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Abstract

The transfer matrix algorithm for the propagation of an electromagnetic wave through planar stratified media has been implemented
in a modern objected-oriented programming language. The implementation is suitable for the study of applications such as the
Anderson localization of light and super-resolution (perfect lensing). For our open-source code to be as useful as possible to the
scientific community, we paid particular attention to the pathological cases that arise in the limit of vanishing absorption.
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Anderson localization of light and sub-wavelength imaging.

Solution method: The transfer matrix method, with careful treatment
of the pathological cases that arise in the limit of vanishing absorp-
tion.

Restrictions: If single precision accuracy is required, then the
absorption of each layer should be small. Roughly speaking, the
imaginary part of the wavenumber multiplied by the thickness of the
layer should be on the order of one.

Unusual features: The layers may be composed of a left-handed
and/or right-handed material with or without absorption.

Running time: Seconds to minutes

1. Introduction

Electromagnetic wave propagation through planar stratified
media (multilayer stack) is a century old problem in physics.
It may be somewhat surprising that it is still relevant today. In
fact, it has only relatively recently discovered that the trans-
mission and reflection coefficients for a multilayer stack may
be written down without any computations by utilizing a com-
plex version of the elementary symmetric functions [1, 2]. It
has been also recently discovered that the complex reflection
coefficients follow the generalized version of the composition
law used to add parallel velocities in the theory of special rela-
tivity, see [3, 4] and Refs. within. Although it is possible to use
the above mentioned properties to formulate a numerical wave
propagation algorithm in planar stratified media, we follow a
more traditional approach of the late 1940’s, namely, the trans-
fer matrix algorithm [5, 6, 7, 8]. Before considering the de-
tails of the transfer matrix algorithm and the need for its open
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source implementation in a modern object oriented language,
we briefly mention some of the current applications we had in
mind when we wrote the code.

In 1968, Veselago [9] considered a hypothetical non-active
material in which the real parts of the permittivity and perme-
ability are simultaneously negative; we refer to such a mate-
rial as a left-handed material (LHM), but it is also known as
a negative refractive material. It was only in the early 2000’s
that such a material was artificially fabricated [10, 11] and this
led to an explosion of papers on the LHM, see [12] and Refs.
within. One of the intriguing proprieties of the LHM is the abil-
ity to image with a sub-wavelength image resolution (super-
resolution if you will), which has been proposed and studied in
the context of a multilayer stack. [13, 14] Another general area
of application is the Anderson localization of light [15, 16],
which has been studied both theoretically and experimentally
by Scales et al. [17], who considered wave propagation at nor-
mal incidence through a multilayer stack made of quartz and
Teflon wafers. The effects of total internal reflection on light
localization in a random multilayer stack at oblique incidence
have also been studied under the assumption of complete phase
randomization [18] as well as the effects of the LHM on local-
ization [19]. Other applications include the study of asymmet-
rical properties of light in a Fabry-Pérot interferometer [20, 21].

In all of the above applications, the transfer matrix algorithm
was or could have been used; however, to the best of our knowl-
edge, an open-source and object-oriented implementation of
the transfer matrix algorithm suitable for the LHM as well as
the right-handed material (RHM) (where the real parts of the
permittivity and permeability are not simultaneously negative)
is currently unavailable. Without a doubt there are many “in-
house” implementations of the transfer matrix algorithm, but in
the context of reproducibility of scientific work, it is important
to have an open-source and publicly available implementation.
Moreover, as it will be discussed later, there are some patho-
logical cases where the numerical implementation is not clear.
This paper is self-contained as much as possible in order for
our implementation of the transfer matrix algorithm to be as
useful as possible to the widest possible scientific community.
We also point out the benefits and drawbacks of using a high-
level programming language called Python! for implementing
our code, see Section 8.

2. Background

The source-free macroscopic Maxwell equations with as-
sumed harmonic time dependence, exp (—iwt), in the Systeme

'Python is free and open-source software that runs on Windows,
Linux/Unix, Mac OS X, Java and .NET virtual machines. It may be down-
loaded from http://www.python.org/.

International (SI) unit system, at every ordinary point in space,
are:

V-D=0,
VXE =iwB,

V.B=0, (1a)
VxH= —iwD, (1b)

where E is the electric field, D is the displacement field, B is
the magnetic field, H is the magnetic intensity, and w is the
angular frequency. By an ordinary point in space, we mean a
point in space in whose “neighborhood” the physical properties
of the medium are continuous. Thus, strictly speaking, one
cannot apply Maxwell’s equations at a surface that separates
two physically different media. If the medium is isotropic and
homogeneous, then D = €E and B = yH, where € and u are
the permittivity and the permeability, respectively. Permittivity
must satisfy the Kramers-Kronig relations and is therefore a
complex-valued function of angular frequency. The same is
true for permeability. Thus, in general, we have € = e(w) € C
and u = pu(w) € C.

The source-free macroscopic Maxwell equations are first-
order linear partial differential equations (PDEs) that must be
supplemented by some boundary conditions. The conventional
boundary conditions for a source-free interface separating two
media (1 and 2) are:

n-(D® - D)
nx (B~ EO)

, n-(B?-B") =
. nx(H® - HO) =

. (20

=0 0
=0 0, (2b)
where n is a unit normal to the interface, and the superscript
on the fields indicates from which medium the interface is ap-

proached.

Taking the curl of (1b), then simplifying the result using the
Vx (VxA) = V(V-A) — V?A vector identity and (1a), we
obtain the vector Helmholtz equation within each layer

(v + &) {fl} ~0, ®

where k is the complex wavenumber, and k> = pew?. In gen-
eral, k> # kk*, where * denotes the complex conjugate, and
the computation of k from k%> must be done with extreme care.
For example, permittivity and permeability for an absorbing
material are taken to be € = €’ + i€’ and u = y’ + iy, respec-
tively, where {¢/, 1/, } € R,{€”,u""} € R*.> Let € = |ele'’ and

2For the exp (+iwt) time dependence, € = € — i€, u =y’ —iy”’, where
(€., ) eR, {1} e RT.
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i = |ule’%, where {95, 9,,} € [0, 7].> Then

K = euw?
.[ Oe+6y+2nn
k= Vi )z o,
L[ e+, . O+,
= Vidlw {e‘< - ),e‘(T“”)}, @)

where w > 0. The choice of the root in (4) is dictated
by the physical requirement that in an absorbing medium the
wave must decay and not exponentially grow. Let k = k' +
k", {k’,k”} € R. Without loss of generality, consider a plane
wave propagating in the positive x-direction; then, we have
gik—wn = g K'xeikx-wh — Therefore, k" must be greater than
zero in order for the wave to decay in the positive x-direction.

2.1. Pathological cases at normal incidence

In the case of a perfect dielectric (¢” = 0 and ¢’ = 0), the
rule for choosing a physically appropriate root in (4) may be
established by taking a limit as absorption goes to zero.

Consider an almost perfect dielectric made of the RHM. Let
€ = |ele, u = Jule!, where 6, and 6, are inﬁnitesima]ly small

positive numbers, then

must choose the first root in (4), i.e., k = \llell,ule( s ) . In the
case of a truly perfect dielectric (at fixed frequency), we may
take the limit as 6, and 6, approach zero to obtain k = +/|€||ulw.

In the case of an almost perfect dielectric made of a LHM:
Lete = |e|ei9 = |/,t|ei‘9# where 6, and 6, are slightly less than

O.+6,
St < 7 and 2 “+7r>7r Thus, we

and 2 Oty | > T Thus we must choose the

first root in (4), i.e., k = \/|e||;1|e( 2 )w For a truly perfect
dielectric (at fixed frequency), we may take the limit as 6, and
6, approach & to obtain k = \/Iell,ulei”w = —+/|ellulw. Notice
that for the LHM with zero absorption, k < 0, and for the RHM
with zero absorption, k > 0.

3. Wave propagation in stratified media

Consider the three-dimensional space divided into p + 1 re-
gions. The regions are infinite in the yz-plane, see Figure 1. The
interfaces separating the regions are assumed to be perfectly
planar (yz-plane). The regions £ = 0,...,p — 1 are assumed
to be isotropic and homogeneous with a complex permittivity,
€, and complex permeability, u,, where ¢ denotes the region
number as shown in Figure 1. The p™ region is assumed to
be isotropic and homogeneous with real permittivity, €,, and

3We always mean the positive square root of x when we write /x, where
. . 1 . .
x € R*. The fundamental issue with the w = z2 mapping is that the “square
root” function has branch points at z = 0 and z = oo and thus must have a
branch cut connecting the two branch points, see [22, Vol. 1, Sec. 54].

ko

Figure 1: The cross-sectional view of the multilayer stack is shown. The mul-
tilayer stack consists of p + 1 regions made of a RHM. A parallel-polarized
wave is incident from the p™ region. The origin of the coordinate system is set
on the planar interface separating regions p and p — 1.

real permeability, u1,,. In other words, we have {e, u,} € C for
£=0,....p—1land e, u,} R,
A monochromatic plane wave in £ region is given by

Er, 0| _ JE¢| Ligpr-on
{hiteof = e ©

wherer = xX+y¥+z2, {E;, H;} are the complex vector ampli-
tudes, k; = kX +k, ¢ § + k.2 is the complex wavevector, and
the subscript £ denotes the region label. In order to keep the
formulas concise, the integer denoted by ¢ is assumed to take
values 0, ..., p unless explicitly noted otherwise. It’s clear that
(5) satisfies (3) if

ke k=K +k, +k, =k = auw’. ©6)

Without loss of generality, we can set k., = 0 because we can
always rotate the coordinate system so that the y-axis is parallel
to the part of the k vector that lies in the yz-plane, see Figure 1.*
The solution in each region given by (5) must also satisfy the
boundary conditions given by (2).> From Snell’s law, which
can be derived from (2), we obtain

ky,p= y,65 £=0,....,p—1, @)

where k,, € R because we have tactfully assumed that the
b region has real permittivity and permeability (see above).

4We could have chosen to set kye = 0, and then rotated the coordinate
system so that the z-axis is parallel to the part of the k vector that lies in the
yz-plane. The main point is that k can always be made into a two-dimensional
vector.

31t turns out that satisfying the boundary conditions and solving the wave
equation is not enough to guarantee that the solution will also satisfy Maxwell’s
equations. These so-called “spurious” solutions have plagued finite-difference
time-domain (FDTD) methods for some time now.[Sec. 2.10.5 23, 24, 25]
We don’t have to worry about such complications; our solution does satisfy
Maxwell’s equations.



Therefore, from (7) we have k,, € R, but note that in general,
kip € Cfor£=0,...,p— 1. Using (6) and (7) yields

ke = (6{/1(0)2 - k}z,yp)l/2 with  Im[k, ] > O, (8)

where Im denotes the imaginary part and the root choice,
Im[k, ] > O, is dictated by the decaying wave requirement,
see Section 2.

3.1. Pathological cases at oblique incidence

It is clear from (8) that if ¢/ = 0, u/ = 0 and Erpew?® >
k)z,,p, then the root choice is not resolved by the Im[k,,] > 0
requirement. In order to resolve the root choice, we proceed
by taking a limit as absorption goes to zero just as we did in
Section 2.1. For the RHM, let ¢, = |elel®, u; = |ucle’® and
for the LHM, let € = |ef|e!(™ %), 11, = |u,le"~%), where 6,
and 6, are infinitesimally small positive numbers. Then ki[
can be approximately written as ki , = A e*”, where 0 < y <
I, lim{ w0V = 0, and the positive (negative) sign in the

AT
exponeﬂtiatl corresponds to the RHM (LHM). Thus, we have
Im [kee] = VA {i sin(%),isin(% + n)} )

where it is clear that for the RHM (LHM) the first (second)
root must be chosen in order for Im [k,,] > 0. Therefore, if

e/ =0,u;/ =0and €rfiew?® > kip, then for the RHM we have

kre = + \fl€el lpel 0? = kf,,p, and for the LHM we have k,, =
- leel el w* = & .

3.2. Origin and numerical treatment of the pathologies

The limiting procedure carried out in Section 2.1 and 3.1
appears to be reasonable, but unfortunately, it’s also not phys-
ically attainable, even in principle! If we view e(w) and u(w),
where w = &’ + iw”, in the context of the Kramers-Kronig re-
lations, then e(w) and p(w) are analytic functions in the upper-
half w-plane. Furthermore, it can be shown that e(w) and p(w)
are never purely real for any finite w except for w’ = 0 (posi-
tive imaginary axis), e.g., see [26, Section 123] and [27, Sec-
tion 82]. Therefore, the common practice of replacing €’ + ie”
by € and y’ + iy” by p’ even in an infinitesimally small ’ in-
terval cannot be justified. Moreover, by considering the global
behavior of k, , it can be shown that for a non-active medium
ky ¢ is never zero.[28] However, we see from (8) that k., for
any £ # p may be equal to zero if € and y, are purely real.
Of course, this case only occurs when the angle of incidence
precisely equals one of the critical angles, and from the global
properties of € and u we see that such angles cannot exists.

The above discussion suggests that the pathological cases
only occur in an unphysical approximation, i.e., € ~ € and
i~ . In our numerical code, the user may select how to deal
with the pathologies from the following two schemes:

1. If aregion contains purely real permittivity and permeabil-
ity, then the real permittivity and permeability are replaced
by a slightly absorbing permittivity and permeability, re-
spectively, i.e., for £ # p, €, — €, +i€, and uj, — p; +iyy,
where € and y are small positive numbers.

2. If aregion contains purely real permittivity and permeabil-
ity, then the k. ¢ is computed as describe in Section 2.1 and
3.1. If this scheme is chosen, then the code may produce
erroneous results at or very near the critical angles.

3.3. Polarization

The most general polarization state is an elliptical polariza-
tion state. However, there is no need to consider this general
case because an elliptical polarization state can always be de-
composed into a linear combination of two linearly indepen-
dent polarization states, namely, the parallel polarization state
and the perpendicular polarization state. In what follows, it
is convenient to express E(r, ) and Hy(r, ) in terms of each
other by substituting (5) into (1b) (with D, = ¢/E,) and using
the vector identity

E/(r, 1) . E, (kg r—wt)
V % {H((l‘, l)} = lk[ X {H[} € s

to obtain
ke X Hy(r, t
E(r.n = - BB (10a)
Er
ky X E/(r, ¢t
H(r, 1) = [x—g(r,) (10b)
Hew

3.3.1. Parallel polarization

A monochromatic light is said to have parallel polarization if
the electric field is parallel to the plane of incidence. The plane
of incidence is defined by the wavevector k and the normal
vector to the surface n; i.e., k and n lie in the plane of incidence.
From Figure 1, we have k in xy-plane and n = £X, thus, the
plane of incidence is the xy-plane.

Consider a parallel polarized incident plane wave of angular
frequency w propagating in the positive x-direction. Maxwell’s
equations (1) are first-order linear PDEs, thus, the total wave
inside regions £ = 1,..., p may be decomposed into reflected
and transmitted waves with the following wavevectors:

K =k X+ky§ (11)
where k., is given by (8), k,, is given by (7), * indicates a

transmitted wave propagating in the +x-direction, and ~ indi-
cates a reflected wave propagating in the —x-direction;® notice

5To obtain k, from kz,’ we have used the law of reflection, which can be
derived from (2).



that there is no reflected wave in the 0" region. The magnetic
intensity in each region is given by

H(r.1) = qwEf expli(kf -r - wr)| 2, (12)

where E} is the complex amplitude associated with the trans-
mitted wave, E is the complex amplitude associated with the
reflected wave, and E,_, = 0. Substituting (12) into (10a)
yields

Ei(r.0) = Efexpi(kf -r—ot)|[-koek £k §].  (13)

From (2b), we see that the parallel components of the total elec-
tric field and the total magnetic intensity are continuous across
the interface. It is convenient to define a new symbol for the
y-component of the electric field because the electric field has
components both parallel and perpendicular to the interface.
Let

p
X; = ikx,gE; exp [iikx,( Z h5:| s (14)
s={

where A, is the thickness of the £ region and, for convenience,
we set fig—g = he=p = 0. In (14),)(;*, {=1,...,p,denotes the y-
component of the electric field at the interface between regions
¢ and £—1 (the interface is approached from the £ region), and
X, denotes the y-component of the electric field at the interface
between region 1 and O (the interface is approached from the 0!
region), see Figure 1. Expressing (12) in terms of (14) yields

U7 = Ewexy, (15)

where ow
We = d . (16)

kx,[

Finally, substituting (13) and (12) into (2b), and using (14) and
(15) to simplify the result, yields

—ikL[I‘L[ +ikl‘[h[

Xivt + X =€ + e 00,
+ - —ikyche | + +iky che , — (17)
WeriX el ~ WeiXpp1 = W€ 7" X — We€ X
for ¢ = 0,...,p — 1. After we obtain a linear system for the

perpendicular polarization case, we will solve the linear system
given by (17), see Section 4.

3.3.2. Perpendicular polarization

A monochromatic light is said to have perpendicular polar-
ization if the electric field is perpendicular to the plane of inci-
dence. The electric field in each region is given by

E;(r,1) = E7 exp [i (kf T - wt)] Z (18)

where k7 is given by (11), and the * superscripts have the same
meaning as in Section 3.3.1. Also as in Section 3.3.1, we set

E;_, = 0 because there is no reflected wave in the 0" region.
Substituting (18) into (10b) yields

HE(r, 1) = i—i expi(kf -1 - )|k & F ke §]. (19)

From (2b), we see that both the parallel component of the total
electric field and the magnetic intensity are continuous across
the interface. It is convenient to define a new symbol’ for the
z-component of the electric field. Let

p
xi = Efexp [iikx,g > hs] : (20)
s=C
where A, is the same as in Section 3.3.1,/\/?, where{ =1,...,p

denotes the z-component of the electric field at the interface
between regions ¢ and ¢ — 1 (the interface is approached from
the £ region) and X; denotes the z-component of the electric
field at the interface between regions 1 and O (the interface is
approached from the 0" region). Expressing (19) in terms of
(20) yields

Y7 = twexy, (2D
where '
we = ——L, (22)
Hew

Finally, substituting (18) and (19) into (2b), and using (20) and
(21) to simplify the result, yields

—ikxfh[ +ik,c_[hf

+ - _ + _

Xesl T Xpy1 =€ X; te X7 @3
; - =ikyche ) + ik che
WertX ooy — WesiXgep = Wee M xy — weem 0y

for{=0,..., p—1. Notice that (23) has the same form as (17),
but the definitions of y7 and w, are different. It can be easily
shown that the two linear systems, (17) and (23), are identical
if k, , = 0 (normal incidence).

4. Linear system

To solve the linear system given by (17) or (23), we rewrite
it as

L wiEtwy .

Xi = “ow; Xos (24a)
+ +
[X@l}:Mg[Xﬁ}, (=1,...,p—1,  (24b)
Xer Xe
where
L [wesr +we)e ™ P (wpyy —wy) etihoe
M, = —ikyche +ikyche |0

2weer |Werr —we)e (Wey1 +wp)e

(25)

"The symbol is purposely chosen to correspond with that in Section 3.3.1.



for{ =1,...,p — 1. We see that once)(a' is known, X;f, ¢ =
1,..., p, can be computed from (24). To compute X(J;, we iterate
(24b) until / = p — 1 and then use (24a) to write Xli in terms of
X, to obtain

XplXo | M wi+wo 26)
XplXg] 2wy [wi—wol’
where
M=M, M, M. @7
From (26) we obtain
+
2
% s : (282)
Xy (wi+wo)my + (Wi —wo) mpp
Xp _ (Wi +wo)may + (Wi = wo) ma (28b)

Xy Wi+ wo)myy + (Wi = wo)miy”

where {m;, m2, my1, my,} are the elements of M in (27). Sub-
stituting (28a) into (24) yields

+
X1 w1 £ wg

= R (28¢c)
Xy Wi+ wo)miy + (Wi —wo) min

+ + + 1t
[X‘L“/Xi]zM[[Xé/X';], t=1,....,p-2. (284
XeatlXp XeIXp

Notice that the solution to both (17) and (23) is given by (28).
However, )(? and wy are given by (14), (16) for the (17) lin-
ear system, and by (20), (22) for the (23) linear system. We
may always check the numerical accuracy of our computational
scheme by letting £ = p — 1 in (28d) and comparing the com-
puted x, /x, ratio to 1.

5. Fundamental invariant in multilayers

In this section, we will derive the fundamental invariant in
multilayers (FIM) [29, 30] in terms of y7 for both the parallel
and perpendicular polarization states. Regardless of the polar-
ization state, from (24) we have

(X;H)z_ (XZH)Z _ % [(e-ikx,fh{)(;)z 3 (e+ikwhfxz)2]’ (292)

for £ = 0,...,p — 1. In the case of the parallel polarization
state, substituting (16) into (29) yields

(et - (]
) % [(eiikx.[hfxz)z B (e+ikk,fhf X})z] ,

for £ =0,...,p— 1. In the case of the perpendicular polariza-
tion state, substituting (22) into (29) yields

e (0

M+l
kx,t’

= Z [(e_ikx.[hf X;)Z 3 (e+ikuh[/\/;)2]’

(29b)

(29¢)

for{ =0,...,p— 1. The FIM is given by (29b) and (29c) for
parallel and perpendicular polarization states, respectively.

The physical significance of the FIM is not clear. It is simi-
lar in structure to the ds? of special relativity, and under special
circumstances reduces to an energy conservation statement.
[29, 30] We will discuss the possible generalizations and phys-
ical meaning of the FIM in future publications; presently, we
use it only as a numerical test.

6. Harmonic electric and magnetic energy density

In the case of a right-handed material (see Section 2.1 for
the definition), the time-averaged complex Poynting theorem
for harmonic fields is given by

1
V-S+ o1 E+2io (2@ - a™) =0, (30)

where S = 1E x H* is the complex Poynting vector, i =
1E - D" is the complex electric energy density, #™ = ;B - H*
is the complex magnetic energy density, and J is the impressed
(as opposed to the conduction) current density. If J = 0, then
(30) yields

VS + 0@+ 0™ + 2iw (u® - u™) =0, (31a)
where

©_€g. g = & BP 31b

(m)zli,H.H*:/i, HII? 31
u 1 1 ([H|, (3l1¢)
0© =2 g.E = 2 EP, (31d)

2 2

o™ =_‘“g H-H = —“’;‘ i ([ (3le)

In (31), u'® is the real time-averaged electric density, u™ is
the real time-averaged magnetic density, 0© and Q™ repre-
sent time-averaged electric and magnetic losses, respectively
(e.g., Joule’s heating [31, Sec. 2.19, Sec. 2.20]). Substituting
the total electric field and the total magnetic intensity into (31b)
and (31c), respectively, yields

=L (7P + 7] + 2Re [7 - E°]). G20
™ =L (eI oz P+ 2Re 117 1) G2

where Re denotes the real part.

In the case of the LHM, the complex Poynting theorem for
harmonic fields given by (30) and (31) is mathematically cor-
rect. However, the identification of the real electric density



(31b) and the real magnetic density (31c) is troublesome be-
cause both are negative. It was pointed out by Veselago [9]
that the LHM must be accompanied by frequency dispersion,
in which case the real electric density and the real magnetic
density are not given by (31b) and (31c), respectively. More-
over, simultaneously negative permittivity and permeability oc-
cur very near resonance and therefore for the LHM, there is no
frequency interval where permittivity and permeability may be
reasonably approximated by a constant. For a more detailed
discussion see [12], [32], and [33].

6.1. Energy densities for parallel polarization

It is convenient to introduce a new symbol for the transverse
component (the y-component) of the electric field as a function
of distance, x, into the multilayer stack. Let

[7(x) = £k ¢E7 exp [£ikyex] (33)
then,
|1";7'(x)|2 _ |kw|2 |E§|2 exp (F2Im[k, ]x), 34
Re [T} (0T, ()] = = [kue|* Re | Ef E; e 2Relburls]

Substituting (13) into (32a) and using (34) to simplify the result
yields

El
t
il =7

K,
[1 + |k”’|2] (It cof + Iz cof)
x,0 (35)

k2
+2 [1 - y’plz]Re [F;(x)l";*(x)]} .

kx,[

Substituting (12) into (32b) and using (34) to simplify the result
yields

4 (36)
x (|r;(x)|2 +|r; ) - 2Re [r;(x)rg*(x)]),

where wy is given by (16).

6.2. Energy densities for perpendicular polarization

Again, it’s convenient to introduce a new symbol for the
transverse component (the z-component) of the electric field
as a function of distance, x, into the multilayer stack. Let

[7(x) = Efets (37
then,

2| = |E2[ exp (F2Imlk, c1x)

Re | (0" (x)] =Re [Ef E; "e2Relkl] o

Substituting (18) into (32a) and using (38) to simplify the result
yields

a0 = LI of + [rreof + 2Re 7 eor; @) |- 69

Substituting (19) into (32b) and using (38) to simplify the result
yields

’ 2 k2
i 1 2 ot o)

4 x,0
R 40
) (1 - |k”’|2 ] Re [F}(x)l"g*(x)]} .
x,0

where wy is given by (22).

7. Transmission and reflection coefficients

The transmission coefficient, 7, and the reflection coeffi-
cient, R, are given by

- Re[S; |- f(’ o
Re[S;] - %
. _Re[S;] . f(’ 41b)
Re[S7]- &
with
Sy=5ExHy"  and  S;=E5xHE

where it is understood that E]i7 and H;* are evaluated at the in-
terface between regions p and p—1 (the interface is approached
from the p'" region), and E} and Hj" are evaluated at the inter-
face between regions 1 and O (the interface is approached from
the 0" region).

In the case of the parallel polarization state, substituting (12)
and (13) into (41), and using (14) to simplify the result, yields

2

k, , Re|€jky, +
— Relik] 20] Lo (42a)
P |kxy()| XP
-2
- (42b)
Xp

In the case of the perpendicular polarization state, substitut-
ing (19) and (18) into (41), and using (20) to simplify the result,
yields

wy - [kol e [
T = pRe[ *;} =, (43a)
k)(,p /'l() Xp
-2
= X—j (43b)
Xp




The transmission and reflection coefficients, given by (42)
for the parallel polarization state and by (43) for the perpen-
dicular polarization state, are valid for both a right- and a left-
handed material.

8. Numerical computation

Python is a multi-paradigm programming language that sup-
ports object-oriented programming, structured programming,
and a subset of functional and aspect-oriented programming
styles. There is a large number of numerical libraries avail-
able for use with Python. Most of these numerical libraries
are implemented in middle-level languages such as C, C++
and Fortran. There is some concern about the speed of com-
putations in Python because it is byte-compiled, not a com-
piled language such as Fortran. However, in our opinion, the
code readability and ease-of-use of Python (leading to faster
development times) in many cases outweigh any performance
benefits of middle-level languages. Typically, computationally
intensive routines in Python are implemented in middle-level
languages and therefore, the difference in computation time
between Python and middle-level languages is acceptable for
many applications.

Numerical computations associated with the multilayer stack
are implemented in an object-oriented programming style with
some reliance on a SciPy library.® In our opinion, a reader
familiar with MATLAB™ and/or Fortran 90/95 will find SciPy
a very natural and easy-to-use library. However, our code can
be easily modified to remove the SciPy library dependence in
favor of another numerical library such as the GNU Scientific
Library (GSL).’

9. Multilayer classes

In order for our multilayer classes, namely Boundary and
Layer, to be as useful as possible to the scientific commu-
nity, we paid particular attention to the readability, usability,
and maintainability of the code. In principle, as it was shown
in Sections 2-7, in order to compute almost any quantity of in-
terest we need to know the thickness of each layer, permittivity
and permeability of each region, and the angle of incidence,
state of polarization and frequency of the incident monochro-
matic plane wave, as well as the transverse component of the
electric field evaluated on the interface, i.e., th’. Howeyver, we
found that this set is not the most convenient one to use and

8SciPy is free and open-source software available for download from http:
//www.scipy.org/.

9Python interface for the GSL is provided by PyGSL and is available from
http://pygsl.sourceforge.net/.

therefore we chose a different “minimal” set, described in Ta-
ble 1. The Boundary class is meant to be a base class (super-
class in the Python lexicon) that will be inherited by the derived
classes (subclasses in the Python lexicon). The derived classes
perform “high-level” computations such as computing the en-
ergy density, and the transmission and reflection coefficients.
For the Boundary class to be an effective base class it must be
implemented with performance in mind. It is relatively obvious
that the computationally intensive part of the Boundary class
is the computation of /\(27’, i.e., the solution of the linear system
described in Section 4. Therefore, the computation of /\(;7' is
implemented in Fortran 90 and the Python bindings are built
by F2PY!?. It’s a common practice within the Python commu-
nity to implement “workhorse functions” in a middle-level lan-
guage, however, such practice reduces readability and main-
tainability to some extent. Therefore, we strongly encourage
developers to only implement workhorse functions that lead to
severe bottlenecks in middle-level language. It’s often the case
that the bottlenecks can only be identified after code profiling
(performance analysis). For example, it’s not obvious that the
square root function in the computation of k, ¢, see (8), is rela-
tively time-consuming. The reason computation of k¢ is rela-
tively expensive because SciPy’s square root function of a com-
plex number z = |zl returns v/[z]e'?’?, where —7 < 6 < 7, but
(8) requires that Im[k, ,] > 0. Moreover, in the case of a perfect
dielectric made of a left-handed material, the square root func-
tion in (8) must return k., = —l|k, | (if the second computation
scheme is chosen in Section 3.2). Thus, one must convert the
square root returned by SciPy to an appropriate quadrant as re-
quired by (8), leading to an increase in the computation time of
the square root.

The derived Layer class inherits the Boundary and com-
putes the quantities described in Table 2. The benefit of using
inheritance in our multilayer calculations is that other devel-
opers may extend the Layer class or write their own derived
class to compute the desired quantity of interest without hav-
ing to implement the low-level transfer matrix code.

10. Numerical tests

All numerical computations are performed in double preci-
sion; however, the numerical equalities of the de Hoop reci-
procity theorem [34, Section 6], complex Poynting theorem
(31a) and the fundamental invariant in multilayers, see Sec-
tion 5, are only tested to single precision. The quantities a
and b are considered to be numerically equal (single precision
equality, if you will) if |a — b| < 1077|b| and |b — a| < 1077|q|

I0F2PY (Fortran to Python Interface Generator) is a command line tool for
connecting Python with external subroutines written in Fortran 77/90/95 or
functions written in C. F2PY is open-source software and may be downloaded
from http://cens.ioc.ee/projects/f2py2e/.
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http://pygsl.sourceforge.net/
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Table 1: The first column contains the name (as it appears in the code) of the object attribute of the class Boundary, the second column contains a description of the
attribute, and the third column contains references to a section and/or an equation where a more detailed description of the attribute may be found.

Name \ Description \ Refs. ‘
self.h thickness of each layer, A, (14), (20)
self.epsRel relative permittivity of each region, €;/€yacuum Section 3
self .muRel relative permeability of each region, tt¢/tyacuum Section 3
self.pol polarization state Section 3.3
self.kx x-component of the wavevector, ky ¢ )

self.w scaled self . kx (polarization dependent), w, (16), (22)
self.chiPlus transverse component of the electric field evaluated on the interface, x; / X; (14), (20)
self.chiMinus | transverse component of the electric field evaluated on the interface, x; / )(; (14), (20)

Table 2: The first column contains the name (as it appears in the code) of the object attribute (method) of the class Layer, the second column contains a description
of the method, and the third column contains references to the section where a more detailed description may be found.

Name | Description | Refs.
field transverse component of the electric field as a function of distance, I'*(x) 6.1,6.2
energy electric/magnetic energy density as a function of distance, u©™(x) 6.1,6.2
loss electric/magnetic losses as a function of distance, 0™ (x) 6
divPoynting divergence of the Poynting vector as a function of distance, V - S(x) 6

FIM FIM at each boundary interface 5
FIMvsDist FIM as a function of distance 5
ggz:zz;%e transmission and reflection coeflicients as a function of frequency f = w/2x 7
TRvsFreqAndangle | 2n9/0r angle of incidence ¢, ie. {T(f), RUNLAT ). R AT(f, ). R(f. £)}

or la — b| < 1078, Our definition of numerical equality may
appear to be too loose, but that is not the case if one consid-
ers a scenario when Im [k, ¢h,] is large. In this scenario, the
left-hand side of the transfer matrix M,, given by (25), grows
exponentially and the right-hand side of M, decreases expo-
nentially, which leads to “numerical swamping.” By numerical
swamping, we mean the mixing of extremely large terms with
extremely small terms, where extremely large/small terms are
understood in the double precision sense. Numerical swamping
may lead to underflow/overflow errors, as well as a loss of ac-
curacy because the extremely small terms effectively become
zero. Roughly speaking, single precision equality is main-
tained if 0 < Im [k, ch,] < 3 and the maximum number of
layers is on the order of a hundred.

We have also verified that our code satisfies Weston’s the-
orem [35]. For the reader’s convenience, we state Weston’s
theorem here without proof.

Theorem 1. If a plane electromagnetic wave is incident upon
a body composed of material such that €. iative = Mrelatives then
the far zone back-scattered field is zero, provided that the direc-
tion of incident propagation is parallel to an axis of the body

about which a rotation of 90° leaves the shape of the body to-
gether with its material medium invariant.

In our case of a planar stratified media, Weston’s theorem sim-
ply states that xy;, = 0 for a normally incident monochromatic
plane wave. This result may be immediately derived from Sec-
tion 4 by noting that wy = we-,_, and consequently, the trans-
fer matrix M, reduces to

,,,,,

e ikuche 0
Me=|" 0 k| (= Leap-lo (44)

However, because of subtractive cancellation [36], wey1 — wyp =
d¢, where 9, is small but usually non-zero for £ =0,...,p — 1.
Therefore, the off-diagonal elements of (44) are generally non-
zero and because of the iterative nature of the transfer matrix
algorithm, these “small” elements may contribute significantly
to x, . In other words, x, should not be compared to zero even
in a single precision sense, e.g., in some circumstances we have
observed y; to be as large as 107, In light of the above dis-
cussion, we choose to test single precision numerical equality
of x; + x; to x; because y; tends to be many orders of mag-



nitude larger than y/,. With this definition of equality, our code
satisfies Weston’s theorem.

11. Conclusions

A transfer matrix algorithm for electromagnetic wave prop-
agation through planar stratified media composed of a right-
handed and/or left-handed material has been implemented in
Python. Pathological cases caused by unphysical approxima-
tion of zero absorption have been carefully examined and nu-
merically circumvented (see Section 3.2). The numerical com-
putations were implemented in an object-oriented program-
ming style by dividing them into two classes, Boundary and
Layer. The Boundary class performs computationally inten-
sive calculations, namely the solution of the linear system de-
scribed in Section 4 and the square root of ki ;- The workhorse
functions of the Boundary class were implemented in Fortran
90 in order to avoid computational bottlenecks. The Layer
class performs high-level calculations such as calculation of
u®M(x), Q©M(x), T*(x) and FIM. The code has been thor-
oughly tested and, roughly speaking, can be trusted to single
precision if 0 < Im [k, k] < 3 and the maximum number of
layers is on the order of a hundred (see Section 10).

We hope that our open-source and object-oriented imple-
mentation of the transfer matrix algorithm, which is suitable
for modern applications such as Anderson localization of light
and perfect lensing, will be adapted by a wide scientific com-
munity. At the very least, we hope that our publicly available
implementation of the transfer matrix algorithm will encour-
age the scientific community to use open-source software, thus
enhances the reproducibility of scientific work.
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