
Next-Level Nanotechnology Tools

Nanosurf Python Library Overview

Introduction to the usage of the Nanosurf Python Library and app development

Content

How to create nice python applications

Overview of the Nanosurf library content

Getting started with the app_template

Next-Level Nanotechnology Tools

How to create nice applications

Creating nice Python

apps

Use libraries.

Separate gui from logic.

Follow code style guides.

Structure of an app

Developer of apps are using frameworks and
libraries to reuse common and repetitive tasks.

Nanosurf provides an app framework and a
library. They are marked in orange in the
chart.

Your App

App frameworkLibraries

Nanosurf QT Numpy

GUISPM Devices Math

App Framework

The Nanosurf app framework

provided in the app_template,

give you a jump start to create

applications without bothering

of boring and nasty details.

Your App

app_base

The app framework cares about
proper startup/shutdown, initialize
logging, handle loading/storing
configuration settings, handle
debugger support for task, and
many more…

It prepares the window for Studio
look and feel. Add a status and
menu bar (if needed).

And other details …

app

module_base

module

Module function

app_gui Module gui

....
threading

You focus to your problem to solve
in the module.py and design a
nice looking gui in the gui.py.

If needed you create background
task for long running activities.

The result is an app with a good
gui <-> function separation,
readability and easy to enhance

Next-Level Nanotechnology Tools

Overview of the
Nanosurf library content

Nanosurf library

The library provides classes sorted
into different topics.

This library is free and available on
PyPI (https://pypi.org/).

Get it with “pip install nanosurf”
entered in a command shell.

nanosurf

GUI

SPM

Devices

Math

lib

Util

app

App_template

Access to controller scripting interface

GUI elements e.g.: plots, numbers, tables

Control accessories like CH1, VMF, DIMO, …

Signal analysis e.g.: FFT, Peak detection, Noise floor

Data export / import, others

Studio style example with app
framework.
To be copied for own projects.

App_Scanning_Demo

nanosurf.lib.spm

Base class to connect to all Nanosurf controller software

Give access to full scripting as described in “Script Programmers
Manual.pdf”

Give access to powerful lowlevel controller interface.

Provide classes for individual scan heads, direct motor control and
more.

import nanosurf

connect with running controller software
spm = nanosurf.SPM()
spm.application.Visible = True

call actions
spec = spm.application.Spec
spec.Repetition = 4
spec.Start()
while spec.IsMeasuring:

pass

import nanosurf

spm = nanosurf.SPM()
if spm.is_lowlevel_scripting_enabled():

ll = spm.lowlevel
lu_dac = ll.AnalogHiResOut(ll.AnalogHiResOut.Instance.USER1)

lu_dac.input.value = lu_dac.InputChannels.InTipCurrent
current_val = lu_dac.current_output_value.value
range_max = lu_dac.current_output_value.value_max
value_unit = lu_dac.current_output_value.unit
print(f"User DAC: {current_val:0.3g}{value_unit}, max={range_max}")

else:
print("sorry lowlevel scripting is not available")

del spm

import time
import nanosurf
from nanosurf.lib.spm.scanhead import drive_afm

spm = nanosurf.SPM()
afm_head = drive_afm.DriveAFMScanhead(spm)
afm_head.start_photo_detector_auto_adjustment()
while afm_head.is_photo_detector_auto_adjustment_running():

time.sleep(0.5)
print("Detector adjusted")

https://www.nanosurf.com/downloads/programmers-manual.pdf

nanosurf.lib.gui

Based on Python Qt library PySide2 enhanced gui elements
are provided. Number edit with units in NSFSciEdit.

Based on pyqtgraph, simplified plot and colormaps are
provided. They support mouse cursor, markers and layers.

In nanosurf.app you find a demo app:
“app_demo_scanning_and_lib_usage” which shows some
use cases

nsf_sci_edit.NSFSciEdit

nsf_tables.NSFNameValueTable

nsf_plots.NSFChart

https://www.pythonguis.com/pyside2-tutorial/
https://www.pyqtgraph.org/
https://www.pyqtgraph.org/

nanosurf.lib.datatypes

Here new data types are introduced which are commonly useful in scientific application.

Many other library components can handle them for ease of use.

SciVal: A floating point data type supporting units and nice formatting of numbers (is used by

gui.nsf_edit.NSFSciEdit to show and edit numbers

PropVal: A class to stores values of different types. It emits a signal when the content is

changed. It is designed to hold parameters and let gui-element connect to them. See

gui.bind_gui.connect_to_property()

PropStore: A class to hold multiple ProVal attributes. It can be saved and restored to/from

configuration files. See datatypes.prop_val.save_to_ini_file()

sci_channel: Stores an array of data points with units. Works with list and numpy ndarray.

Sci_channels values can be directly plotted by NSFChart or analyzed by math.sci_math

functions.

sci_stream: Stores multiple sci_channels as lists together with a ‘timeline’ array. sci_stream

values can be directly plotted by NSFChart and used by math.sci_math functions

from nanosurf.lib.datatypes import sci_stream as ss
mystream = ss.SciStream((data_time, data_sensor))
self.chart_plot.plot_stream(mystream)

fit_coeff = sci_math.calc_poly_fit(mystream, degree=1)

from nanosurf.lib.datatypes import sci_val
val = sci_val.from_str("20nm")
print(val)
>> 20.000 nm

from nanosurf.lib.datatypes import prop_val
My_time_prop = prop_val.PropVal(sci_val.SciVal(2.0, "s"))

class MySettings(prop_val.PropStore):
def __init__(self):

self.repetitions = prop_val.PropVal(int(30))
self.show_ticks = prop_val.PropVal(bool(False))

nanosurf.lib.math.sci_math

Math functions not found in other libraries but useful for signal analysis are here.

Many of them can be feed with sci_channel or sci_stream data.

Sci-math.finde_peaks: Find all peaks in a sci_channel. Mostly useful for spectrum data.

Sci-math.finde_highest_peak: return the highest peak found in the sci_channel data

Sci-math.calc_poly_fit: Calculates the polynomial fit of a sci_stream.

Sci-math.calc_fft: Calculates the spectrum of an amplitude in a sci_channel with different windows. optional power spectrum too. Returns a spectrum as sci_stream.

Sci-math.create_compressed_log_spectrum: Reduces number of data points in large spectrum

Sci-math.get_total_harmonic_distortion Calculates the THD value of a spectrum

Sci-math.get_noise_floor Calculates the noise floor of a spectrum

And some more ……………………

samplefrq = myscanline.get_stream_length()/ time_per_line

spec = sci_math.calc_fft(mystream.get_channel(0), samplerate=samplefrq)

noise_floor = sci_math.get_noise_floor(spec)

found, peak_x ,peak_y = sci_math.find_highest_peak(spec)
if found:

self.spec_plot.set_marker(peak_x, peak_y)
self.tableResults.set_value(0, peak_x, spec.get_stream_unit())
self.tableResults.set_value(1, peak_y, spec.get_channel(0).unit)

nanosurf.lib.util

Various utility functions. Mostly for data export / import:

fileutil.create_filename_with_timestamp: return a string with a unique filename, optional with timestamp

fileutil.create_unique_folder: Find all peaks in a sci_channel. Mostly useful for spectrum data.

fileutil.create_folder: Make sure the folder exists

dataexport.savedata_txt/loaddata_txt: load/saves data in ‘list’ or sci_channel into a file

dataexport.saveplot_png: saves a chart plot into an image file

dataexport.save_results: saves a NSFNameValueTable content into a text file

And some more ……………………

nanosurf.lib.devices

Device drivers for different Nanosurf accessories can be found here

devises.accessor_interface: Class for communicating to devices connected to the accessory interface

Upcomming devices:

devises.dimo: Class to communicating with the digital inverted microscope accessories (not yet implemented)

devises.vmf Class to communicating with the variable magnetic field accessory (not yet implemented)

devisec.tc1: Class to communicate with the temperature controller (not yet implemented)

Accessor
Interface

DIMO
VMF

Sample
Holder

PC

Next-Level Nanotechnology Tools

Getting started
Using the app_themplate. Coding principle, style guide

Getting Started

Creating your own app based on the app_template:

• Copy the app_template folder and rename it to your own project name.

• In your new project, copy the demo_module folder and rename it to your own function.

• Open Visual-Studio-Code and select File->Open Folder. Select your project folder just created.

• In main.py change MyAppName (line 15) to your project name..

• Add import statements of your new module (line 10) and add it with self.add_module() (line 30)

• Use demo_module as a reference how to create your own module. Later you can delete it and

remove it from main-py

That’s it. Now start coding your functionality in module.py and create the gui in gui.py

Start your app in debugging mode from any code window with F5-Key

Your App

Main.py

module

your_module

module.py

gui.py

app

Separating function and gui
A common mistake it to mangle functionality and gui elements in one. This make code
maintenance and increasing functionality hard. A common method to solve this issue is the
model/view pattern:

• The functionality of a software is written in one peace of code: You derive your code by

subclassing the ModuleBase class and you program all the functionality as members in

module.py

• Visual components of your functionality (entry elements and result visualization) are

programmed in a class derived from ModuleScreen class and placed in gui.py

• Interaction from module -> gui is done by emitting and the gui is listening to such

signals by connection to it (Use the Signal/Slot mechanism of Qt).

• Parameters of the module are defined by ProVal type attributes.

• Gui-Input-Elements are connected to them by the bind_gui.connect_to_property()

function in gui.py/bind_gui_elements()

• By this the gui element get updated when the property is updated by the

module and the module get informed when the user change a value in the

gui.

module.py

gui.py

class MyModul(ModuleBase):
def __init__(self):

self.image_size = PropVal(SciVal(2,”m”))
self.image_size.connect(self.size_changed)

def size_changed(self):
do something with a (e.g send to controller)
self.spm_scan.ImageWidth = self.image_size.value

class MyScreen(ModuleScreen):
def do_setup_screen(self):

self.my_edit = nsf_sci_edit.SciSciEdit(“Size”)
bind_gui.connect_to_property(self.my_edit, module.image_size)

Signal/Slot Communication

A function module typically process data or measures data
and has new information about its state or data content.
Such state transition could be file_loaded, start_measuring,
new_data_available, …

We use Qt.Signal/Slot mechanism for such communication.
A function module send at events signals and any receivers
interested in this new state or information get called.

A receiver interested in such information is the gui. So, it
connects to signals and get a function called when the signal
is emitted. The gui then can react accordingly (e.g., plot new
data, disable parameters during measurement, …)

module.py

gui.py

class MyModul(ModuleBase):
sig_work_started = Signal()
sig_work_done = Signal()

def do_something(self):
sig_work_started.emit()
do some work
sig_work_done.emit()

class MyScreen(ModuleScreen):
def do_setup_screen(self):

self.module.sig_work_started.connect(self.measurement_started)
self.module.sig_work_done.connect(self.show_result)

def measurement_started(self):
disable some gui elements

def show_result(self):
enable gui elemets
read result from module and plot result

Background Tasks
If a function module must do long lasting processing (e.g.,
measuring a data stream over 10s) then this task must be
executed in a background thread, if not, the gui would be
blocked and changing parameter or pressing a “Stop” button
would not be possible.

The framework proved a class SingleRunWorker to simplify
such background tasks. Derive a new class (e.g mytask) from
it and implement the do_work() function. The background
task can then be started by mytask.start().

It emits sig_started, sig_finished automatically. The module or
the gui can connect to this signals.

module.py

gui.py

class MyTask(SingleRunWorker):
def do_work(self):

do some work (e.g measuring data)
sig_new_data.emit()

class MyModul(ModuleBase):
self.mylongwork = MyTask()

def start_measure_data(self):
self.mylongwork.start()

class MyScreen(ModuleScreen):
self.module.mylongwork.sig_started.connect(self. measurement_started)
self.module.mylongwork.sig_new_data.connect(self.show_result)

""" This is the screen of the module
Copyright Nanosurf AG 2021
License - MIT
"""
import numpy as np
from PySide2 import QtWidgets
import nanosurf.lib.datatypes.sci_val as sci_val
from nanosurf.lib.gui import nsf_tables
from app import app_gui
from modules.scan_module import module, settings

class ResultTableID(nsf_tables.TableEntryIDs):
""" identifier id are used in a nsf_table widget"""
Items = 0
Marker_X = 1

def create_filename(base_name: str, ext: str = '.dat', sep: str = "_") -> str:
""" Construct a file name based on pattern and current date/time.

The result will be something like 'my_data_20210613-100543.dat’
this with base_name 'my_data’

Parameters

base_name: str

Mask of the name (e.g., 'my_data')

........

Result

str:

constructed file name
"""
current_datetime = datetime.now().strftime("%Y%m%d-%H%M%S")
filename = base_name + sep + current_datetime + ext
return filename

Coding and Doc Style
To create maintainable and readable code by others, programmers must
follow coding style guides and documentation.

Luckily, Python has its code style guide well defined in PEP8.
(PEP is a naming convention like we have in Jira with NANO1245)

We follow this guide and in addition we use the typing hint style defined
in PEP484. This helps the Visual Studio Code Editor to help
programmers with tips and color the code correctly.

As documentation style we follow the numpy library doc style. Defined
here: Numpy doc. Also, VS Code can read them and help programmers
during coding.

Type hint Return typeFunction names are lower case

Numpy doc style:
Description,
Parameters and
Result

Class name and class attributs are uppercase

Import sequence:
First general public lib,
second nanosurf lib,
third application

https://pep8.org/
https://www.python.org/dev/peps/pep-0484/
https://numpydoc.readthedocs.io/en/latest/format.html

