
Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 1

Connector Subsystem

This subsystem describes the overall geometry for all connector types as well as the placement of symbols
and labels on connector stems.

Relationship numbering range: R50-R99

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 2

Class Descriptions

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 3

Anchored Stem

Not to be confused with the beer made in San Francisco, California. This is a Stem whose root end is de-
termined by a user specified Face Placement position on the Node Face.

Attributes

ID

Same asStem.ID

Connector

Same asStem.Connector

Node

Same as Stem.Node

Face

Same as Stem.Face

Anchor position

Relative distance from the center of the Node face.

Type: Face Placement -5..+5 where zero represents the center with + to the right or top and - to the left
or bottom, both away from the center

Identifiers

1.	 ID + Connector

2.	 Node + Face + Anchor position

To prevent any drawing overlap, two Stems may not anchor at the same Node face placement location.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 4

Annotation

The application of a Label to a Decorated Stem is an Annotation. Whereas a Decoration is drawn on a
Stem on one end or the other (root or vine), a Label is offset from the Stem so that it doesn’t overlap the
Stem line and relative to the Node face where the Stem is attached.

Attributes

Stem type

Same as Decorated Stem.Stem type

Semantic

Same as Decorated Stem.Semantic

Diagram type

Same as Decorated Stem.Diagram type

Notation

Same as Decorated Stem.Notation

Label

Same as Label.Name

Default stem side

By default the Rendered Label will appear on this side of the Stem axis in its vicinity. The user can over-
ride this default by specifying a Label flip. If the stem is drawn vertically near the Label, it will appear to
the right or left and if the stem is drawn horizontally the label will be above or below the stem. If a + val-
ue is specified, it means to the right or above since the x or y axis increases in that direction.

Type: [+ | -]

Vertical stem offset

If the Stem is drawn horizontally, this is the vertical space between the Label content rectangle and the
Stem.

Type: Distance

Horizontal stem offset

If the Stem is drawn vertically, this is the horizontal space between the Label content rectangle and the
Stem.

Type: Distance

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 5

Node face offset

The minimum (and default) distance between the Label content rectangle face parallel and closest to the
Node face at the root end of the Stem.

Type: Distance

Identifiers

 Stem type + Semantic + Diagram type + Notation

Consequence of a one-many association with id formed from reference to the many side.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 6

Connector

A Connector is a set of Stems connected by one or more lines to form a contiguous branch bringing one or
more Nodes into a drawn model level relationship. On a class diagram, for example, a Connector is
drawn for each binary association, generalization and association class relationship.

The Connector Type and its Stem Types determine how the Connector should be drawn.

Attributes

ID

Each Connector is numbered uniquely on its Diagram.

Type: Nominal

Diagram

Same as Diagram.ID

Connector type

Same as Connector type.Name

Diagram type

Same as Connector type.Diagram type

Identifiers

ID

Since only one Diagram is drawn at a time, there is only ever one instance of Diagram and so the Connec-
tor.ID suffices as a unique identifier.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 7

Connector Layout Specification

Defines a set of values that determine how a Connector is drawn.

Attributes

Name

In this version there is assumed to be only a single specification instance, so the name is here merely ex-
presses unique model identity.

Type: Name

Default stem positions

The number of equally spaced positions relative to a center position (included in the count) on a Node
face where a Stem can be attached. A value of one corresponds to a single connection point in the center
of a Node face. A value of three is a central connection point with one on either side, and so on. In prac-
tice, five is usually the right number, especially for a class or state diagram. But this could vary by dia-
gram and node type in the future.

Type: Odd Quantity :: Odd Integer > 0

Default rut positions

The number of ruts where Path can be defined in a Lane. These work like stem/anchor positions on a
Lane as opposed to a Node face. For a value of 3 we get positions -1, 0 and +1 with 0 representing the
Lane Center and +1 high/right and -1 low/left.

Type: Odd Quantity :: Odd Integer > 0

Default new path row height

When a new empty row must be added to to accommodate a Path in a Connector use this initial height.

Type: Distance

Runaround lane width

When a new empty row or column must be added to accommodate a Path that bends outside the grid,
this is the initial height or width to use in creating that Lane.

Type: Distance

Identifiers

1.	 Name // This is a singleton, so the name is certainly unique

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 8

Connector Name

The user may supply a name for any or all Connectors in a Diagram. On a class diagram, for example, the
user would specify names like R2, R35, etc. for each relationship Connector.

Attributes

Connector

Same as Connector.ID

Name

The user supplied name to be drawn on or near the Connector axis.

Type: Text

Bend

If the Connector is bent, we proceed clockwise from the first attached Node starting from 1 for each bend.
The term “bent” can be applied liberally. In the case of a Binary Connector, we really mean Bend. With a
Tree Connector, the quantity can represent each Branch.

The Name will then be placed at the center of the line segment of this Bend.

In the case of a non-bent Connector, this value is ignored

Type: Count

Side

For a horizontal Connector, this will be above or below and for a vertical Connector it will be left or right.
Since both right and above are at increasing coordinate values along one coordinate axis, we can just use a
positive or negative sign to indicate the Side. Positive (1) means above or right while negative (-1) is the
other side.

Type: [1 | -1] as an integer value

Location

The coordinates of the lower left text bounding box.

Type: Position

Size

The dimensions of the text bounding box.

Type: Rect Size

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 9

Identifiers

1.	 Connector type + Diagram type + Notation

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 10

Connector Name Specification

A Diagram Notation may specify that a given Connector Type be named along with the default place-
ment information for that name. For diagram generation purposes, we leave it to the user to supply a
name with a format appropriate to the Diagram Type and Notation. But we can retain layout information
so that the user need not specify precise placement of each name. For example, we can say that a certain
name be placed in the center of each connector overlaying it, or at a certain distance above a horizontal
connector and to the right of a vertical connector.

The name of a Connector is not associated with any particular end of the Connector. In that case you
would use a Stem name instead.

Attributes

Connector type

Same as Connector Type.Name

Diagram type

Same as both Diagram Notation.Diagram type and Connector Type.Diagram type

Notation

Same as Diagram Notation.Notation

Vertical axis buffer

The buffer ensures that there is consistent whitespace between the name and the connector axis. For ex-
ample, all names for a given Connector Type can be drawn with 7 points of empty space above or below
the Connector line segment.

This buffer is the vertical gap above or below a horizontal connector bend. The distance is measured from
the edge of the text bounding box closest to the adjacent connector axis.

If the value is zero, the name is drawn centered on top of the Connector with a solid fill around the text so
that the connector line is never drawn through the text.

Type: Distance

Horizontal axis buffer

Same concept as the Vertical axis buffer except that this is the horizontal gap, right or left, of a vertical
connector bend.

Type: Distance

Default name

A text value to be used in case the user does not supply a name.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 11

Type: Text

Optional

Whether or not the name is required or optional. If required and no name is supplied a warning can be
raised and the default name applied.

Type: Boolean

Identifiers

1.	 Connector type + Diagram type + Notation

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 12

Connector Style

Connectors are ordinarily drawn as un-patterned lines. If the lines in a Connector will be drawn with
some other pattern, such as dashed, a Connector Style is defined. For example, the xUML dependency
connectors in a domain diagram (package dependency) are dashed.

Attributes

Connector type

Same as Connector Type.Name

Diagram type

Same as both Diagram Notation.Diagram type and Connector Type.Diagram type This enforces the con-
straint that a line style can be defined only for a Notation defined on the Connector Type.

Notation

Same as Diagram Notation.Notation

Stroke

The stroke style to use when drawing the Connector lines.

Type: Stroke Style

Identifiers

1.	 Connector type + Diagram type + Notation

From association multiplicity

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 13

Connector Type

One or more Nodes may be interrelated by some model level relationship such as a state transition, gen-
eralization, association, dependency and so forth. Each such relationship is drawn with one or more con-
necting lines and terminating symbols. A Connector Type defines the symbols, line connection geometry
and appearance of Connectors corresponding to some model level relationship.

Attributes

Name

The name of the model level relationship such as “Transition” or “Generalization”.

Type: Name

Diagram type

Same as Diagram Type.Name

Geometry

This describes the way that a Connector is drawn, pulling together all of its Stems. Many geometries are
possible, but only a handful are supported which should cover a wide range of diagramming possibili-
ties.

Unary – Relationship is rooted in some Node on one end and not connected on the other end. An initial
transition on a state machine diagram is one example where the target state is connected and the other
end of the transition just has a dark circle drawn at the other end (not a Node). It consists of a single Stem.

Binary – Relationship is drawn from one Node face position to another on the same or a different Node.
This could be a state transition with a from and to state or a binary association from one class to another
or a reflexive relationship starting and ending on the same class or state. It consists of two Stems, one at-
tached to each Node face position connected together with a line. A Tertiary geometry where a third Stem
connects a Node face to the binary connection is also possible in this geometry. It is considered an option-
al extension that can be defined on any Binary Connector.

Tree – Here one Node is a root connecting to two or more other Nodes. A Stem emanates from the root
Node and another type of Stem emanates from each of the subsidiary Nodes and one or more lines are
drawn to connect all the Stems. A class diagram generalization relationship is a typical case.

Type: Connection Geometry:: [unary | binary | tree]

Identifiers

Name + Diagram type

The Name is unique for each Diagram Type by policy. It seems likely that a name like “Transition, for ex-
ample, could be useful and defined differently across Diagram Types.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 14

Decorated Stem

A Stem Signification that is decorated somehow when it appears on a Diagram is considered a Decorated
Stem. Not all Stem Significations are decorated. The stem attaching a class diagram subclass is not notat-
ed in many class diagram notations.

See R55 description for more details.

Attributes

Stem type

Stem Signification.Stem type

Semantic

Stem Signification.Semantic

Diagram type

Type: Same asStem Signification.Diagram type and Diagram Notation.Diagram type

Notation

Diagram Notation.Notation

Stroke

This is the style used to draw the Stem where it isn’t occluded by any Symbols. In most cases it is proba-
bly just the default connector style. But in at least the case of an xUML- associative mult Decorated
Stem, a dashed line is typically drawn.

Type: Stroke Style

Identifiers

 Stem type + Semantic + Diagram type + Notation

Consequence of a many-many association with a shared Diagram Type.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 15

Floating Stem

The user specifies the Node face, but not the attachment position of a Floating Stem. The point on the
Node face where a Floating Stem attaches is determined by the position of an opposing Anchored Stem so
that a straight line between them is ensured.

Attributes

ID

Same asStem.ID

Connector

Same asStem.Connector

Identifiers

1.	 ID + Connector

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 16

Free Stem

This type of Stem is used to create a Unary Connector. In fact, a Free Stem comprises the entire Unary
Connector.

Attributes

ID

Same asStem.ID

Connector

Same asStem.Connector

Identifiers

1.	 ID + Connector

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 17

Rendered Label

The application of a Label to a Decorated Stem is an Annotation. Whereas a Decoration is drawn on a
Stem on one end or the other (root or vine), a Label is offset from the Stem so that it doesn’t overlap the
Stem line and relative to the Node face where the Stem is attached.

Attributes

Stem

Same as Stem.ID

Connector

Same as Stem.Connector

Location

The location of the lower left corner in Diagram coordinates

Type: Position

Stem type

Same as both Annotation.Stem type and Stem.Stem type

Semantic

Same as both Annotation.Semantic and Stem.Semantic

Diagram type

Same as both Annotation.Diagram type and Stem.Diagram type

Notation

Same as both Annotation.Notation and Stem Type.Notation

Identifiers

1.	 Stem + Connector // Reference to many side

2.	 Location// Otherwise there could be an illegal overlap on the Diagram

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 18

Rendered Symbol

This is the Symbol as drawn on one end of a Stem on the Diagram.

Attributes

Stem

Same as Stem.ID

Connector

Same as Stem.Connector

Stem type

Same as both Stem End Decoration.Stem type and Stem.Stem type

Semantic

Same as both Stem End Decoration.Semantic and Stem.Semantic

Diagram type

Same as both Stem End Decoration.Diagram type and Stem.Diagram type

Notation

Same as both Stem End Decoration.Notation and Stem Type.Notation

End

Same as Stem End Decoration.End

Growth

The distance from the Stem End (vine or root) to the edge of the Symbol on the Stem.

Type: Distance

Identifiers

1.	 Stem type + Semantic + Diagram type + Notation + Stem + Connector + End// From multi-
plicity

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 19

Stem

This is a line drawn from a face on a Node outward. The terminator on the Node face is the root and the
terminator on the other side of the line is the vine. Both terminators are generally referred to as the Stem
ends.

A Stem may be decorated on either, both or neither end. A decoration consists of a graphic symbol such as
an arrow or a circle or a fixed text Label such as the UML 0..1 multiplicity text. A graphic symbol may
be combined with a text Decoration such as the Shlaer-Mellor open arrow head and c conditionality La-
bel combination.

Attributes

ID

Distinguishes one Stem from another within the same Connector.

Type: Nominal

Connector

Same asConnector.ID

Stem type

Same as Stem Type.Name and Stem Signification.Stem Type

Diagram type

Same as Stem Type.Diagram type and Stem Signification.Diagram type

Node

Same as Node.ID

Face

The side of the Node where the Stem is anchored.

Type: Node Face :: [Top | Bottom | Right | Left]

Root end

The point on the attached Node face where the Stem root is anchored.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 20

 
Type: Position

Vine end

The point where the Stem vine ends away from the attached Node. See figure in Root end description.

Type: Position

Identifiers

1.	 ID + Connector

Each Stem is uniquely numbered local to its Connector. The ID attribute is added since this is a -M associ-
ation class which means that multiple instances of Stem may correspond to the same Connector–Stem
Type pair.

2.	 ID + Connector + Node + Face

Superkey is provided so that Anchored Stem subclass can enforce a constraint on Stem placement to
avoid coincident Stems (see Anchored Stem).

3.	 Node + Face + Root end

Now two Stems may share the same Root end position on a Node Face. Same coincident Stem constraint
as supported by identifier #2 above, but enforced at the point when the coordinates are resolved.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 21

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 22

Stem End Decoration

Either the root or vine end of a Decorated Stem that features a Symbol when drawn.

See R58 description for more details.

Attributes

Stem type

Same as Decorated Stem.Stem type

Semantic

Same as Decorated Stem.Semantic

Diagram type

Same as Decorated Stem.Diagram type

Notation

Same as Decorated Stem.Notation

Symbol

Same as Symbol.Name

End

A Stem has two ends, root and vine. Either, both or neither end may be decorated.

Type: [root | vine]

Identifiers

 Stem type + Semantic + Diagram type + Notation + Symbol+ End

Consequence of a many-many association with the addition of an extra attribute End placement to distin-
guish the -M associative multiplicity.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 23

Stem Name

The user may supply a name for any or all Connectors in a Diagram. On a class diagram, for example, the
user would specify names like R2, R35, etc. for each relationship Connector.

Attributes

Stem

Same as Stem.ID

End

The end of the Stem where the name is placed.

Type: [root | vine]

Name

The user supplied name to be drawn on or near the Stem. The text will be right or left aligned depending
on the location relative to the Stem.

Type: Text

Side

For a horizontal Stem, this will be above or below and for a vertical Stem it will be left or right. Since both
right and above are at increasing coordinate values along one coordinate axis, we can just use a positive
or negative sign to indicate the Side. Positive (1) means above or right while negative (-1) is the other side.

Type: [1 | -1] as an integer value

Location

The coordinates of the lower left text bounding box.

Type: Position

Size

The dimensions of the text bounding box.

Type: Rect Size

Identifiers

1.	 Connector type + Diagram type + Notation

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 24

Stem Name Specification

For a given Notation, certain Stem Types are named. For each case we can establish the uniform place-
ment of such names relative to the associated Stems.

Attributes

Stem type

Same as Stem Type.Name

Diagram type

Same as both Diagram Notation.Diagram type and Connector Type.Diagram type

Notation

Same as Diagram Notation.Notation

End

The end of the Stem where the name is placed.

Type: [vine | root]

Vertical axis buffer

The buffer ensures that there is consistent whitespace between the name and the connector axis. For a
Stem, this is the distance away from the Stem which should be greater than half the width of any Stem
Decoration to avoid overlap.

In the vertical case, this is the vertical distance from a horizontally aligned Stem.

Type: Distance

Horizontal axis buffer

Same concept as for Vertical axis buffer.

In the horizontal case, this is the horizontal distance from a vertically aligned Stem.

Type: Distance

Vertical end buffer

The buffer ensures that there is consistent whitespace between the name and the root or vine end of the
Stem. In the case of a root end, this is the gap between the name bounding box and a Node Face. In the
case of a vine end, it depends on the connector type. For a tertiary connector, the gap is between the name
bounding box and a binary connector line segment.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 25

In general the distance should never be zero since there is a risk that the name would be drawn on top of
a stem decoration. But if there is no decoration it may make sense to specify zero so that the name is
drawn over the top of the stem with a solid background.

A vertical end buffer is associated with a vertical connector line segment where the name will be to the
right or left of the line

Type: Distance

Horizontal end buffer

Same concept as the Vertical end buffer except that this is the horizontal gap, right or left, of a vertical
connector line segment.

Type: Distance

Default name

A text value to be used in case the user does not supply a name.

Type: Text

Optional

Whether or not the name is required or optional. If required and no name is supplied a warning can be
raised and the default name applied.

Type: Boolean

Identifiers

1.	 Stem type + Diagram type + Notation + End

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 26

Stem Semantic

A Stem Semantic is some notation independent meaning that can be attributed to either end (root/vine)
of a Stem. When combined with a Diagram Notation, it may or may not be represented by some visual
representation such as an arrow or text.

A Stem always has meaning where it attaches to its Node since the connected Node is playing some sort
of role (target state, class multiplicity, subclass, etc).

 
In a given Diagram Notation, a Stem Semantic may or may not require any Symbols or Labels. The from
state semantic, for example, is just an undecorated line in xUML. Subclasses in xUML, Starr and Shlaer-
Mellor class diagrams are similarly undecorated.

 
In some cases, the Stem end away from the Node face (vine end) will also have significance. Usually this
is only the case when the Stem is not connected to any other Stem as it is in a Unary Connector.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 27

 
On a state machine diagram, for example, the line that touches a state Node (root end) is terminated with
an arrow to indicate a target state. The opposing end of the Stem (vine end) is undecorated unless the
state Node is an initial state. In this case there is a decoration on each end of the Stem.

In the case of a deletion transition on a state machine diagram, the root end of the Stem attached to the
Node is undecorated while its opposite vine end features a dot filled circle.

Attributes

Name

A name that reflects the meaning (semantic) of the Stem termination such as “target state” (goes to this
state) or “Mc mult” (many conditional multiplicity) or “final psuedo-state”. Care is taken to describe
meaning and not notation.

Type: Name

Identifiers

Name

Unique by policy

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 28

Stem Signification

This is a meaning that is relevant to a particular Stem Type. See the description of R62 for more details.

Attributes

Stem type

Type: Same as Stem Type.Name

Semantic

Type: Same as Stem Semantic.Name

Diagram type

Type: Same as both Stem Semantic.Diagram type and Stem Type.Diagram type. It establishes the con-
straint that a Stem Type may signify only a Stem Semantic that is defined on the same Diagram Type.

Identifiers

1.	 Stem type + Semantic + Diagram type

 Determined by the association multiplicity

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 29

Stem Type

Defines the characteristics of the portion of a Connector attached to a Node called a ‘Stem’.

In a binary association connector of a class model, for example, there are two class mult Stem Types
and one associative mult Stem Type defined. A transition Connector Type in a state machine dia-
gram defines two Stem Types, to state and from state.

Characteristics of primary interest are the semantics and notation and any other visual aspects of a Stem.

Attributes

Name

Describes the type of Node to which a Stem will be attached such as to state or association class.

Type: Name

Diagram type

Type: Same as Diagram Type.Name

Connector type

Type: Same as Connector Type.Name

About

A description of the purpose and usage of this Stem Type

Type: Description

Minimum length

A Stem of this type can never be shorter than this length. This keeps a bend or the Diagram edge from
getting too close to the Node face. You wouldn’t want to bend at 90 degrees less than a point away from a
Node face, for example.

This value also serves to provide a default distance between the Root and Vine Ends, thus readily estab-
lishing the coordinate of the Vine End (assuming the Stem’s Vine end isn’t based on some other factor. In
the case of a Tertiary Stem in a Binary Connector, for example, the Vine End will extend out to the nearest
normal connector line, thus exceeding the Minimum Length usually.

Type: Distance

Identifiers

1.	 Name + Diagram type

Stem Type Names are unique to each Diagram Type by policy

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 30

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 31

Unary Connector

This type of Connector is rooted on some Node face with a vine end that does not attach to anything. It is
therefore placed at some fixed distance away from the root end. The initial and final psuedo-transitions
on a UML state machine diagram are both examples of Unary Connectors.

Attributes

ID

Same as Connector.ID

Identifiers

ID

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 32

Relationship Descriptions

R50 / 1:Mc

Connector Type can be drawn in exactly one Diagram Type

Diagram Type can draw zero, one or many Connector Type

These are the types of Connectors that can be drawn on a given Diagram Type. On an xUML state ma-
chine diagram you can draw initial, final and normal transitions, for example, whereas on an xUML class
diagram you can draw generalizations, binary associations and association class relationships. More to
the point, you cannot draw a state transition on a class diagram. So this relationship constrains what can
be drawn on a given Diagram Type. (Though nothing prevents you from defining a new Diagram Type
where this would be possible!)

Most Diagram Types will have at least one kind of Connector Type, otherwise the associated diagrams
will just be a layout of unconnected Nodes. That said, there is no reason to require connections on any
given Diagram Type.

A Connector Type is defined exclusively to a Diagram Type. Thus, transition on a state machine diagram
may be defined differently than transition on some other kind of diagram.

Formalization

Reference in the Connector Type class

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 33

R51 / 1:Mc

Connector Type specifies zero, one or many Connector

Connector is specified by exactly one Connector Type

This is a standard specification relationship where the Connector Type defines various characteristics of a
Connector. Whereas a Connector Type defines properties of all Connectors, a Connector is a manifestation
of a Connector Type actually drawn on a Diagram.

When a Connector is created, it will need to grow a Stem for each connected Node and then draw a line
that ties the Stems all together.

Formalization

Reference in the Connector class

R52 / 1:Mc

Node is source of zero, one or many Stem

Stem is rooted in exactly one Node

The root end of Stem is always attached to a single Node. In fact, a Stem never attaches more than one
Node, though a Connector certainly can via multiple Stems. There is no such thing as a free floating Stem
unattached to any Node.

A Node, on the other hand, may or may not be part of a connection. A free floating unconnected Node
will not be attached to any Stem.

Formalization

Referential attribute in Stem class

R53 / M:Mc-M

Connector sprouts as one or many Stem Type

Stem Type sprouts in zero, one or many Connector

A Connector is drawn by creating all necessary Stems and then connecting them together with one or
more lines. The Connector Type.Geometry attribute determines how these Stems and connecting lines
will be drawn.

The same Stem Type may be used multiple times in a Connector. For example, an xUML class diagram bi-
nary association will need two class multiplicity Stems, one for each side of the Connector. A class dia-
gram generalization will need one subclass stem for each subclass Node. Each connection to a Node will
result in a new Stem.

If no Connectors have been drawn that use a particular Stem Type, that Stem Type will just be a definition
that hasn’t been used yet. In this case the Stem Type won’t refer to any Connectors.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 34

Formalization

Stem association class

R54 / 1c:Mc-1

Decorated Stem is annotated by zero or one Label

Label annotates zero, one or many Decorated Stem

A Decorated Stem may or may not have an associated text Label. In the Starr class diagram notation a
generalization arrow has no associated text. In xUML, however, the arrow is accompanied by the UML
tag { disjoint, complete }. There seems to be no reason to support multiple fixed text Labels as
none of the supported notations require them.

A given Label may be used with more than one Decorated Stem. The Shlaer-Mellor c label is associated
with any class multiplicity where zero is a possibility, for example.

A Label may be defined that is not used with any notation, though this is unlikely. It can be done in antici-
pation of supporting a future notation, however.

Formalization

Referential attributes in the Annotation class

R55 / Mc:Mc-1

Diagram Notation decorates zero, one or many Stem Signification

Stem Signification is decorated with zero, one or many Diagram Notation

Each Diagram Notation may specify a different decoration for a Stem Signification. The Starr class dia-
gram notation, for example assigns a double hollow arrow at the root end of a class mult - Mc mult
Stem Signification. xUML, on the other hand specifies only a text label of 0..*for that same Stem Signifi-
cation.

In fact, a Stem Signification may not be decorated at all in a given Diagram Notation. The from state
– source state Stem Signification on a state machine diagram, for example, is not decorated in xUML
while the to state - target state is.

A given Diagram Notation only specifies decoration for those Stem Significations relevant to the associat-
ed Diagram Type. Thus the, Starr - class Diagram Notation does not specify decoration on any Stem
Significations on a state machine diagram.

Formalization

Stem Decoration association class

R56 / 1:Mc

Stem indicates one Stem Signification

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 35

Stem Signification is indicated on zero, one or many Stem

When a Stem is drawn it binds to one of the Stem Significations that its Stem Type may signify. A Stem
whose type is class mult (class multiplicity) must indicate one of the available multiplicity significa-
tions, namely: 1, M, 1c or Mc. The selection will be user specified. For many Stem Types there will be only
one Stem Signification to choose from so the indication is automatic.

Formalization

Referential attributes in the Stem class

R57 / 1:Mc

Diagram Type is context for zero, one or many Stem Semantic

Stem Semantic has meaning on exactly one Diagram

Consider a Stem Semantic such as class mult (class multiplicity) or maybe another target state.
Each Stem Semantic defines the meaning associated with the point where a Connector attaches to some
Node. The class mult Stem Semantic only makes sense on a class diagram while the target state
Stem Semantic is intended for state machine diagrams.

In fact, each Stem Semantic is specific to the context defined by a type of Diagram. In other words, each
Diagram Type establishes a set of relevant Stem Semantics that make sense only on that Diagram Type.

True, you may create a Diagram Type with semantics similar or almost identical to another Diagram
Type. Say you define a petri net Diagram Type which also specifies target state. We still want to
keep the semantics custom specified for each Diagram Type so that we don’t elide subtle distinctions
among them. No problem since the name of a Stem Semantic is local to its own Diagram Type. Thus a
petri net-target state is distinct from a state machine-target state. The semantics may
be equivalent or slightly different, but they are two distinct semantics as far as Flatland is concerned.

If a Diagram Type does not specify any Stem Semantics, this means that the Diagram Type does not sup-
port Connectors of any type. Perfectly legal, but of questionable value. Flatland will draw them at any
rate!

Formalization

Reference in Stem Semantic class

R58 / Mc:Mc-M

Decorated Stem is terminated by zero, one or many Symbol

Symbol terminates zero, one or many Decorated Stem End

Each end of a Decorated Stem may or may not be adorned by a single Symbol. Keep in mind that a Sym-
bol can be compound and built up from many graphical elements. So each terminal can be as ornate as
necessary. This effectively means that at most two Symbols can be associated with a given Decorated
Stem. See note in formalization section below to see how the two-ness constraint is addressed.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 36

It is also possible for the same Symbol to be used at both ends of a Decorated Stem. Consequently this re-
lationship is many-associative. (A given pairing of Decorated Stem and Symbol can result in two associa-
tion class instances, differentiated by the End component of the class identifier).

If neither end of a Decorated Stem features a Symbol, there may be a Label associated with the Stem. If
there is no Label either, perhaps the Stem is notated by changing its line stroke pattern. For example, in
xUML an associative 1 multiplicity on a class diagram is shown by drawing the stem as a dashed pattern
with no other label or symbol.

A Decorated Stem that does not have a special line pattern, Symbol or Label is not decorated and should
not be declared as such. No harm can come from falsely declaring a Decorated Stem with no Decoration,
it will just be rendered as a linear Stem, but it is bad practice.

A given Symbol can be used in as many Decorated Stems as you like. A solid arrow for example might
be used both in a state transition and in a domain diagram dependency. If a Symbol is not used at all,
there is no harm as it may become useful in a Diagram Notation defined later.

Formalization

Referential attributes in the Stem End Decoration association class along with enforcement of the two-
ness constraint. This is accomplished by integrating the End attribute into the Decoration identifier. See
the class description for more details.

R59 / 1:M

Connector Type connects nodes with one or many Stem Type

Stem Type defines node connections for one or many Connector Type

We define the structure of a Connector by describing it as a set of Stems of various types that are lashed
together with connecting lines. Each Stem Type establishes the meaning of the interface between a Con-
nector line and the Node where it attaches. For each type of Connector, certain types of Stems are rele-
vant.

For example, a generalization Connector Type defined on a class diagram requires only two types of
Stems, a superclass and a subclass Stem Type to designate the meaning of each connection point. Further-
more, the subclass Stem Type has relevance only to a class diagram generalization Connector Type.

A Connector Type without any Stem Types makes no sense because it couldn’t connect to any Nodes.
And a Stem Type only has utility as part of some Connector Type.

Formalization

Stem Type Usage association class with shared Diagram type

R60 / Mc:Mc-1

Connector Type lines are styled in zero, one or many Diagram Notation

 Diagram Notation styles lines of zero, one or many Connector Type

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 37

A Connector Style is defined only for those Connector Types that are not simple solid black lines. So most
Connector Types do not need any special style in a given Diagram Notation.

A given Diagram Notation may or may not set styles for Connector Types.

Formalization

References in the Connector Style association class

R61 / Mc:Mc-1

Stem End Decoration is rendered near zero, one or many Stem

Stem renders zero, one or many Stem End Decoration

When a Stem is drawn, any corresponding Symbols are positioned on one or both Stem end axes and ren-
dered as specified by the Stem End Decoration. (There are at most two Symbols placed on a given Stem,
one at each end).

Formalization

Referential attributes in the Rendered Symbol class

R62 / M:M-1

Stem Type may signify one or many Stem Semantic

 Stem Semantic may be signified by one or many Stem Type

A Stem Semantic refines the general meaning specified by a Stem Type. A class mult Stem Type, for
example, indicates the dual concepts of multiplicity and conditionality. A variety of Stem Semantics are
available that each establish a precise pairing of multiplicity and conditionality 1 mult (unconditional
1), Mc mult (conditional many), and so forth. When a Stem is created, it must bind to one of the Stem Se-
mantics available to the Stem’s Stem Type.

A given Stem Semantic may be relevant to more than one Stem Type. The unconditional multiplicity 1
mult and M mult Stem Semantics, for example, also apply to the associative mult Stem Type that
defines the Stem on a class diagram’s association class.

A Stem Semantic is not useful if it has no relevance to any Stem Type, so it must be relevant to at least
one.

Many Stem Types have meanings that cannot be further modified and therefore may signify only one
available Stem Semantic. A to state Stem Type can only mean target state, for example. But every
Stem Type does not have a specific meaning unless it can signify at least one Stem Semantic.

Formalization

References in Stem Semantic Option association class

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 38

R63 / 1:Mc

Diagram shows zero, one or many Connector

 Connector appears on one Diagram

A Connector is rendered on the one and only Diagram. And it is certainly possible to create a Diagram
with Nodes and no Connectors.

Formalization

Reference in Connector class

R65 / Generalization

Anchored Stem is an Anchored Binary Stem, Tertiary Stem, Anchored Tree Stem or Free Stem

Each of these subclasses of Anchored Stem are Stems that attached at a user specified anchor position on a
Node face.

Each Connector subclass determines the quantity and combination of various types of Stems. A Tree Con-
nector, for example, consists of one Trunk Stem and one or more Leaf Stems. A Unary Connector consists
of a single Free Stem.

See each relevant connector subsystem to see how each subclass of Anchored Stems are applied.

Formalization

ID + Connector referenced from each subclass

R66 / Generalization

Floating Stem is a Floating Binary Stem or Floating Leaf Stem

Floating Stems have utility in both the Binary and Tree Connector subsystems. Though they play different
roles in each, a Floating Stem always derives its axis from a coincident Anchored Stem guide.

Formalization

References in the subclasses

R67 / Generalization

Stem is a Floating Stem or Anchored Stem

An Anchored Stem is positioned by the user with an Anchor position. This position is later resolved to
diagram coordinates. Anchored Stems are used in all Connector Types.

A Floating Stem is lined up with an opposing Anchored Stem so that a straight line is formed. The pairing
of Anchored and Floating Stems is useful in both Binary and Tree Connectors.

Copyright (c) 2021 by Leon Starr at Model Integration, LLC – Under MIT Open Source License/ www.modelint.com / 39

With a Straight Binary Connector, there is no need for two user specified anchor positions. Since the Con-
nector is a straight line, only one anchor position is necessary. In fact, there should only be one to ensure
that we end up with a non-diagonal line when the coordinates are resolved.

The non-anchored Stem in a Straight Binary Connector is understood to float so that it is level with the
opposing Anchored Stem. The position of a Floating Binary Stem is computed for a horizontal line by
sharing the x coordinate of the opposing Anchored Stem. This is the y coordinate if the line is vertical.

The same situation can occur in a Tree Connector where one Leaf Stem is anchored while another is lined
up with it straight across.

Formalization

ID + Connector in either subclass or ID + Connector + Stem type + Node + Face + Anchor position in
the Anchored Stem subclass. Two different ID’s are referenced since the Anchored Stem is enforcing a
constraint preventing two Anchored Stems from being placed in the same location on the same Node
face.

R68 / 1c:Mc-1

Annotation is rendered near zero, one or many Stem

Stem renders zero or one Annotatio

When a Stem is drawn, any corresponding Label is positioned on the Diagram and rendered as specified
by the Annotation.

Formalization

Referential attributes in the Rendered Label class

R69 / Generalization

Connector is a Hierarchy, Unary or Binary Connector

Different rules and constraints may apply to each geometry so they are subclassed. Primarily an unbent
Binary Connector has a special relationship to a Floating Stem.

The type is determined by the Connector Type.Geometry attribute where both binary and tertiary
geometries are folded into the Binary Connector and distinguished by the Binary Connector.Tertiary
stem boolean attribute.

Formalization

The identifier in each of the subclasses referring to the superclass identifier

