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 Choosing the window width when estimating a density

 BY B. W. SILVERMAN

 Statistical Laboratory, University of Cambridge*

 SUMMARY

 A practical method is discussed for determining the amount of smoothing when using the
 kernel method to estimate a probability density from independent identically distributed
 observations. Both the univariate and the multivariate cases are considered. The method is

 illustrated by the analysis of several sets of data; the theoretical motivation and justifica-
 tion are also provided.

 Some key words: Data analysis; Density estimation; Graphical methods; Kernel; Smoothing; Test graph.

 1. INTRODUCTION

 The problem of estimating the probability density function underlying independent

 identically distributed observations has received considerable attention. Rosenblatt (1956)
 introduced the kernel estimator, defined for all real x by

 n

 fn(x) = n-1 h(n)-18{(x-Xi)lh(n)l,
 i=1

 where Xl,...,Xn are independent identically distributed real observations, a is a kernel
 function and h(n) is a sequence of window widths, assumed to tend to zero as n tends to

 infinity. The kernel estimator has been widely discussed; for a survey see Rosenblatt (1971).

 When applying the method in practice it is of course necessary to choose a kernel and a

 window width. The choice of kernel was considered by Epachenikov (1969) who showed that
 there is in some sense an optimal kernel, which is part of a parabola, but that any reasonable
 kernel gives almost optimal results. Therefore the choice of kernel is not as important a
 problem in practice as might be supposed. It is quite satisfactory to choose a kernel for
 computational convenience, as below, or for any other attractive reason, such as, for

 example, the argument leading to the quadratic spline kernel used by Boneva, Kendall &
 Stefanov (1971) in their 'spline transform' technique.

 While the choice of kernel does not seem to lead to much difficulty, at least for reasonably

 large sample sizes, the choice of window width is quite a different matter. The results of
 Silverman (1978) show that the kernel estimate is uniformly consistent under quite mild
 conditions on the rate of convergence of the window width to zero, but that the rate of
 consistency can be very slow. The very interesting practical work of Boneva et al. (1971)

 shows that the estimates can change dramatically under quite small variations in window
 width. Thus there seems to be considerable need for objective methods of determining the
 wiindow width appropriate to a given sample. The method developed below, while being
 subjective to some extent, goes a long way towards resolving this difficulty in certain cases.

 First the method is described and some applications to sets of data are considered. The
 application of the method to multivariate data is then discussed. Finally, the theoretical
 justification of the method is obtained.

 * Present address: Mathematical Institute, Oxford.
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 2 B. W. SILVERMAN

 2. DESCRIPTION OF THE METHOD: THE UNIVARIATE CASE

 The practical method developed depends on the following result, which will be proved in

 ? 5 below. The notations sup and inf, when unqualified, are taken to be over the whole real

 line.

 THEOREM 1. Suppose that the true real density f has uniformly continuous second derivative

 and that the kernel 8 satisfies conditions (a)-(h) of ? 5 below. Choose the sequence h(n) to give the
 best possible rate of uniform con8istency of fn as n tends to infinity. Then

 sup{f'-E(f')}-- ksuplf"l, inf{f'-E(f-)}+-ksuplf"
 in probability as n tends to infinity. The con8tant k depends on the kernel and is defined explicitly
 in ? 5 below.

 Before exploring the consequences of this theorem it is convenient to concentrate attention

 on a particular kernel. The kernel used in this paper is the piecewise quartic

 iIxI4-iIxI3+i for IxI<1,

 a(x) = jIxI(2-IxI)3 for 1<jxI<2, (1)

 O for IxI>2.

 This kernel is chosen because it is close to optimal in the sense of Epachenikov (1969), it

 satisfies conditions (a)-(h) of ? 5, and, being a piecewise polynomial of narrow support, it

 leads to an estimate which can be computed quickly. The constant k of the theorem is almost

 exactly 04 for this kernel.

 The theorem can be rephrased as follows. If the window width is chosen to give the best

 estimate of the density then the random fluctuations in the second derivative of the estimate

 will be asymptotically of maximum size + k sup If' 1. This follows from the fact that E(f')
 is a smoothed version off" and so any fluctuations infn are due to the random errorf -E(f')
 while any systematic variation is due to the variation of E(f') and hence off.

 The method suggested is to draw graphs of the second derivative of the estimate for various

 window widths. These graphs will be called test graphs. Choose the window width which

 gives fluctuations of the right size in the test graph, and use this window width to construct

 the estimate of the original density. In the actual calculation the test graph is expressed as

 n

 fn(x) = n-1 h-3 8'{h- (x-Xi)}
 i=l

 and so is easily calculated. The subjectivity of the method is, of course, in the assessment

 of the right size of fluctuations in the test graph. The test graph fn is an estimate of the

 second derivative f" of the density. Therefore the systematic variation of the test graph

 gives an estimate of f" and hence of the constant sup I f' . The fluctuations about E(f")
 should, for the ideal window width, be of height + 0 4 sup I f" I for kernel (1) and so the ideal
 test graph should have fluctuations which are quite marked but do not obscure the systematic
 variation completely. This will be called the test graph principle.

 The first example illuminates the principle. One hundred observations were simulated from
 the standard normal distribution. The test graphs for various window widths are shown in
 Fig. 1. The test graph for window width 05 has fluctuations which dominate the systematic

 variation; this graph is an example of a test graph which is too rough. On the other hand,

 the test graph for window width 09 has very small fluctuations and so is too smooth. The
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 Choosing the window width when estimating a density 3

 other graphs are examples with marked fluctuations which are nevertheless smaller than the
 systematic variation. It was discovered empirically that 0-675 is the window width which
 gives the density estimate uniformly closest to the true density, though very acceptable

 estimates were obtained with window widths between 0 625 and 0 75, particularly considering
 the relatively small sample size. The estimates for window widths 05 and 09 were much
 further from the true density.

 1-0 - (a) Window width, 0-5 1-0 - (b) WVindow width, 0-625

 0 0_ ,,, -4 0 -4 0 2 0 4~~~~~~~~~

 -0 5 -0.5

 0 ~~~~~~~~~~~0
 0 0

 0

 co

 0 4"a

 S;cale of observations Sicale of observ ations

 Fig. 1. Test graphs for 100 normal observations for window widths, 0w5, 0i62h, 09675 and 0 9.

 Notice that the fluctuations in the test graph grow very quickly as the window width is
 decreased and so i dea of the appropriate window width. When dealing
 with samples of around 100, it may be useful not only to apply the test oran h prmciple
 stated above, but also to compare the test graphs with those in Fig. 1 to see what sort of
 behaviour an appropriate test graph should exhibit. For larger samples the number of
 fluctuations will be large; therefore it will be very easy to distinguish between random
 fluctuation and systematic variation in order to apply the test graph principle.

 When the sample is so large that it is very expensive of computer time to draw several
 test graphs, it is worth considering a refinement to the procedure. It is known from the
 results of Silverman (1976, 1978) that the height of the random fluctuations in fn is, for
 fixed n, asymptotically proportional to {h-5 log (1/h)}'. Therefore the effect on the test graph
 of altering the window width can be predicted approximately: to multiply the height of the
 fluctuations by a factor of A, the window width should be multiplied by about A-a. Notice
 also that, for large sample sizes, a test graph drawn with a slightly larger window width will
 give a good estimate of f", since the amount of bias introduced will not be too large. There-
 fore the explicit measurement of the amounts of systematic variation and random fluctua-
 tion will be much easier.

 3. SOME APPLICATIONS

 To see how the procedure works with real data, some circular data of M. A. Stephens,
 concerning the orientation of turtles, were analysed. These data have been considered by
 Boneva et al. (1971) and by Mardia (1975), among others. The sample size is 76 in this case.
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 4 B. W. SILVERMAN

 To plot the graphs the data are replicated twice, on [- 3600, 00] and [3600, 7200], and then

 the graphs are drawn for the portion [00, 3600]. Further replication is not necessary since the

 width of the support of the kernel is less than 7200 for all the window widths considered.

 Test graphs for various window widths were drawn; see Fig. 2 for some of these. Those for

 _ ~~~~~(c) AN-iiidoN- %vidtli, 20' l)\\izlsts-ctl (ci) Window width, 200 (1) ~~Wiidow width, 327'

 0 /-

 ]S0- S 7& 360?

 Direction~ ~ ~~~~~~~~~~Diecto of turtlee

 Fig. 2. Test graphs for turtle data for window widths 200, 320 and 45?.

 widths 200 and 450 are clearly unacceptable; comparison with Fig. 1 and application of the

 test graph principle leads to the choice of 32? as the ideal window width. The density estimate

 for this window width is shown in Fig. 3, together with the spline transform estimate of

 Boneva et al. for the same data. The window width used for the spline transform is the same
 as the one used by Boneva et at and is 600; it is impossible to compare this with the 320 used

 for our kernel because the kernels are different. It is perhaps interesting that the second mode

 in our analysis is weaker than in the analyses of Mardia and of Boneva et at; this provides

 evidence that the spline kernel of Boneva et at. can overemphasize the strength of modes

 because of the negativity in the cells adjoining the central one.

 0-01_

 0~~~~~~~

 ?, 0*003

 Cd~~~~~ II
 Dietii of tutl ' -

 o a- ~~~' % ; / /
 D!ircCtionD Of tuctle

 Fig. 3. Solid lin.e density estimate for turtle data, kernel (1), window width 320. Dashed line: spline
 transform of turtle data, window width 600.

 As another example, some data obtained and kindly provided by John Kent in the

 investigation ofthe distribution ofthe maximum of the cosine quantogram (Kendall, 1974)

 have been considered. The set of data is that used for the construction of curve 1 in Kent's
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 Choosing the window width when estimating a density 5

 (1976) discussion of the paper by P. R. Freeman. The test graphs for various window

 widths are shown in Fig. 4(a), (b) and (c) and the final estimate in Fig. 4(d). The skewness of

 the data is clearly visible.

 0 C0

 cs 0-005- (a) Window wvidtlh, 25 ae 0 00.5 (b) Win(dow wvidth, 2 9

 oD 20 40 1 X 20 30 40 .

 Q ianitogramii miiaximum l Quiaiitogran-1 maxim-lumi
 5- c~~~~~~~~~~~~~~~~~~~~e

 c 0.00.o 1 - o.oo5L

 > 0 4)) (c) *\Vindow width, 3-3

 4- (1) WN'iindow width, 2>9

 10 20 30 40 50

 Quaintogram maximum.

 Fig. 4. (a), (b) and (c) Test graphs for cosine quantogram data with window widths 2-5, 2-9 and 3.3.
 (d) Density estimate for cosine quantogram data, window width 2-9.

 4. THE MULTIVARIATE CASE

 The test graph method generalizes easily to the multivariate case. Suppose that X1,..., X.
 are independent identically distributed observations from a d-dimensional density f. Suppose

 8 is a d-dimensional kernel. Define the estimate fn by

 n

 fn(x) = z n-I h-d3{h-l(x-Xj)}.
 f =1

 The test graph in this case is

 n

 V2f (x) = n-lh-d-2 V2 8{h-l(x-X9}.
 j=1

 Because of some technical difficulties the proof of the basic theorem is partly heuristic, but

 the result remains the same; the best window width for the estimation of the density is the

 one which gives fluctuations of length k sup I V2 f in the test graph, which is of course in fact
 a d-dimensional hypersurface. As before, the constant k can be calculated from the kernel

 and the value of sup I V2 f can be estimated from the test graph, so that the statement of the
 test graph principle is the same.

 Notice that the same window width is used in each coordinate direction. A full treatment

 would, of course, involve an arbitrary positive-deflnite symmetric window width matrix
 and is avoided for reasons of theoretical and practical simplicity.
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 6 B. W. SILVERMAN

 It is only fair to point out some drawbacks of the method. The first is the difficulty of

 assessing the test graphs; the best that can conveniently be done in the two-dimensional case

 is to look at a contour plot or some similar representation of the test graph. In higher dimen-

 sions this difficulty becomes much more serious. The second drawback is the fact that the

 ordinate of the test graph has to be evaluated at a considerable number of points to get even

 a rough idea of its shape. Because also a moderately large number of observations are

 needed before we can have any hope of uniformly estimating a multivariate density at all

 accurately, the method is likely to be quite expensive on the computer. For example, in order

 to construct each of the test contour diagrams in Fig. 5 it was necessary to evaluate V2 f
 at 2500 points, taking about 18 seconds of IBM 370/165 time.

 Despite these drawbacks, the method applied to a simulated sample seemed to provide
 quite good results. Two hundred samples were simulated from a mixture of two bivariate
 normal distributions, with means (1, 1) and (-1, -1) and unit variance-covariance matrices.

 The remarks above about the choice of kernel in the univariate case still hold; therefore it

 was decided to choose as kernel the function obtained by rotating the piecewise quartic used

 (a) Window width, 0-6 (b) Window 'width, 07

 2 0 7 2k

 Fig.5. estcontur iagams or ixTrae) Womlmsuewt indow widths, 0-6,07ad08

 -2 0~~~~~~~

 0~~~~~~~~~

 2 o -~~~~~~~~~~

 Fi. .Tet otor igrmsfr ivrat nralmitrewihwido idhs .6 07an 18
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 Choosing the window width when estimating a density 7

 in the univariate case and normalizing so that the integral of 8 is 1. The resulting kernel is

 quite close to optimal in the Epachenikov sense. The value of k turns out to be 0-61 in this

 case, so that the ideal test graph will have random fluctuations which are slightly larger

 relative to the systematic variation than in the univariate case.

 Figure 5 gives test graphs for several window widths. All the graphs are drawn on the

 square with corners at ( ? 2 5, ? 2 5). The contour levels are the same on all the test graphs;
 the contours are numbered on a linear vertical scale. The vertical interval between contours

 is 0O08.

 The graph with window width 0O8 is clearly too smooth; that with window width 0-6 is

 too rough, particularly considering the fluctuation reaching the -4 level. For the value 0-61

 of the constant k, the graph for window width 0 7 is about right, especially bearing in mind

 the fluctuation near the origin. Experimentation with various window widths for the density

 estimate shows that window widths around 07 give the best estimates. The estimate for

 window width 07 is given in Fig. 6. It picks out both the shape of the density and the position

 of the modes quite well. In this case the contours are drawn at equal vertical intervals of 0-01

 and are in the obvious ascending order. For comparison a corresponding contour diagram

 for the true density is also shown.

 (qt) (b)

 2K- ~~~~~~~~~~~~~~~2

 N~~~

 0 Oof

 217

 _ - I-2 -1 0 1

 Fig. 6. (a) Density estimate for bivariate normal mixture, window width 0 7. (b) Theoretical bivariate
 normal mixture density.

 In conclusion, it may not be a very good idea to use the test graph alone for choosing the

 window width for multivariate data; however, the method may be very useful for checking

 that a chosen window width is sensible.

 5. THE THEORETICAL BACKGROUND

 In order to justify the test graph method, it is necessary to amplify the results of Silverman
 (1978) on the rate of uniformn consistency of the kernel estimate. It is possible to put together

 various results to find the best possible rate of convergence of fn to f as n tends to infinity.
 The technique, used by Rosenblatt (1956) for the mean integrated squared error, is to

 balance the systematic and random errors; this is done because the bias increases and the
 random error decreases as h increases. The optimal rates of convergence depend on the

 amount of regularity assumed for the density. As Bartlett (1963) pointed out, the more
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 8 B. W. SILVERMAN

 derivatives f is assumed to have, the faster the rate of convergence of the bias to zero that

 can be obtained by choosing a suitable kernel. However, Bartlett also noted that very large

 sample sizes are necessary before any advantage can be taken of these faster rates. In this
 paper therefore, f is assumed to have only two uniformly continuous derivatives; the

 conditions on 8 are then satisfied by most smooth symmetric kernels.

 Following Silverman (1978), decompose the density estimate as

 fn(x) = f(x) + b(x) + n4I p(x) + e(x),

 where f is the true density, b is the bias {E(fn) -f}, p is a Gaussian process with the same
 variance-covariance structure as n - fn-E(fn)}, and s is a secondary random error term
 which is uniformly O(n-1 h-1 log n).

 Taking unspecified integrals to be over (-oo, oo) throughout this section, we place the

 following conditions on the kernel a:

 (a) 8 has uniformly continuous second derivative of bounded variation;

 (b) a(')(x)-+0 as x-*oo forj = 0,1,2;

 (c) fI{ ( I dx < oo for j-O, 1, 2; f8 dx = 1;
 (d) Jf {log (1/u)}1 dy (u) <oo for j = 0 and 2, where yj is the positive square root of the

 modulus of continuity of 8(j);

 (e) fIxlogIxI'jI8'(x)Idx<oo;
 (f) the Fourier transform of 8 is not identically zero in any neighbourhood of zero;

 (g) fxa(x)dx = 0;
 (h) fx28(x)dx?0.
 Although these conditions appear restrictive, most of them are very mild. They are

 satisfied by a large variety of kernels, including the one used in this paper. The spline kernel

 of Boneva et al. (1971) unfortunately fails to satisfy conditions (a), (d) and (h).

 The following lemma gives the asymptotic behaviour of the window width for the fastest

 rate of uniform consistency of the kernel density estimate.

 LEMMA. Suppose that f has uniformly continuous and bounded second derivative and that the

 kernel 8 satisfies conditions (a)-(h). For the best rate of uniform convergence in probability of
 f,n to f,

 n' h-5 log (1/h) - (C(sup If" I )2/(SUp f)

 as n tends to infinity, where

 C = 8 (x2a(x) dx} (82dx),

 a constant depending only on the kernel a.

 Proof. It is necessary for uniform consistency of fn to have h tending to zero as n tends to
 infinity; for a proof see Silverman (1978). Following Bartlett (1963), by elementary manipula-

 tion applying Taylor's theorem, we have that as h -O0

 h2 SUp Ib I -? -sup I f |I >2 a (x) dx. (2)

 It can be assumed that (nh)-1(log n)2{log (l/h)}-' tends to zero and hence (Silverman, 1978)
 that sup I e 1 is negligible compared with n-4 sup I p 1. For otherwise, letting In be the estimate
 based on all the observations except X1,

 fn(x) - (n - 1) n-1 An(x) = n-1 h-1 ath-1(x -X)},
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 Choosing the window width when estimating a density 9

 so that it is impossible for nh sup If -f to tend to zero in probability. This would imply

 that the rate of uniform consistency off. was at best (log n)-2, a worse rate than that obtained
 below.

 With this restriction on h, the best rate of uniform convergence of fn to f will be attained

 when h tends to zero in such a way that in probability as n -- oo

 n-IsupIpI/supIbI-*1. (3)

 Any other rate for h will cause one of b and n-4 p to converge to zero more slowly than the

 optimal rate for f. and the other to converge more quickly, so that fn will converge to f more
 slowly. It was shown by Silverman (1976) that

 {h-1 log (I/h)}A- sup I pI -l (2 sup f f2) (4)

 in probability as n tends to infinity. Put (2), (3) anld (4) together to complete the proof of the

 lemma.

 The generalization of Theorem B of Silverman (1978) to the estimation of f" states that, in

 probability as n tends to infinity,

 {n-1 h-5 log ( 1/h )}i sup {fn - E(f')} - Cl,

 {n-1 h-5 log (l1h)}i inf {fn - E(f')} - l,
 where

 C = {2supff(8")2dx}.

 Substituting the result of the lemma into these results completes the proof of Theorem 1, the
 constant k being defined by

 k 2|J 8(X) dx |(J(8"1)2 dx/ 82 dX

 6. THE MULTIVARIATE THEORY

 There are some theoretical difficulties in the multivariate case arising from the lack of a

 suitable generalization of the result of Komlos, Major & Tusnady (1975) on the strong

 embedding of the empirical distribution function; however it is not unreasonable to assume

 that the secondary error c is negligible compared to n-A p when the shrinking coefficient h(n)

 is chosen to give the optimum rate of uniform consistency. In addition, attention will be

 restricted to the part of the density falling within a fixed bounded multidimensional interval,

 so that Theorem A of Silverman (1976) can be used.

 THEOREM 2. Consider the estimate of a d-variate density f given by

 n

 fn(x)-E n-1 h-d8{h-l(x-Xj)},

 where f is twice uniformly continuously differentiable and the kernel 8 and its second derivative

 V28 satisfy the conditions of Silverman (1976). With all unspecified integrals being over RId,
 suppose that

 {xi8(x)dx = 0, fx 8(x)dx= d-1lJiX 12 (x)dxtO

 for i = 1, ..., d. Let n-ip be the Gaussian process with mean zero and variance-covariance structure

 the samiie as fn. Let b(x) = E{fn(x)} -f(x). Suppose I is a compact d-dimensional interval in the
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 10 B. W. SILVERMAN

 interior of which sup f and sup I V2f I are attained. Suppose that the sequence of shrinking
 coefficients h(n) is chosen so that sup, I n4 p I/sup, I b I - 1 in probability as n -* cc. Then

 sup,n-IV2p -4csupIV2f 1, infmn4V2p -ksupIV2fI
 in probability as n tends to infinity, the constant k being defined by

 k = (2d)-1 1 ll 112 (x)d { (v2 8)2 dx/ 82 dX}

 Proof. Consider first the bias term b. Use o to imply a limit which holds uniformly over x,

 and fi and fi to denote Of/aOx and 2 f/xsi Oxj respectively. By the uniform continuity of the
 second derivatives of f, and by Taylor's theorem

 b(x) = {{h Y, t, f{(x) + jh2 Y2 S1 it tt flj(X) + o(h2)} 8(t) dt.

 Apply the conditions assumed for 8 to obtain

 b(x) = h2(2d)-l V2 f(x) f1 t 112 a(t) dt + o(h2),

 and hence, as h tends to zero,

 h-2 sup. ,b I b (2d)-1 sup I V2 f I fii x 112 3(x) dx.

 By Theorem A of Silverman (1976),

 {n- h-dlog (1/h)}-i sup] n- 4 p+ (2d sup f j dx)

 in probability as n tends to infinity and h tends to zero. Putting the last two relations

 together, we have that in order that h satisfy the hypotheses of Theorem 2 it is necessary that

 lim {n- hd4 log (1/h)}i = (2d)-1 sup I V2 f I1 { xll2 3(x) dx (sup f 82 dx)

 In order to work out the corresponding limiting behaviour of V2 p, apply Theorem A of

 Silverman (1976) to the process h2 V2 p to obtain, in probability as h tends to zero,

 {h-d4 log (1/h)}-i SUp1 V2 p -* (2d)-fsup f (V2 3)2}i.

 Putting the last two relations together, and using the analogous result for inf V2 p, we
 complete the proof of Theorem 2.

 I acknowledge with great pleasure the encouragement and inspiration of Professor David

 Kendall and the very helpful remarks of the editor and referees.
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