
Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 1

Node Subsystem


This subsystem considers the Canvas and Diagram as a whole, the grid system for Node placement, the 
Notation applied to the Diagram and the various types of Nodes that may be placed on the Diagram. 
Connectors are modeled in a different subsystem.


Relationship numbering range: R1-R49




Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 2

Class Descriptions




Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 3

Diagram Layout Specification

Defines a set of values that determine how a Diagram and Grid is positioned on a Canvas and how 
Nodes are positioned relative to the Diagram and Grid.


Attributes


Name


In this version there is assumed to be only a single specification instance, so the name is here merely ex-
presses unique model identity.


Type: Name


Default margin


The distance from each canvas edge that may not be occupied by the Diagram.


Type: Padding


Default diagram origin


The lower left corner of the Diagram in Canvas coordinates.


Type: Position


Default cell padding


The distance from each Cell edge inward that may not be occupied by any Node. This prevents two 
Nodes in adjacent Cells from being too close together.


Type: Padding


Default cell alignment


The horizontal and vertical alignment of a Node in its Cell or Cells


Type: Padding


Identifiers


Name



Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 4

Diagram Notation

A Notation supported by the Flatland draw engine to render Diagrams of a given Diagram Type. See R32 
for more details.


Attributes


Diagram type


Same as Diagram Type.Name

Notation


Same as Notation.Name

Identifiers


 Diagram type + Notation

Consequence of a many-many association




Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 5

Diagram Type

A standard diagram such as ‘class diagram’, ‘state machine diagram’ or ‘collaboration diagram’. Each of 
these types draws certain kinds of Nodes and Connectors supported by one or more standard Notations.


Attributes


Name


A commonly recognized name such as ‘class diagram’, ‘state machine diagram’, etc.


Type: Name


Identifiers


 Name



Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 6

Node

On Diagrams, model entity semantics such as states, classes, subsystems and so forth can be symbolically 
represented as polygonal or rounded shapes. These shapes can then be connected together with lines rep-
resenting model relationship semantics. A Node represents the placement of a shape symbol at a specific 
location (Cell) on a Diagram.


Every Node, regardless of its specific shape as determined by its Node Type, is considered to be roughly 
or completely rectangular. This means that every Node has four faces, top, bottom, left and right where 
one or more Connectors may attach.


Attributes


ID


Each Node is numbered uniquely on its Diagram.


Type: Nominal


Node type


Type: Same as Node Type.Name

Diagram type


Type: Same as Node Type.Diagram type

Size (derived)


The height and width of the Node. This height is derived from the combined heights of its visible Com-
partments. The width is determined as a result of computing the required width of all of the visible Com-
partments.


Type: Rect Size


Location


The lower left corner of the Node relative to the Diagram.


Type: Diagram Coordinates


Identifiers


 ID

We only handle one Diagram at a time, so the Node.ID is always unique.




Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 7

Node Type

Specifies characteristics common to all Nodes of a given type. A class node, for example, has three com-
partments, sharp corners a certain border style, etc. For now, to support a different visual style for a class 
node, let’s say, you would need to define a new node/diagram type combination (UML class on a UML 
class diagram type vs. Shlaer-Mellor class on a Shlaer-Mellor class diagram type), for example). Since, 
most diagrams we are considering have notational variation in the Connector Types and not the Node 
Types, we’re baking in the visual characteristics of a Node Type for now and making it flexible for Con-
nector Types.


Attributes


Name


A name like “class”, “state”, “imported class”, “domain”, etc.


Type: Name


Diagram type


Type: Same as Diagram Type.Name

Rounded


Whether or not all four node corners are rounded


Type: Boolean


Compartments


The number of UML style text compartments visible.


Type: Count1 :: integer > 0

Border


Type: Border style


Default size


Initial assumption about a Node size.


Type: Rect Size


Max Size


Node may not be drawn larger than this size.


Type: Rect Size




Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 8

Corner margin


The minimum distance permitted between a Stem Root end and the nearest Node corner. The intention it 
to prevent lines attaching on or very close to a Node’s corner which looks glitchy.


Type: Distance


Identifiers


 Name + Diagram type



Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 9

Notation

A standard (supported by a large or small community) set of symbols used for drawing a Diagram Type.


Attributes


Name


A name such as ‘xUML’, ‘UML’, ‘Starr’, ‘Shlaer-Mellor’, etc.


Type: Name


Identifiers


 Name



Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 10

Relationship Descriptions


R30 / 1:1c


Diagram is rendered using one Diagram Notation

Diagram Notation renders zero or one Diagram

When a Diagram is created, there may be a choice of multiple Notations that it can be displayed in. A 
class diagram, for example, could be displayed as Starr, xUML or Shlaer-Mellor notation. Each potential 
Diagram would mean the same thing, but the drawn notation would be different in each case.


A Diagram can use only a Notation that is defined for its Diagram Type. Since a Diagram Type must be 
supported by at least one Notation, there will always be at least one possible choice.


Only one Diagram is rendered at a time. This means that while, in theory, the same Diagram Notation 
could render multiple Diagrams and certainly does over time, during the runtime of the draw engine, a 
given Diagram Notation either is or isn’t the one that determines the look of a Diagram, thus the 1c multi-
plicity in this association.


Formalization


Diagram.Notation -> Diagram.Notation.Notation and Diagram.Type -> Diagram Notation.Notation and 
Diagram Type.Name


The shared Diagram.Type value enforces the constraint that a Diagram’s notation must be supported by 
its specified Diagram Type on R11.



Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 11

R7 / 1:Mc


Compartment is filled by zero one or many Text Line

Text Line fills one Compartment

.


Formalization


Reference in Text Line class.

R8 / 1:Mc


Compartment is a Title or Data Compartment

.


Formalization


Subclass references to superclass.

R1 / Ordinal


Compartment Type is stacked above


Vertical stacking of corresponding Compartment Types of a Node Type. For example a title compartment 
is drawn above an attribute compartment which is drawn above a method compartment in a class dia-
gram.


Formalization


Compartment Type identifier I2 with Stack order, numbered within Node type and Diagram type

R32 / M:Mc-1


Diagram Type is supported by one or many Notation

Notation supports zero, one or many Diagram Type

The term ‘supports’ should not be confused with ‘compatible’.


Compatibility means that a Notation has been defined, in the real world, to be used with a certain kind of 
diagram. Support means that the Flatland draw engine currently has the ability to draw a particular Dia-
gram Type in a specified Notation.


Here we assume that compatibility is understood when this relationship is populated and that a given 
Notation is associated only with those Diagram Types where it makes sense to use it.


For example, the xUML notation is relevant to a wide variety of diagram types, but for now it may only 
be supported for class diagrams and state machine diagrams. On the other hand, the Starr notation ap-
plies only to class diagrams.




Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 12

So this relationship represents which Notations have been selected to support certain Diagram Types sup-
ported by the Flatland drawing tool.


So that they can be drawn, it is essential to ensure that at least one compatible Notation is supported for 
each Diagram Type defined in the Flatland draw engine.


Formalization


Diagram Notation association class

R11 / 1:1c


Diagram Type specifies zero or one Diagram

Diagram is specified by exactly one Diagram Type

A Diagram Type embodies a diagramming standard and so constrains a Diagram to be drawn a certain 
way, with certain types of Nodes and Connectors. The associated Notation further constrains the drawn 
look of these elements.


A Connector Type, say a binary association which has meaning in a class diagram won’t be available in a 
state machine diagram, for example.


Therefore, a Diagram is always specified by a single Diagram Type. A given Diagram Type may, or may 
not be the Diagram Type employed to constrain the currently managed Diagram.


Formalization


Diagram.Type


