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This paper lists and reviews most of the many papers published on the subject of density
estimation. The four main categories of estimators (kernel, spline, orthogonal series
and histogram) are compared not only for their theoretical properties but also for their
applicability to real life problems.

1. Introduction
DENSITY estimation is possibly the most important topic in applied statistics, for unless
we know the density f(x) (in which case we are in the realms of probability) we must
infer its characteristics from a sample Xu ..., Xn before we can make predictions. It
is for this reason that in elementary texts the histogram plays such a central role. Not
only are we told that in the limit areas tend to probability but also shown how best
to form a histogram from (usually univariate) data, balancing the numbers of obser-
vations against the class widths. We are taught to check on the range, the shape, the
skewness and to note any tendency to multimodality, the last being often very difficult
to ascertain because of the subjectivity involved in drawing a histogram. This initial
screening of the data often leads us to hypothesize that the data come from one of a
particular parametric family of density curves and then the process of estimating and
hypothesis testing tells us whether or not this hypothesis is tenable.

It is somewhat surprising to find it was not until 1951 that some real improvement
was suggested on the time honoured method of producing a histogram, reducing the
subjectivity to some extent. This soon led to estimates of/(x) which are continuous
and so to some extent could short circuit the usual inference chain of parametric
density estimation.

Whilst for univariate data it is relatively easy to produce histograms and modify
them until one "looks right", for bivariate data to produce a "good" histogram is very
tedious and time consuming. It is in this situation that the continuous non-parametric
bivariate density estimate comes into its own—for with the aid of computer graphics
we can plot contours or perspective views off(x, y) and visually choose that picture
which looks "best"—contours being much easier to digest visually than a bivariate
histogram.

In the later literature more and more applications have been made in which the
whole process has been computerized, ending in a single "best" f{x).

The types of estimators suggested fall roughly into four categories, kernel (or
window), spline, orthogonal series and histogram-type estimators, although there is
inevitably some overlap. In the following sections, the papers have been grouped by
subject content and are not necessarily in chronological order.
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336 M. J. FRYER

2. The Kernel Estimator
In 1951 Fix & Hodges (1951) wrote a paper on non-parametric discrimination, in

which they required an estimate of a univariate density. Rather than assume an under-
lying normal distribution or choose the usual histogram as an estimate (being very
subjective), they managed to eliminate the "starting position" problem by using a
"running histogram". That is, subjectively they chose an interval width h and then
estimated the density at any given point as being proportional to the number of
observations falling within an interval of width h, centred at the point under con-
sideration. They then went on to consider several alternative estimators, but it was
this running histogram or naive estimator which led Rosenblatt (1956) to define a
class of univariate estimators, known as kernel or window estimators, which can be
written as

h
where Xu ..., Xn are assumed to be i.i.d. with/(-) the unknown density and kn(-)
the kernel. For the naive estimator kM(x) = $ for |*| < 1.

The larger the value of h, the coarser the grouping, so that as n becomes larger, h
can (and should) become smaller. If kn{-) is symmetric and satisfies jkn(u)du = 1,
$kn(u)2 du < oo, f/cB(«)|u|3 du < oo Rosenblatt showed the class of estimators to be
pointwise and integratedly consistent in quadratic mean (MSE, MISE) provided
h = hn is chosen suitably. In fact he showed that if we write h = Pri~', the optimum
choice for a is \, but POpt should be a function of/(x) and its derivates!—an impossible
situation, but it does show that the optimum rate of convergence of the MSE or
MISE is 0(n~*). Note that some properties of &„(•) are transferred to /„(•), e.g. if
£„(•) is smooth so is /„(•), and similarly if kn(-) is a density so is /„(•)• The fact that
there is no uniformly unbiased estimator for all continuous densities is not surprising
though rather disappointing.

Parzen (1962) imposing further constraints on &„(), showed asymptotic unbiased-
ness, and then listed seven forms for the kernel which satisfy these constraints, amongst
which are the rectangular, triangular, normal and Cauchy density functions. If
nhH -* oo, Parzen showed MSE -» 0 and under further conditions showed the asymp-
totic normality of {/„(*)} (for fixed x).

Demonstrations of the effect of varying h and /(•) for a normal kernel are to be
found in Fryer (1971).

Many authors have followed in Parzen's footsteps, changing the assumptions about
f(x) and the conditions imposed on &(•) and {/;„} and proving consistency properties
for /„(•). Amongst them are Nadaraye (1963, 1965), Murthy (1965a), Woodroofe
(1967), Bhattacharrya (1967), Schuster (1969, 1970) and Silvennan (1977a). Craswell
(1965) generalizes Parzen's results to estimation on a topological group, whereas
Borwanker (1971) considers strictly stationary processes.

Other authors concern themselves with finding (asymptotically) optimal forms for
/:(•). Bartlett (1963), for example, proposes

fc(u) = —(1-5U 2 / 3 / J 2 ) for \u\ sj h

= 0 otherwise,
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NON-PARAMETRIC METHODS OF DENSITY ESTIMATION 337

which optimizes a larger group of terms in the asymptotic expansion of the MSE.
This kernel is of course negative for \u\ > hy/0^6 and hence the corresponding/^)
is not a density.

Watson & Leadbetter (1963) use the MISE as a criterion and arrive at

where Os(/) is the Fourier transform of g{), assuming <bf to be square integrable.
Hence the form of k again depends on /. They demonstrate the optimal form for k
corresponding to various / and show that the MISE cannot be better than Oin'1).
If the rate of decrease of <bf is known, they give estimators which are asymptotically
optimal.

Woodroofe (1968) presents a 2-stage procedure to estimate /(•) when the kernel
has been specified. After two initial guesses for A, which are used to obtain rough
estimates for / and /<r> respectively (where r is the first non-vanishing moment of k)
a new value, hn, for h is computed. This hn is used to estimate/(•) in the usual way.
Woodroofe shows that this method converges asymptotically in MSE. Involved in
this process, however, is yet another sequence which is defined just as vaguely as
{//„}: fortunately /„(•) is not very sensitive to its value. Although this method can be
shown to work reasonably well, it involves much computing and no multivariate
extension has as yet been proposed. Nadaraye (1974) provides a similar 2-stage
procedure but based on a different optimality criterion.

Pickands (1969) presents another "self contained" estimator for a specific (large)
class of densities, but admits that it is considerably more difficult to compute even
than that of Woodroofe.

Whittle (1958) suggests a linear estimator of/(x) of the form /(*) = T,wx(xj)IN,
where w is a weight function to be optimized and then considers a Poissonization of
the problem N ~ Poi (mean M) in which he estimates <f>(x) = Mf(x) by

<?(*) = ZWx(xj)M/N,

using as optimization criterion min E^E^^x) — <p(x)\2 where the suffices refer to the
prior distribution of ordinates and sampling fluctuations respectively. He obtains a
rather complicated integral equation for w, which has a 5-function as asymptotic
solution. One important property enjoyed by this estimator is that smoothings applied
to different scalings of the data (non-singular transformations of the variate scale)
are equivalent. The asymptotic behaviour of the MSE is also discussed. Several
criticisms of this paper, including that the estimates are not constrained to be non-
negative, are considered in Dickey (19686), and some modifications to the estimator
are suggested.

Anderson (\969a,b), after a fairly extensive study, concludes that the actual kernel
function k() used makes little difference to the optimum value of the MISE, but that
the optimal value of hn differs for different kernels. The normal kernel is shown to
perform satisfactorily when estimating normal and relatively non-skew densities, but
not when estimating the negative exponential. This facet has been taken up by Ojo
(1974), Fryer (1976) and Copas & Fryer (1977), in which it is recommended that skew
data should be transformed nearer to symmetry before the estimation procedure, and
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338 M. J. FRYER

then the resulting estimate transformed back. Fryer also considers the robustness of
the normal kernel and provides plots of the sensitivity of the MSE and MISE to
variations in h and/(), one of the main conclusions being that it is usually preferable
to over- rather than under-estimate h.

Nadaraye (19646) and Watson (1964) are concerned with estimating the regression
curve of Y on X,

§
As estimator they both choose

A{x) =

with a symmetric &(•) and prove some asymptotic results. Watson goes on to give the
results of some Monte Carlo experiments. For example he compares these estimates
with the true value when m(x) = 0-8x. He also computes/„(•), uses the best estimate
to fix hH, and concludes (as Anderson) that it is A, and not k(-) which is important in
the estimate. He applies the results to a practical problem in biology.

The convergence properties of the obvious estimates of J / 2 dx are considered in
Bhattacharrya & Roussas (1969) and Schuster (1974).

In a later paper, Nadaraye (1965) considers the regression problem of Y on X
where X = Y+Z and Z ~ N(0, a2) but Y is of unknown density. Since E(Y/x) =
°2f'(x)lf(x) + x, he proposes ift(x) = o24>m(x)/fn(x)+x, where ^H(x) = (fn(x+h)-

fn(x — h))/2h and proves some consistency properties with hn = n~°, 0 < 9 < \.
Another group of papers is concerned with estimating the hazard function

z(x) =f(x)l(l—F(x)). Watson & Leadbetter (1964c,A) use as estimators

- fn(t) dt and /„(
Jo /

where FB(x) is the proportion of observations <*, and show them both to be
asymptotically unbiased under suitable conditions. In a numerical example a triangular
window is shown to perform nearly as well as the optimal window even for such a
skew density as the exponential.

Copas & Fryer (1977) use the second of the above estimators for the age specific
suicide rate in a study to test the significance of an apparently increased rate near the
commencement of the time on test. Since the histogram of data is very skewed (and
despite the above observation) a log transformation is made, the density estimated
and then transformed back. This eliminates the obvious inaccuracy near the origin
when estimating an exponential-type distribution. Some further theoretical results
are given in Murthy (19656). Significance tests and confidence intervals are dealt
with at length in Nadaraye (1970), Bickel & Rosenblatt (1973) and Rosenblatt (1975).

3. The MuJtivariate Form
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NON-PARAMETRIC METHODS OF DENSITY ESTIMATION 339

Rosenblatt's results for the naive estimator are extended to the bivariate case by
Maniya (1961). He shows the optimal rate of convergence in MSE and MISE is now
only of order TI~*, corresponding to a1 = a2 = £. Cacoullos (1964, 1966) obtains
the (p-dimensional) multivariate equivalents of much of Parzen's work. In particular
MSEopt = 0( /T 4 / p + 4 ) when At = h2 = . . . = hp = 0 (n" l / p + 4 ) . He points out that
the product kernel, i.e.

Kn(y) = f [ kn(yd,

where £„(•) is a univariate kernel, has stronger invariance properties than the general
vector kernel since it is invariant under different scale transformations in each dimen-
sion: the property being essential when incommensurable characteristics are being
considered (e.g. height, weight). Van Ryzin (1969) strengthens the consistency properties
obtained by Cacoullos. He notes that the kernels tabulated by Parzen satisfy all the
conditions imposed on &„(•)> and that suitable {hB} are given by hn = Cp~",
0 < q < ftp, C > 0 and ft = i (or, except for the rectangular kernel, /? = 1).

Wertz (1969) and Silverman (1976) are similarly concerned with the consistency
properties of the product kernels.

Epanechnikov (1967) also considers the use of (non-negative) product kernels but
assumes them, amongst other properties, to have Taylor expansions in all their
arguments about each point. Besides proving several types of consistency, he shows
that the optimum kernel (in Relative MISE) is:

Kb) = - V ( l - / / 5 ) for \y\ < V5' = 0 elsewhere.
V5

He tabulates the relative efficiencies of various "standard" kernels (e.g. Normal:
0-95; Rectangular: 0-93).

Murthy (1966) extends his previous univariate results to the multivariate case
using Cacoullos' vector estimator.

Martz & Krutchkoff (1969) use kn(y) = (2s'\n(y/2)ly)2l2n (see Parzen, 1962) as
the kernel of a product estimator for obtaining the solution to simple multiple
regression by Empirical Bayes techniques. They take hn = n~+ after standardizing all
the data. Rosenblatt (1969) is concerned with estimating both the conditional density
and regression associated with a joint density. For the marginal density he takes the
integral of the usual bivariate estimator. He then takes the quotient of the joint and
marginal estimators to estimate the conditional density, and its mean to estimate the
regression function. He proves two theorems concerning the (pointwise) asymptotic
behaviour of the estimators.

Silverman (1977ft) also considers the problem of choosing the hn appropriate to a
given sample in both the univariate and the multivariate cases. His method involves
the consideration of "test graphs" of the second derivative of the density estimate for
various values of hn. A theoretical result shows that, under certain conditions, if the
sequence hn is chosen to give the most rapid uniform convergence of the estimates to
the true density, then the Laplacian of the estimate will exhibit fluctuations of size

±K sup |V2/I
(-co, oo)
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340 M. J. FRYER

about its trend. The constant K depends explicitly on the kernel and the factor
sup |V2/| can be estimated from the test graphs. Silverman's method is to choose
the estimate corresponding to the test graph which has fluctuations of the right size.
Although the method has some drawbacks (notably the occasional difficulty of dis-
tinguishing random fluctuation in the test graph from true variation in V2/n and also
the problem of the presentation of the test graph in the multivariate case) the
examples considered show that the method can work well in practice.

Specht (\961a,b) brings a refreshingly practical approach to the whole subject
when applying the techniques to the problem of classifying vectorcardiographic out-
puts into one of two categories. Since he is concerned with p = 46 dimensions,
computer time and space are somewhat at a premium. He has first to estimate the
underlying densities using "training samples" and then uses a Bayes' strategy to
classify new data. He chooses hn to give maximum discrimination of the "training
sample". He assumes a product normal kernel, but a direct application leads to an
inordinate amount of computing. He therefore approximates part of the kernel by a
quadratic polynomial function of the observations P(x), whence

/n(x) = —— exp I —— I. P(x) for each of the classes.

He gives an algorithm for calculating the coefficients of P(x), and for reducing their
number to just those which have a significant effect on/B(x). He chooses for a given
sample that classification for which ^ ^ ( x ) is a maximum, where pr is the a priori
probability of pattern type r and /, is the associated loss. The fitting of a polynomial
to &„(•) is shown not to be subject to the overfitting problem that can arise when fitting
a polynomial to / ( ) . Specht (1971) considers the normal kernel, leading to a series
expansion for/() in terms of Tchebychev-Hermite polynomials, although in practical
applications he recommends using a theoretically equivalent power series-type
expansion which he claims yields higher accuracies when truncated to the same
number of terms, and is computationally simpler.

= 7V(0, a2)
r

where

r! a \

and N(0, 1) is the standardized normal density function.
This estimator is essentially non-negative, and the round-off error problem of

Tchebyshev-Hermite polynomials is eliminated since the series consists of positive
terms only rather than having alternating signs.

Konakov (1973) suggests the kernel (nx)'1 sin* (the Fourier integral estimate)
and shows that under stated regularity conditions on/and convergence properties for
{/JB}, the estimator is asymptotically unbiased, consistent and asymptotically normal.

Davis (1974, 1975) shows that the rate of decrease of the bias for this estimator of
a "smooth"/is much faster than for kernels belonging to V (-oo, oo) (e.g. when
f=N((i, a2)).
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NON-PARAMETRIC METHODS OF DENSITY ESTIMATION 341

Fukunaga & Kessel (1971) compare the classification errors associated with the
parametric and non-parametric estimation of the underlying multivariate densities
when using a Bayes' classification rule. After some experimentation with hn (not very
sensitive in their p = 8 dimensional problem(?)) they find that an estimator with a
multivariate normal kernel performs only slightly less well than the parametric
estimator when it is known that the density does in fact come from the parametric
family.

Glick (1972) also considers the classification problem and its associated non-error
rate.

Habbema et al. (1974a,fc) use the multivariate product kernel estimators in dis"
criminant analysis. However, in Habbema et al. (1974a) they propose a novel approach
to estimating hn. After the data have been standardized to have sample variance 1, a
modification of the likelihood function is maximized (in each series of the product,
they leave out that term which makes the likelihood infinite with hn zero) to give an
estimate to hn. This criterion, although not based on any theoretical reasoning, seems
to give reasonable results. The allocation rule used is the Bayes' minimum expected
loss criterion. As they point out, this technique can only be used in quite small scale
problems due to the large amount of computing involved especially in the teaching
stage (Hermans & Habbema, 1976). This technique is used and compared in Hermans
& Habbema (1975).

TABLE 1

A check on the optimality of Habbema's estimator

n

10
20

Habbema

mean hn

0-706
0-601

mean ASE

00180
00074

max

mean Aw

0-735
0-604

MSE

mean ASE

00038
00027

Theoretical

KT

0-759
0-642

optimum
>mean ASE

00049
00033

In order to test the optimality of Habbema's estimator, I took 1000 samples each
of n = 10, 20 drawn from a univariate normal population, and using a normal kernel
obtained an estimate fln for hK. At the same time, using the sample average square
error (ASE: estimating the MISE) as criterion, I found the optimal value h^ for hnt

the corresponding ASE, and, for interest, the ASE corresponding to hnT, the theoretical
optimal value for hm. The results are summarized in Table 1.

Habbema's method is seen to produce significantly worse results than those obtained
by using a fixed hBT, presumably because of the consistent underestimation involved.
Overestimation by the same amount would have had a less severe effect (see Fryer,
1976).

4. Splines

Boneva et al. (1971) present an extremely lucid and interesting paper (with discussion)
introducing a transformation of the data to be used for diagnostic rather than esti-
mation purposes. They start with the data in the form of a frequency function (H)
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3 4 2 M. J. FRYER

(with the cell width, e, specified) and find a 1-1, linear invariant, and bi-continuous
mapping onto a Hilbert space of smooth functions, the resulting form being called
a histospline (s e 5), so named as S turns out to consist of those continuous and
continuously differentiable functions such that s is a quadratic in each fixed interval,
and is square integrable i.e. a quadratic spline. They are also constrained to integrate
to the same as H over every cell but are not necessarily non-negative. The <5-spline
(fc( :e)) is the unit from which the histospline is built and can be quite easily
stored on a computer requiring a maximum of 39 constants (Boneva et al., 1975).
Both theoretical and practical suggestions are made as to how the histospline should
be modified to allow for densities defined on finite intervals or on the circle. They then
modify their transformation to apply to raw data in much the same way as the naive
estimator is a modification of the histogram—the spline transformation

which is of kernel-type and so enjoys the attributes of that group of estimators. A
bivariate analogue is also considered.

Wahba (19756) considers the statistical properties of a slight generalization of the
histospline for densities of finite support. Instead of the second derivative being
assumed zero at the ends of the interval their values can be estimated from the data.
An upper limit for the MSE is obtained under stated conditions (U.S.C.) and shown,
not surprisingly, to have the same asymptotic rate of consistency as the usual kernel
estimators.

Wahba (1971) considers a local estimate off(x) (at x) based on the derivative of an
mth degree polynomial estimate of F(x) in the neighbourhood of x obtained by
Lagrangean interpolation formulae. The estimator depends on the number of data
points in the neighbourhood and m, which is related to the continuity assumed for/
and its derivatives. The estimator is shown to be pointwise consistent in MSE at a
slightly faster rate than Parzen's (U.S.C), but under strong conditions to have the
same (higher) rate. It is noted that a special case of this estimator is given in Van Ryzin
(1970).

5. Series Estimators

In 1962, the following estimator was proposed by Cencov {\962a,b), the same
formulation being used by later authors. Suppose xu . . . , xn are i.i.d. ~ f(x), xeR,
and r(-) is a (fixed) weight function so that the inner product

= f
J "

defines a Hilbert space L2(r), and suppose an orthonormal basis {4>KN} exists for the
JV-dimensional subspace EN, then

N N

fn(x) = £ aKN<t>KN 3 £ (4>KN,f)<t>KN

is the mean square approximation to f(x).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/20/3/335/655109 by N

orthw
estern U

niversity Library user on 11 O
ctober 2020



NON-PARAMETRIC METHODS OF DENSITY ESTIMATION 343

Now

* 1 V
n K=I

is a strongly consistent estimator for a ^ and so }H(x) = EaJ^ 4>KN ' S proposed as an
estimator for/(;c). The choice of EN and n both contribute to the closeness of/n(;c)
to/(x).

Cencov proves several theorems relating to the degree of approximation and
proposes a "stopping rule" for N, the number of terms of the series. This estimator is
not necessarily always non-negative.

Schwartz (1967) considers the case r(x) = 1, N = N(n) and 0t(-) the kth Hermite
function (over the real line). He proves several consistency properties, requiring con-
ditions such as N/n -» 0 as N -+ oo (c.f. 1//O-

Blaydon (1967) in a generalization considers estimating both F(-) and /(•) by a
linear combination of functions using the criterion of minimum least squares. Kashyap
& Blaydon (1968) evaluate a^ by a gradient-type technique, and give an example
using the first three Laguerre polynomials over [0, 4] to estimate the distribution
function corresponding to an exponential density and compare the speed of con-
vergence of the various algorithms.

Watson (1969) introduces a general weight function X into the estimator:

/
CO

with the intention of improving upon Cencov's results, but is forced to conclude that
^K(K) = I for K = 0,..., N, = 0 elsewhere is perhaps the best experimental form!

Kronmal & Tarter (1968) and Tarter & Kronmal (1967) extend the Cencov model
to cover both F() and/(-) but only with finite support. They choose the trigono-
metric functions {cos Knx}, {sin Knx} and {cos Knx, sin Knx} for their <£'s since
they require the orthogonal series used for F(-) still to be orthogonal when differen-
tiated to give/(). They defend negative estimates by saying that they are a warning
that insufficient data are available to provide estimates in those regions. They propose
the following "stopping rule" for the {cos Knx, sin Knx} series: the mth term should
be included iff

b_a nn
2>2l(n + l)

(as opposed to l/(«+1) proposed by Cencov).
Fellner (1974) in a synthesis of the papers by Whittle (1958), Tarter & Kronmal

(1967) and Kronmal & Tarter (1968) produces a multistep estimating procedure
which by-passes the usual "stopping rule" problem by using an hypothesis testing
technique. Crain (1974) proposes a maximum likelihood approach to estimating the
coefficients of the orthogonal series (finite support), demonstrating his results with
examples using Legendre polynomials.

Several authors (including Watson, 1969; Fellner & Tarter, 1971; and Tarter &
Raman, 1971) note the theoretical equivalence (U.S.C.) of the Fourier and Kernel
estimators, but it is all too evident in practice that the resulting estimates are (locally)
very different, especially when n is relatively small.
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3 4 4 M. J. FRYER

In a brief comparison with the results of Parzen (1962) and Rosenblatt (1956),
Schwartz (1967) finds that stronger conditions are required on /(•) for the same
asymptotic rate of convergence in the univariate case, but as the rate of convergence
of his estimator does not depend on p, he concludes that it is (theoretically) preferable
in higher dimensions. Kashyap & Blaydon (1968) note two operational advantages
of the series estimator:

(i) it does not require all samples to be stored during computation; and
(ii) the final result is easy to store, since it is not in the form of a complicated

analytic function.

Anderson {\969a,b) considers trigonometric, Hermite and Laguerre <f>'s in a
Monte Carlo study using his own truncation rule. His results indicate that the cosine
trigonometric series estimator is probably the best (when estimating a function with
finite support), and because of its smaller computing requirements, superior in practice
(but not in MISE) to the kernel estimates.

Wegman (19726) also in a Monte Carlo study, finds the performances of the kernel
estimates (represented by the triangular kernel) and the series estimators (represented
by the cosine series) to be about the same in terms of either the average square error
or the likelihood.

Schwartz (1969) considers an estimator for the convolution density f(x) of
X = N+Z where N and Z are independent with N ~ N(0, a2) and Z has unknown
density. The Hermite polynomials arise naturally in this context and lead to an MISE
of order In (n)/n.

Tarter & Silvers (1975) introduce a new application of density estimation—a
cluster-type analysis in which the contours of the (estimated) bivariate population
density (or bivariate marginal density) (of finite support) are interpreted subjectively
and modified interactively with the aid of an on-line computer CRT terminal. The
estimator used is as in Tarter & Kronmal (1970). If one assumes the underlying dis-
tributions to be a mix of bivariate normals, then the multiplication of the formula for
the estimated density by a factor which changes the covariance structure will change
the shape of the estimated contours. The idea behind the algorithm presented is to
modify the structure so that the contours of one of the mix (usually the "strongest")
tend to straight lines and hence separate from the rest of the mix. The parameters of
the corresponding normal distribution are then estimated graphically. The process is
repeated until all the elements of the mix are estimated. This technique is obviously
more robust to changes in the underlying mix of densities than methods based solely
on parameter estimation in mixture decomposition.

Aizerman et al. (19646) and Cooper (1964) apply series estimators to estimating the
reliability of classification procedures.

6. Maximum Likelihood Estimators
Grenander (1956) was the first to derive the MLE for a non-increasing density/(•),

corresponding to an absolutely continuous /•"(•). It arose from studies of the force of
mortality (age specific death rate) determined from mortality tables. He showed /„(•)
to be a step function, the derivative of the greatest convex minorant of the empirical
distribution function Fn(x).
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NON-PARAMETRIC METHODS OF DENSITY ESTIMATION 345

Marshall & Proschan (1965) consider MLE's in the context of a non-decreasing
hazard rate and show functionally uniform consistency with probability 1 (U.S.C.).

Robertson (1967) is concerned with finding the MLE for a unimodal density
measurable on a tr-lattice L of subsets of R and subject to various other conditions.
He assumes that the position of the mode is known (x = a), and finds the MLE to be

where ni\n is the relative frequency of observations occurring in the interval [x(i),
•X(/+i)) 'f *(f+i) < a> a n ( l (*(!)' ^(i+ij ^xd) > a of length At, and IAl is the indicator
function. He shows pointwise consistency with Pr 1 and uniform consistency with
Pr 1 over any (finite) closed interval in which/(-) is continuous.

Weiss & Wolfowitz (1967) consider three classes of densities to which /(•) may
belong (the classes being defined mainly by the existence of derivatives in the intervals)
and obtain as MLE

fB(x) = /!(/{/i[2eB + A:(eB)]} for x in /, = A±en

where e, = n~\ a < | and A: is a function of eH, and /(•) assumed known. Since k
will not be known in general, they suggest replacing it by £ = 2£2e;J/3 where

Q-=Ti (.x,-A)ln,,

0 < ft < \, P < a and Ji is the interval (A±n~11). They show that these estimators
are more efficient than the usual histogram estimates.

Rao (1969) also considers estimating a unimcdal density in the case when the mode
is assumed known. Following Grenander (1956) he shows the MLE to be the slope
of the greatest convex minorant of Fn(x) to the left of the mode and of the least
concave majorant to the right. Pointwise consistency in probability is established and
the asymptotic distribution derived.

Wegman (1969Z>,c,1970a,6) takes Robertson's results one stage further by not
assuming the modal position known, but estimated by one of the strongly consistent
estimators of Venter (1967) or Nadaraye (1965). This estimator has the tendency to
peak too severely around the mode, so in a follow-up Wegman modifies the estimator
by fixing the width of the modal interval in advance. He goes on to prove some
consistency properties and in the final paper derives the asymptotic distribution. An
alternative method of tackling this problem is proposed by McGilchrist (1975).
Good (1971) and Good & Gaskins (1971, 1972) consider maximizing a score
co = L—<b(f), where L is the sample log likelihood and <S> a non-negative roughness
penalty functional (flamboyancy functional) of /(•). (An optimization of L alone just
results in ^functions at each of the data points.) They prove pointwise consistency in
probability (U.S.C.). They take

O(/)=4a \y'2dx+p \y"2dx,

w h e r e / = y2, a 3* 0, P Js 0, a + p > 0 and assume

m-0
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where ym are real coefficients and <pn(x) are Hermite polynomials. This leads to a set
of simultaneous non-linear equations to be solved iteratively for yu y2, • • • , yR,
where yR+l . . . are assumed zero. An iterative method for estimating ft is proposed
and from graphical considerations a value of zero for a is often assumed. A natural
extension of <J> to multivariate densities is given and an invariant formulation dis-
cussed. A formulation suitable for data in the form of histograms is also given. A
comparison with other methods and a condensed literature review is included with
a bibliography. The main points in the comparison are:

(i) this method estimates the true density and irons out non-significant bumps (as
opposed to splines);

(ii) is more widely applicable than Fourier series methods;
(iii) is non-negative (as opposed to Fourier series methods); and
(iv) is perhaps more efficient in the use of observations than kernel methods.

7. Histogram-type Estimators

Just as the MLE estimators were histograms with their intervals chosen in an
optimal fashion, so many other histogram-type estimators have been proposed,
(usually) requiring the sample to be ordered.

The first of these was by Fix & Hodges (1951, 1952), the interval widths being
defined before the relative frequencies calculated (as with the usual histogram).
Discussion follows as to the rate of decrease of these widths to obtain consistency.

Loftsgaarden & Quesenberry (1965) estimate the (multivariate) density in the
reverse order—fix the number of observations per interval and Ihen draw the smallest
(spherical) intervals to include this number of points around each point of interest.
They prove pointwise consistency and find the asymptotic distribution. This estimator
is simple to calculate when only point estimates are required (as in discriminant
analysis) but gives computationally complicated results when the density is required
over a region in more than one dimension. It is somewhat akin to the naive estimator
in this respect

Elkins (1968) considers a "cubic" estimator, which counts the number of
observations within a cube of side 2h (a multivariate naive estimator), and the corres-
ponding "spherical" estimator (radius r). He finds h and r to optimize the MSE,
evaluates the MISE and concludes that the spherical estimator is to be preferred as
the number of dimensions increases. The paper includes a brief review of the subject.

Moore & Henrichon (1969) consider a univariate modification of that given in
Loftsgaarden & Quesenberry (1965) in which the estimator is a step function with the
discontinuities at the observations only, hence being much easier to compute. They
prove uniform convergence in probability provided/is positive and uniformly con-
tinuous on R.

Pelto (1969) uses the spherical results of Elkins (1968) in the problem of assigning
a p-dimensional random variable to one of two populations determined only by
observations. He uses the "leaving-one-out" method to estimate the probabilities of
misclassification (as a function of r). The expected loss is then plotted and the value
of r corresponding to the minimum used. Sampling experiments on multivariate
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NON-PARAMETRIC METHODS OF DENSITY ESTIMATION 347

normal populations indicate that the efficiency of the method is about the same as
of the standard parametric procedure, in which the form of the density is assumed
known.

Gessaman (1970) provides an estimator for which /„(•) is constant over rectangular
blocks, and is given by

fax) = kJ[(n+l)AxJ
where kn = [n+] and Axn is the area of the block containing x. The algorithm requires
the ordering of the sample to split up the plane into rectangular blocks. Pointwise
consistency in probability is proved (U.S.C.).

Mucciardi & Gose (1970) describe a fully automated algorithm based on Sebestyen
& Edie (1966) for non-parametric cluster analysis using hyperellipsoidal cells. A new
observation defines a new cluster cell provided it neither falls within an existing cell
nor in a "guard zone" surrounding an existing cell, the centres and shapes of the cells
being updated as more data are collected. A second pass over the data "refines" the
clusters. Provision is made for combining nearly empty cells with their neighbours.
Applications to medical data in 80 and 36 dimensions are given, together with corres-
ponding results using different models for the density. An analysis of classification
errors demonstrates the usefulness of the algorithm.

Van Ryzin (1970) uses a modification of the Loftsgaarden & Quesenberry (1965)
estimator and besides strong consistency (U.S.C.) he gives asymptotic confidence
intervals for /„(*). In the final sections of the paper, he asserts that the estimates
presented compare quite favourably with the kernel estimators, and under certain
circumstances (e.g. where estimating the tails of f{x) = N(0, 1) with a rectangular
kernel) can be much more efficient.

8. General

Farrell (1967, 1972) obtains several theoretical results concerning the general
estimation problem. He considers a sequence of estimators SN(xlt . . . , xN) of/(0),
and using a square error loss function shows that no uniformly consistent sequence
of estimators exists relative to the class C« = {F(x): F(x) e R, F' = / and F" = f
are defined and continuous on R, s u p / = a}. He then finds the optimum asymptotic
rate of convergence of/n to/(0) (U.S.C.) as attained in Epanechnikov (1967). Wahba
(1975a) modifies Farrell's theorem and then evaluates the "rate constant" of several
types of estimates achieving the optimal rate of convergence (in MSE): the kernel
estimate, the trigonometric series of Kronmal & Tarter (1968) and Tarter & Kronmal
(1967), the polynomial method of Wahba (1971) and the usual histogram method.

9. Comparisons and Reviews

Vaduva (1968) comes nearest to a text book on the state of the art (as in 1967), but
unfortunately it is in Rumanian!

Anderson (\969a,b) reviews the literature (to 1969) on both kernel and orthogonal
series estimates. He considers three kernels (normal, double exponential and uniform)
and the estimation of four densities (gamma, exponential, uniform, mix of normals).
He concludes that for estimating a fixed/(•), the actual optimum values of the MISE
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are relatively independent of the kernels, but that on the other hand the corresponding
values of h are very different. For the orthogonal series estimates, he considers the
trigonometric, Hermite and Laguerre types and finds their (theoretical) MISE when
estimating the normal and gamma densities. The final chapter gives the results of some
Monte Carlo comparisons using an estimate of the MISE as criterion. The normal
kernel is used to represent the family of kernel estimates using the theoretically
optimum hH. Results using Woodroofe's two-stage procedure are also included but
not compared. All the estimators considered seem to perform reasonably satisfactorily
when estimating the normal and not too skew members of the gamma family, but not
when estimating the exponential. In no case did the kernel estimates display sig-
nificantly smaller MISE than the orthogonal ones when his own stopping rule was
used. He concludes that the cosine trigonometric estimator is probably the best of
the series type and because of its smaller computing requirements, superior in practice
to the kernel estimators.

The poor performance relative to the exponential density led Ojo (1974) to
consider transforming the data prior to estimating (with a kernel estimate) and then
transforming back. He concludes that this procedure gives superior estimates (in
MISE) and almost eliminates the obvious bias near the origin.

Van Ryzin (1966), in considering the theoretical problem of classifying outcomes
into one of two categories by a Bayes' risk criterion, estimates the underlying densities
with training samples by three methods: (i) finite orthonormal expansion, (ii) the
Cencov series, and (iii) the kernel method. He derives results concerning asymptotic
rates of convergence which might help one to decide on the best method to use in a
given classification problem.

Gessaman & Gessaman (1972) give the results of a Monte Carlo study to compare
various estimators in both forced and partial discrimination problems. The non-
parametric estimators chosen were (i) the bivariate normal kernel, (ii) the Loftsgaarden
& Quesenberry (1965) estimator and (iii) the Gessaman (1970) estimator. They con-
clude that amongst these (iii) does least well in the forced comparison situation.

Rosenblatt (1971) gives a review of some theoretical topics concerned with kernel
and orthogonal series estimators and in particular describes the relationships between
the results for density estimation and spectral analysis. He agrees with the views
expressed by Boneva et al. (1971) when he writes "In most cases it is clear that one
will not use the techniques . . . in estimating a density function unless there is a good
deal of data . . . , little a priori information . . . , but a great need to get additional
information about the density function, even if it is fairly crude". He adds the caveat
to the theoretical results "it is a mistake to take asymptotic results too literally from
a finite sample point of view". He derives Epanechnikov's non-negative optimal
kernel again and suggests another kernel, this time somewhere negative, which has
better asymptotic properties. (Bias = O(h*).)

Wegman (1972a) gives a straight resumd of all the methods to 1972 and a large,
but by no means complete bibliography. He lists the various types of convergence
involved and is quite detailed (in some cases) in the conditions imposed on /(•) and
/„(•) in many of the theorems. In his next paper (19726), however, Wegman gives
some results of Monte Carlo trials to test the practical eflfectiveness of the estimators
in the light of the conclusions drawn by Anderson. He uses the naive estimator to
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NON-PARAMETRIC METHODS OF DENSITY ESTIMATION 349

represent the kernel estimators (why not Bartlett's or Epanechnikov's?) and uses the
theoretical optimal value of ha for each of the given densities (when possible). In the
cases where this procedure was not possible, an experimental MISE (the ASE) was
minimized. (Since hB is a statistic, I would have preferred it also to be optimized for
each particular sample in order to be able to compare it satisfactorily with other
sample-based-estimators.) To represent the series type, the cosine series and associated
stopping rule was used, since it was shown to behave well.

Two forms of histogram were used, the one in which the number of (equal) class
intervals is fixed in advance, and the other in which it is estimated. The densities
estimated were uniform, triangular, exponential, Cauchy and normal, the region of
support being the sample range and the criteria the average square error (ASE) and
the likelihood function. As a crude summary of his results, when using the ASE the
naive and trigonometric estimates proved to be best, followed by the two histogram
estimates and, way behind, the MLE estimates. When using the likelihood function
the ordering was reversed. He notes the following pros and cons (Table 2).

TABLE 2

Some advantages and disadvantages of the various types of estimator

Orthogonal series Kernel Histogram MLE

For:
Optimal Stopping

Rule exists
Easy to compute

Good MISE

Against:
Choice of series

critical
Not usually a

density
Often finite support

Can be density

Can have infinite
support

Good MISE and rate
of convergence

Kernel to be chosen
although the choice
is not critical

Critical choice of hn
Large amount of

computer time
required

Few arbitrary choices

Can have infinite
support

Easy to compute
Error rate seems higher than O(n~°-B)

Very poor MISE

Interval length or
number of observa-
tions per interval to
be chosen

10. Additional Comments

Any attempt at drawing conclusions or giving recommendations based on a survey
such as this seems destined to failure, since one's choice of method must depend to
a large extent on the use to which it is going to be put—initial screening of the data
at one end of the scale, to a "plug-in" estimator for some taxonomic problem at the
other.

23

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/20/3/335/655109 by N

orthw
estern U

niversity Library user on 11 O
ctober 2020



350 M. J. FRYER

Taking my table of Wegman's comments as a basis, there are some further
observations I would like to make:

(1) The cosine series estimator seems to perform reasonably in most circumstances.
(2) A quadratic form for the kernel estimator seems to perform well, and there are

some theoretical reasons for choosing it. It is basically also easier to compute than
the kernels of infinite support. The papers by Specht, however, do provide an efficient
algorithm based on the normal kernel.

(3) Several methods exist for estimating hn in the kernel estimator, although further
Monte Carlo studies are required to check on their properties for small n. They all
seem to be computationally long, although the Silverman technique (still requiring
some subjectivity) is perhaps the shortest. My personal preference (for data screening)
is to plot the estimates of/(-) for several values of hn and choose subjectively—usually
talcing h just large enough to eliminate bumps at outlying observations. Studies
suggest (a) the kernel method performs best for symmetric/(•)—i.e. transform to
near-symmetry, and (b) over-estimation of hn is preferable to under-estimation. In
some problems such as classification where a teaching sample is used, hn can be chosen
to minimize the classification errors of the teaching sample.

(4) Spline estimators also require the estimation of a parameter corresponding to hn.
(5) The modified maximum likelihood estimators of Good & Gaskins suffer from

the same subjectivity problems although the authors do suggest several "rules of
thumb" for the values to be given to the parameters. The iterative nature of their
algorithm suggests it to be expensive in computing facilities. However further Monte
Carlo studies seem justified.

(6) The histogram-type estimators seem to be non-starters unless a particularly
simple step-function form is required.

The author would like to thank a referee for bringing to his attention several
references: Silverman (1976, \911a,b) and Boneva et al. (1975).
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