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On optimal and data-based histograms 
BY DAVID W. SCOTT 

Department of Mathematical Sciences, Rice University, Houston, Texas 

SUMMARY 

In this paper the formula for the optimal histogram bin width is derived which asymptotic- 
ally minimizes the integrated mean squared error. Monte Carlo methods are used to verify 
the usefulness of this formula for small samples. A data-based procedure for choosing the bin 
width parameter is proposed, which assumes a Gaussian reference standard and requires only 
the sample size and an estimate of the standard deviation. The sensitivity of the procedure is 
investigated using several probability models which violate the Gaussian assumption. 

Some key words: Frequency distribution; Histogram; Nonparametric density estimation; Optimal bin 
width. 

1. INTRODUCTION 

The histogram is the classical nonparametric density estimator, probably dating from the 
mortality studies of John Graunt in 1662 (Westergaard, 1968, p. 22). Today the histogram 
remains an important statistical tool for displaying and summarizing data. In addition it 
provides a consistent estimate of the true underlying probability density function. Present 
guidelines for constructing histograms do not directly address the issues of estimation bias 
and variance. Rather, they draw heavily on the investigator's intuition and past experience. 
In this paper we propose new guidelines that reduce the subjectivity involved in histogram 
construction by considering a mean squared error criterion. 

2. BACKGROUND 

We consider only histograms defined on an equally spaced mesh {t.i; - o < i < c)} with bin 
width hn = tn(i+l) - tn, where n denotes the sample size and emphasizes the dependence of 
the mesh and bin width on the sample size. For a fixed point x, the mean squared error of a 
histogram estimate, f(x), of the true density value, f(x), is defined by 

MSE (X) = E{f (x)-f(x)}2. 

For a random sample of size n from f, Cencov (1962) proved that MSE (x) asymptotically 
converges to zero at a rate proportional to n-213, that is, MSE (X) = O(n-2/3). This rate is fairly 
close to the Cramer-Rao lower bound of O(n-1). The integrated mean squared error repre- 
sents a global error measure of a histogram estimate and is defined by 

IMSE = JE{f( ( f(x)}2 dx. 

Since it is the shape of the density that is of most interest, the IMSE is more relevant than the 
mean squared error of the density height. The IMSE of a histogram also converges to zero 
as O(n-2/3) 

To achieve these rates of convergence requires proper choice of the two parameters of the 
histogram, the bin width hn and the relative position of the mesh. The latter is determined by 
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any particular mesh point, say tnO. Statistical texts suggest various methods for choosing 
these two parameters. First the bin width is determined indirectly by choosing an appropriate 
number of bins over the sample range. Most authors advise that 5-20 bins are usually 
adequate for real data sets (Haber & Runyon, 1969, p. 33; Guttman & Wilks, 1965, p. 59). 
Larson (1975, p. 15) suggests using 1+ 22 log1o n bins as a first choice, similar to a formula 
proposed by Sturges in 1926. The final choice for hn is a convenient whole number or fraction, 
often related to the accuracy with which the data are measured. Next, tno is picked so that 
the data do not fall on the bin boundaries. If we assume that the data are measured to 
infinite accuracy, then the choice of t.0 becomes less important as the sample size increases. 
Since we are focusing on consistency, we shall assume t.0= 0 in the sequel. However, the 
choice of hn is quite important. If hn is too small, then the histogram will be too rough; on 
the other hand, if hn is too large, then the histogram will be too smooth, equivalent statistic- 
ally to large variance and large bias, respectively. The proper choice for hn should balance 
the bias and variance by minimizing, for example, the integrated mean squared error. 

In the past 20 years new nonparametric density estimators have been proposed and 
investigated (Tapia & Thompson, 1978; Wegman, 1972). The most extensively treated of 
these new estimators is the kernel probability density estimator developed by Rosenblatt 
(1956) and Parzen (1962). The kernel estimator is also consistent but with IMSE = 0(n-415), 
an improvement over the histogram. In spite of these advances, the histogram will almost 
surely retain important roles in data representation and density estimation, since it is simple 
to compute and easily understood. Fortunately, by using techniques employed in kernel 
density estimation consistency proofs, it is now possible to derive the optimal choice for the 
bin width hn of a histogram. 

3. DERIVATION OF THE OPTIMAL HISTOGRAM BIN WIDTH 

Suppose that x1, ..., xn is a random sample from a continuous probability density function 
f with two continuous and bounded derivatives. We shall need to identify the bin interval 
that contains a fixed point x as n varies. Let In(x) be that interval and let tn(x) denote the 
left-hand endpoint of In(x). Define the bin probability 

pn(X) = {tn(X)+hnf(y)dy 
Jt(x) 

For y in In(x) we have, using Taylor's expansion, f(y) = f(x) +f '(x) (y - x) + O(hM). Therefore 

pn(X) = 
t 

{f (x) +f '(x) (y -x) + O(h)} dy 
tn(x) 

= hn f(x) + f '(x) [h2 - 2h3{x-tn(x)}] + O(hn). 

Let vn(x) be the number of values falling in In(x). Then vn(x) has a binomial distribution 
B{n,pn(x)}. The histogram estimate is given by the random variable 

J(X) = Vn(X)/(nhn) 
with expectation 

E{/(x)} = Pn(X)lhn 

- f(x) + h f '(X) -f '(X) {X - tn(X)} + O(hn) 
Therefore the bias is 

2h f '(x)-f '(x) {x - tn()} + O(h2n) 
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Now the variance of the histogram estimate at x is given by 

var {f(x)} = p.(x) {1 -Pn(X)}/(nh2) 

= {hn f(X) + O(h2)} {1- 0(h2)}/(nhf) 
= f(x)/(nhn) + 0(1/n). 

Combining, we have that 

MSE (X) = f(x)/(nhA) + h f '(x)2 +f '(X)2{x tn(x)}2-h f '(x)2{x-tn(x)} 0(1/n +3h). (1) 

Integration of equation (1) over the real line implies that 

IMSE = 1/(nh) + h f f(X)2dx+f {f(X)2{X t_(X)}2dx 

-hn {f (X)2{x_tn(x)}jdx+0(1/n+h3). (2) 

Recall that {tni} denotes the mesh. Then the third term in equation (2) may be written as 

x J+hn f (X)2(X- t )2dx = i J f '(tni + y)2 y2dy (3) 
i=-00 Si i=-00 

by a change of variables. Now f '(tni + y) = f '(tni) + 0(hn), so that (3) becomes 

clX ( thn *)2 + 0(h )}y2dy = L lh n) = 1h2f f I(X)2dx + O(h3), 
i=-00 o _o 

by standard numerical integration approximations. A similar analysis for the fourth term 
in (2) yields 

-h{ f '(X)2 dx + O(hM). 

Therefore 

IMSE= 1/(nhn) 2h{_ f '(x)2dx+O(1/n+h3). (4) 

Minimizing the first two -terms in (4), we obtain 

h* = {6/ f'(x)2dx n-1/3 (5) 

which, asymptotically, is the optimal choice for hn. 
We can estimate how the IMSE changes for poor choices of the bin width by using (4). 

For any density and any positive constant c, the IMSE using the bin width ch* is larger than 
the minimum IMSE by the factor (c3+ 2)/(3c). Thus a bin width 50% too small implies an 
IMSE 42% too large. We remark that a change of scale in the density function results in a 
similar scaling of the optimal hn since y = X/o leads to f f(y)2 dy= -a3 f f(X)2 dx. For Gaussian 
data, h* = 2 x 31/3 .71/6 an-1/3 

4. SMALL SAMPLE PROPERTIES 

The formula for h* is based on an asymptotic expression. To investigate the small sample 
properties of the IMSE, we undertook a fairly extensive Monte Carlo study of standardized 
Gaussian data. For a range of values of h, the integrated squared error was computed exactly 
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for each of 1000 generated samples and then averaged over the number of repetitions to 
obtain an estimate of the IMSE. The optimal bin widths predicted by equation (5) were quite 
close to the empirically observed optimal bin widths for the Monte Carlo study even for 
samples as small as 25. The estimated IMSE also increased as (c3 + 2)/(3c) for bin widths 
differing from the empirically optimal bin width by the factor c. 

5. DATA-BASED HISTOGRAMS 

The optimal choice for hn requires knowledge of the true underlying densityf. This know- 
ledge is rare. In another context Tukey (1977, p. 623) has suggested using the Gaussian 
density as a reference standard, to be used cautiously but frequently. Therefore, we propose 
the data-based choice for the bin width 

hn = 3 49sn1/3, (6) 

where s is an estimate of the standard deviation. Although the Gaussian density forms the 
basis of (6), this assumption is not so strong as a parametric Gaussian assumption, i.e. use of 
equation (6) on non-Gaussian data will not result in a histogram that looks Gaussian. For 
density functions with equal variances, the data-based choice (6) results in the same bin 
width. To show that (6) is useful for a large class of densities, we considered Gaussian and 
non-Gaussian densities with equal variances and observed how their theoretically optimal 
bin widths (5) differed. In particular we considered three models of non-Gaussian behaviour: 
skewed, heavy-tailed and bimodal densities. 

As a model of skewed data, we used a log normal density with variance equal to 
W2(W2 _ 1) exp (- 2y/8) and skewness (W2 + 2) (W2 _1 )1, where w = exp ( 28-2). In Fig. 1 (a) we 
plot the ratio of the optimal bin width for the log normal density to the optimal bin width 
for a Gaussian density with the same variance as a function of the log normal skewness. 
This ratio does not depend on the sample size. We see that using the Gaussian h* over- 
smoothes a log normal density; however, for skewnesses as great as one, the difference is 
less than 30%. A similar plot results when using a gamma probability density model. 

We used Student's tr density to model heavy-tailed data. The variance and kurtosis are 
r/(r -2) and 6/(r -4), respectively. In Fig. 1(b) we plot the ratio of bin widths as a function 
of the kurtosis, connecting the discrete points by a solid line for convenience. The insensitivity 
of the data-based choice for hn for any moderate kurtosis is apparent. 

(a) Log normal density (b) Student's density (c) Mixture of two Gaussians 

7 O O 1O0 

-0 0*5 0.5 O*05 
0 
0 

M 0 1 2 3 0 2 4 6 0 2 4 6 

Skewness coefficient Kurtosis coefficient Distance between modes 

Fig. 1. Ratio of theoretical bin width for several non-Gaussian probability densities to the 
theoretical bin width for a Gaussian density with the same variance. 

Finally as a model of bimodal data, we used a mixture of Gaussian distributions, 
2N( -pt, 1) + 1N(u, 1), with variance 1 + 2. In Fig. l(c) we give a similar ratio of theoretical 
bin widths as a function of 2p, the distance between the two modes. For strongly bimodal 
da.ta ( > 1.5), the ratio falls below 0-8, corresponding to oversmoothing of the bimodal data. 
When distinctly bimodal data are encountered, the data-based histogram may be inadequate. 
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Thus the data-based algorithm leads to hn's that are generally too big for all our models of 
non-Gaussian data. A correction factor may be applied to the data-based hn by computing 
the sample skewness or kurtosis and reading the correction factor from Fig. 1. A histogram 
does not exhibit sensitivity to small changes from the optimal h. as is evident from the 
discussion after (5). We do not advocate using exactly the h. suggested by (6), but rather a 
convenient choice either slightly larger or smaller. 

6. EXAMPLES 

In Fig. 2 we display three histograms of a Monte Carlo N(0, 1) sample of size 1000 which 
has a sample standard deviation equal to 1 011 with h = 0-176, 0 353 and 0-706, the second 
choice obtained from (6). Many statisticians prefer a smaller bin width and a rougher histo- 
gram, leaving the final smoothing to be done by eye. 

(a) h = 02176 (b) h = 0-353 (c) h = 0-706 

60 -120 -240- 

40 - 80 - 160 - 

20 - 40 - 80 

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 
Scale of observations Scale of observations Scale of observations 

Fig. 2. Histograms of 1000 pseudorandom Gaussian numbers for three bin widths: the data-based 
choice and that choice perturbed by a factor of 2. 

To illustrate extremely large sample sizes, Kendall & Stuart (1969, p. 8) consider a histo- 
gram of the ages of 301,785 Australian bridegrooms (1907-14) with a bin width of 3 years. 
The sample standard deviation and skewness for these data are 7-97 and 1-93, respectively. 
Thus the data-based choice for h is 0-41 years. Applying a skewness correction factor of 
0-43 using Fig. 1(a), the final data-based choice is 0-18 years. Thus the sample is of sufficient 
size to use a bin width of 1 year or even 3 months if the data were recorded to sufficient 
accuracy. 

7. DISCUSSION 

We have considered the optimal construction of histograms given either knowledge of the 
true underlying density or, more commonly, given only the data. Waterman & Whiteman 
(1978) have recently carried out a similar attack for Rosenblatt's kernel estimator. Kernel 
estimates converge faster than histograms to the true density, and therefore integrated mean 
squared error is more sensitive to the choice of the smoothing parameter; see also Silverman 
(1978). Furthermore, kernel estimates require the entire data set for evaluation. Thus in 
some modern automated data collectors, it is often more economical to summarize sequenti- 
ally relatively more samples, calibrating the histogram using a small training sample. 

Some recently developed nonparametric techniques for density estimation start with a 
histogram and then smooth it; see, for example, Boneva, Kendall & Stefanov (1971). Our 
procedures could be used to construct the required histogram directly from the data. We 
remark that our analysis extends easily to histograms in higher dimensions. 
34 
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It should be possible to further reduce the integrated mean squared error by using an 
unequally spaced mesh. However, the algorithms required would surely be iterative and 
would require the entire data set. It is easier to discount rougher estimates in the tails or to 
construct a rootgram as suggested by Tukey (1977, p. 543). 

This research was supported in part by the National Heart, Lung, and Blood Institute, the 
National Institutes of Health, the Department of Health, Education and Welfare. The 
author would like to thank a referee for helpful comments. 
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