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Summary

‘Kernel Density Estimation’ or ‘KDE’ (Rosenblatt 1956; Parzen 1962) is a type of non-parametric density es-
timation (David W. Scott 2015) that improves upon the traditional ‘histogram’ approach by, for example, i)
utilizing the exact location of each data point (instead of ‘binning’), ii) being able to produce smooth distribu-
tions with continuous and meaningful derivatives, and iii) removing the arbitrary offset of an initial bin edge.
The kalepy package presents a python KDE implementation designed for broad applicability by including
numerous features absent in other packages presented in a class-based structure designed for extensibility.
kalepy provides optional weightings, reflecting boundary conditions, an arbitrary number of dimensions,
numerous (and extensible) kernel (i.e. window) functions, built-in plotting, and built-in resampling.

Statement of need

Numerous python KDE implementations exist, for example in scipy (scipy.stats.gaussian_kde) (Virta-
nen et al. 2020), seaborn (seaborn.kdeplot) (Waskom and team 2020), GetDist (Lewis 2019) and KDEpy
(Odland 2018). The scipy and seaborn tools are simple and accessible. The KDEpy package provides excel-
lent performance on large numbers of data points and dimensions, but does not include resampling, boundary
conditions, or plotting tools. The GetDist package offers extensive methods for plotting samples and utilizes
numerous boundary treatments (Lewis 2019), but lacks a standalone KDE interface or resampling functional-
ity. kalepy provides convenient access to both plotting and numerical results in the same package, including
multiple kernel functions, built-in resampling, boundary conditions, and numerous plotting tools for 1D, 2D,
and N-dimensional ‘corner’ plots. kalepy is entirely class-based, and while focusing on ease of use, provides
a highly extensible framework for modification and expansion in a range of possible applications.

While kalepy has no features specific to any particular field, it was designed for resampling from weighted
astronomical datasets. Consider a population of binaries derived from cosmological simulations. If the initial
population is costly to produce (e.g. requiring tens of millions of CPU hours), and as long as it accurately
samples the parameter space of interest, it may be sufficiently accurate to produce larger populations by
‘resampling with variation,’” e.g. using a KDE approach. Depending on the details of the population, many
of the parameters may be highly correlated and often abut a boundary: for example, the mass-ratio defined
as the lower-mass component divided by the more massive component, is often highly correlated with the
total mass of the binary, and is bounded to the unit interval i.e. ¢ = M,/M; < 1. Faithfully resampling
from the population requires handling this discontinuity, while also preserving accurate covariances which
may be distorted when transforming the variable, performing the KDE, and transforming back.

Methods

Consider a d dimensional parameter space, with N data points given by x;, = (2,1, %9, ..., Z;q), With ¢ =
{1,..., N}. Each data points may have an associated ‘weight’ that is appropriately normalized, Zjv w; = 1.



The kernel density estimate at a general position = (x4, zo, ..., Zy) can be written as,
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where the kernel can typically be expressed as,
Ky(z) = |H| V2K (H?z).

Here H is the ‘bandwidth’ (or covariance) matrix. Choosing the kernel and bandwidth matrix produces
most of the nuance and art of KDE. The most common choice of kernel is likely the Gaussian, i.e.,
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In the current implementation, the Gaussian, tri-weight, and box-car kernels are implemented, in addition
to the Epanechnikov kernel (Epanechnikov 1969) which in some cases has been shown to be statistically
optimal but has discontinuous derivatives that can produce both numerical and aesthetic problems. Often
the bandwidth is chosen to be diagonal, and different rules-of-thumb are typically used to approximate a
bandwidth that minimizes typical measures of error and/or bias. For example, the so-called ‘Silverman
factor’ (Silverman 1978) bandwidth,
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H;; = 6,50, [(d—i—?)n] (summation not implied),
where §;; is the Kronecker delta, and o, is the standard deviation (or its estimate) for the ith parameter.
In the current implementation, both the Silverman and Scott factor (David W. Scott 1979) bandwidth
estimators are included.

Reflecting boundary conditions can be used to improve reconstruction accuracy. For example, with data
drawn from a log-normal distribution, a standard KDE will produce ‘leakage’ outside of the domain. To
enforce the restriction that f(z < 0) = 0 (which must be known {a priori}), the kernel is redefined such
that Ky (z < 0) = 0, and re-normalized to preserve unitarity!. This example is shown in Figure 1, with
histograms in the upper panel and KDEs on the bottom.

Resampling from the derived PDF can be done much more efficiently in the KDE framework than by the
standard method of CDF inversion. In particular, we can see that sampling from the PDF is identical to
re-sampling with replacement from the weighted data points, while shifting each point based on the PDF of
the Kernel at that location.

kalepy has recently been used in astronomy and astrophysics, particularly in Siwek, Kelley, and Hernquist
(2020), Kelley (2020), Andrews (2020).

Acknowledgements

We acknowledge very helpful consultations on statistical nuances from Christopher Berry and Diego Mufioz.
The support and ‘beta-testing’ performed by Magda Siwek and Jeff Andrews is also much appreciated.
kalepy utilizes tools and functionality from numpy (Harris et al. 2020), matplotlib (Hunter 2007), scipy
(Virtanen et al. 2020), jupyter notebooks (ipython-2007; Kluyver et al. 2016), and corner (Foreman-
Mackey 2016).

INote that some implementations instead truncate and renormalize the resulting f 7 which which incorrectly redistributes
probability from near the boundaries to the whole domain.
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Figure 1: Data drawn from a log-normal distribution is used to estimate the underlying PDF using histgrams
(upper) and KDEs (lower). The true distribution is shown in magenta. In the upper panel, the default bins
chosen by matplotlib are especially uninsightful (blue), while custom bins misrepresent the distributions
position when the initial edge is poorly chosen (red). The data is also included as a ‘carpet’ plot. In the
lower panel, a Gaussian KDE with no reflection (blue) is compared to one with a reflection at = 0, which
better reproduces the true PDF. Data resampled from the reflecting-KDE PDF is shown as the blue ‘carpet’
points which closely resemble the input data.
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