form of
'>>filename’ so that output will be concatenated), this operator will output the ID of offspring, IDs of his or her
parent(s), sex and affection status of offspring, and values at specified information fields (outputFields) and loci
(outputLoci) in the format of off_id father_id mother_id M/F A/U fields genotype. father_id or mother_id will
be ignored if only one parent is involved. This file format can be loaded using function loadPedigree.

Because only offspring will be outputed, individuals in the top-most ancestral generation will not be outputed.
This is usually not a problem because individuals who have offspring in the next generation will be constructed
by function loadPedigree, although their information fields and genotype will be missing. If you would like to
create a file with complete pedigree information, you can apply this operator before evolution in the initOps
parameter of functions Population.evolve or Simulator.evolve. This will output all individuals in the initial
population (the top-most ancestral population after evolution) in the same format. Note that sex, affection
status and genotype can be changed by other operators so this operator should usually be applied after all other
operators are applied.

2.10.7 Class pyTagger

A Python tagger takes some information fields from both parents, pass them to a user provided Python function and
set the offspring individual fields with the return values.

class PyTagger (func=None, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", in-
foFields=[])
Create a hybrid tagger that provides an user provided function func with values of specified information fields

(determined by parameter names of this function) of parents and assign corresponding information fields of
offspring with its return value. If more than one parent are available, maternal values are passed after paternal
values. For example, if a function func(A, B) is passed, this operator will send two tuples with parental values of
information fields 'A’ and ’'B’ to this function and assign its return values to fields 'A’ and '8’ of each offspring.
The return value of this function should be a list, although a single value will be accepted if only one information
field is specified. This operator ignores parameters stage, output and subPops.

2.11 Statistics Calculation

2.11.1 Class stat

Operator Stat calculates various statistics of the population being applied and sets variables in its local namespace.
Other operators or functions can retrieve results from or evalulate expressions in this local namespace after Stat is
applied.

class stat(popSize=False, numOfMales=False, numOfAffected=False, numOfSegSites=[], numOfMutants=[], al-
leleFreq=[], heteroFreq=[], homoFreq=[], genoFreq=[], haploFreq=[], haploHeteroFreq=[], haplo-
HomoFreq=[], sumOfInfo=[], meanOfInfo=[], varOfinfo=[], maxOfinfo=[], minOfiInfo=[], LD=[], as-
sociation=[], neutrality=[], structure=[], HWE=[], inbreeding=[], effectiveSize=[], vars=ALL_AVAIL,
suffix="", output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-

foFields=[])
Create a Stat operator that calculates specified statistics of a population when it is applied to this population.

This operator can be applied to specified replicates (parameter rep) at specified generations (parameter begin,
end, step, and at). This operator does not produce any output (ignore parameter output) after statistics are
calculated. Instead, it stores results in the local namespace of the population being applied. Other operators
can retrieve these variables or evalulate expression directly in this local namespace. Please refer to operator
BaseOperator for a detailed explanation of these common operator parameters.

Stat supports parameter subPops. It usually calculate the same set of statistics for all subpopulations

54 Chapter 2. Operator References

(subPops=subPopList()). If a list of (virtual) subpopulations are specified, statistics for only specified subpopula-
tions will be calculated. However, different statistics treat this parameter differently and it is very important to
check its reference before you use subPops for any statistics.

Calculated statistics are saved as variables in a population’s local namespace. These variables can be numbers,
lists or dictionaries and can be retrieved using functions Population.vars() Or Population.dvars(). A special
default dictionary (defdict) is used for dictionaries whose keys are determined dynamically. Accessing ele-
ments of such a dictionary with an invalid key will yield value O instead of a KeyError. If the same variables
are calculated for one or more (virtual) subpopulation, the variables are stored in vars()[’subPop’][sp][’var’]
where sp is a subpopulation ID (sp) or a tuple of virtual subpopulation ID ((sp, vsp)). Population.vars(sp) and
Population.dvars(sp) provide shortcuts to these variables.

Operator Stat outputs a number of most useful variables for each type of statistic. For example, alleleFreq cal-
culates both allele counts and allele frequencies and it by default sets variable alleleFreq (dvars().alleleFreq)
for all or specified subpopulations. If this does not fit your need, you can use parameter vars to output ad-
ditional parameters, or limit the output of existing parameters. More specifically, for this particular statistic,
the available variables are 'alleleFreq’, 'alleleNum’, 'alleleFreq_sp’ ('alleleFreq’ in each subpopulation), and
"alleleNum_sp’ (’alleleNum’ in each subpopulation). You can set vars=['alleleNum_sp’] to output only sub-
population specific allele count. An optional suffix (parameter suffix) can be used to append a suffix to default
parameter names. This parameter can be used, for example, to calculate and store the same statistics for different
subpopulations (e.g. pairwise Fst).
Operator Stat supports the following statistics:
popSize: If popSize=True, number of individuals in all or specified subpopulations (parameter subPops) will be
set to the following variables:

epopSize (default): Number of individuals in all or specified subpopulations. Because subPops does not

have to cover all individuals, it may not be the actual population size.
epopSize sp: Size of (virtual) subpopulation sp.
esubPopSize (default): A list of (virtual) subpopulation sizes. This variable is easier to use than accessing

popSize from each (virtual) subpopulation.

numOfMales: If numOfMales=True, number of male individuals in all or specified (virtual) subpopulations
will be set to the following variables:
enum0fMales (default): Total number of male individuals in all or specified (virtual) subpopulations.
enum0fFemales (default): Total number of female individuals in all or specified (virtual) subpopulations.
eprop0fMales: Proportion of male individuals.
epropOfFemales: Proportion of female individuals.
enum0fMales_sp: Number of male individuals in each (virtual) subpopulation.
enumOfFemales_sp: Number of female individuals in each (virtual) subpopulation.
epropOfMales_sp: Proportion of male individuals in each (virtual) subpopulation.
epropOfFemales_sp: Proportion of female individuals in each (virtual) subpopulation.
numOfAffected: If numOfAffected=True, number of affected individuals in all or specified (virtual) subpopu-
lations will be set to the following variables:
enum0fAffected (default): Total number of affected individuals in all or specified (virtual) subpopulations.

enum0fUnaffected (default): Total number of unaffected individuals in all or specified (virtual) subpopula-
tions.

epropOfAffected: Proportion of affected individuals.
eprop0fUnaffected: Proportion of unaffected individuals.

enum0fAffected_sp: Number of affected individuals in each (virtual) subpopulation.

2.11. Statistics Calculation 55

enum0fUnaffected_sp: Number of unaffected individuals in each (virtual) subpopulation.

epropOfAffected_sp: Proportion of affected individuals in each (virtual) subpopulation.

epropOfUnaffected_sp: Proportion of unaffected individuals in each (virtual) subpopulation.
numOfSegSites: Parameter numOfSegSites accepts a list of loci (loci indexes, names, or ALL_AVAIL) and count
the number of loci with at least two different alleles (segregating sites) or loci with only one non-zero allele
(no zero allele, not segragating) for individuals in all or specified (virtual) subpopulations. This parameter sets
variables

enum0fSegSites (default): Number of segregating sites in all or specified (virtual) subpopulations.

enum0fSegSites_sp: Number of segregating sites in each (virtual) subpopulation.

enumOfFixedSites: Number of sites with one non-zero allele in all or specified (virtual) subpopulations.

enumOfFixedSites_sp: Number of sites with one non-zero allele in in each (virtual) subpopulations.

esegSites: A list of segregating sites in all or specified (virtual) subpopulations.

esegSites_sp: A list of segregating sites in each (virtual) subpopulation.

efixedSites: A list of sites with one non-zero allele in all or specified (virtual) subpopulations.

efixedSites_sp: A list of sites with one non-zero allele in in each (virtual) subpopulations.
numOfMutants: Parameter numOfMutants accepts a list of loci (loci indexes, names, or ALL_AVAIL) and count
the number of mutants (non-zero alleles) for individuals in all or specified (virtual) subpopulations. It sets
variables

enum0fMutants (default): Number of mutants in all or specified (virtual) subpopulations.

enumOfMutants_sp: Number of mutants in each (virtual) subpopulations.
alleleFreq: This parameter accepts a list of loci (loci indexes, names, or ALL_AVAIL), at which allele frequencies
will be calculated. This statistic outputs the following variables, all of which are dictionary (with loci indexes

as keys) of default dictionaries (with alleles as keys). For example, alleleFreq[loc][a] returns O if allele a does
not exist.

ealleleFreq (default): alleleFreq[loc][a] is the frequency of allele a at locus for all or specified (virtual)
subpopulations.

ealleleNum (default): alleleNum[loc][a] is the number of allele a at locus for all or specified (virtual) sub-
populations.

eallelefFreq_sp: Allele frequency in each (virtual) subpopulation.
ealleleNum_sp: Allele count in each (virtual) subpopulation.
heteroFreq and homoFreq: These parameters accept a list of loci (by indexes or names), at which the number

and frequency of homozygotes and/or heterozygotes will be calculated. These statistics are only available for
diploid populations. The following variables will be outputted:

eheteroFreq (default for parameter heteroFreq): A dictionary of proportion of heterozygotes in all or speci-
fied (virtual) subpopulations, with loci indexes as dictionary keys.

ehomoFreq (default for parameter homoFreq): A dictionary of proportion of homozygotes in all or specified
(virtual) subpopulations.

eheteroNum: A dictionary of number of heterozygotes in all or specified (virtual) subpopulations.
ehomoNum: A dictionary of number of homozygotes in all or specified (virtual) subpopulations.
eheteroFreq_sp: A dictionary of proportion of heterozygotes in each (virtual) subpopulation.
ehomoFreq_sp: A dictionary of proportion of homozygotes in each (virtual) subpopulation.
eheteroNum_sp: A dictionary of number of heterozygotes in each (virtual) subpopulation.

ehomoNum_sp: A dictionary of number of homozygotes in each (virtual) subpopulation.

56

Chapter 2. Operator References

genoFreq: This parameter accept a list of loci (by indexes or names) at which number and frequency of all
genotypes are outputed as a dictionary (indexed by loci indexes) of default dictionaries (indexed by tuples of
possible indexes). This statistic is available for all population types with genotype defined as ordered alleles at
a locus. The length of genotype equals the number of homologous copies of chromosomes (ploidy) of a popu-
lation. Genotypes for males or females on sex chromosomes or in haplodiploid populations will have different
length. Because genotypes are ordered, (1, 0) and (0, 1) (two possible genotypes in a diploid population) are
considered as different genotypes. This statistic outputs the following variables:

egenoFreq (default): A dictionary (by loci indexes) of default dictionaries (by genotype) of genotype fre-
quencies. For example, genoFreq[11[(1, 0)] is the frequency of genotype (1, 0) at locus 1.

egenoNum (default): A dictionary of default dictionaries of genotype counts of all or specified (virtual) sub-
populations.

egenoFreq_sp: genotype frequency in each specified (virtual) subpopulation.

egenoFreq_sp: genotype count in each specified (virtual) subpopulation.
haploFreq: This parameter accepts one or more lists of loci (by index) at which number and frequency of hap-
lotypes are outputted as default dictionaries. [(1,2)] can be abbreviated to (1,2). For example, using parameter
haploFreg=(1,2,4), all haplotypes at loci 1, 2 and 4 are counted. This statistic saves results to dictionary (with
loci index as keys) of default dictionaries (with haplotypes as keys) such as haploFreq[(1,2,4)1[(1,1,0)] (fre-
quency of haplotype (1,1,0) atloci (1,2,3)). This statistic works for all population types. Number of haplotypes
for each individual equals to his/her ploidy number. Haplodiploid populations are supported in the sense that

the second homologous copy of the haplotype is not counted for male individuals. This statistic outputs the
following variables:

ehaploFreq (default): A dictionary (with tuples of loci indexes as keys) of default dictionaries of haplotype
frequencies. For example, haploFreq[(6, 1)1[(1,1)] records the frequency of haplotype (1,1) at loci (e,
1) in all or specified (virtual) subpopulations.

ehaploNum (default): A dictionary of default dictionaries of haplotype counts in all or specified (virtual)
subpopulations.

ehaploFreq_sp: Halptype frequencies in each (virtual) subpopulation.
ehaploNum_sp: Halptype count in each (virtual) subpopulation.
haploHeteroFreq and haploHomoFreq: These parameters accept a list of haplotypes (list of loci), at which

the number and frequency of haplotype homozygotes and/or heterozygotes will be calculated. Note that these
statistics are observed count of haplotype heterozygote. The following variables will be outputted:

ehaploHeteroFreq (default for parameter haploHeteroFreq): A dictionary of proportion of haplotype het-
erozygotes in all or specified (virtual) subpopulations, with haplotype indexes as dictionary keys.

ehaploHomoFreq (default for parameter haploHomoFreq): A dictionary of proportion of homozygotes in all
or specified (virtual) subpopulations.

ehaploHeteroNum: A dictionary of number of heterozygotes in all or specified (virtual) subpopulations.
ehaploHomoNum: A dictionary of number of homozygotes in all or specified (virtual) subpopulations.
ehaploHeteroFreq_sp: A dictionary of proportion of heterozygotes in each (virtual) subpopulation.
ehaploHomoFreq_sp: A dictionary of proportion of homozygotes in each (virtual) subpopulation.
ehaploHeteroNum_sp: A dictionary of number of heterozygotes in each (virtual) subpopulation.
ehaploHomoNum_sp: A dictionary of number of homozygotes in each (virtual) subpopulation.

sumOfinfo, meanOfInfo, varOfInfo, maxOfInfo and minOfInfo: Each of these five parameters accepts a list

of information fields. For each information field, the sum, mean, variance, maximum or minimal (depending

on the specified parameter(s)) of this information field at iddividuals in all or specified (virtual) subpopulations
will be calculated. The results will be put into the following population variables:

2.11. Statistics Calculation 57

esum0fInfo (default for sumOfinfo): A dictionary of the sum of specified information fields of individuals in
all or specified (virtual) subpopulations. This dictionary is indexed by names of information fields.

emean0fInfo (default for meanOfInfo): A dictionary of the mean of information fields of all individuals.

evar0fInfo (default for varOfInfo): A dictionary of the sample variance of information fields of all individ-
uals.

enax0fInfo (default for maxOfInfo): A dictionary of the maximum value of information fields of all individ-
uals.

enin0fInfo (default for minOfinfo): A dictionary of the minimal value of information fields of all individuals.
esum0fInfo_sp: A dictionary of the sum of information fields of individuals in each subpopulation.
emean0fInfo_sp: A dictionary of the mean of information fields of individuals in each subpopulation.

evar0fInfo_sp: A dictionary of the sample variance of information fields of individuals in each subpopula-
tion.

emax0fInfo_sp: A dictionary of the maximum value of information fields of individuals in each subpopula-
tion.
emin0fInfo_sp: A dictionary of the minimal value of information fields of individuals in each subpopulation.
LD: Parameter LD accepts one or a list of loci pairs (e.g. LD=[[6,1], [2,3]]) with optional primary alleles at
both loci (e.g. LD=[0,1,0,01). For each pair of loci, this operator calculates linkage disequilibrium and optional
association statistics between two loci. When primary alleles are specified, signed linkage disequilibrium values
are calculated with non-primary alleles are combined. Otherwise, absolute values of diallelic measures are
combined to yield positive measure of LD. Association measures are calculated from a m by n contigency of

haplotype counts (m=n=2 if primary alleles are specified). Please refer to the simuPOP user’s guide for detailed
information. This statistic sets the following variables:

oLD (default) Basic LD measure for haplotypes in all or specified (virtual) subpopulations. Signed if primary
alleles are specified.

oLD_prime (default) Lewontin’s D’ measure for haplotypes in all or specified (virtual) subpopulations. Signed
if primary alleles are specified.

or2 (default) Correlation LD measure for haplotypes in all or specified (virtual) subpopulations.

oLD_chisq ChiSq statistics for a contigency table with frequencies of haplotypes in all or specified (virtual)
subpopulations.

eLD_chiSq_p Single side p-value for the ChiSq statistic. Degrees of freedom is determined by number of
alleles at both loci and the specification of primary alleles.

ecramerV Normalized ChiSq statistics.
oLD_sp Basic LD measure for haplotypes in each (virtual) subpopulation.
oLD_prime_sp Lewontin’s D’ measure for haplotypes in each (virtual) subpopulation.
eR2_sp R2 measure for haplotypes in each (virtual) subpopulation.
eLD_chiSq_sp ChiSq statistics for each (virtual) subpopulation.
eLD ChiSq_p_sp p value for the ChiSq statistics for each (virtual) subpopulation.
eCramerV_sp Cramer V statistics for each (virtual) subpopulation.
association: Parameter association accepts a list of loci, which can be a list of indexes, names, or ALL_AVAIL. At

each locus, one or more statistical tests will be performed to test association between this locus and individual
affection status. Currently, simuPOP provides the following tests:

eAn allele-based Chi-square test using alleles counts. This test can be applied to loci with more than two
alleles, and to haploid populations.

oA genotype-based Chi-square test using genotype counts. This test can be applied to loci with more than
two alleles (more than 3 genotypes) in diploid populations. aA and Aa are considered to be the same
genotype.

58 Chapter 2. Operator References

oA genotype-based Cochran-Armitage trend test. This test can only be applied to diallelic loci in diploid
populations. A codominant model is assumed.

This statistic sets the following variables:
eAllele_ChiSq A dictionary of allele-based Chi-Square statistics for each locus, using cases and controls in
all or specified (virtual) subpopulations.
eAllele_ChiSq_p (default) A dictionary of p-values of the corresponding Chi-square statistics.

eGeno_ChiSq A dictionary of genotype-based Chi-Square statistics for each locus, using cases and controls
in all or specified (virtual) subpopulations.

eGeno_ChiSq_p A dictionary of p-values of the corresponding genotype-based Chi-square test.

eArmitage_p A dictionary of p-values of the Cochran-Armitage tests, using cases and controls in all or
specified (virtual) subpopulations.

eAllele_ChiSq_sp A dictionary of allele-based Chi-Square statistics for each locus, using cases and controls
from each subpopulation.

eAllele ChiSq p_sp A dictionary of p-values of allele-based Chi-square tests, using cases and controls from
each (virtual) subpopulation.

eGeno_ChiSq_sp A dictionary of genotype-based Chi-Square tests for each locus, using cases and controls
from each subpopulation.

®Geno_ChiSq_p_sp A dictionary of p-values of genotype-based Chi-Square tests, using cases and controls
from each subpopulation.

eArmitage_p_sp A dictionary of p-values of the Cochran- Armitage tests, using cases and controls from each
subpopulation.

neutrality: This parameter performs neutrality tests (detection of natural selection) on specified loci, which
can be a list of loci indexes, names or ALL_AVAIL. It currently only outputs Pi, which is the average number of
pairwise difference between loci. This statistic outputs the following variables:

eri Mean pairwise difference between all sequences from all or specified (virtual) subpopulations.
ePi_sp Mean paiewise difference between all sequences in each (virtual) subpopulation.
structure: Parameter structure accepts a list of loci at which statistics that measure population structure are

calculated. structure accepts a list of loci indexes, names or ALL_AVAIL. This parameter currently supports the
following statistics:

eWeir and Cockerham’s Fst (1984). This is the most widely used estimator of Wright’s fixation index and
can be used to measure Population differentiation. However, this method is designed to estimate Fst from
samples of larger populations and might not be appropriate for the calculation of Fst of large populations.

eNei’s Gst (1973). The Gst estimator is another estimator for Wright’s fixation index but it is extended for
multi-allele (more than two alleles) and multi-loci cases. This statistics should be used if you would like
to obtain a frue Fst value of a large Population. Nei’s Gst uses only allele frequency information so it
is available for all population type (haploid, diploid etc). Weir and Cockerham’s Fst uses heterozygosity
frequency so it is best for autosome of diploid populations. For non-diploid population, sex, and mito-
chondrial DNAs, simuPOP uses expected heterozygosity (1 - sum p_i2) when heterozygosity is needed.
These statistics output the following variables:

oF_st (default) The WC84 Fist statistic estimated for all * specified loci.
ofF_is The WCB84 Fis statistic estimated for all specified loci.

or_it The WC84 Fir statistic estimated for all specified loci.

of_st A dictionary of locus level WC84 Fist values.

of_is A dictionary of locus level WC84 Fis values.

2.11. Statistics Calculation 59

of_it A dictionary of locus level WC84 Fit values.
oG_st Nei’s Gst statistic estimated for all specified loci.

eg_st A dictionary of Nei’s Gst statistic estimated for each locus.

HWE: Parameter HwE accepts a list of loci at which exact two-side tests for Hardy-Weinberg equilibrium will
be performed. This statistic is only available for diallelic loci in diploid populations. HWE can be a list of loci
indexes, names or ALL_AVAIL. This statistic outputs the following variables:

ohwE (default) A dictionary of p-values of HWE tests using genotypes in all or specified (virtual) subpopu-
lations.

eHWE_sp A dictionary of p-values of HWS tests using genotypes in each (virtual) subpopulation.

inbreeding: Inbreeding measured by Identitcal by Decent (and by State). This statistics go through all loci of
individuals in a diploid population and calculate the number and proportions of alleles that are identitcal by
decent and by state. Because ancestral information is only available in lineage module, variables IBD_freq are
always set to zero in other modules. Loci on sex and mitochondrial chromosomes, and non-diploid populations
are currently not supported. This statistic outputs the following variables:

o18D_freq (default) The frequency of IBD pairs among all allele pairs. To use this statistic, the population
must be initialized by operator InitLineage() to assign each ancestral allele an unique identify.

o18S_freq (default) The proportion of IBS pairs among all allele pairs.
eIBD_freq_sp frequency of IBD in each (virtual) subpopulations.

eIBS_freq_sp frequency of IBS in each (virtual) subpopulations.

effectiveSize: Parameter effectiveSize accepts a list of loci at which the effective population size for the whole
or specified (virtual) subpopulations is calculated. effectiveSize can be a list of loci indexes, names or ALL_AVAIL.
Parameter subPops is usually used to define samples from which effective sizes are estimated. This statistic
allows the calculation of true effective size based on number of gametes each parents transmit to the offspring
population (per-locus before and after mating), and estimated effective size based on sample genotypes. Due to
the temporal natural of some methods, more than one Stat operators might be needed to calculate effective size.
The vars parameter specified which method to use and which variable to set. Acceptable values include:

eNe_demo_base When this variable is set before mating, it stores IDs of breeding parents and, more impor-
tantly, assign an unique lineage value to alleles at specified loci of each individual. This feature is only
available for lineage modules and will change lineage values at specified loci of all individuals.

eNe_demo_base_sp Pre-mating information for each (virtual) subpopulation, used by variable Ne_demo_sp.

eNe_demo A dictionary of locus-specific demographic effective population size, calculated using number of
gemetes each parent transmits to the offspring population. The method is vased on Crow & Denniston
1988 (Ne = KN-1/k-1+Vk/k) and need variable Ne_demo_base set before mating. Effective size estimated
from this formula is model dependent and might not be applicable to your mating schemes.

eNe_demo_sp Calculate subpopulation-specific effective size.

eNe_temporal_base When this variable is set in parameter vars, the Stat operator saves baseline allele fre-
quencies and other information in this variable, which are used by temporary methods to estimate effective
population size according to changes in allele frequency between the baseline and present generations.
This variable could be set repeatedly to change baselines.

eNe_temporal_base_sp Set baseline information for each (virtual) subpopulation specified.

eNe_tempoFS_P1 Effective population size, 2.5% and 97.5% confidence interval for sampling plan 1 as a list
of size 3, estimated using a temporal method as described in Jorde & Ryman (2007), and as implemented
by software tempoFS (http://www.zoologi.su.se/fyman/). This variable is set to census population size if
no baseline has been set, and to the temporal effective size between the present and the baseline gener-
ation otherwise. This method uses population size or sum of subpopulation sizes of specified (virtual)
subpopulations as census population size for the calculation based on plan 1.

60

Chapter 2. Operator References

eNe_tempoFS_P2 Effective population size, 2.5% and 97.5% confidence interval for sampling plan 2 as a list
of size 6, estimated using a temporal method as described in Jorde & Ryman (2007). This variable is set to
census population size no baseline has been set, and to the temporal effective size between the present and
the baseline generation otherwise. This method assumes that the sample is drawn from an infinitely-sized
population.

eNe_tempoFS deprecated, use Ne_tempoFS_P2 instead.

eNe_tempoFS_P1_sp Estimate effective size of each (virtual) subpopulation using method Jorde & Ryman
2007, assuming sampling plan 1. The census population sizes for sampling plan 1 are the sizes for each
subpopulation that contain the specified (virtual) subpopulations.

eNe_tempoFS_P2_sp Estimate effective size of each (virtual) subpopulation using method Jorde & Ryman
2007, assuming sampling plan 2.

eNe_tempoFS_sp deprecated, use Ne_tempoFS_P2_sp instead.

eNe_waples89_P1 Effective population size, 2.5% and 97.5% confidence interval for sampling plan 1 as a list
of size 6, estimated using a temporal method as described in Waples 1989, Genetics. Because this is a
temporal method, Ne_waples89 estimates effective size between the present and the baseline generation
set by variable Ne_temporal_base. Census population size will be resutned if no baseline has been set. This
method uses population size or sum of subpopulation sizes of specified (virtual) subpopulations as census
population size for the calculation based on plan 1.

eNe_waples89_pr2 Effective population size, 2.5% and 97.5% confidence interval for sampling plan 2 as a list
of size 6, estimated using a temporal method as described in Waples 1989, Genetics. Because this is a
temporal method, Ne_waples89 estimates effective size between the present and the baseline generation
set by variable Ne_temporal_base. Census population size will be returned if no baseline has been set.

eNe_waples89_P1 sp Estimate effective size for each (virtual) subpopulation using method Waples 89, as-
suming sampling plan 1. The census population sizes are the sizes for each subpopulation that contain the
specified (virtual) subpopulation.

eNe_waples89_P2_sp Estimate effective size for each (virtual) subpopulation using method Waples 89, as-
suming sampling plan 2.

eNe_waples89_sp deprecated, use Ne_waples89_P2_sp instead.

eNe_LD Lists of length three for effective population size, 2.5% and 97.% confidence interval for cutoff
allele frequency 0., 0.01, 0.02 and 0.05 (as dictionary keys), using a parametric method, estimated from
linkage disequilibrim information of one sample, using LD method developed by Waples & Do 2006
(LDNe). This method assumes unlinked loci and uses LD measured from genotypes at loci. Because this
is a sample based method, it should better be applied to a random sample of the population. 95% CI is
calculated using a Jackknife estimated effective number of independent alleles. Please refer to relevant
papers and the LDNe user’s guide for details.

eNe_LD_sp Estimate LD-based effective population size for each specified (virtual) subpopulation.
eNe_LD_mono A version of Ne_LD that assumes monogamy (see Waples 2006 for details.

eNe_LD_mono_sp Ne_LD_mono calculated for each (virtual) subpopulation.

2.12 Conditional operators

2.12.1 Class IfElse

This operator uses a condition, which can be a fixed condition, an expression or a user-defined function, to determine
which operators to be applied when this operator is applied. A list of if-operators will be applied when the condition
is True. Otherwise a list of else-operators will be applied.

2.12. Conditional operators 61

class 1fElse(cond, ifOps=[], elseOps=[], output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create a conditional operator that will apply operators ifOps if condition cond is met and elseOps otherwise. If
a Python expression (a string) is given to parameter cond, the expression will be evalulated in each population’s
local namespace when this operator is applied. When a Python function is specified, it accepts parameter pop
when it is applied to a population, and one or more parameters pop, off, dad or mom when it is applied during
mating. The return value of this function should be True or False. Otherwise, parameter cond will be treated as a
fixed condition (converted to True or False) upon which one set of operators is always applied. The applicability
of ifOps and elseOps are controlled by parameters begin, end, step, at and rep of both the IfElse operator
and individual operators but ifOps and elseOps opeartors does not support negative indexes for replicate and
generation numbers.

2.12.2 Class TerminateIf

This operator evaluates an expression in a population’s local namespace and terminate the evolution of this population,
or the whole simulator, if the return value of this expression is True. Termination caused by an operator will stop the
execution of all operators after it. The generation at which the population is terminated will be counted in the evolved
generations (return value from Simulator::evolve) if termination happens after mating.

" "

class TerminateIf(condition="", stopAll=False, message="", output="", begin=0, end=-1, step=1, at=[],

reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
Create a terminator with an expression condition, which will be evalulated in a population’s local namespace

when the operator is applied to this population. If the return value of condition is True, the evolution of the
population will be terminated. If stopAll is set to True, the evolution of all replicates of the simulator will be
terminated. If this operator is allowed to write to an output (default to ""), the generation number, proceeded
with an optional message.

2.12.3 Class RevertIf

This operator replaces the current evolving population by a population loaded from a specified filename if certain
condition is met. It is mostly used to return to a previously saved state if the simulation process fails to met a condition
(e.g. a disease allele is lost).

class RevertIf(cond, fromPop="", ops=[], output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Replaces the current evolving population by a population loaded from fromPop, which should be a file saved by
function Population.save() or operator SavePopulation. If a Python expression (a string) is given to parameter
cond, the expression will be evalulated in each population’s local namespace when this operator is applied.
When a Python function with optional parameter pop is specified, it should accept the current population (to
parameter pop) and converts and return True or False. Otherwise, parameter cond will be treated as a fixed
condition (converted to True or False) upon which the population is reverted. After the population is reverted,
an optional list of operators ops could be applied to the population.

2.12.4 Class biscardIf

This operator discards individuals according to either an expression that evaluates according to individual information
field, or a Python function that accepts individual and its information fields.

" "

class piscardif(cond, exposelnd="", output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create an operator that discard individuals according to an expression or the return value of a Python function

(parameter cond). This operator can be applied to a population before or after mating, or to offspring during

mating. If an expression is passed to cond, it will be evalulated with each individual’s information fields (see

operator InfoEval for details). If exposelnd is non-empty, individuals will be available for evaluation in the

62 Chapter 2. Operator References

expression as an variable with name spacied by exposelnd. If the expression is evaluated to be True, individuals
(if applied before or after mating) or offspring (if applied during mating) will be removed or discard. If a
function is passed to cond, it should accept paramters ind and pop or names of information fields when it is
applied to a population (pre or post mating), or parameters off, dad, mom, pop (parental population), or names
of information fields if the operator is applied during mating. Individuals will be discarded if this function
returns True. A constant expression (e.g. True) is also acceptable). Because this operator supports parameter
subPops, only individuals belonging to specified (virtual) subpopulations will be screened.

2.13 The Python operator

2.13.1 Class Pyoperator

An operator that calls a user-defined function when it is applied to a population (pre- or post-mating) or offsprings
(during-mating). The function can have have parameters pop when the operator is applied pre- or post-mating, pop,
off, dad, mom when the operator is applied during-mating. An optional parameter can be passed if parameter param is
given. In the during-mating case, parameters pop, dad and mom can be ignored if offspringOnly is set to True.

class Pyoperator (func, param=None, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=[])
Create a pure-Python operator that calls a user-defined function when it is applied. If this operator is applied

before or after mating, your function should have form func(pop) or func(pop, param) where pop is the popula-
tion to which the operator is applied, param is the value specified in parameter param. param will be ignored if
your function only accepts one parameter. Althernatively, the function should have form func(ind) with optional
parameters pop and param. In this case, the function will be called for all individuals, or individuals in subpop-
ulations subPops. Individuals for which the function returns False will be removed from the population. This
operator can therefore perform similar functions as operator DiscardIf.

If this operator is applied during mating, your function should accept parameters pop, off (or ind), dad, mom and
param where pop is the parental population, and off or ind, dad, and mom are offspring and their parents for each
mating event, and param is an optional parameter. If subPops are provided, only offspring in specified (virtual)
subpopulations are acceptable.

This operator does not support parameters output, and infoFields. If certain output is needed, it should be
handled in the user defined function func. Because the status of files used by other operators through parameter
output is undetermined during evolution, they should not be open or closed in this Python operator.

2.14 Miscellaneous operators

2.14.1 Class NoneOp

This operator does nothing when it is applied to a population. It is usually used as a placeholder when an operator is

needed syntactically.

class Noneop (output=">", begin=0, end=0, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
Create a NoneOp.

2.14.2 Class bumper

This operator dumps the content of a population in a human readable format. Because this output format is not
structured and can not be imported back to simuPOP, this operator is usually used to dump a small population to a
terminal for demonstration and debugging purposes.

2.13. The Python operator 63

class pumper (genotype=True, structure=True, ancGens=UNSPECIFIED, width=1, max=100, loci=[], output=">",
begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

Create a operator that dumps the genotype structure (if structure is True) and genotype (if genotype is True)
to an output (default to standard terminal output). Because a population can be large, this operator will only
output the first 100 (parameter max) individuals of the present generation (parameter ancGens). All loci will be
outputed unless parameter loci are used to specify a subset of loci. This operator by default output values of
all information fields unless parameter infoFields is used to specify a subset of info fields to display. If a list of
(virtual) subpopulations are specified, this operator will only output individuals in these outputs. Please refer to
class BaseOperator for a detailed explanation for common parameters such as output and stage.

2.14.3 Class SavePopulation

An operator that save populations to specified files.

class savePopulation(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=[])
Create an operator that saves a population to output when it is applied to the population. This operator sup-
ports all output specifications (”, 'filename’, 'filename’ prefixed by one or more >’ characters, and ’'expr’)
but output from different operators will always replace existing files (effectively ignore *>’ specification). Pa-
rameter subPops is ignored. Please refer to class BaseOperator for a detailed description about common operator
parameters such as stage and begin.

2.14.4 Class pause

This operator pauses the evolution of a simulator at given generations or at a key stroke. When a simulator is stopped,
you can go to a Python shell to examine the status of an evolutionary process, resume or stop the evolution.

class Pause (stopOnKeyStroke=False, prompt=True, output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
subPops=ALL_AVAIL, infoFields=[])
Create an operator that pause the evolution of a population when it is applied to this population. If stopOn-
KeyStroke is False (default), it will always pause a population when it is applied, if this parameter is set to True,
the operator will pause a population if any key has been pressed. If a specific character is set, the operator will
stop when this key has been pressed. This allows, for example, the use of several pause operators to pause
different populations.

After a population has been paused, a message will be displayed (unless prompt is set to False) and tells you how
to proceed. You can press ’s’ to stop the evolution of this population, ’s’ to stop the evolution of all populations,
or 'p’ to enter a Python shell. The current population will be available in this Python shell as "pop_x_Y" when X is
generation number and Y is replicate number. The evolution will continue after you exit this interactive Python
shell.

Note Ctrl-C will be intercepted even if a specific character is specified in parameter stopOnKeyStroke.

2.14.5 Class TicToc

This operator, when called, output the difference between current and the last called clock time. This can be used to
estimate execution time of each generation. Similar information can also be obtained from turnonDebug ("DBG_PROFILE"),
but this operator has the advantage of measuring the duration between several generations by setting step parameter.
As an advanced feature that mainly used for performance testing, this operator accepts a parameter stopAfter (seconds),
and will stop the evolution of a population if the overall time exceeds stopAfter. Note that elapsed time is only checked
when this operator is applied to a population so it might not be able to stop the evolution process right after stopAfter
seconds. This operator can also be applied during mating. Note that to avoid excessive time checking, this operator
does not always check system time accurately.

64 Chapter 2. Operator References

class TicToc (output=">", stopAfter=0, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
infoFields=[])
Create a TicToc operator that outputs the elapsed since the last time it was applied, and the overall time since the
first time this operator is applied.

2.15 Function form of operators

2.15.1 Function acgtMutate

acgtMutate (pop, *args, **kwargs)
Function form of operator AcgtMutator

2.15.2 Function contextMutate

contextMutate (pop, *args, **kwargs)
Function form of operator ContextMutator

2.15.3 Function discardIf

discardIf(pop, *args, **kwargs)
Apply operator DiscardIf to population pop to remove individuals according to an expression or a Python func-
tion.

2.15.4 Function dump

dump (pop, *args, **kwargs)
Apply operator bumper to population pop.

2.15.5 Function infoEval

infoEval(pop, *args, **kwargs)
Evaluate expr for each individual, using information fields as variables. Please refer to operator InfoEval for
details.

2.15.6 Function infoExec

infoExec (pop, *args, **kwargs)
Execute stmts for each individual, using information fields as variables. Please refer to operator InfoExec for
details.

2.15.7 Function initGenotype

initGenotype (pop, *args, **kwargs)
Apply operator InitGenotype to population pop.

2.15. Function form of operators 65

2.15.8 Function initInfo
initInfo(pop, *args, **kwargs)
Apply operator InitInfo to population pop.
2.15.9 Function initSex
initSex(pop, *args, **kwargs)
Apply operator InitSex to population pop.
2.15.10 Function kAlleleMutate
kAlleleMutate (pop, *args, **kwargs)
Function form of operator KAlleleMutator
2.15.11 Function maPenetrance
maPenetrance (pop, loci, penetrance, wildtype=0, ancGens=True, *args, **kwargs)
Apply opertor MaPenetrance to population pop. Unlike the operator form of this operator that only handles the
current generation, this function by default assign affection status to all generations.
2.15.12 Function mapPenetrance
mapPenetrance (pop, loci, penetrance, ancGens=True, *args, **kwargs)
Apply opertor MapPenetrance to population pop. Unlike the operator form of this operator that only handles the
current generation, this function by default assign affection status to all generations.
2.15.13 Function matrixMutate
matrixMutate (pop, *args, **kwargs)
Function form of operator MatrixMutator
2.15.14 Function mergeSubPops
mergeSubPops (pop, *args, **kwargs)
Merge subpopulations subPops of population pop into a single subpopulation. Please refer to the operator form
of this funciton (MergeSubPops) for details
2.15.15 Function migrate
migrate(pop, *args, **kwargs)
Function form of operator Migrator.
2.15.16 Function backwardMigrate

backwardMigrate (pop, *args, **kwargs)
Function form of operator BackwardMigrator.

66 Chapter 2. Operator References

2.15.17 Function mixedMutate

mixedMutate (pop, *args, **kwargs)
Function form of operator MixedMutator

2.15.18 Function mlPenetrance

mlPenetrance(pop, ops, mode, ancGens=True, *args, **kwargs)
Apply opertor MapPenetrance to population pop. Unlike the operator form of this operator that only handles the
current generation, this function by default assign affection status to all generations.

2.15.19 Function pointMutate

pointMutate(pop, *args, **kwargs)
Function form of operator PointMutator

2.15.20 Function pyEval

pyEval(pop, *args, **kwargs)
Evaluate statements stmts (optional) and expression expr in population pop’s local namespace and return the
result of expr. If exposePop is given, population pop will be exposed in its local namespace as a variable with a
name specified by exposePop. Unlike its operator counterpart, this function returns the result of expr rather than
writting it to an output.

2.15.21 Function pyExec

pyExec(pop, *args, **kwargs)
Execute stmts in population pop’s local namespace.

2.15.22 Function pyMutate

pyMutate (pop, *args, **kwargs)
Function form of operator PyMutator

2.15.23 Function pyPenetrance

pyPenetrance (pop, func, loci=[], ancGens=True, *args, **kwargs)
Apply opertor PyPenetrance to population pop. Unlike the operator form of this operator that only handles the
current generation, this function by default assign affection status to all generations.

2.15.24 Function pyMlPenetrance

pyMlPenetrance (pop, func, mode, loci=[], ancGens=True, *args, **kwargs)

Apply opertor PyMlPenetrance to population pop. Unlike the operator form of this operator that only handles the
current generation, this function by default assign affection status to all generations.

2.15. Function form of operators 67

2.15.25 Function pyQuanTrait
pyQuanTrait(pop, func, loci=[], ancGens=True, *args, **kwargs)
Apply opertor PyQuanTrait to population pop. Unlike the operator form of this operator that only handles the
current generation, this function by default assign affection status to all generations.
2.15.26 Function resizeSubPops
resizeSubPops (pop, *args, **kwargs)
Resize subpopulations subPops of population pop into new sizes size. Individuals will be added or removed
accordingly. Please refer to the operator form of this funciton (ResizeSubPops) for details
2.15.27 Function snpMutate
snpMutate (pop, *args, **kwargs)
Function form of operator SNPMutator
2.15.28 Function splitSubPops
splitSubPops (pop, *args, **kwargs)
Split subpopulations (subPops) of population pop according to either sizes or proportions of the resulting sub-
populations, or an information field. Please refer to the operator form of this function (splitSubPop) for details.
2.15.29 Function stat
stat(pop, *args, **kwargs)
Apply operator stat with specified parameters to population pop. Resulting statistics could be accessed from
the local namespace of pop using functions pop.vars() or pop.dvars()
2.15.30 Function stepwiseMutate
stepwiseMutate (pop, *args, **kwargs)
Function form of operator StepwiseMutator
2.15.31 Function tagIb
tagID(pop, reset=False, *args, **kwargs)
Apply operator IdTagger to population pop to assign a unique ID to all individuals in the population. Individuals

ID will starts from a system wide index. You can reset this start ID using parameter reset which can be True
(reset to 1) or a non-negative number (start from this number).

68 Chapter 2. Operator References

Chapter 3

Utility Modules

3.1 Module simuopt

Module simuopt provides a function simuOpt.setOptions to control which simuPOP module to load, and how it is
loaded, and a class simuOpt.Params that helps users manage simulation parameters.

When simuPOP is loaded, it checkes a few environmental variables (SIMUOPTIMIZED, SIMUALLELETYPE, and SIMUDEBUG) to
determine which simuPOP module to load, and how to load it. More options can be set using the simu0Opt.setOptions
function. For example, you can suppress the banner message when simuPOP is loaded and require a minimal version
of simuPOP for your script. simuPOP recognize the following commandline arguments

--optimized: Load the optimized version of a simuPOP module.

--gui=None|batch|interactive|True|wxPython|Tkinter: Whether or not use a graphical toolkit and which one to use.
--gui=batch is usually used to run a script in batch mode (do not start a parameter input dialog and use all
default values unless a parameter is specified from command line or a configuraiton file. If - -gui=interactive, an
interactive shell will be used to solicit input from users. Otherwise, simuPOP will try to use a graphical parameter
input dialog, and falls to an interactive mode when no graphical Toolkit is available. Please refer to parameter
gui for simuOpt.setOptions for details.

class params.Params provides a powerful way to handle commandline arguments. Briefly speaking, a Params object
can be created from a list of parameter specification dictionaries. The parameters are then become attributes of this
object. A number of functions are provided to determine values of these parameters using commandline arguments, a
configuration file, or a parameter input dialog (using Tkinter or wxPython). Values of these parameters can be accessed
as attributes, or extracted as a list or a dictionary. Note that the Params.getParam function automatically handles the
following commandline arguments.

-h or --help: Print usage message.

--config=configFile: Read parameters from a configuration file configFile.

3.1.1 Function setOptions

setOptions (alleleType=None, optimized=None, gui=None, quiet=None, debug=None, version=None, revision=None,
numThreads=None, plotter=None)
Set options before simuPOP is loaded to control which simuPOP module to load, and how the module should

be loaded.

alleleType: Use the standard, binary,long or mutant allele version of the simuPOP module if alleleType is set
to ’short’, "binary’, ’long’, 'mutant’, or ’lineage’ respectively. If this parameter is not set, this function will
try to get its value from environmental variable SIMUALLELETYPE. The standard (short) module will be used

69

if the environmental variable is not defined.

optimized: Load the optimized version of a module if this parameter is set to True and the standard version if
it is set to False. If this parameter is not set (None), the optimized version will be used if environmental
variable SIMUOPTIMIZED is defined. The standard version will be used otherwise.

gui: Whether or not use graphical user interfaces, which graphical toolkit to use and how to process parameters
in non-GUI mode. If this parameter is None (default), this function will check environmental variable
SIMUGUI or commandline option --gui for a value, and assume True if such an option is unavailable. If
gui=True, sSimuPOP will use wxPython-based dialogs if wxPython is available, and use Tkinter-based dialogs
if Tkinter is available and use an interactive shell if no graphical toolkit is available. gui='Tkinter’ or
"wxPython' can be used to specify the graphical toolkit to use. If gui='interactive’, a simuPOP script
prompt users to input values of parameters. If gui='batch’, default values of unspecified parameters will
be used. In any case, commandline arguments and a configuration file specified by parameter --config will
be processed. This option is usually left to None so that the same script can be run in both GUI and batch
mode using commandline option --gui.

plotter: (Deprecated)
quiet: If set to True, suppress the banner message when a simuPOP module is loaded.

debug: A list of debug code (as string) that will be turned on when simuPOP is loaded. If this parameter is not
set, a list of comma separated debug code specified in environmental variable SIMUDEBUG, if available, will
be used. Note that setting debug=[] will remove any debug code that might have been by variable SIMUDEBUG.

version: A version string (e.g. 1.0.0) indicating the required version number for the simuPOP module to be
loaded. simuPOP will fail to load if the installed version is older than the required version.

revision: Obsolete with the introduction of parameter version.

numThreads: Number of Threads that will be used to execute a simuPOP script. The values can be a positive
number (number of threads) or 0 (all available cores of the computer, or whatever number set by environ-
mental variable oMP_NUM_THREADS). If this parameter is not set, the number of threads will be set to 1, or a
value set by environmental variable OMP_NUM_THREADS.

3.1.2 Class params

class Params provides a uniform interface for simuPOP scripts to handle parameters. It allows users to get parameters
from command line options, a configuration file, a parameter input dialog (tkInter or wxPython) or from interative
input. This class provides parameter validation, conversion and and some utility functions to print, save and restore
parameters.

A Params object accepts a parameter specification list that consists of dictionaries with pre-defined keys. Each item
defines an option in terms of command line option, entry name in a configuration file, label in a parameter input dialog,
acceptable types, validation rules and a default value. The following keys are currently supported:

name: Long command line option name. For example ’version’ checks the presence of argument --version. For
example, '‘mu’ matches command line option --mu=0.001 or --mu 0.001. This item defines the name of an op-
tion and cannot be ignored. An options that does not expect a value is identified as a single BooleanType in
allowedTypes or a default value False when no allowedTypes is defined. Such a value should have default value
False and the presence of this argument in the command line (e.g. - -verbose) change it to True.

label: The label of the input field in a parameter input dialog. It will also be used as the prompt for this option during
interactive parameter input. Options without a label will not be displayed in the parameter input dialog and
will not be saved to a configuration file. A typical example of such an option is --version.

default: Default value for this parameter. It is used as the default value in the parameter input dialog, and as the
option value when a user presses Enter directly during interactive parameter input. A default value is required
for all options.

description: A long description of this parameter. This description will be put into the usage information, and as
parameter tooltip in the parameter input dialog. This string will be reformatted when it is written to a usage

70 Chapter 3. Utility Modules

string (remove newlines and extra spaces and re-indent), with the exception that lines with ’I’ as the first non-
space/tab character will be outputed as is without the leading ’I’ symbol.

allowedTypes: A list of acceptable types of this option. class Params will try to convert user input to these types.
For example, if allowedTypes is list or tuple and the user’s input is a scalar, the input will be converted to a list
automatically. An option will not be accepted if such conversion fails. If this item is not specified, the type of
the default value will be used. If only one type is acceptable, a single value can be used as input (ignore []).

validator: An expression or a function to validate the parameter. If an expression (a string) is used, it will be
evaluated using current values of parameters as inputs. If a function is specified, it will be called with the value
of the parameter. The option will not be accepted if the expression is evalulated as “False” or if the function
returns False. This module defines a large number of such validation functions but user defined functions are
also acceptable.

type: Type of the input parameter. Which can be a datatype (e.g. bool), a list of acceptable types (e.g. (int,
long)), or one of ’'chooseOne0f’, values, 'chooseFrom’, values, 'filename’ (a valid filename), 'dirname’ (a valid
directory name), 'integer’ (int or long), 'integers’ (list of integers), 'number’ (int, long or float), 'numbers’ (list
of numbers), 'string’ (the same as str), 'strings’ (list of strings). These types will advise class simu0pt.Params
how to accept parameters, and how to convert user input to appropriate types. For example, a file browser will be
used to browse for a valid filename in a parameter input dialog (if - -gui=True) for a parameter of type ’filename’,
and input '52’ will be automatically converted to (52,) for a parameter of type ’integers’.

separator: This item specifies a separator (group header) in the parameter input dialog. All other fields are ignored.

arg, longarg, useDefault, chooseFrom, chooseOneOf, allowedTypes: These parameters are deprecated because of the
introduction of the 'name’, ’gui_type’ keys and the ’batch’ mode.

Not all keys need to be specified in each option description. Missing values are handled using some internal rules. For
example, items without a label will not be displayed on the parameter dialog. This will effectively hide a parameter
although users who know this parameter can set it using command line options.

The Params.Params class defines a number of functions to collect, validate, and manipulate parameters using this pa-
rameter specification list.

As a shortcut to create a Params object with a number of attributes, a Params object can be created with additional
key=value pairs that could be assessed as attributes. This is used to create a Params object in which parameters are
assigned directly.

class Params (options=[], doc=", details=", **kwargs)
Create a Params oject using a list of parameter specification dictionaries options. Additional doc and details
can be specified which will be displayed as script summary (on the top of a parameter input dialog) and script
introduction (the first part of a help message), respectively. Additional attributes could be assigned to a params
object as keyword arguments. Note that it is customary to use module document (the first string object in a
Python script) as details, using parameter details=__doc__.

addoption (name=", default=None, **kwargs)
Append an entry to the parameter specification list. Dictionary entries should be specified as keyword
arguments such as name='option’. More specifically, you can specify parameters name (required), label,
default (required), description, validator, type, and separator. This option will have a name specified by
name and an initial default value specified by default.

asDict()
Return parameters as a dictionary.

asList()
Return parameters as a list.

getParam(gui=None, nCol=None, configFile=None, args=None, checkArgs=True)
Get parameters from commandline option, configuration file, a parameter input dialog and from interactive
user input.

3.1. Module simuopt 71

gui: Whether or not use a dialog and which graphical toolkit to use. Global gui setting is used by default
but you can also set this parameter to True, False, Tkinter or wxPython to override the global setting.

nCol: Number of columns in the parameter input dialog. This is usual determine automatically depending
on the number of options.

configFile: Configuration file from which to load values of parameters. If unspecified, it will be deter-
mined from command line option - -config.

args: Command line arguments are obtained from sys.argv unless a list of options are provided in this
argument.

checkArgs: This function by default checks if all commandline arguments have been processed, you can
set chekArgs to False if some of the arguments are intended to be processed separately.

guiGetParam(nCol=None, gui=None)
Get parameter from a Tkinter or wxPython dialog. The parameter will try to arrange parameters optimaly
but you can also set the number of columns using parameter nCol. If both GUI toolkits are available,
wxPython will be used unless gui is set to Tkinter. If none of the toolkits are available, this function will
raise an ImportError.

If Params.valuevalidFile Or Params.valuevalidDir is used to validate a parameter, double click the text input
box of this parameter will open a file or directory browse dialog.

loadConfig(file, params=[])
Load configuration from a file. If a list of parameters are specified in params, only these parameters will
be processed.

processArgs (args=None, params=[])
Try to get parameters from a list of arguments args (default to sys.argv). If -h or --help is in args, this
function prints out a usage message and returns False. If a list of parameters are specified in params, only
these parameters will be processed.

saveConfig (file, params=[])
Write a configuration file to file. This file can be later read with command line option -c or --config. All
parameters with a label entry are saved unless a list of parameters are specified in params. In addition
to parameter definitions, command lines options to specify the same set of parameters are saved to the
configuration file.

termGetParam(params=/])
Get parameters from interactive user input. By default, all parameters are processed unless one of the
following conditions is met:
1.Parameter without a label
2.Parameter with useDefault set to True (deprecated)
3.Parameter that have been determined from command line options or a configuration file
4 Parameter that have been determined by a previous call of this function.

If a list of parameters are given in params, these parameters are processed regardless the mentioned con-
ditions.

usage (usage="usage: %prog [-opt [arg] | —opt [=arg]] ...")
Reutn the usage message from the option description list. 'sprog’ in parameter usage will be replaced by
os.path.basename(sys.argv[0]).

3.1.3 Function param
param(name=", default=None, **kwargs)

A simple wrapper that allows the specification of a parameter using a function instead of a dictionary. Please
refer to class simu0pt.Params for allowed keyword arguments and their meanings.

72 Chapter 3. Utility Modules

3.1.4 Function valueNot
valueNot(7)
Return a function that returns true if passed option does not equal t, or does not passes validator t
3.1.5 Function valueor
valueOr(t/, 12)
Return a function that returns true if passed option passes validator t1 or t2
3.1.6 Function valueAnd
valueAnd(t/, 12)
Return a function that returns true if passed option passes validator t1 and t2
3.1.7 Function valueOneof
valueOneOf (*args)
Return a function that returns true if passed option is one of the parameters, or one of the values in the only
parameter
3.1.8 Function valueTrueFalse
valueTrueFalse()
Return a function that returns true if passed option is True or False
3.1.9 Function valueBetween
valueBetween (d, D)
Return a function that returns true if passed option is between value a and b (a and b included)
3.1.10 Function valueGT
valueGT(a)
Return a function that returns true if passed option is greater than a
3.1.11 Function valueGE
valueGE (a)
Return a function that returns true if passed option is greater than or equal to a
3.1.12 Function valuelLT

valuelT(a)
Return a function that returns true if passed option is less than a

3.1. Module simuopt 73

3.1.13 Function valueLE

valuelLE(a)
Return a function that returns true if passed option is less than or equal to a

3.1.14 Function valueEqual

valueEqual(a)
Return a function that returns true if passed option equals a

3.1.15 Function valueNotEqual

valueNotEqual(a)
Return a function that returns true if passed option does not equal a

3.1.16 Function valueIsNum

valueIsNum()
Return a function that returns true if passed option is a number (int, long or float)

3.1.17 Function valueIsInteger

valueIsInteger()
Return a function that returns true if passed option is an integer (int, long)

3.1.18 Function valueIsList

valuelsList(size=None)
Return a function that returns true if passed option is a sequence. If a size is given, the sequence must have the
specified size (e.g. size=3), or within the range of sizes (e.g. size=[1, 51). A None can be used as unspecified
lower or upper bound.

3.1.19 Function valueList0f

valueListOf(f, size=None)
Return a function that returns true if passed option val is a list of type t if t is a type, if v is one of t if t is a list,
or if v passes test t if t is a validator (a function). If a size is given, the sequence must have the specified size
(e.g. size=3), or within the range of sizes (e.g. size=[1, 5]). A None can be used as unspecified lower or upper
bound.

3.1.20 Function valueSumTo

valueSumTo (a, eps=1e-07)

Return a function that returns true if passed option sum up to a. An eps value can be specified to allowed for
numerical error.

74 Chapter 3. Utility Modules

3.1.21 Function valuevalidDir

valueValidDir()
Return a function that returns true if passed option val if a valid directory

3.1.22 Function valuevalidFile

valueValidFile()
Return a function that returns true if passed option val if a valid file

3.2 Module simuPOP.utils

This module provides some commonly used operators and format conversion utilities.

3.2.1 Class Trajectory

A Trajectory object contains frequencies of one or more loci in one or more subpopulations over several gen-
erations. It is usually returned by member functions of class TrajectorySimulator or equivalent global functions
simulateForwardTrajectory and simulateBackwardTrajectory.

The Trajectory object provides several member functions to facilitate the use of Trajectory-simulation te-
chiniques. For example, Trajectory.func() returns a trajectory function that can be provided directly to a
ControlledOffspringGenerator; Trajectory.mutators() provides a list of PointMutator that insert mutants at the right
generations to initialize a trajectory.

For more information about Trajectory simulation techniques and related controlled random mating scheme, please
refer to the simuPOP user’s guide, and Peng et al (PLoS Genetics 3(3), 2007).

class Trajectory(endGen, nLoci)
Create a Trajectory object of alleles at nLoci loci with ending generation endGen. endGen is the generation
when expected allele frequencies are reached after mating. Therefore, a trajectory for 1000 generations should
have endGen=999.

freq(gen, subPop)
Return frequencies of all loci in subpopulation subPop at generation gen of the simulated Trajectory. Allele
frequencies are assumed to be zero if gen is out of range of the simulated Trajectory.

func()
Return a Python function that returns allele frequencies for each locus at specified loci. If there are multiple
subpopulations, allele frequencies are arranged in the order of 1oc0_sp@, locl_spo, ..., LocO_spl, locl_spl, ...
and so on. The returned function can be supplied directly to the freqFunc parameter of a controlled random
mating scheme (ControlledRandomMating) or a homogeneous mating scheme that uses a controlled offspring
generator (Controlled0ffspringGenerator).

mutants ()
Return a list of mutants in the form of (loc, gen, subPop)

mutators (loci, inds=0, allele=1, *args, **kwargs)
Return a list of PointMutator operators that introduce mutants at the beginning of simulated trajectories.
These mutators should be added to the preops parameter of Simulator.evolve function to introduce a mutant
at the beginning of a generation with zero allele frequency before mating, and a positive allele frequency
after mating. A parameter loci is needed to specify actual loci indexes in the real forward simulation.
Other than default parameters inds=0 and allele=1, additional parameters could be passed to point mutator
as keyward parameters.

3.2. Module simuPoP.utils 75

plot (filename=None, **kwargs)
Plot simulated Trajectory using matplotlib. The function will return silently if module matplotlib cannot
be imported.
This function will use different colors to plot trajectories at different loci. The trajectories are plotted from
generation O to endGen even if the trajectories are short. The y-axis ranges from 0 to 1 and is labeled
Allele frequency. If a valid filename is given, the figure will be saved to filename in a format specified by
file extension. Currently supported formats/extensions are eps, jpg, bmp, tif, png and pdf. The availability
of formats may be limited by your version of R or functions of matplotlib.
This function makes use of the derived keyword parameter feature of module plotter, with prefix figure,
plot, set_title, set_ylim, set_xlabel, and set_ylabel, and suffixes loc and sp.

3.2.2 Class TrajectorySimulator

A Trajectory Simulator takes basic demographic and genetic (natural selection) information of an evolutionary process
of a diploid population and allow the simulation of Trajectory of allele frequencies of one or more loci. Trajectories
could be simulated in two ways: forward-time and backward-time. In a forward-time simulation, the simulation
starts from certain allele frequency and simulate the frequency at the next generation using given demographic and
genetic information. The simulation continues until an ending generation is reached. A Trajectory is successfully
simulated if the allele frequency at the ending generation falls into a specified range. In a backward-time simulation,
the simulation starts from the ending generation with a desired allele frequency and simulate the allele frequency at
previous generations one by one until the allele gets lost (allele frequency equals zero).

The result of a trajectory simulation is a trajectory object which can be used to direct the simulation of a special random
mating process that controls the evolution of one or more disease alleles so that allele frequencies are consistent across
replicate simulations. For more information about Trajectory simulation techniques and related controlled random
mating scheme, please refer to the simuPOP user’s guide, and Peng et al (PLoS Genetics 3(3), 2007).

class TrajectorySimulator (N, nLoci=1, fitness=None, logger=None)
Create a trajectory Simulator using provided demographic and genetic (natural selection) parameters. Member
functions simuForward and simuBackward can then be used to simulate trajectories within certain range of
generations. This class accepts the following parameters

N: Parameter N accepts either a constant number for population size (e.g. N=1000), a list of subpopulation sizes
(e.g. N=[1000, 2000]), or a demographic function that returns population or subpopulation sizes at each
generation. During the evolution, multiple subpopulations can be merged into one, and one population can
be split into several subpopulations. The number of subpopulation is determined by the return value of
the demographic function. Note that N should be considered as the population size at the end of specified
generation.

nLoci: Number of unlinked loci for which trajectories of allele frequencies are simulated. We assume a diploid
population with diallelic loci. The Trajectory represents frequencies of a

fitness: Parameter fitness can be None (no selection), a list of fitness values for genotype with 0, 1, and 2 disease
alleles (AA, Aa, and aa) at one or more loci; or a function that returns fitness values at each generation.
When multiple loci are involved (nLoci), fitness can be a list of 3 (the same fitness values for all loci), a list
of 3*nLoci (different fitness values for each locus) or a list of 3**nLoci (fitness value for each combination
of genotype). The fitness function should accept generation number and a subpopulation index. The latter
parameter allows, and is the only way to specify different fitness in each subpopulation.

logger: A logging object (see Python module logging) that can be used to output intermediate results with
debug information.

simuBackward (endGen, endFreq, minMutAge=None, maxMutAge=None, maxAttempts=1000)
Simulate trajectories of multiple disease susceptibility loci using a forward time approach. This function
accepts allele frequencies of alleles of multiple unlinked loci (endFreq) at the end of generation endGen.
Depending on the number of loci and subpopulations, parameter beginFreq can be a number (same fre-
quency for all loci in all subpopulations), or a list of frequencies for each locus (same frequency in all

76 Chapter 3. Utility Modules

subpopulations), or a list of frequencies for each locus in each subpopulation in the order of loce_spe,
locl_sp@, ..., locO_spl, locl_spl, ... and so on.

This simulator will simulate a trajectory generation by generation and restart if the disease allele got
fixed (instead of lost), or if the length simulated Trajectory does not fall into minMutAge and maxMutAge
(ignored if None is given). This simulator will return None if no valid Trajectory is found after maxattempts
attemps.

simuForward (beginGen, endGen, beginFreq, endFreq, maxAttempts=10000)

Simulate trajectories of multiple disease susceptibility loci using a forward time approach. This function

accepts allele frequencies of alleles of multiple unlinked loci at the beginning generation (freq) at gener-

ation beginGen, and expected range of allele frequencies of these alleles (endFreq) at the end of generation

endGen. Depending on the number of loci and subpopulations, these parameters accept the following inputs:

beginGen: Starting generation. The initial frequecies are considered as frequencies at the beginning of
this generation.

endGen: Ending generation. The ending frequencies are considerd as frequencies at the end of this
generation.

beginFreq: The initial allele frequency of involved loci in all subpopulations. It can be a number (same
frequency for all loci in all subpopulations), or a list of frequencies for each locus (same frequency
in all subpopulations), or a list of frequencies for each locus in each subpopulation in the order of
locO_sp0, locl_spo, ..., locO_spl, locl spl, ... and so on.

endFreq: The range of acceptable allele frequencies at the ending generation. The ranges can be specified
for all loci in all subpopulations, for all loci (allele frequency in the whole population is considered),
or for all loci in all subpopulations, in the order of loco_spe, locl_spo, loc@_spl, ... and so on.

This simulator will simulate a trajectory generation by generation and restart if the resulting frequencies

do not fall into specified range of frequencies. This simulator will return None if no valid Trajectory is

found after maxAttempts attemps.

3.2.3 Function simulateForwardTrajectory

simulateForwardTrajectory (N, beginGen, endGen, beginFreq, endFreq, nLoci=1, fitness=None, maxAttempts=10000,

logger=None)
Given a demographic model (N) and the fitness of genotype at one or more loci (fitness), this function simulates

a trajectory of one or more unlinked loci (nLoci) from allele frequency freq at generation beginGen forward in
time, until it reaches generation endGen. A Trajectory object will be returned if the allele frequency falls into
specified ranges (endFreq). None will be returned if no valid Trajectory is simulated after maxAttempts attempts.
Please refer to class Trajectory, TrajectorySimulator and their member functions for more details about allowed
input for these parameters. If a logger object is given, it will send detailed debug information at bEBUG level and
ending allele frequencies at the INFO level. The latter can be used to adjust your fitness model and/or ending
allele frequency if a trajectory is difficult to obtain because of parameter mismatch.

3.2.4 Function simulateBackwardTrajectory

simulateBackwardTrajectory (N, endGen, endFreq, nLoci=1, fitness=None, minMutAge=None, maxMutAge=None,

maxAttempts=1000, logger=None)
Given a demographic model (N) and the fitness of genotype at one or more loci (fitness), this function simulates

a trajectory of one or more unlinked loci (nLoci) from allele frequency freq at generation endGen backward in
time, until all alleles get lost. A Trajectory object will be returned if the length of simulated Trajectory with
minMutAge and maxMutAge (if specified). None will be returned if no valid Trajectory is simulated after maxAttempts
attempts. Please refer to class Trajectory, TrajectorySimulator and their member functions for more details
about allowed input for these parameters. If a logger object is given, it will send detailed debug information at
DEBUG level and ending generation and frequency at the INFO level. The latter can be used to adjust your fitness
model and/or ending allele frequency if a trajectory is difficult to obtain because of parameter mismatch.

3.2. Module simuPoP.utils 77

3.2.5 Class ProgressBar

The ProgressBar class defines a progress bar. This class will use a text-based progress bar that outputs progressing dots
(.) with intermediate numbers (e.g. 5 for 50%) under a non-GUI mode (gui=False). In the GUI mode, a Tkinter or
wxPython progress dialog will be used (gui=Tkinter or gui=wxPython). The default mode is determined by the global
gui mode of simuPOP (see also simu0pt.setOptions).

This class is usually used as follows:

progress = ProgressBar("Start simulation", 500)
for i in range(500):
i+1 can be ignored if the progress bar is updated by 1 step
progress.update(i+l)
if you would like to make sure the done message is displayed.
progress.done()

class ProgressBar (message, totalCount, progressChar="., block=2, done="Done.
n’, gui=None)
Create a progress bar with message, which will be the title of a progress dialog or a message for textbased
progress bar. Parameter totalCount specifies total expected steps. If a text-based progress bar is used, you could
specified progress character and intervals at which progresses will be displayed using parameters progressChar
and block. A ending message will also be displayed in text mode.

done()
Finish progressbar, print ’"done’ message if in text-mode.

update (count=None)
Update the progreebar with count steps done. The dialog or textbar may not be updated if it is updated by
full percent(s). If count is None, the progressbar increases by one step (not percent).

3.2.6 Function viewvars

viewVars (var, gui=None)
list a variable in tree format, either in text format or in a: wxPython window.

var: A dictionary variable to be viewed. Dictionary wrapper objects returned by Population.dvars() and
Simulator.dvars() are also acceptable.

gui: If gui is False or 'Tkinter’, a text presentation (use the pprint module) of the variable will be printed to
the screen. If gui is 'wxPython’ and wxPython is available, a wxPython windows will be used. The default
mode is determined by the global gui mode (see also simuOpt.setOptions).

3.2.7 Function saveCsV

saveCSV (pop, filename=", infoFields=[], loci=True, header=True, subPops=ALL_AVAIL, genoFormatter=None, in-
foFormatter=None, sexFormatter={1: 'M’, 2: 'F’}, affectionFormatter={False: "U’, True: 'A’}, sep=", ’,

**kwargs)
This function is deprecated. Please use export(format="csv’) instead. Save a simuPOP population pop in csv

format. Columns of this file is arranged in the order of information fields (infoFields), sex (if sexFormatter is
not None), affection status (if affectionFormatter is not None), and genotype (if genoFormatter is not None). This
function only output individuals in the present generation of population pop. This function accepts the following
parameters:

pop: A simuPOP population object.

filename: Output filename. Leading *>’ characters are ignored. However, if the first character of this filename
is ’I’, the rest of the name will be evalulated in the population’s local namespace. If filename is empty, the
content will be written to the standard output.

78 Chapter 3. Utility Modules

infoFileds: Information fields to be outputted. Default to none.

loci: 1If a list of loci is given, only genotype at these loci will be written. Default to ALL_AVAIL, meaning all
available loci. You can set this parameter to [] if you do not want to output any genotype.

header: Whether or not a header should be written. These headers will include information fields, sex (if
sexFormatter is not None), affection status (if affectionFormatter is not None) and loci names. If genotype at
a locus needs more than one column, _1, _2 etc will be appended to loci names. Alternatively, a complete
header (a string) or a list of column names could be specified directly.

subPops: A list of (virtual) subpopulations. If specified, only individuals from these subpopulations will be
outputed.

infoFormatter: A format string that is used to format all information fields. If unspecified, str(value) will be
used for each information field.

genoFormatter: How to output genotype at specified loci. Acceptable values include None (output allele names),
a dictionary with genotype as keys, (e.g. genoFormatter={(0,0):1, (0,1):2, (1,0):2, (1,1):3}, or a func-
tion with genotype (as a tuple of integers) as inputs. The dictionary value or the return value of this function
can be a single or a list of number or strings.

sexFormatter: How to output individual sex. Acceptable values include None (no output) or a dictionary with
keys MALE and FEMALE.

affectionFormatter: How to output individual affection status. Acceptable values include None (no output) or a
dictionary with keys True and Fatse.

Parameters genoCode, sexCode, and affectionCode from version 1.0.0 have been renamed to genoFormatter,
sexFormatter and affectionFormatter but can still be used.

3.2.8 Class Exporter

An operator to export the current population in specified format. Currently supported file formats include:
STRUCTURE (http://pritch.bsd.uchicago.edu/structure.html). This format accepts the following parameters:

markerNames: If set to True (default), output names of loci that are specified by parameter lociNames of the
Population class. No names will be outputted if loci are anonymous. A list of loci names are acceptable which
will be outputted directly.

recessiveAlleles: If specified, value of this parameter will be outputted after the marker names line.

interMarkerDistances: If set to True (default), output distances between markers. The first marker of each chromo-
some has distance -1, as required by this format.

phaselnformation: If specified, output the value (0 or 1) of this parameter after the inter marker distances line. Note
that simuPOP populations always have phase information.

label: Output 1-based indexes of individuals if this parameter is true (default)
popData: Output 1-based index of subpopulation if this parameter is set to true (default).
popFlag: Output value of this parameter (0 or 1) after popData if this parameter specified.

locData: Name of an information field with location information of each individual. Default to None (no location
data)

phenotype: Name of an information field with phenotype information of each individual. Default to None (no
phenotype)

Genotype information are always outputted. Alleles are coded the same way (0, 1, 2, etc) as they are stored in simuPOP.
GENEPORP (http://genepop.curtin.edu.au/). The genepop format accepts the following parameters:

title: The tile line. If unspecified, a line similar to *produced by simuPOP on XXX’ will be outputted.

3.2. Module simuPoP.utils 79

http://pritch.bsd.uchicago.edu/structure.html
http://genepop.curtin.edu.au/

adjust: Adjust values of alleles by specified value (1 as default). This adjustment is necessary in many cases because
GENEPOP treats allele 0 as missing values, and simuPOP treats allele 0 as a valid allele. Exporting alleles O and
1 as 1 and 2 will allow GENEPOP to analyze simuPOP-exported files correctly.

Because 0 is reserved as missing data in this format, allele A is outputted as A+adjust. simuPOP will use subpopulation
names (if available) and 1-based individual index to output individual label (e.g. SubPop2-3). If parameter subPops
is used to output selected individuals, each subpop will be outputted as a separate subpopulation even if there are
multiple virtual subpopulations from the same subpopulation. simuPOP currently only export diploid populations to
this format.

FSTAT (http://www2.unil.ch/popgen/softwares/fstat.htm). The fstat format accepts the following parameters:

lociNames: Names of loci that will be outputted. If unspecified, simuPOP will try to use names of loci that are
specified by parameter lociNames of the Population class, or names in the form of chrX-Y.

adjust: Adjust values of alleles by specified value (1 as default). This adjustment is necessary in many cases because
FSTAT treats allele O as missing values, and simuPOP treats allele O as a valid allele. Exporting alleles 0 and 1
as 1 and 2 will allow FSTAT to analyze simuPOP-exported files correctly.

MAP (marker information format) output information about each loci. Each line of the map file describes a single
marker and contains chromosome name, locus name, and position. Chromosome and loci names will be the names
specified by parameters chromNames and lociNames of the Population object, and will be chromosome index + 1, and
> if these parameters are not specified. This format output loci position to the third column. If the unit assumed in
your population does not match the intended unit in the MAP file, (e.g. you would like to output position in basepair
while the population uses Mbp), you can use parameter posMultiplier to adjust it. This format accepts the following

parameters:

posMultiplier: A number that will be multiplied to loci positions (default to 1). The result will be outputted in the
third column of the output.

PED (Linkage Pedigree pre MAKEPED format), with columns of family, individual, father mother, gender, affection
status and genotypes. The output should be acceptable by HaploView or plink, which provides more details of this
format in their documentation. If a population does not have ind_id, father_id or mother_id, this format will output in-
dividuals in specified (virtual) subpopulations in the current generation (parental generations are ignored) as unrelated
individuals with 0, 0 as parent IDs. An incremental family ID will be assigned for each individual. If a population have
ind_id, father_id and mother_id, parents will be recursively traced to separate all individuals in a (multigenerational)
population into families of related individuals. father and mother id will be set to zero if one of them does not exist.
This format uses 1 for MALE, 2 for FEMALE. If phenoField is None, individual affection status will be outputted with
1 for Unaffected and 2 for affected. Otherwise, values of an information field will be outputted as phenotype. Because
0 value indicates missing value, values of alleles will be adjusted by 1 by default, which should be avoided if you are
using non-zero alleles to model ACTG alleles in simuPOP. This format will ignore subpopulation structure because
parents might belong to different subpopulations. This format accepts the following parameters:

idField: A field for individual id, default to ind_id. Value at this field will be individual ID inside a pedigree.

fatherField: A field for father id, default to father_id. Value at this field will be used to output father of an individual,
if an individual with this ID exists in the population.

motherField: A field for mother id, default to mother_id. Value at this field will be used to output mother of an
individual, if an individual with this ID exists in the population.

phenoField: A field for individual phenotype that will be outputted as the sixth column of the PED file. If None is
specified (default), individual affection status will be outputted (1 for unaffected and 2 for affected).

adjust: Adjust values of alleles by specified value (1 as default). This adjustment is necessary in many cases because
LINKAGE/PED format treats allele 0 as missing values, and simuPOP treats allele O as a valid allele. You should
set this paremter to zero if you have already used alleles 1, 2, 3, 4 to model A, C, T, and G alleles.

Phylip (Joseph Felsenstein’s Phylip format). Phylip is generally used for nuclotide sequences and protein sequences.
This makes this format suitable for simulations of haploid populations (ploidy=1) with nucleotide or protein sequences
(number of alleles = 4 or 24 with alleleNames as nucleotide or amino acid names). If your population does satisfy

80 Chapter 3. Utility Modules

http://www2.unil.ch/popgen/softwares/fstat.htm

these conditions, you can still export it, with homologous chromosomes in a diploid population as two sequences, and
with specified allele names for allele 0, 1, 2, This function outputs sequence name as SXXX where XXX is the
1-based index of individual and SXXX_Y (Y=1 or 2) for diploid individuals, unless names of sequences are provided
by parameter seqNames. This format supports the following parameters:

alleleNames: Names of alleles 0, 1, 2, ... as a single string (e.g. ’ACTG’) or a list of single-character strings (e.g. ['A’,
*C’,’T’, ’G’]). If this parameter is unspecified (default), this program will try to use names of alleles specified in
alleleNames parameter of a Population, and raise an error if no name could be found.

seqNames: Names of each sequence outputted, for each individual, or for each sequences for non-haploid population.
If unspecified, default names such as SXXX or SXXX_Y will be used.

style: Output style, can be ’sequential’ (default) or ’interleaved’. For sequential output, each sequence consists of
for the first line a name and 90 symbols starting from column 11, and subsequent lines of 100 symbols. The
interleaved style have subsequent lines as separate blocks.

MS (output from Richard R. Hudson’s MS or msHOT program). This format records genotypes of SNP markers at
segregating site so all non-zero genotypes are recorded as 1. simuPOP by default outputs a single block of genotypes
at all loci on the first chromosome, and for all individuals, unless parameter splitBy is specified to separate genotypes
by chromosome or subpopulations.

splitBy:: simuPOP by default output segregating sites at all loci on the first chromosome for all individuals. If splitBy
is set to 'subPop’, genotypes for individuals in all or specified (parameter subPops) subpopulations are outputted in
separate blocks. The subpopulations should have the same number of individuals to produce blocks of the same
number of sequences. Alternatively, splitBy can be set to chrom, for which genotypes on different chromosomes
will be outputted separately.

CSV (comma separated values). This is a general format that output genotypes in comma (or tab etc) separated formats.
The function form of this operator export(format="csv’) is similar to the now-deprecated savecsv function, but its
interface has been adjusted to match other formats supported by this operator. This format outputs a header (optiona),
and one line for each individual with values of specified information fields, sex, affection status, and genotypes. All
fields except for genotypes are optional. The output format is controlled by the following parameters:

infoFileds: Information fields to be outputted. Default to none.

header: Whether or not a header should be written. These headers will include information fields, sex (if sexFormatter
is not None), affection status (if affectionFormatter is not None) and loci names. If genotype at a locus needs more
than one column, _1, _2 etc will be appended to loci names. Alternatively, a complete header (a string) or a list
of column names could be specified directly.

infoFormatter: A format string that is used to format all information fields. If unspecified, str(value) will be used for
each information field.

genoFormatter: How to output genotype at specified loci. Acceptable values include None (output allele values), a
dictionary with genotype as keys, (e.g. genoFormatter={(0,0):1, (0,1):2, (1,0):2, (1,1):3}, or a function with
genotype (as a tuple of integers) as inputs. The dictionary value or the return value of this function can be a
single or a list of number or strings.

sexFormatter: How to output individual sex. Acceptable values include None (no output) or a dictionary with keys
MALE and FEMALE.

affectionFormatter: How to output individual affection status. Acceptable values include None (no output) or a
dictionary with keys True and Fatlse.

delimiter: Delimiter used to separate values, default to ’,’.

This operator supports the usual applicability parameters such as begin, end, step, at, reps, and subPops. If subPops
are specified, only individuals from specified (virtual) subPops are exported. Similar to other operators, parameter
output can be an output specification string (filename, >>filename, !expr), filehandle (or any Python object with a write
function), any python function. Unless explicitly stated for a particular format, this operator exports individuals from
the current generation if there are multiple ancestral generations in the population.

3.2. Module simuPoP.utils 81

The Exporter class will make use of a progress bar to show the progress. The interface of the progress bar is by default
determined by the global GUI status but you can also set it to, for example, gui=False to forcefully use a text-based
progress bar.

class Exporter (format, output, begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[],

gui=None, *args, **kwargs)

3.2.9 Function importPopulation

importPopulation (format, filename, *args, **kwargs)

This function import and return a population from a file filename in specified format. Format-specific parameters
can be used to define how the input should be interpreted and imported. This function supports the following
file format.

GENEPOP (http://genepop.curtin.edu.au/). For input file of this format, this function ignores the first title line,
load the second line as loci names, and import genotypes of different POP sections as different subpopulations.
This format accepts the following parameters:

adjust: Adjust alleles by specified value (default to O for no adjustment). This parameter is mostly used to
convert alleles 1 and 2 in a GenePop file to alleles 0 and 1 (with adjust=-1) in simuPOP. Negative allele
(e.g. missing value 0) will be imported as regular allele with module-dependent values (e.g. -1 imported
as 255 for standard module).

FSTAT (http://www2.unil.ch/popgen/softwares/fstat.htm). This format accepts the following parameters:

adjust: Adjust alleles by specified value (default to O for no adjustment). This parameter is mostly used to
convert alleles 1 and 2 in a GenePop file to alleles 0 and 1 (with adjust=-1) in simuPOP. Negative allele
(e.g. missing value 0) will be imported as regular allele with module-dependent values (e.g. -1 imported
as 255 for standard module).

Phylip (Joseph Felsenstein’s Phylip format). This function ignores sequence names and import sequences in
a haploid (default) or diploid population (if there are even number of sequences). An list of allele names are
required to translate symbols to allele names. This format accepts the following parameters:

alleleNames: Names of alleles 0, 1, 2, ... as a single string (e.g. ’ACTG’) or a list of single-character strings
(e.g. A, °C,’T’, ’G’]). This will be used to translate symbols into numeric alleles in simuPOP. Allele
names will continue to be used as allele names of the returned population.

ploidy: Ploidy of the returned population, default to 1 (haploid). There should be even number of sequences if
ploidy=2 (haploid) is specified.

MS (output from Richard R. Hudson’s MS or msHOT program). The ms program generates npop blocks of
nseq haploid chromosomes for command starting with ms nsample nrepeat. By default, the result is imported
as a haploid population of size nsample. The population will have nrepeat subpopulations each with the same
number of loci but different number of segregating sites. This behavior could be changed by the following
parameters:

ploidy: 1f ploidy is set to 2, the sequenences will be paired so the population will have nseq/2 individuals. An
error will be raised if an odd number of sequences are simulated.

mergeBy: By default, replicate samples will be presented as subpopulations. All individuals have the same
number of loci but individuals in different subpopulations have different segregating sites. If mergeBy is
set to "chrom", the replicates will be presented as separate chromosomes, each with a different set of loci
determined by segregating sites.

3.2.10 Function export

export(pop, format, *args, **kwargs)

Apply operator Exporter to population pop in format format.

82

Chapter 3. Utility Modules

http://genepop.curtin.edu.au/
http://www2.unil.ch/popgen/softwares/fstat.htm

3.3 Module simuPOP.demography

This module provides some commonly used demographic models. In addition to several migration rate generation
functions, it provides models that encapsulate complete demographic features of one or more populations (population
growth, split, bottleneck, admixture, migration). These models provides:

1. The model itself can be passed to parameter subPopSize of a mating scheme to determine the size of the next
generation. More importantly, it performs necessary actions of population size change when needed.

2. The model provides attribute num_gens, which can be passed to parameter gens of Simulator.evolve or
Population.evolve function. A demographic model can also terminate an evolutionary process by returnning
an empty list so gens=model.num_gens is no longer required.

3.3.1 Function migrIslandRates

migrIslandRates (7, 1)
migration rate matrix

x m/(n-1) m/(n-1)
m/(n-1) X ...,

. m/(n-1) m/(n-1) x

where x = 1-m

3.3.2 Function migrHierarchicalIslandRates

migrHierarchicallslandRates (71, r2, n)
Return the migration rate matrix for a hierarchical island model where there are different migration rate within
and across groups of islands.

ri1: Within group migration rates. It can be a number or a list of numbers for each group of the islands.

r2: Across group migration rates which is the probability that someone will migrate to a subpopulation outside
of his group. A list of 12 could be specified for each group of the islands.

n: Number of islands in each group. E.g. n=[5, 4] specifies two groups of islands with 5 and 4 islands each.

For individuals in an island, the probability that it remains in the same island is 1-r1-r2 (rl, r2 might vary by
island groups), that it migrates to another island in the same group is rl1 and migrates to another island outside
of the group is r2. migrate rate to a specific island depends on the size of group.

3.3.3 Function migrSteppingStoneRates

migrSteppingStoneRates (1, n, circular=False)
migration rate matrix for circular stepping stone model (X=1-m)

X m/2 m/2
m/2 X m/2 0
0 m/2 X m/2 0
m/20 m/2 X

or non-circular

3.3. Module simuPoP.demography 83

This function returns [[1]] when there is only one subpopulation.

3.3.4 Function migrtwoDSteppingStoneRates

migr2DSteppingStoneRates (1, m, n, diagonal=False, circular=False)
migration rate matrix for 2D stepping stone model, with or without diagonal neighbors (4 or 8 neighbors for
central patches). The boundaries are connected if circular is True. Otherwise individuals from corner and
bounary patches will migrate to their neighbors with higher probability.

3.3.5 Class EventBasedModel

An event based demographic model in which the demographic changes are triggered by demographic events such as
population growth, split, join, and admixture. The population size will be kept constant if no event is applied at a
certain generation.

class EventBasedModel (events=[], T=None, NO=[], ops=[], infoFields=[])
A demographic model that is driven by a list of demographic events. The events should be subclasses of
DemographicEvent, which have similar interface as regular operators with the exception that applicable parameters
begin, end, step, at are relative to the demographic model, not the population.

plot (filename=", title=", initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model. Print
population size changes duringe evolution. An initial population size could be specified using parameter
initSize for a demographic model with dynamic initial population size. If a filename is specified and if
matplotlib is available, this function draws a figure to depict the demographic model and save it to filename.
An optional title could be specified to the figure. Note that this function can not be plot demographic
models that works for particular mating schemes (e.g. genotype dependent).

3.3.6 Class bemographicEvent

A demographic events that will be applied to one or more populations at specified generations. The interface of a
DemographicEvent is very similar to an simuPOP operator, but the applicable parameters are handled so that the
generations are relative to the demographic model, not the populations to which the event is applied.

class pemographicEvent (ops=[], output=", begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, in-

foFields=[])
Create a demographic event that will be applied at specified generations according to applicability parameters

reps, begin, end, step and at. Parameter subPops is usually used to specify the subpopulations affected by the
event. One or more simuPOP operators, if specified in ops, will be applied when the event happens. Parameters
output and infoFields are currently ignored.

3.3.7 Class ExpansionEvent
A demographic event that increase applicable population size by Nxr (to size Nx(1+r)), or s (to size N+s) at each applica-

ble generation. The first model leads to an exponential population expansion model with rate r (N(t)=N(0)*exp(r*t)),
where the second model leads to an linear population growth model (N(t)=N(0)+s*t) and this is why the parameter

84 Chapter 3. Utility Modules

is called slopes. Note that if both population size and r are small (e.g. Nxr<1), the population might not expand as
expected.

class ExpansionEvent (rates=[], slopes=[], capacity=[], name=", ops=[], output=", begin=0, end=-1, step=1, at=[],

reps=True, subPops=ALL_AVAIL, infoFields=[])
A demographic event that expands all or specified subpopulations (subPops) exponentially by a rate of rates, or

linearly by a slope of slopes, unless carray capacity (capacity) of the population has been reached. Parameter
rates can be a single number or a list of rates for all subpopulations. Parameter slopes should be a number, or
a list of numbers for all subpopulations. subPops can be a ALL_AVAIL or a list of subpopulation index or names.
capacity can be empty (no limit on carrying capacity), or one or more numbers for each of the subpopulations.

3.3.8 Class ResizeEvent

A demographic event that resize specified subpopulations

class ResizeEvent (sizes=[], names=[], removeEmptySubPops=False, ops=[], output=", begin=0, end=-1, step=1,

at=[], reps=True, subPops=ALL_AVAIL, infoFields=[])
A demographic event that resizes given subpopulations subPops to new sizes (integer type), or sizes proportional

to original sizes (if a float number is given). For example, sizes=[0.5, 500] will resize the first subpopulation to
half of its original size, and the second subpopulation to size 500. If the new size is larger, existing individuals
will be copied to sequentially, and repeatedly if needed. If the size of a subpopulation is 0 and removeEmptySubPops
is True, empty subpopulations will be removed. A new set of names could be assigned to the population being
resized.

3.3.9 Class splitEvent

A demographic event that splits a specified population into two or more subpopulations.

”»

class splitEvent(sizes=[], names=[], ops=[], output=
Pops=ALL_AVAIL, infoFields=[])
A demographic event that splits a subpopulation specified by subPops to two or more subpopulations, with spec-
ified sizes and names. sizes can be a list of numbers, proportions (e.g. [1., 500] keeps the original population
and copies 500 individuals to create a new subpupulation). Note that sizes and names, if specified, should include
the source subpopulation as its first element.

, begin=0, end=-1, step=1, at=[], reps=True, sub-

3.3.10 Class MergeEvent

A demographic event that merges one or more subpopulation to a single one.

class MergeEvent (name=", ops=[], output=", begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, in-
foFields=[])
A demographic event that merges subpopulations into a single subpopulation. The merged subpopulation will

have the name of the first merged subpopulation unless a separate name is supported.

3.3.11 Class AdmixtureEvent

This event implements a population admixture event that mix individuals from specified subpopulations to either a
new subpopulation or an existing subpopulation.

”»

class AdmixtureEvent (sizes=[], toSubPop=None, name=", ops=[], output=

reps=True, subPops=ALL_AVAIL, infoFields=[])
Create an admixed population by choosing individuals from all or specified subpopulations (subPops) and cre-

ating an admixed population tosubPop. The admixed population will be appended to the population as a new

, begin=0, end=-1, step=1, at=[],

3.3. Module simuPoP.demography 85

subpopulation with name name if toSubPop is None (default), or replace an existing subpopulation with name or
index toSubPop. The admixed population consists of individuals from subPops according to specified sizes. Its
size is maximized to have the largest number of individuals from the source population when a new population
is created, or equal to the size of the existing destination population. The parameter sizes should be a list of float
numbers between 0 and 1, and add up to 1 (e.g. [0.4, 0.4, 0.2], although this function ignores the last element
and set it to 1 minus the sum of the other numbers). Alternatively, parameter sizes can be a list of numbers used
to explicitly specify the size of admixed population and number of individuals from each source subpopulation.
In all cases, the size of source populations will be kept constant.

3.3.12 Class InstantChangeModel

A model for instant population change (growth, resize, merge, split).

class InstantChangeModel(7T=None, NO=[], G=[], NG=[], ops=[], infoFields=[], removeEmptySubPops=False)

An instant population growth model that evolves a population from size Ne to NT for T generations with population
size changes at generation G to NT. If G is a list, multiple population size changes are allowed. In that case, a
list (or a nested list) of population size should be provided to parameter NT. Both No and NT supports fixed (an
integer), dynamic (keep passed poulation size) and proportional (an float number) population size. Optionally,
one or more operators (e.g. a migrator) ops can be applied to population. Required information fields by these
operators should be passed to parameter infoFields. If removeEmpty option is set to True, empty subpopulation
will be removed. This option can be used to remove subpopulations.

plot (filename=", title=", initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model. Print
population size changes duringe evolution. An initial population size could be specified using parameter
initSize for a demographic model with dynamic initial population size. If a filename is specified and if
matplotlib is available, this function draws a figure to depict the demographic model and save it to filename.
An optional title could be specified to the figure. Note that this function can not be plot demographic
models that works for particular mating schemes (e.g. genotype dependent).

3.3.13 Class ExponentialGrowthModel

A model for exponential population growth with carry capacity

class ExponentialGrowthModel(7T=None, NO=[], NT=None, r=None, ops=[], infoFields=[])
An exponential population growth model that evolves a population from size N0 to NT for T generations with
rxN(t) individuals added at each generation. Ne, NT and r can be a list of population sizes or growth rates for
multiple subpopulations. The initial population will be resized to no (split if necessary). Zero or negative growth
rates are allowed. The model will automatically determine T, r or NT if one of them is unspecified. If all of them
are specified, NT is intepretted as carrying capacity of the model, namely the population will keep contant after
it reaches size NT. Optionally, one or more operators (e.g. a migrator) ops can be applied to population.

plot(filename=", title=", initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model. Print
population size changes duringe evolution. An initial population size could be specified using parameter
initSize for a demographic model with dynamic initial population size. If a filename is specified and if
matplotlib is available, this function draws a figure to depict the demographic model and save it to filename.
An optional title could be specified to the figure. Note that this function can not be plot demographic
models that works for particular mating schemes (e.g. genotype dependent).

3.3.14 Class LinearGrowthModel

A model for linear population growth with carry capacity.

86 Chapter 3. Utility Modules

class LinearGrowthModel(T=None, NO=[], NT=None, r=None, ops=[], infoFields=[])
An linear population growth model that evolves a population from size No to NT for T generations with r«Ne
individuals added at each generation. Ne, NT and r can be a list of population sizes or growth rates for multiple
subpopulations. The initial population will be resized to Ne (split if necessary). Zero or negative growth rates
are allowed. The model will automatically determine T, r or NT if one of them is unspecified. If all of them are
specified, NT is intepretted as carrying capacity of the model, namely the population will keep contant after it
reaches size NT. Optionally, one or more operators (e.g. a migrator) ops can be applied to population.

plot (filename=", title=", initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model. Print
population size changes duringe evolution. An initial population size could be specified using parameter
initSize for a demographic model with dynamic initial population size. If a filename is specified and if
matplotlib is available, this function draws a figure to depict the demographic model and save it to filename.
An optional title could be specified to the figure. Note that this function can not be plot demographic
models that works for particular mating schemes (e.g. genotype dependent).

3.3.15 Class MultiStageModel

A multi-stage demographic model that connects a number of demographic models.

class MultiStageModel (models, ops=[], infoFields=[])
An multi-stage demographic model that connects specified demographic models models. It applies a model to
the population until it reaches num_gens of the model, or if the model returns []. One or more operators could be
specified, which will be applied before a demographic model is applied. Note that the last model will be ignored
if it lasts O generation.

plot (filename=", title=", initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model. Print
population size changes duringe evolution. An initial population size could be specified using parameter
initSize for a demographic model with dynamic initial population size. If a filename is specified and if
matplotlib is available, this function draws a figure to depict the demographic model and save it to filename.
An optional title could be specified to the figure. Note that this function can not be plot demographic
models that works for particular mating schemes (e.g. genotype dependent).

3.3.16 Class outofAfricaModel

A dempgraphic model for the CHB, CEU, and YRI populations, as defined in Gutenkunst 2009, Plos Genetics. The
model is depicted in Figure 2, and the default parameters are listed in Table 1 of this paper.

class outofAfricaModel (70, N_A=7300, N_AF=12300, N_B=2100, N_EU0=1000, r_EU=0.004, N_AS0=510,
r_AS=0.0055, m_AF_B=0.00025, m_AF_EU=3e-05, m_AF_AS=1.9¢-05, m_EU_AS=9.6e-
05, T_AF=8800, T_B=5600, T_EU_AS=848, ops=[], infoFields=[], outcome=["AF’, 'EU’,

AS’], scale=1)
Counting backward in time, this model evolves a population for Te generations (required parameter). The

ancient population A started at size N_A and expanded at T_AF generations from now, to pop AF with size N_AF.
Pop B split from pop AF at T_B generations from now, with size N_B; Pop AF remains as N_AF individuals. Pop
EU and As split from pop B at T_EU_AS generations from now; with size N_Eue individuals and N_ASo individuals,
respectively. Pop EU grew exponentially with rate r_eu; Pop As grew exponentially with rate r_As. The YRI, CEU
and cHB samples are drawn from AF, EU and AS populations respectively. Additional operators could be added to
ops. Information fields required by these operators should be passed to infoFields. If a scaling factor scale is
specified, all population sizes and generation numbers will be divided by a factor of scale. This demographic
model by default returns all populations (AF, EU, AS) but you can choose to keep only selected subpopulations
using parameter outcome (€.g. outcome=[’EU’, 'AS’]).

This model merges all subpopulations if it is applied to an initial population with multiple subpopulation.

3.3. Module simuPoP.demography 87

plot (filename=", title=", initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model. Print
population size changes duringe evolution. An initial population size could be specified using parameter
initSize for a demographic model with dynamic initial population size. If a filename is specified and if
matplotlib is available, this function draws a figure to depict the demographic model and save it to filename.
An optional title could be specified to the figure. Note that this function can not be plot demographic
models that works for particular mating schemes (e.g. genotype dependent).

3.3.17 Class Settlement0OfNewWorldModel

A dempgraphic model for settlement of the new world of Americans, as defined in Gutenkunst 2009, Plos Genetics.
The model is depicted in Figure 3, and the default parameters are listed in Table 2 of this paper.

class SettlementOfNewWorldModel (70, N_A=7300, N_AF=12300, N_B=2100, N_EU0=1500, r_EU=0.0023,

N_AS0=590, r_AS=0.0037, N_MX0=800, r_MX=0.005, m_AF_B=0.00025,
m_AF_EU=3e-05, m_AF_AS=19¢-05, m_EU_AS=1.35¢-05, T_AF=38800,
T_B=5600, T_EU_AS=1056, T_MX=864, f MX=0.48, ops=[], infoFields=[],
outcome="MXL’, scale=1)

Counting backward in time, this model evolves a population for Te generations. The ancient population A

started at size N_A and expanded at T_AF generations from now, to pop AF with size N_AF. Pop B split from pop
AF at T_B generations from now, with size N_B; Pop AF remains as N_AF individuals. Pop Eu and As split from
pop B at T_EU_AS generations from now; with size N_Eue individuals and N_Aso0 individuals, respectively. Pop Eu
grew exponentially with final population size N_Eu; Pop As grew exponentially with final populaiton size N_As.
Pop mx split from pop As at T_Mx generations from now with size N_Mxe, grew exponentially to final size N_MX.
Migrations are allowed between populations with migration rates m_AF_B, m_EU_AS, m_AF_EU, and m_AF_AS. At the
end of the evolution, the AF and cHB populations are removed, and the Eu and Mx populations are merged with
f_Mx proportion for MX. The Mexican American<F19> sample could be sampled from the last single population.
Additional operators could be added to ops. Information fields required by these operators should be passed to
infoFields. If a scaling factor scale is specified, all population sizes and generation numbers will be divided
by a factor of scale. This demographic model by default only returns the mixed Mexican America model
(outputcom="MXL") but you can specify any combination of AF, Eu, AS, MX and MXL.

This model merges all subpopulations if it is applied to an initial population with multiple subpopulation.

plot (filename=", title=", initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model. Print
population size changes duringe evolution. An initial population size could be specified using parameter
initSize for a demographic model with dynamic initial population size. If a filename is specified and if
matplotlib is available, this function draws a figure to depict the demographic model and save it to filename.
An optional title could be specified to the figure. Note that this function can not be plot demographic
models that works for particular mating schemes (e.g. genotype dependent).

3.3.18 Class cosiModel

A dempgraphic model for Africa, Asia and Europe, as described in Schaffner et al, Genome Research, 2005, and
implemented in the coalescent simulator cosi.

class CosiModel (70, N_A=12500, N_AF=24000, N_O0A=7700, N_AF1=100000, N_AS1=100000, N_EU1=100000,

T_AF=17000, T_O0oA=3500, T_EU_AS=2000, T_AS_exp=400, T_EU_exp=350, T_AF_exp=200,
F_00A=0.085, F_AS=0.067, F_EU=0.02, F_AF=0.02, m_AF_EU=3.2e-05, m_AF_AS=8e-06,
ops=[], infoFields=[], scale=1)
Counting backward in time, this model evolves a population for a total of Te generations. The ancient pop-
ulation Ancestral started at size N_Ancestral and expanded at T_AF generations from now, to pop AF with size
N_AF. The Out of Africa population split from the AF population at T_0oA generations ago. The 0oA population
split into two subpopulations As and Eu but keep the same size. At the generations of T_EU_exp, T_AS_exp, and

88

Chapter 3. Utility Modules

T_AF_exp ago, three populations expanded to modern population sizes of N_AF1, N_AS1 and N_EU1 exponentially,
respectively. Migrations are allowed between AF and EU populations with rate m_AF_EU, and between AF and AS
with rate m_AF_As.

Four bottlenecks happens in the AF, 00A, EU and As populations. They are supposed to happen 200 generations
after population split and last for 200 generations. The intensity is parameterized in F, which is number of
generations devided by twice the effective size during bottleneck. So the bottleneck size is 100/F.

This model merges all subpopulations if it is applied to a population with multiple subpopulation. Although
parameters are configurable, we assume the order of events so dramatically changes of parameters might need
to errors. If a scaling factor scale is specified, all population sizes and generation numbers will be divided by,
and migration rates will be multiplied by a factor of scale.

plot (filename=", title=", initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model. Print
population size changes duringe evolution. An initial population size could be specified using parameter
initSize for a demographic model with dynamic initial population size. If a filename is specified and if
matplotlib is available, this function draws a figure to depict the demographic model and save it to filename.
An optional title could be specified to the figure. Note that this function can not be plot demographic
models that works for particular mating schemes (e.g. genotype dependent).

3.4 Module simuPOP.plotter

This module defines several utility functions and Python operators that plot expressions and information fields of
evolving populations using matplotlib. Plotting through rpy and rpy2 was supported in version 1.1.6 and earlier but
was removed in version 1.1.7 due to stability problems of rpy2.

Each operator calls a sequence of matplotlib functions to draw and save figures. A special parameter passing mecha-
nism is used so that you can specify arbitrary parameters to these functions.

3.4.1 Class varPlotter

This class defines a Python operator that uses R to plot the current and historical values of a Python expression
(expr), which are evaluated (against each population’s local namespace) and saved during evolution. The return value
of the expression can be a number or a sequence, but should have the same type and length across all replicates
and generations. Histories of each value (or each item in the returned sequence) of each replicate form a line, with
generation numbers as its x-axis. Number of lines will be the number of replicates multiplied by dimension of the
expression. Although complete histories are usually saved, you can use parameter win to save histories only within the
last win generations.

A figure will be draw at the end of the last replicate (except for the first generation where no line could be drawn)
unless the current generation is less than update generations away from the last generation at which a figure has been
drawn. Lines for multiple replicates or dimensions could be plotted in the same figure (by default), or be seperated to
subplots by replicates (byRep), by each dimention of the results (bydim), or by both. These figure could be saved to files
in various formats if parameter saveAs is specified. File format is determined by file extension. After the evolution, the
graphic device could be left open (leaveOpen).

class varPlotter (expr, win=0, update=1, byRep=False, byDim=False, saveAs=", leaveOpen=False, legend=[],
preHook=None, postHook=None, plotHook=None, begin=0, end=-1, step=1, at=[], reps=True,
*Eewargs)
expr: expression that will be evaluated at each replicate’s local namespace when the operator is applied.
Its value can be a number or a list (or tuple) but the type and length of the return value should be consistent
for all replicates and at all generations.

win: Window of generations. If given, only values from generation -win to -1 will be plotted.

3.4. Module simuPoP.plotter 89

update: Update the figure after specified generations. For example, you can evalulate an expression and save
its values at every 10 generations (parameter step=10) but only draw a figure after every 50 generations
(parameter update=50.

byRep: Separate values at different replicates to different subplots.

byDim: Separate items from sequence results of expr to different subplots. If both byRep and bydim are True, the
subplots will be arranged by variable and then replicates.

saveAs: Save figures in files saveAs_gen.ext (e.g. figure_ 10.eps if saveAs='figure.eps’). If ext is given, a
corresponding device will be used. Otherwise, a default postscript driver will be used. Currently supported
formats include .pdf, .png, .bmp, .jpg, and .tif. The default filename could be overridden by derived
argument dev_print_file.

leaveOpen: Whether or not leave the plot open when plotting is done. Default to False functions. If this option
is set to True, you will have to close the graphic device explicitly using function r.dev_off(). Note that
leaving the device open allows further manipuation of the figures outside of this operator.

legend: labels of the lines. This operator will look for keyword parameters such as col, lty, lwd, and pch and
call the legend function to draw a legend. If figure has multiple lines for both replicates and dimensions,
legends should be given to each dimension, and then each replicate.

preHook: A function that, if given, will be called before the figure is draw. The r object for rpy or Axes object
for matplotlib will be passed to this function.

postHook: A function that, if given, will be called after the figure is drawn. The r object for rpy or Axes object
for matplotlib will be passed to this function.

plotHook: A function that, if given, will be called after each plot function. The Figure object from the
matplotlib module , generation list, data being plotted, replicate number (if applicable) and dimension
index (if applicable) will be passed as keyword arguments gen, data, rep (optional) and dim (optional).

kwargs: Additional keyword arguments that will be interpreted and sent to underlying matplotlib functions.
These arguments could have prefixes (destination function names) and suffixes (list parameters) _rep, _dim,
and _repdim for the rpy option. Arguments without prefixes are sent to functions plot and lines. String
values with a leading ! will be replaced by its evaluated result against the current population.

3.4.2 C(lass ScatterPlotter

This class defines a Python operator that uses R to plot individuals in a Population, using values at two information
fields as their x- and y-axis.

Arbitrary keyword parameters could be specified and be passed to the underlying matplotlib drawing functions plot
and scatter.

The power of this operator lies in its ability to differentiate individuals from different (virtual) subpopulations. If you
specify IDs of (virtual) subpopulations (VSPs) in parameter subPops, only individuals from these VSPs will be dis-
played. Points from these subpopulations will be drawn with different shapes and colors. You can also customize these
points using list parameters with suffix _sp. For example, if you have defined two VSPs by sex and set subPops=[(0,
0), (0, 1)1, col_sp=["blue’, 'red’] will color male individuals with blue and female individuals with red. In addi-
tion, if the value of a parameter is a string starting with !, the evaluated result of the remaining string will be used as
parameter value.

class scatterPlotter (infoFields=[], saveAs=", leaveOpen=False, legend=[], preHook=None, postHook=None, be-

gin=0, end=-1, step=1, at=[], reps=True, subPops=[], **kwargs)
infoFields: Two information fields whose values will be the x- and y-axis of each point (individual) in the
plot.

subPops: A list of subpopulations and virtual subpopulations. Only individuals from these subpopulations will
be plotted. Default to subpopulation indexes.

saveAs: Save figures in files saveAs_gen_rep.ext (e.g. figure 10_0.eps if saveAs='figure.eps’). If ext is given, a
corresponding device will be used. Otherwise, a default postscript driver will be used. Currently supported

90 Chapter 3. Utility Modules

formats include .pdf, .png, .bmp, .jpg, and .tif. The default filename could be overriden by derived
argument dev_print_file.

leaveOpen: Whether or not leave the plot open when plotting is done. Default to False functions. If this option
is set to True, you will have to close the graphic device explicitly using function r.dev_off(). Note that
leaving the device open allows further manipuation of the figures outside of this operator.

legend: labels of the points. It must match the specified subpopulations.

preHook: A function that, if given, will be called before the figure is draw. The plotter module or the Figure
object from matplotlib will be passed to this function.

postHook: A function that, if given, will be called after the figure is drawn. The plotter module or the Figure
object from matplotlib will be passed to this function.

kwargs: Additional keyword arguments that will be interpreted and sent to underlying matplotlib functions.
String values with a leading ! will be replaced by its evaluated result against the current population.

3.5 Module simuPOP.sampling

This module provides classes and functions that could be used to draw samples from a simuPOP population. These
functions accept a list of parameters such as subPops ((virtual) subpopulations from which samples will be drawn)
and num0fSamples (number of samples to draw) and return a list of populations. Both independent individuals and
dependent individuals (Pedigrees) are supported.

Independent individuals could be drawn from any Population. pedigree information is not necessary and is usually
ignored. Unique IDs are not needed either although such IDs could help you identify samples in the parent Population.

Pedigrees could be drawn from multi-generational populations or age-structured populations. All individuals are re-
quired to have a unique ID (usually tracked by operator IdTagger and are stored in information field ind_id). Parents of
individuals are usually tracked by operator PedigreeTagger and are stored in information fields father_id and mother_id.
If parental information is tracked using operator ParentsTagger and information fields father_idx and mother_idx, a
function sampling.indexToID can be used to convert index based pedigree to ID based Pedigree. Note that ParentsTagger
can not be used to track Pedigrees in age-structured populations because they require parents of each individual resides
in a parental generation.

All sampling functions support virtual subpopulations through parameter subPops, although sample size specification
might vary. This feature allows you to draw samples with specified properties. For example, you could select only
female individuals for cases of a female-only disease, or select individuals within certain age-range. If you specify a list
of (virtual) subpopulations, you are usually allowed to draw certain number of individuals from each subpopulation.

3.5.1 Class BaseSampler

A sampler extracts individuals from a simuPOP population and return them as separate populations. This base class
defines the common interface of all sampling classes, including how samples prepared and returned.

class Basesampler (subPops=ALL_AVAIL)
Create a sampler with parameter subPops, which will be used to prepare population for sampling. subPops should
be a list of (virtual) subpopulations from which samples are drawn. The default value is ALL_AVAIL, which
means all available subpopulations of a Population.

drawSample(pop)
Draw and return a sample.

drawSamples (pop, numOfSamples)
Draw multiple samples and return a list of populations.

3.5. Module simuPoP.sampling 91

prepareSample(pop, rearrange)
Prepare passed population object for sampling according to parameter subPops. If samples are drawn
from the whole population, a Population will be trimmed if only selected (virtual) subpopulations are
used. If samples are drawn separately from specified subpopulations, Population pop will be rearranged (if
rearrange==True) so that each subpoulation corresponds to one element in parameter subPops.

3.5.2 Class RandomSampler

A sampler that draws individuals randomly.

class RandomSampler (sizes, subPops=ALL_AVAIL)
Creates a random sampler with specified number of individuals.

drawSample (input_pop)
Draw a random sample from passed population.

drawSamples (pop, numOfSamples)
Draw multiple samples and return a list of populations.

prepareSample(pop, rearrange)
Prepare passed population object for sampling according to parameter subPops. If samples are drawn
from the whole population, a Population will be trimmed if only selected (virtual) subpopulations are
used. If samples are drawn separately from specified subpopulations, Population pop will be rearranged (if
rearrange==True) so that each subpoulation corresponds to one element in parameter subPops.

3.5.3 Function drawRandomSample

drawRandomSample (pop, sizes, subPops=ALL_AVAIL)
Draw sizes random individuals from a population. If a single sizes is given, individuals are drawn randomly
from the whole population or from specified (virtual) subpopulations (parameter subPops). Otherwise, a list of
numbers should be used to specify number of samples from each subpopulation, which can be all subpopulations
if subPops=ALL_AVAIL (default), or from each of the specified (virtual) subpopulations. This function returns a
population with all extracted individuals.

3.5.4 Function drawRandomSamples

drawRandomSamples (pop, sizes, numOfSamples=1, subPops=ALL_AVAIL)
Draw numofsamples random samples from a population and return a list of populations. Please refer to function
drawRandomSample for more details about parameters sizes and subPops.

3.5.5 Class caseControlSampler

A sampler that draws affected and unaffected individuals randomly.

class caseControlSampler(cases, controls, subPops=ALL_AVAIL)
Ceates a case-control sampler with specified number of cases and controls.

drawSample (input_pop)
Draw a case control sample

drawSamples (pop, numOfSamples)
Draw multiple samples and return a list of populations.

prepareSample (input_pop)
Find out indexes all affected and unaffected individuales.

92 Chapter 3. Utility Modules

3.5.6 Function drawCaseControlSample

drawCaseControlSample (pop, cases, controls, subPops=ALL_AVAIL)
Draw a case-control samples from a population with cases affected and controls unaffected individuals. If single
cases and controls are given, individuals are drawn randomly from the whole Population or from specified
(virtual) subpopulations (parameter subPops). Otherwise, a list of numbers should be used to specify number
of cases and controls from each subpopulation, which can be all subpopulations if subPops=ALL_AVAIL (default),
or from each of the specified (virtual) subpopulations. This function returns a population with all extracted
individuals.

3.5.7 Function drawCaseControlSamples

drawCaseControlSamples (pop, cases, controls, numOfSamples=1, subPops=ALL_AVAIL)
Draw numofsamples case-control samples from a population with cases affected and controls unaffected individ-
uals and return a list of populations. Please refer to function drawCaseControlSample for a detailed descriptions of
parameters.

3.5.8 Class pPedigreeSampler

The base class of all pedigree based sampler.

class PedigreeSampler (families, subPops=ALL_AVAIL, idField="ind_id’, fatherField="father_id’, = mother-
Field="mother_id’)
Creates a pedigree sampler with parameters
families: number of families. This can be a number or a list of numbers. In the latter case, specified families
are drawn from each subpopulation.

subPops: A list of (virtual) subpopulations from which samples are drawn. The default value is ALL_AVAIL,
which means all available subpopulations of a population.

drawSample (input_pop)
Randomly select Pedigrees

drawSamples (pop, numOfSamples)
Draw multiple samples and return a list of populations.

family (id)
Get the family of individual with id.

prepareSample(pop, loci=[], infoFields=[], ancGens=True)
Prepare self.pedigree, some pedigree sampler might need additional loci and information fields for this
sampler.

3.5.9 Class AffectedSibpairSampler

A sampler that draws a nuclear family with two affected offspring.

class AffectedSibpairSampler (families, subPops=ALL_AVAIL, idField=’"ind_id’, fatherField="father_id’, mother-

Field="mother_id’)
Initialize an affected sibpair sampler.

drawSamp'le (input_pop)
Randomly select Pedigrees

drawSamples (pop, numOfSamples)
Draw multiple samples and return a list of populations.

3.5. Module simuPoP.sampling 93

family (id)
Return id, its spouse and their children

prepareSample (input_pop)
Find the father or all affected sibpair families

3.5.10 Function drawAffectedSibpairSample

drawAffectedSibpairSample (pop, families, subPops=ALL_AVAIL, idField="ind_id’, fatherField="father_id’, mother-

Field="mother_id’)
Draw affected sibpair samples from a population. If a single families is given, affected sibpairs and their parents

are drawn randomly from the whole population or from specified (virtual) subpopulations (parameter subPops).
Otherwise, a list of numbers should be used to specify number of families from each subpopulation, which can
be all subpopulations if subPops=ALL_AVAIL (default), or from each of the specified (virtual) subpopulations. This
function returns a population that contains extracted individuals.

3.5.11 Function drawAffectedSibpairSamples

drawAffectedSibpairSamples(pop, families, numOfSamples=1, subPops=ALL_AVAIL, idField="ind_id’, father-
Field="father_id’, motherField="mother_id’)
Draw numofsamples affected sibpair samplesa from population pop and return a list of populations. Please refer
to function drawAffectedSibpairSample for a description of other parameters.

3.5.12 Class NuclearFamilySampler

A sampler that draws nuclear families with specified number of affected parents and offspring.

class NuclearFamilySampler (families, numOffspring, affectedParents=0, affectedOffspring=0, subPops=ALL_AVAIL,
idField="ind_id’, fatherField="father_id’, motherField="mother_id’)
Creates a nuclear family sampler with parameters

families: number of families. This can be a number or a list of numbers. In the latter case, specified families
are drawn from each subpopulation.

numOffspring: number of offspring. This can be a fixed number or a range [min, max].
affectedParents: number of affected parents. This can be a fixed number or a range [min, max].
affectedOffspring: number of affected offspring. This can be a fixed number of a range [min, max].

subPops: A list of (virtual) subpopulations from which samples are drawn. The default value is ALL_AVAIL,
which means all available subpopulations of a population.

drawSample (input_pop)
Randomly select Pedigrees

drawSamples (pop, numOfSamples)
Draw multiple samples and return a list of populations.

family (id)
Return id, its spouse and their children

3.5.13 Function drawNuclearFamilySample
drawNuclearFamilySample(pop, families, = numOffspring, affectedParents=0, affectedOffspring=0, sub-

Pops=ALL_AVAIL, idField="ind_id’, fatherField="father_id’, motherField="mother_id’)
Draw nuclear families from a population. Number of offspring, number of affected parents and number of

94 Chapter 3. Utility Modules

affected offspring should be specified using parameters num0ffspring, affectedParents and affected0ffspring,
which can all be a single number, or a range [a, b] (b is incldued). If a single families is given, Pedigrees
are drawn randomly from the whole population or from specified (virtual) subpopulations (parameter subPops).
Otherwise, a list of numbers should be used to specify numbers of families from each subpopulation, which can
be all subpopulations if subPops=ALL_AVAIL (default), or from each of the specified (virtual) subpopulations. This
function returns a population that contains extracted individuals.

3.5.14 Function drawNuclearFamilySamples

drawNuclearFamilySamples (pop, families, numOffspring, affectedParents=0, affectedOffspring=0, numOfSam-
ples=1, subPops=ALL_AVAIL, idField=’ind_id’, fatherField="father_id’, mother-
Field="mother_id’)
Draw numofSamples affected sibpair samplesa from population pop and return a list of populations. Please refer
to function drawNuclearFamilySample for a description of other parameters.

3.5.15 Class ThreeGenFamilySampler

A sampler that draws three-generation families with specified pedigree size and number of affected individuals.

class ThreeGenFamilySampler (families, numOffspring, pedSize, numOfAffected=0, subPops=ALL_AVAIL,
Field="ind_id’, fatherField="father_id’, motherField="mother_id’)
families: number of families. This can be a number or a list of numbers. In the latter case, specified
families are drawn from each subpopulation.

numOlffspring: number of offspring. This can be a fixed number or a range [min, max].
pedSize: number of individuals in the Pedigree. This can be a fixed number or a range [min, max].

numAfffected: number of affected individuals in the Pedigree. This can be a fixed number or a range [min,
max|

subPops: A list of (virtual) subpopulations from which samples are drawn. The default value is ALL_AVAIL,
which means all available subpopulations of a population.

drawSample (input_pop)
Randomly select Pedigrees

drawSamples (pop, numOfSamples)
Draw multiple samples and return a list of populations.

family (id)
Return id, its spouse, their children, children’s spouse and grandchildren

3.5.16 Function drawThreeGenFamilySample

drawThreeGenFamilySample (pop, families, numOffspring, pedSize, numOfAffected=0, subPops=ALL_AVAIL, id-
Field="ind_id’, fatherField="father_id’, motherField="mother_id’)

Draw three-generation families from a population. Such families consist of grant parents, their children, spouse
of these children, and grand children. Number of offspring, total number of individuals, and total number of
affected individuals in a pedigree should be specified using parameters num0ffspring, pedSize and numOfAffected,
which can all be a single number, or a range [a, b] (b is incldued). If a single families is given, Pedigrees
are drawn randomly from the whole Population or from specified (virtual) subpopulations (parameter subPops).
Otherwise, a list of numbers should be used to specify numbers of families from each subpopulation, which can
be all subpopulations if subPops=ALL_AVAIL (default), or from each of the specified (virtual) subpopulations. This
function returns a population that contains extracted individuals.

3.5. Module simuPoP.sampling 95

3.5.17 Function drawThreeGenFamilySamples

drawThreeGenFamilySamples(pop, families, numOffspring, pedSize, numOfAffected=0, numOfSamples=1, sub-

Pops=ALL_AVAIL, idField="ind_id’, fatherField="father_id’, motherField="mother_id’)

Draw numofSamples three-generation pedigree samples from population pop and return a list of populations.
Please refer to function drawThreeGenFamilySample for a description of other parameters.

3.5.18 Class CombinedSampler

A combined sampler accepts a list of sampler objects, draw samples and combine the returned sample into a single
population. An id field is required to use this sampler, which will be used to remove extra copies of individuals who
have been drawn by different samplers.

class CombinedSampler (samplers=[], idField="ind_id’)
samplers: A list of samplers

drawSamples (pop, numOfSamples)
Draw multiple samples and return a list of populations.

prepareSample(pop, rearrange)
Prepare passed population object for sampling according to parameter subPops. If samples are drawn
from the whole population, a Population will be trimmed if only selected (virtual) subpopulations are
used. If samples are drawn separately from specified subpopulations, Population pop will be rearranged (if
rearrange==True) so that each subpoulation corresponds to one element in parameter subPops.

3.5.19 Function drawCombinedSample

drawCombinedSample (pop, samplers, idField="ind_id’)
Draw different types of samples using a list of samplers. A Population consists of all individuals from these
samples will be returned. An idField that stores an unique ID for all individuals is needed to remove duplicated
individuals who are drawn multiple numOfSamples from these samplers.

3.5.20 Function drawCombinedSamples

drawCombinedSamples (pop, samplers, numOfSamples=1, idField="ind_id’)
Draw combined samples numofSamples numOfSamples and return a list of populations. Please refer to function
drawCombinedSample for details about parameters samplers and idField.

3.6 Module simuPoP.gsl

This module exposes the following GSL (GUN Scientific Library) functions used by simuPOP to the user interface.
Although more functions may be added from time to time, this module is not intended to become a complete wrapper
for GSL. Please refer to the GSL reference manual (http://www.gnu.org/software/gsl/manual/html_node/) for details
about these functions. Note that random number generation functions are wrapped into the simuPOP.RNG class.

® gsl_cdf_gaussian_P(x, sigma)
® gsl_cdf_gaussian_Q(x, sigma)
® gsl_cdf_gaussian_Pinv(P, sigma)

® gsl_cdf_gaussian_Qinv(Q, sigma)

96 Chapter 3. Utility Modules

http://www.gnu.org/software/gsl/manual/html_node/

® gsl_cdf_ugaussian_P(x)

® gsl_cdf_ugaussian_Q(x)

® gsl_cdf_ugaussian_Pinv(P)

® gsl_cdf_ugaussian_Qinv(Q)

® gsl_cdf_exponential_P(x, mu)
® gsl_cdf_exponential_Q(x, mu)
® gsl_cdf_exponential _Pinv(P, mu)
® gsl_cdf_exponential_Qinv(Q, mu)
® gsl_cdf_chisq_P(x, nu)

® gsl_cdf_chisq_Q(x, nu)

® gsl_cdf_chisq_Pinv(P, nu)

® gsl_cdf_chisq_Qinv(Q, nu)

® gsl_cdf_gamma_P(x, a, b)

® gsl_cdf_gamma_Q(x, a, b)

® gsl_cdf_gamma_Pinv(P, a, b)

® gsl_cdf_gamma_Qinv(Q, a, b)

® gsl_ran_gamma_pdf(x, a, b)

® gsl_cdf_beta_P(x, a, b)

® gsl_cdf_beta_Q(x, a, b)

® gsl_cdf_beta_Pinv(P, a, b)

® gsl_cdf_beta_Qinv(Q, a, b)

® gsl_ran_beta_pdf(x, a, b)

® gsl_cdf_binomial_P(k, p, n)

® gsl_cdf_binomial_Q(k, p, n)

® gsl_ran_binomial_pdf(k, p, n)
® gsl_cdf_poisson_P(k, mu)

® gsl_cdf_poisson_Q(k, mu)

® gsl _ran_poisson_pdf(k, mu)

3.6. Module simuPOP.gsl

98

Index

A

absIndIndex() (Population method), 6
absLocusIndex() (GenoStruTrait method), 1
acgtMutate() (in module), 65
AcgtMutator (class in), 45

add() (Simulator method), 14

addChrom() (Population method), 6
addChromFrom() (Population method), 6
addIndFrom() (Population method), 6
addInfoFields() (Population method), 6
addLoci() (Population method), 6
addLociFrom() (Population method), 6
addoption() (Params method), 71
AdmixtureEvent (class in), 85

affected() (Individual method), 3
AffectedSibpairSampler (class in), 93
AffectionSplitter (classin), 16

allele() (Individual method), 3
allelechar() (Individual method), 3
alleleLineage() (Individual method), 3
alleleName() (GenoStruTrait method), 1
alleleNames() (GenoStruTrait method), 1
allIndividuals() (Population method), 11
ancestor() (Population method), 7
ancestralGens() (Population method), 7
apply() (BaseOperator method), 32, 46, 48
applyToIndividual() (BasePenetrance method), 46
asDict() (Params method), 71

asList() (Params method), 71
asPedigree() (Population method), 11
asPopulation() (Pedigree method), 13

B

backwardMigrate() (in module), 66
BackwardMigrator (class in), 36
BaseMutator (class in), 41
BaseOperator (class in), 31
BasePenetrance (class in), 45
BaseQuanTrait (class in), 48
BaseSampler (class in), 91
BaseSelector (class in), 49
BaseVspSplitter (classin), 15

C

CaseControlSampler (class in), 92

chooseParents() (SequentialParentChooser method), 20—

22

chromBegin() (GenoStruTrait method), 2
chromByName () (GenoStruTrait method), 2
chroménd () (GenoStruTrait method), 2
chromLocusPair() (GenoStruTrait method), 2
chromName () (GenoStruTrait method), 2
chromNames () (GenoStruTrait method), 2
chromType() (GenoStruTrait method), 2
chronTypes () (GenoStruTrait method), 2
class

AffectionSplitter, 15

BackwardMigrator, 36

BaseMutator, 41

BaseOperator, 31

BasePenetrance, 45

BaseQuanTrait, 48

BaseSelector, 49

BaseVspSplitter, 15

CloneGenoTransmitter, 38

CombinedParentsChooser, 21

CombinedSplitter, 17

ConditionalMating, 19

ContextMutator, 44

ControlledOffspringGenerator, 23

DiscardlIf, 62

Dumper, 63

GenoStruTrait, 1

GenoTransmitter, 38

GenotypeSplitter, 17

HaplodiploidGenoTransmitter, 39

HeteroMating, 19

HomoMating, 18

IdTagger, 52

IfElse, 61

Individual, 3

InfoEval, 34

InfoExec, 35

InfoSplitter, 16

InheritTagger, 52

InitGenotype, 33

InitInfo, 32

InitLineage, 33

InitSex, 32

KAlleleMutator, 42

99

MaPenetrance, 46 SummaryTagger, 52

MapPenetrance, 46 Terminatelf, 62

MapSelector, 50 TicToc, 64

MaSelector, 50 WeightedSampler, 27

MatingScheme, 18 clearChromosome () (GenoTransmitter method), 38
MatrixMutator, 42 clone() (Population method), 7, 12, 14, 15, 32
MendelianGenoTransmitter, 39 CloneGenoTransmitter (class in), 38
MergeSubPops, 37 CloneMating (class in), 24

Migrator, 35 closeOutput () (in module), 28
MitochondrialGenoTransmitter, 39 __cmp__() (Individual method), 3, 7, 14
MixedMutator, 44 CombinedParentsChooser (class in), 21
MIlPenetrance, 46 CombinedSampler (class in), 96

MiSelector, 50 CombinedSplitter (class in), 17

NoneOp, 63 ConditionalMating (class in), 19
OffspringGenerator, 22 contextMutate() (in module), 65
OffspringTagger, 53 ContextMutator (class in), 44

ParentsTagger, 53 ControlledOffspringGenerator (class in), 23
Pause, 64 ControlledRandomMating (class in), 26
Pedigree, 11 copyChromosome () (GenoTransmitter method), 38
PedigreeMating, 19 copyChromosomes () (GenoTransmitter method), 38
PedigreeTagger, 53 CosiModel (class in), 88

PointMutator, 44

PolyParentsChooser, 21 D

Population, 5 DemographicEvent (class in), 84
ProductSplitter, 18 describeEvolProcess() (in module), 28
ProportionSplitter, 16 DiscardIf (class in), 62

PyEval, 34 discardIf() (in module), 65

PyExec, 34 done() (ProgressBar method), 78
PyMIPenetrance, 47 draw() (WeightedSampler method), 27
PyMISelector, 51 drawAffectedSibpairSample() (in module), 94
PyMutator, 43 drawAffectedSibpairSamples() (in module), 94
PyOperator, 63 drawCaseControlSample() (in module), 93
PyOutput, 34 drawCaseControlSamples() (in module), 93
PyParentsChooser, 22 drawCombinedSample() (in module), 96
PyPenetrance, 47 drawCombinedSamples () (in module), 96
PyQuanTrait, 48 drawNuclearFamilySample() (in module), 94
PySelector, 51 drawNuclearFamilySamples() (in module), 95
PyTagger, 54 drawRandomSample() (in module), 92
RandomParentChooser, 20 drawRandomSamples () (in module), 92
RandomParentsChooser, 2 1 drawSample() (BaseSampler method), 91-95
RangeSplitter, 16 drawSamples () (WeightedSampler method), 28, 91-96
Recombinator, 40 drawThreeGenFamilySample() (in module), 95
ResizeSubPops, 37 drawThreeGenFamilySamples() (in module), 96
RevertFixedSites, 45 dump () (in module), 65

Revertlf, 62 Dumper (class in), 64

RNG, 26 dvars () (Population method), 7, 14

SavePopulation, 64

SelfingGenoTransmitter, 39 E)
SequentialParentChooser, 20 EventBasedModel (?1355 in), 84
SexSplitter, 15 evolve() (Population method), 11, 14
Simulator, 13 ExpansionEvent (class in), 85
SplitSubPops, 37 ExponentialGrowthModel (class in), 86
Stat, 54 export() (in module), 82

StepwiseMutator, 43 Exporter (class in), 82

100 Index

extract() (Simulator method), 14
extractIndividuals() (Population method), 7
extractSubPops () (Population method), 7

F

family () (PedigreeSampler method), 93-95
freq() (Trajectory method), 75

func() (Trajectory method), 75

G

GenoStruTrait (classin), 1
GenoTransmitter (class in), 38
genotype() (Individual method), 3, 7
GenotypeSplitter (classin), 17
getParam() (Params method), 71
getRNG () (in module), 29
guiGetParam() (Params method), 72

H

HaplodiploidGenoTransmitter (class in), 39
HaplodiploidMating (class in), 25
HermaphroditicMating (class in), 25
HeteroMating (class in), 19

HomoMating (class in), 18

I

identifyAncestors() (Pedigree method), 12
identifyFamilies() (Pedigree method), 12
identify0ffspring() (Pedigree method), 12
IdTagger (class in), 52

IfElse (class in), 62

importPopulation() (in module), 82
indByID() (Population method), 7, 12
indexesOfLoci() (GenoStruTrait method), 2
indInfo() (Population method), 8
Individual (classin), 1, 3

individual() (Population method), 8
individuals() (Population method), 8
individualsWithRelatives() (Pedigree method), 12
info() (Individual method), 4

InfoEval (class in), 34

infoEval() (in module), 65

InfoExec (class in), 35

infoExec() (in module), 65

infoField() (GenoStruTrait method), 2
infoFields() (GenoStruTrait method), 2
infoIdx() (GenoStruTrait method), 2
InfoSplitter (classin), 16

InheritTagger (class in), 52

InitGenotype (class in), 33

initGenotype() (in module), 65
initialize() (SequentialParentChooser method), 20-22
initializer, 32

InitInfo (classin), 32

initInfo() (in module), 66

InitLineage (class in), 33
InitSex (class in), 32

initSex() (in module), 66
InstantChangeModel (class in), 86

K
kAlleleMutate() (in module), 66
KAlleleMutator (classin), 43

L

lineage() (Individual method), 4, 8
LinearGrowthModel (class in), 87
loadConfig() (Params method), 72
loadPedigree() (in module), 28
loadPopulation() (in module), 28
locateRelatives() (Pedigree method), 12
lociByNames () (GenoStruTrait method), 2
locibist () (GenoStruTrait method), 2
lociNames () (GenoStruTrait method), 2
lociPos() (GenoStruTrait method), 2
locusByName () (GenoStruTrait method), 2
locusName () (GenoStruTrait method), 2
locusPos () (GenoStruTrait method), 2

M
MaPenetrance (class in), 46
maPenetrance() (in module), 66
MapPenetrance (class in), 46
mapPenetrance() (in module), 66
MapSelector (class in), 50
MaSelector (class in), 50
mating scheme, 18
MatingScheme (class in), 18
matrixMutate() (in module), 66
MatrixMutator (class in), 42
MendelianGenoTransmitter (class in), 39
MergeEvent (class in), 85
MergeSubPops (class in), 37
mergeSubPops () (Population method), 8, 66
migr2DSteppingStoneRates() (in module), 84
migrate() (in module), 66
Migrator (class in), 35, 36
migrHierarchicalIslandRates() (in module), 83
migrislandRates() (in module), 83
migrSteppingStoneRates () (in module), 83
migrtwoDSteppingStoneRates, 84
MitochondrialGenoTransmitter (class in), 39
mixedMutate() (in module), 67
MixedMutator (class in), 44
MlPenetrance (class in), 47
mlPenetrance() (in module), 67
MlSelector (class in), 50
module

AcgtMutator, 45

AdmixtureEvent, 85

Index

101

AffectedSibpairSampler, 93
BaseSampler, 91
CaseControlSampler, 92
CloneMating, 24
CombinedSampler, 96
ControlledRandomMating, 26
CosiModel, 88
DemographicEvent, 84
EventBasedModel, 84
ExpansionEvent, 84
Exponential GrowthModel, 86
Exporter, 79
HaplodiploidMating, 25
HermaphroditicMating, 25
InstantChangeModel, 86
LinearGrowthModel, 86
MergeEvent, 85
MonogamousMating, 24
MultiStageModel, 87
NuclearFamilySampler, 94
OutOfAfricaModel, 87
Params, 70
PedigreeSampler, 93
PolygamousMating, 25
ProgressBar, 78
RandomMating, 24
RandomSampler, 92
RandomSelection, 24
ResizeEvent, 85
ScatterPlotter, 90
SelfMating, 25
SequentialParentsChooser, 20
SettlementOfNewWorldModel, 88
SNPMutator, 44
SplitEvent, 85
ThreeGenFamilySampler, 95
Trajectory, 75
TrajectorySimulator, 76
VarPlotter, 89
WithArgs, 26
WithMode, 26

moduleInfo() (in module), 29

MonogamousMating (class in), 24

MultiStageModel (class in), 87

mutants () (Individual method), 4, 8, 75

Mutation, 41

mutators() (Trajectory method), 75

N

name () (BaseVspSplitter method), 15-18, 27
NoneOp (class in), 63

NuclearFamilySampler (class in), 94
numChrom() (GenoStruTrait method), 2
numLoci() (GenoStruTrait method), 3

numRep () (Simulator method), 14
numSubPop () (Population method), 8

numvVirtualSubPop() (Population method), 8, 15-18

(0}

0ffspringGenerator (class in), 22
OffspringTagger (class in), 53
OutOfAfricaModel (class in), 87

P

parallelizable() (PedigreeMating method), 20

param() (in module), 72

Params (classin), 71

ParentsTagger (class in), 53

Pause (class in), 64

Pedigree (classin), 1, 11
PedigreeMating (class in), 20
PedigreeSampler (class in), 93
PedigreeTagger (class in), 53
penetrance, 45

ploidy() (GenoStruTrait method), 3
ploidyName () (GenoStruTrait method), 3

plot() (Trajectory method), 76, 84, 86—-89

pointMutate() (in module), 67
PointMutator (class in), 44
PolygamousMating (class in), 25
PolyParentsChooser (class in), 21
popSize() (Population method), 8
Population (classin), 1, 5
population() (Simulator method), 14
populations() (Simulator method), 15

prepareSample() (BaseSampler method), 92-94, 96

processArgs () (Params method), 72
ProductSplitter (classin), 18
ProgressBar (class in), 78
ProportionSplitter (classin), 16
push() (Population method), 8
PyEval (class in), 34

pyEval() (in module), 67

PyExec (class in), 34

pyExec() (in module), 67
PyMlPenetrance (class in), 47
pyMlPenetrance() (in module), 67
PyMlSelector (class in), 51
pyMutate() (in module), 67
PyMutator (class in), 43
PyOperator (class in), 63
PyOutput (class in), 34
PyParentsChooser (class in), 22
PyPenetrance (class in), 47
pyPenetrance() (in module), 67
PyQuanTrait (class in), 48
pyQuanTrait() (in module), 68
PySelector (classin), 51

102

Index

PyTagger (class in), 54

Q

quantitative trait, 48

R

randBinomial() (RNG method), 27
randChisq() (RNG method), 27
randExponential() (RNG method), 27
randGamma () (RNG method), 27
randGeometric() (RNG method), 27
randInt() (RNG method), 27
randMultinomial() (RNG method), 27
randNormal () (RNG method), 27
RandomMating (class in), 24
RandomParentChooser (class in), 20
RandomParentsChooser (class in), 21
RandomSampler (class in), 92
RandomSelection (class in), 24
randPoisson() (RNG method), 27
randTruncatedBinomial() (RNG method), 27
randTruncatedPoisson() (RNG method), 27
randUniform() (RNG method), 27
RangeSplitter (classin), 16
recodeAlleles() (Population method), 8
Recombinator (class in), 40
removeIndividuals() (Population method), 9
removeInfoFields() (Population method), 9
removeLoci() (Population method), 9
removeSubPops () (Population method), 9
reset() (IdTagger method), 52

resize() (Population method), 9
ResizeEvent (class in), 85

ResizeSubPops (class in), 38
resizeSubPops () (in module), 68
RevertFixedSites (class in), 45

RevertIf (classin), 62

RNG (class in), 26

S

save() (Population method), 9, 13
saveConfig() (Params method), 72
saveCSV() (in module), 78
SavePopulation (class in), 64
ScatterPlotter (class in), 90

seed() (RNG method), 27

selection, 48

SelfingGenoTransmitter (class in), 39
SelfMating (class in), 25
SequentialParentChooser (class in), 20
SequentialParentsChooser (class in), 20
set() (RNG method), 27

setAffected() (Individual method), 4
setAllele() (Individual method), 4
setAlleleLineage() (Individual method), 4

setAncestralDepth() (Population method), 9
setGenotype() (Individual method), 4, 9
setIndInfo() (Population method), 9
setInfo() (Individual method), 4
setInfoFields() (Population method), 9
setLineage() (Individual method), 4, 9
setOptions() (in module), 29, 69
setRNG() (in module), 29
setSex() (Individual method), 4
setSubPopByIndInfo() (Population method), 10
setSubPopName () (Population method), 10
SettlementOfNewWorldModel (class in), 88
setVirtualSplitter() (Population method), 10
sex() (Individual method), 4
SexSplitter (classin), 15
simuBackward() (TrajectorySimulator method), 76
simuForward() (TrajectorySimulator method), 77
simulateBackwardTrajectory() (in module), 77
simulateForwardTrajectory() (in module), 77
Simulator (classin), 1, 13
simuOpt, 69

param, 72

setOptions, 69

valueAnd, 73

valueBetween, 73

valueEqual, 74

valueGE, 73

valueGT, 73

valuelsInteger, 74

valuelsList, 74

valueIsNum, 74

valueLE, 73

valueListOf, 74

valueLT, 73

valueNot, 72

valueNotEqual, 74

valueOneOf, 73

valueOr, 73

valueSumTo, 74

valueTrueFalse, 73

valueValidDir, 74

valueValidFile, 75
simuPOP

acgtMutate, 65

backwardMigrate, 66

contextMutate, 65

discardlIf, 65

dump, 65

infoEval, 65

infoExec, 65

initGenotype, 65

initInfo, 65

initSex, 66

kAlleleMutate, 66

Index

103

maPenetrance, 66
mapPenetrance, 66
matrixMutate, 66
mergeSubPops, 66
migrate, 66
mixedMutate, 66
mlPenetrance, 67
pointMutate, 67
pyEval, 67
pyExec, 67
pyMIPenetrance, 67
pyMutate, 67
pyPenetrance, 67
pyQuanTrait, 67
resizeSubPops, 68
setRNG, 29
snpMutate, 68
splitSubPops, 68
stat, 68
stepwiseMutate, 68
taglD, 68
simuPOP.demography, 83
migrtwoDSteppingStoneRates, 84
simuPOP.gsl, 96
simuPOP.plotter, 89
simuPOP.sampling, 91
drawAffectedSibpairSample, 94
drawAffectedSibpairSamples, 94
drawCaseControlSample, 92
drawCaseControlSamples, 93
drawCombinedSample, 96
drawCombinedSamples, 96
drawNuclearFamilySample, 94
drawNuclearFamilySamples, 95
drawRandomSample, 92
drawRandomSamples, 92
drawThreeGenFamilySample, 95
drawThreeGenFamilySamples, 95
simuPOP.utils, 75
export, 82
importPopulation, 82
migrHierarchicallslandRates, 83
migrlslandRates, 83
migrSteppingStoneRates, 83
saveCSV, 78
simulateBackwardTrajectory, 77
simulateForwardTrajectory, 77
viewVars, 78
snpMutate() (in module), 68
SNPMutator (class in), 44
sortIndividuals() (Population method), 10
SplitEvent (class in), 85
splitSubPop() (Population method), 10
SplitSubPops (class in), 37

splitSubPops() (in module), 68

Stat (class in), 54

stat() (in module), 68
stepwiseMutate() (in module), 68
StepwiseMutator (class in), 43
subPopBegin() (Population method), 10
subPopByName () (Population method), 10
subPopEnd () (Population method), 10
subPopIndPair() (Population method), 10
subPopName () (Population method), 10
subPopNames () (Population method), 10
subPopSize() (Population method), 11
subPopSizes () (Population method), 10
SummaryTagger (class in), 53

swap() (Population method), 10

T

tagID() (in module), 68

termGetParam() (Params method), 72

TerminateIf (class in), 62

ThreeGenFamilySampler (class in), 95

TicToc (class in), 65

totNumLoci() (GenoStruTrait method), 3

traceRelatives() (Pedigree method), 13

Trajectory (class in), 75

TrajectorySimulator (class in), 76

transmitGenotype() (MendelianGenoTransmitter method),
39, 41

turn0ffDebug() (in module), 30

turnOnDebug () (in module), 30

U

update() (ProgressBar method), 78
updateInfoFieldsFrom() (Population method), 10
usage() (Params method), 72

useAncestralGen() (Population method), 11

\%

valueAnd() (in module), 73
valueBetween() (in module), 73
valueEqual() (in module), 74
valueGE() (in module), 73
valueGT() (in module), 73
valueIsInteger() (in module), 74
valueIsList() (in module), 74
valueIsNum() (in module), 74
valueLE() (in module), 74
valueList0f() (in module), 74
valueLT() (in module), 73
valueNot () (in module), 73
valueNotEqual() (in module), 74
valueOne0f () (in module), 73
valueOr() (in module), 73
valueSumTo() (in module), 74
valueTrueFalse() (in module), 73

104

Index

valueValidDir() (in module), 75
valueValidFile() (in module), 75
varPlotter (class in), 89

vars() (Population method), 11, 15
viewvars() (in module), 78
virtualsplitter() (Population method), 11
vspByName () (BaseVspSplitter method), 15

\%%

WeightedSampler (class in), 27
withArgs (class in), 26
WithMode (class in), 26

Index

105

	simuPOP Components
	Individual, Population, pedigree and Simulator
	Class GenoStruTrait
	Class Individual
	Class Population
	Class Pedigree
	Class Simulator

	Virtual splitters
	Class BaseVspSplitter
	Class SexSplitter
	Class AffectionSplitter
	Class InfoSplitter
	Class ProportionSplitter
	Class RangeSplitter
	Class GenotypeSplitter
	Class CombinedSplitter
	Class ProductSplitter

	Mating Schemes
	Class MatingScheme
	Class HomoMating
	Class HeteroMating
	Class ConditionalMating
	Class PedigreeMating
	Class SequentialParentChooser
	Class SequentialParentsChooser
	Class RandomParentChooser
	Class RandomParentsChooser
	Class PolyParentsChooser
	Class CombinedParentsChooser
	Class PyParentsChooser
	Class OffspringGenerator
	Class ControlledOffspringGenerator

	Pre-defined mating schemes
	Class CloneMating
	Class RandomSelection
	Class RandomMating
	Class MonogamousMating
	Class PolygamousMating
	Class HaplodiploidMating
	Class SelfMating
	Class HermaphroditicMating
	Class ControlledRandomMating

	Utility Classes
	Class WithArgs
	Class WithMode
	Class RNG
	Class WeightedSampler

	Global functions
	Function closeOutput
	Function describeEvolProcess
	Function loadPopulation
	Function loadPedigree
	Function moduleInfo
	Function getRNG
	Function setRNG
	Function setOptions
	Function turnOnDebug
	Function turnOffDebug

	Operator References
	Base class for all operators
	Class BaseOperator

	Initialization
	Class InitSex
	Class InitInfo
	Class InitGenotype
	Class InitLineage

	Expression and Statements
	Class PyOutput
	Class PyEval
	Class PyExec
	Class InfoEval
	Class InfoExec

	Demographic models
	Class Migrator
	Class BackwardMigrator
	Class SplitSubPops
	Class MergeSubPops
	Class ResizeSubPops

	Genotype transmitters
	Class GenoTransmitter
	Class CloneGenoTransmitter
	Class MendelianGenoTransmitter
	Class SelfingGenoTransmitter
	Class HaplodiploidGenoTransmitter
	Class MitochondrialGenoTransmitter
	Class Recombinator

	Mutation
	Class BaseMutator
	Class MatrixMutator
	Class KAlleleMutator
	Class StepwiseMutator
	Class PyMutator
	Class MixedMutator
	Class ContextMutator
	Class PointMutator
	Class SNPMutator
	Class AcgtMutator
	Class RevertFixedSites

	Penetrance
	Class BasePenetrance
	Class MapPenetrance
	Class MaPenetrance
	Class MlPenetrance
	Class PyPenetrance
	Class PyMlPenetrance

	Quantitative Trait
	Class BaseQuanTrait
	Class PyQuanTrait

	Natural selection
	Class BaseSelector
	Class MapSelector
	Class MaSelector
	Class MlSelector
	Class PySelector
	Class PyMlSelector

	Tagging operators
	Class IdTagger
	Class InheritTagger
	Class SummaryTagger
	Class ParentsTagger
	Class OffspringTagger
	Class PedigreeTagger
	Class PyTagger

	Statistics Calculation
	Class Stat

	Conditional operators
	Class IfElse
	Class TerminateIf
	Class RevertIf
	Class DiscardIf

	The Python operator
	Class PyOperator

	Miscellaneous operators
	Class NoneOp
	Class Dumper
	Class SavePopulation
	Class Pause
	Class TicToc

	Function form of operators
	Function acgtMutate
	Function contextMutate
	Function discardIf
	Function dump
	Function infoEval
	Function infoExec
	Function initGenotype
	Function initInfo
	Function initSex
	Function kAlleleMutate
	Function maPenetrance
	Function mapPenetrance
	Function matrixMutate
	Function mergeSubPops
	Function migrate
	Function backwardMigrate
	Function mixedMutate
	Function mlPenetrance
	Function pointMutate
	Function pyEval
	Function pyExec
	Function pyMutate
	Function pyPenetrance
	Function pyMlPenetrance
	Function pyQuanTrait
	Function resizeSubPops
	Function snpMutate
	Function splitSubPops
	Function stat
	Function stepwiseMutate
	Function tagID

	Utility Modules
	Module simuOpt
	Function setOptions
	Class Params
	Function param
	Function valueNot
	Function valueOr
	Function valueAnd
	Function valueOneOf
	Function valueTrueFalse
	Function valueBetween
	Function valueGT
	Function valueGE
	Function valueLT
	Function valueLE
	Function valueEqual
	Function valueNotEqual
	Function valueIsNum
	Function valueIsInteger
	Function valueIsList
	Function valueListOf
	Function valueSumTo
	Function valueValidDir
	Function valueValidFile

	Module simuPOP.utils
	Class Trajectory
	Class TrajectorySimulator
	Function simulateForwardTrajectory
	Function simulateBackwardTrajectory
	Class ProgressBar
	Function viewVars
	Function saveCSV
	Class Exporter
	Function importPopulation
	Function export

	Module simuPOP.demography
	Function migrIslandRates
	Function migrHierarchicalIslandRates
	Function migrSteppingStoneRates
	Function migrtwoDSteppingStoneRates
	Class EventBasedModel
	Class DemographicEvent
	Class ExpansionEvent
	Class ResizeEvent
	Class SplitEvent
	Class MergeEvent
	Class AdmixtureEvent
	Class InstantChangeModel
	Class ExponentialGrowthModel
	Class LinearGrowthModel
	Class MultiStageModel
	Class OutOfAfricaModel
	Class SettlementOfNewWorldModel
	Class CosiModel

	Module simuPOP.plotter
	Class VarPlotter
	Class ScatterPlotter

	Module simuPOP.sampling
	Class BaseSampler
	Class RandomSampler
	Function drawRandomSample
	Function drawRandomSamples
	Class CaseControlSampler
	Function drawCaseControlSample
	Function drawCaseControlSamples
	Class PedigreeSampler
	Class AffectedSibpairSampler
	Function drawAffectedSibpairSample
	Function drawAffectedSibpairSamples
	Class NuclearFamilySampler
	Function drawNuclearFamilySample
	Function drawNuclearFamilySamples
	Class ThreeGenFamilySampler
	Function drawThreeGenFamilySample
	Function drawThreeGenFamilySamples
	Class CombinedSampler
	Function drawCombinedSample
	Function drawCombinedSamples

	Module simuPOP.gsl

	Index

