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a b s t r a c t

The generalisation of univariate beta kernels to themultivariate spherically symmetric case
is considered. By integrating the powers of quadratic forms over the unit ball, we exhibit
closed form expressions, based on ratios of beta functions, for analysing these kernels.
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1. Spherically symmetric kernels

For kernel estimationmethods, the kernel function is usually a symmetric probability density function. A common choice
is the family of kernels based on the beta density. The rth beta kernel is, for r ≥ 0,

K(x; r) = cr(1 − x2)r1{x ∈ [−1, 1]}.

The normalising constant cr ensures that the integral of the kernel is one, cr = (2r + 1)!/[22r+1(r!)2] = 1/B(r + 1, 1/2)
where B(a, b) = Γ (a)Γ (b)/Γ (a+b) is the beta function, e.g. fromMarron andNolan (1988). For r = 0, 1, 2, 3, the resulting
kernels are known as the uniform, Epanechnikov (or quadratic), biweight (or quartic) and triweight kernels respectively.
The popularity of this family stems from their desirable mathematical properties. The uniform kernel can be considered the
simplest kernel, the Epanechnikov kernel is optimal in a mean integrated squared error (MISE) sense (Epanechnikov, 1969),
and the biweight and triweight kernels possess theminimal integrated squared gradient and squared curvature respectively
(Terrell, 1990). The normal kernel φ(x) = (2π)−1/2 exp(−x2/2), which is also widely used, is not strictly a member of the
beta family class, but is the limiting case as r → ∞, see Marron and Nolan (1988).

For multivariate data, there are twomain ways to obtain multivariate kernels from these univariate kernels. The product
kernel is, as its name suggests, the product of the marginal univariate kernels. The spherically symmetric kernel is obtained
by substituting x = (xTx)1/2, where x = (x1, . . . , xd). For the beta family kernels, these are

K P(x; r) = cdr
d

i=1

(1 − x2i )
r1{|xi| ≤ 1}

K S(x; r) = cSr (1 − xTx)r1{xTx ≤ 1}.
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Table 1
Spherically symmetric beta family kernels. The normalising constant cSr , the secondmomentm2(K S(·; r)) and the square integral R(K S(·; r)) for d = 1, 2, 3
and r = 0, 1, 2, 3.

r cSr m2(K S(·; r)) R(K S(·; r))
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

Uniform 0 1/2 1/π 3/(4π) 1/3 1/4 1/5 1/2 1/π 3/(4π)

Epanechnikov 1 3/4 2/π 15/(8π) 1/5 1/6 1/7 3/5 4/(3π) 15/(14π)

Biweight 2 15/16 3/π 105/(32π) 1/7 1/8 1/9 5/7 9/(5π) 35/(22π)

Triweight 3 35/32 4/π 315/(64π) 1/9 1/10 1/11 350/429 16/(7π) 315/(143π)

The normalising constant cSr is less straightforward to compute as it involves the integration of the powers of the quadratic
form xTx, with only cS0 = 1/vd and cS1 = (d+2)/(2vd) currently known in closed form, where vd = πd/2/Γ ((d+2)/2) is the
hyper-volume of unit d-ball Bd ≡ Bd(0, 1) = {x : xTx ≤ 1}, see Fukunaga and Hostetler (1975). We state two preliminary
results in Theorem 1 which will facilitate our goal of a closed form characterisation of a spherically symmetric rth beta
family kernel K S(·; r) in Theorem 2.

Theorem 1. For r ≥ 0 and d ≥ 1,(i) the partial sum of the alternating series of binomial coefficients and rational functions is
r

i=0


r
i


(−1)i

d + 2i
= 2r r!

 r
i=0

(d + 2i) =
1
2B(r + 1, d/2);

(ii) the integral of the rth power of the quadratic form xTx over the unit d-ball Bd is
Bd

(xTx)r dx =
dvd

d + 2r

where vd = πd/2/Γ ((d + 2)/2) is the hyper-volume of Bd.

Sacks and Ylvisaker (1981) exhibited a similar result to Theorem 1(ii) but did not provide a proof.
In addition to the normalising constant for a kernel K , the two other important quantities which characterise it are its

secondmomentm2(K)Id =

Bd

xxTK(x) dxwhere Id is the d×d identity matrix, and its square integral R(K) =

Bd

K(x)2 dx.

Theorem 2. For the spherically symmetric rth beta family kernel K S(x; r) = cSr (1 − xTx)r1{x ∈ Bd}, the normalising constant,
the second moment and the square integral are

cSr =
1

vd2r r!

r
i=1

(d + 2i) =
2

dvdB(r + 1, d/2)

m2(K S(·; r)) =
1

d + 2r + 2

R(K S(·; r)) =
(2r)!

vd(r!)2

r
i=1

(d + 2i)
(d + 2r + 2i)

=
2B(2r + 1, d/2)
dvdB(r + 1, d/2)2

.

We compute the coefficients in Theorem 2 explicitly for d = 1, 2, 3 and r = 0, 1, 2, 3 in Table 1.
For d = 1, these constants have an alternate form since B(r+1, 1/2) = 22r+1B(r+1, r+1) using the identityΓ (r+1/2)

= (2r)!/(22r r!)Γ (1/2), i.e., cr = 1/[22r+1B(r+1, r+1)],m2(K(·; r)) = 1/(2r+3) andR(K(·; r)) = B(2r+1, 2r+1)/[2B(r+
1, r + 1)2].

Sacks and Ylvisaker (1981) state that the spherically symmetric Epanechnikov kernel K S(·; 1) is optimal in a MISE
sense rather than its product kernel counterpart. So the efficiencies of the other kernels can be expressed in the ratio
[C(K S(·; 1))/C(K S(·; r))](d+4)/4 where C(K) = [R(K)4m2(K)2d]1/(d+4), see Wand and Jones (1995, p. 103). These efficiency
ratios are less than one, and they can be interpreted as follows: to achieve the same MISE as the optimal Epanechnikov
kernel with sample size n, the kernel K S(·; r) requires a sample size of n[C(K S(·; r))/C(K S(·; 1))](d+4)/4. From Theorem 2,
the efficiency for an rth beta kernel is

C(K S(·; 1))
C(K S(·; r))

(d+4)/4

=
R(K S(·; 1))m2(K S(·; 1))d/2

R(K S(·; r))m2(K S(·; r))d/2
=

B(3, d/2)B(r + 1, d/2)2

B(2, d/2)2B(2r + 1, d/2)


d + 2r + 2

d + 4

d/2

which are explicitly calculated in Table 2, including the normal kernel φ as m2(φ) = 1, R(φ) = (4π)−d/2, thus extending
Wand and Jones (1995, Table 2.1, p. 31) for d > 1. As d increases, the efficiency decreases, though we note, as is the case for
univariate data, the loss of efficiency is small.



T. Duong / Statistics and Probability Letters 104 (2015) 141–145 143

Table 2
Efficiencies for spherically symmetric beta family kernels. The efficiency measure is [C(K S(·; 1))/C(K S(·; r))](d+4)/4 for d = 1, 2, 3 and r = 0, 1, 2, 3, ∞.

r Efficiency
d = 1 d = 2 d = 3

Uniform 0 0.930 0.889 0.862
Epanechnikov 1 1.000 1.000 1.000
Biweight 2 0.994 0.988 0.982
Triweight 3 0.987 0.972 0.958
Normal ∞ 0.951 0.889 0.820

2. Proofs

Proof of Theorem 1. (i) Let the induction hypothesis be the theorem statement
r

i=0


r
i


(−1)i

d + 2i
= 2r r!

 r
i=0

(d + 2i).

Incrementing r , we have
r+1
i=0


r + 1

i


(−1)i

d + 2i
=

1
d

+

r
i=1


r + 1

i


(−1)i

d + 2i
+

(−1)r+1

d + 2r + 2
=

1
d

+

r
i=1


r
i


+


r

i − 1


(−1)i

d + 2i
+

(−1)r+1

d + 2r + 2

=

r
i=0


r
i


(−1)i

d + 2i
+

r+1
i=1


r

i − 1


(−1)i

d + 2i
=

r
i=0


r
i


(−1)i

d + 2i
−

r
i=0


r
i


(−1)i

d + 2 + 2i
.

The first summation on the right hand side is the induction hypothesis as stated, and the second summation is the induction
hypothesis with d + 2 replacing d, i.e.,

r+1
i=0


r + 1

i


(−1)i

d + 2i
=

2r r!
r

i=0
(d + 2i)

−
2r r!

r
i=0

(d + 2 + 2i)
=

2r r!(d + 2 + 2r − d)
r+1
i=0

(d + 2i)
=

2r+1(r + 1)!
r+1
i=0

(d + 2i)

which completes the induction process.
Using the 2-gamma function Γ2(a) =


∞

0 xa−1 exp(−x2/2) dx = 2a/2−1Γ (a/2), the product
r

i=0(d + 2i) can be ex-
pressed as a ratio of 2-gamma functions from Díaz and Pariguan (2007, Proposition 6.2), and hence gamma functions,

r
i=0

(d + 2i) =
Γ2(d + 2r + 2)

Γ2(d)
=

2(d+2r)/2Γ ((d + 2r + 2)/2)
2d/2−1Γ (d/2)

=
2r+1Γ ((d + 2r + 2)/2)

Γ (d/2)
. (1)

Therefore
2r r!

r
i=0

(d + 2i)
=

2rΓ (r + 1)Γ (d/2)
2r+1Γ (r + 1 + d/2)

=
1
2B(r + 1, d/2).

(ii) We follow the approach of Folland (2001) who connects integrals of (xTx)r over the unit ball with the more tractable
integrals of (xTx)r exp(− 1

2x
Tx) over the entire Euclidean space:

Rd
(xTx)r exp(− 1

2x
Tx) dx = 2(d+2r)/2


Rd

(xTx)r exp(−xTx) dx

= 2(d+2r)/2

Sd


∞

0
(x2yTy)r exp(−x2)xd−1 dx


dσ(y)

= 2(d+2r)/2


∞

0
xd+2r−1 exp(−x2) dx


Sd

(yTy)r dσ(y)

= 2(d+2r−2)/2Γ ((d + 2r)/2)

Sd

(yTy)r dσ(y). (2)

The second equality follows from the result from Folland (2001) that the integral of a function f over Rd can be evaluated
as an iterated integral over [0, 1] × Sd

Rd
f (x) dx =


Sd


∞

0
f (xy)xd−1 dx


dσ(y),
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using the change of variables y = x/x where x = ∥x∥= (xTx)1/2, and dσ is the surface area element on the unit sphere
Sd = ∂Bd. The last equality follows from the definition of the gamma function Γ (a) = 2


∞

0 x2a−1 exp(−x2) dx,
∞

0
xd+2r−1 exp(−x2) dx =

1
2Γ ((d + 2r)/2).

Folland (2001) also demonstrated the relationship between the integral of (xTx)r over the unit ball and the unit sphere:
Bd

(xTx)r dx =
1

d + 2r


Sd

(xTx)r dσ(x)

which when substituted into a rearranged Eq. (2) yields
Bd

(xTx)r dx =
1

(d + 2r)2(d+2r−2)/2Γ ((d + 2r)/2)


Rd

(xTx)r exp(− 1
2x

Tx) dx. (3)

The integral on the right hand side of Eq. (3) can be expressed as the expected value of (ZTZ)r where Z is a standard normal
random variable

νr ≡ E[(ZTZ)r ] = (2π)−d/2


Rd
(xTx)r exp(− 1

2x
Tx) dx

as extensively studied, for example by Holmquist (1996) and the references therein. To evaluate this νr , Chacón et al. (2011,
Corollary 7) establish the recurrence relation νr+1 = (d + 2r)νr , which immediately implies that

νr = d(d + 2) · · · (d + 2(r − 1)) =

r−1
i=0

(d + 2i)

as ν0 = 1. Thus the numerator is


Rd(xTx)r exp(− 1
2x

Tx) dx = (2π)d/2
r−1

i=0 (d+ 2i). For the gamma function in the denom-
inator

Γ ((d + 2r)/2) =
d + 2(r − 1)

2
Γ ((d + 2(r − 1))/2) = · · · =

Γ ((d + 2)/2)
2r−1

r−1
i=1

(d + 2i)

by repeatedly applying the recursive property of the gamma function, Γ (a + 1) = aΓ (a) for any a > 0. Combining these
alternative expressions for the numerator and denominator in Eq. (3), we obtain


Bd

(xTx)r dx =
1

(d + 2r)

πd/2
r−1
i=0

(d + 2i)

Γ ((d + 2)/2)
r−1
i=1

(d + 2i)
=

dvd

d + 2r
. �

Proof of Theorem 2. To obtain the closed form characterisations for K S(x; r), we appeal to the binomial expansion of
(1−xTx)r and Theorem1 to evaluate the factorial-like products and the alternating partial sums. The normalisation constant
cSr is the reciprocal of

Bd
[1 − (xTx)]r dx =

r
i=0

(−1)i

r
i

 
Bd

(xTx)i dx = dvd

r
i=0


r
i


(−1)i

d + 2i
=

dvd2r r!
r

i=0
(d + 2i)

=
dvd

2
B(r + 1, d/2).

Taking traces of the definition ofm2(K S(·; r)), we have

m2(K S(·; r)) =
cSr
d


Bd

(xTx)(1 − xTx)r dx =
cSr
d

r
i=0

(−1)i

r
i

 
Bd

(xTx)i+1 dx

= vdcSr
r

i=0


r
i


(−1)i

d + 2 + 2i
=

vd

r
i=1

(d + 2i)

vd2r r!
2r r!

r
i=0

(d + 2 + 2i)
=

1
d + 2r + 2

.
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For R(K S(·; r)), similarly we have

R(K S(·; r)) = (cSr )
2

Bd

(1 − xTx)2r dx = (cSr )
2

2r
i=0

(−1)i

2r
i

 
Bd

(xTx)i dx

= (cSr )
2dvd

2r
i=0


2r
i


(−1)i

d + 2i
=


r

i=1
(d + 2i)

(vd2r r!)


2

vd22r(2r)!
2r
i=1

(d + 2i)

=
(2r)!

vd(r!)2

r
i=1

(d + 2i)

2r
i=r+1

(d + 2i)
=

(2r)!
vd(r!)2

r
i=1

(d + 2i)
(d + 2r + 2i)

=
4

d2v2
dB(r + 1, d/2)2

dvdB(2r + 1, d/2)
2

=
2
dvd

B(2r + 1, d/2)
B(r + 1, d/2)2

. �
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