Renku Python Library, CLI and Service

https://github.com/SwissDataScienceCenter/renku-python/workflows/Test,%20Integration%20Tests%20and%20Deploy/badge.svg https://img.shields.io/coveralls/SwissDataScienceCenter/renku-python.svg https://img.shields.io/github/tag/SwissDataScienceCenter/renku-python.svg https://img.shields.io/pypi/dm/renku.svg Documentation Status https://img.shields.io/github/license/SwissDataScienceCenter/renku-python.svg Pull reminders

A Python library for the Renku collaborative data science platform. It includes a CLI and SDK for end-users as well as a service backend. It provides functionality for the creation and management of projects and datasets, and simple utilities to capture data provenance while performing analysis tasks.

NOTE:

renku-python is the python library and core service for Renku - it does not start the Renku platform itself - for that, refer to the Renku docs on running the platform.

Getting Started

Interaction with the platform can take place via the command-line interface (CLI).

Start by creating for folder where you want to keep your Renku project:

$ mkdir -p ~/temp/my-renku-project
$ cd ~/temp/my-renku-project
$ renku init

Create a dataset and add data to it:

$ renku dataset create my-dataset
$ renku dataset add my-dataset https://raw.githubusercontent.com/SwissDataScienceCenter/renku-python/master/README.rst

Run an analysis:

$ renku run wc < data/my-dataset/README.rst > wc_readme

Trace the data provenance:

$ renku log wc_readme

These are the basics, but there is much more that Renku allows you to do with your data analysis workflows.

For more information about using renku, refer to the renku –help.