

PythFinder

Installation ... 3

Description ... 4

What makes PythFinder unique....... 5

Future Plans ... 5

Technologies Used 6

Library Stability 8

Usage ... 9

Create a Robot ... 9

Joystick Control ... 10

Feedback? ... 12

Presets ... 12

Trajectory Usage 14

What are Trajectories? 14

How to Create Trajectories? 14

What are Markers? ... 15

How are Markers processed?........................ 15

Example .. 16

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 1/25

Trajectory Visualisation 17

Velocity Grahp ... 18

Generate Velocities 19

Interface Settings 20

Library Architecture 21

Trapezoidal Profiles 22

Credits .. 25

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 2/25

alphaalpha 0.0.40.0.4 licenselicense MITMIT

DOCUMENTATIO
N

Creator: Contraș Adrian 🎧

Installation
Before we dive into it, make sure you have:

a Python version greater than 3.10 (last version is recommended);
pip installed on your device (usually pip3 for 3.x versions, but pip works too);

my team's font 'graffitiyouthregular' (used for the interface);

Now the installation it's as easy as writing a command in the command prompt or in Visual Studio's
terminal:

pip install pythfinder

or (on the most devices):

pip3 install pythfinder

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 3/25

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installation/
https://www.dafont.com/graffiti-youth.font

Description
PythFinder was developed by team Omega Core in the scope of enhancing motion planning for the

First Lego League competition.

Usually teams use blocks for coding their autonomous routines because of the lack of micropython /
python documentation online. This approach may be faster to compile, but it sacrifices reliability.

With this in mind, I chose micropython as the main language to run on our EV3 brick. Throughout
the 2023-2024 Masterpiece season, I experimented with on-the-go motion calculations and
concluded that they were way too slow for competitive usage. As a result, my focus shifted more
toword pre-calculated motion (also known as feedforward control).

Because LEGO® allowed bricks' processors aren't capable of doing fast calculations, creating a script
that would do just that seemed to be the way.

So I developed a trajectory generator tool that runs locally on your machine and generates a .txt
file with all the necessary information for the robot to mimic the desired movements. You just need to
copy the generated text into the robot's code folder to be read during the initialization.

On the robot side, there is a simplified version of just the following aspect of the library, along with
methods to construct trajectories back from the .txt file decomposition.

Because of this operation, after starting the program, for an average max-points scoring code, there
will be a time window of 1 - 3 minutes when the robot loads all the data (assuming 7-8 different
launches). At this time, the code won't be accessible. Obviously, the time needed for reading data
depends on the data amount, which can be manipulated by the user in multiple ways I'll describe
later. I recommend that you start the program at least 4 minutes before the match.

But 'why would this method be better?' you might ask. The answer is consistency. This library uses
techniques found in industrial robotics control systems, enhancing precision through acceleration
limitation profiles, multithreading actions for running multiple motor outputs at the same time, and
more.

It's a small price to have one of the most reliable autonomous programs in the FLL competition.

To clarify, this library IS NOT restricted to use exclusively with EV3, even though it was initially
developed for this type of brick. Since the hardware is separate, even robots like SPIKE PRIME or NXT
can benefit from the generated .txt file.

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 4/25

https://linktr.ee/omega.core
https://www.first-lego-league.org/en/2023-24-season/the-masterpiece-season
https://www.youtube.com/watch?v=FW_ay7K4jPE
https://lego.com/

Currently, I’ve implemented a plug-and-play solution ONLY for EV3 bricks, a pythfinder-quick-start.
For other types of bricks, a custom implementation will be required to read and utilize the generated
data. Additionally, I recommend running the code for all trajectories in a single program to avoid the
wait time associated with loading trajectories during the match.

There are numerous libraries for motion profiling on GitHub, but I haven’t found one specifically
tailored for FLL. My mission is to revolutionize programming for this competition, and that vision has
become a reality with PythFinder!

What makes PythFinder unique?
it's the first ever FLL motion profiling library in the world \o/;
unlike roadrunner (the inspiration for this project), this library doesn't install directly on the
robot, resulting in faster calculations;
the simulator, trajectory builder, and generator are all packaged in one single library while
maintaining a friendly look similar to roadrunner's;
the core logic behind the implementation is completely different (which will be covered in the
following sections);
allows the user to manually drive the robot on the simulator with a controller;
generates all necessary trajectory values into a '.txt' file to be uploaded to the robot (an
innovative solution that wasn't used until our library, from what we've seen);
allows the user to change the interface without changing the code, just from the interface menu;
allows graph visualization of the velocity and acceleration for better understanding of the robot's
behavior;

Future Plans
This is just the beginning of my library. I've done a bit of everything to showcase a basic concept.
Future plans involve gradual improvements in every aspect of the simulator (interface, menu,
syntax, trajectory generation, and compatibility with other robots);

Abstraction and leaving room for improvements are essential practices for continuous progress.
Expect to see enhanced versions released periodically. Additionally, a feedback section is

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 5/25

https://github.com/omegacoreFLL/pythfinder-quickstart.git

available on the team’s official GitHub to report any issues or requested features, so I can
address them in future updates;

I also plan to develop a quick-start guide for each legal brick in FLL. However, currently, I only
have access to the EV3 brick for testing and implementation purposes;

That said, I had the pleasure of connecting with Arra, one of the most prestigious teams in the
competition. Composed of six enthusiastic young individuals from Pitești, they had the honor of
representing Romania at the World Championship in Houston for the past two years, achieving
outstanding results!

They were deeply impressed by my project and expressed their desire to help implement the
library on other bricks as well.

Through close collaboration between the Arra and Omega Core teams, I aim to promote this
library both nationally and internationally, utilizing our social media networks and various other
communication platforms. This will help reach a wider audience and build a larger community
that will actively contribute to the ongoing improvement of the library;

Technologies Used
I chose to use Python for this project because it is the primary language supported by LEGO®
bricks. For visualizing the robot, I used pygame, the most popular game creation library in
Python. It already had all the basic functionalities I needed (image import/export, support for
keyboard and controller, and of course, the display window);

Initially, I intended to load all the code onto the brick, but due to its outdated processor and
limited compatibility with Python (the brick requires MicroPython), it was more efficient to
separate this program from the actual robot;

matplotlib was added to help users visualize numerical values in a more intuitive way;

memory_profiler was used to create a graph of memory allocation over time (see Library
Stability);

I want to emphasize that from the very beginning of the project, my goal was to implement
every aspect of the library from scratch. This includes the settings menu logic, the physics and
mathematics underlying the robot's movement, trajectory generation, and the interactions
between the controller and the interface;

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 6/25

Library Stability
I don’t expect it to be perfect; that’s why I’ve anticipated possible errors and tried to address
them before they occur. However, it’s possible that I may have missed some edge cases, given
that this is a user-interactive library;

For known incorrect inputs, I alert the user with custom exceptions;

I’ve implemented feedback for every part of the code compilation process through informative
messages displayed in the output console. Some of these are 'easter eggs,' but most are meant
to keep the user informed;

To ensure the highest safety for users of my library, I’ve uploaded it to the official PyPi platform,
which is the dedicated Python site for hosting libraries. This means it has undergone a rigorous
validation process, which eliminates any potentially harmful or malicious behavior;

Fig. 1 Security check on PyPi

User security is paramount in the development of high-quality utility software. Therefore, I have
adopted a regular practice of memory allocation analysis in my project to ensure there are no
risks of memory leaks. By using the specialized memory_profiler library, I generated graphs that
highlight memory usage over time;

Clear observations from these graphs, including the one shown in Fig. 2, indicate a stabilization
of memory consumption after the program starts, thus confirming normal operation and the
absence of any memory leaks;

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 7/25

https://pypi.org/

Fig. 2 Memory allocation over time graph

In addition to its rigorous checks, PyPI provides a robust versioning system, which I have also
integrated into my project. I have also implemented a CHANGELOG file on GitHub, detailing the
changes made in each version to inform users about the improvements. Only stable versions are
maintained publicly;

Fig. 3 Versioning system

To manage my work efficiently and organize its distribution over time, I chose to use the Trello
platform. It allows me to track progress and systematically plan future actions;

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 8/25

Fig. 4 Organizing using Trello

Usage
To start using this library in your environment, simply create a new python file and import the library:

import pythfinder

Create a Robot

To enable any robot-visualization elements of the library, you need to create a 'Simulator' object. This
class encapsulates every separate component into one big control center, taking care of the pygame
window display, joystick input, and other pygame events.

sim = pythfinder.Simulator()

This would create a simulator with default constants. To override them, simply create a 'Constants'
object with your desired values and pass it to the constructor:

pass your values here
custom_constants = pythfinder.Constants(...)

sim = pythfinder.Simulator(custom_constants)

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 9/25

Every time you run the simulator, it'll start with your dataset of constants. You'll learn another way to
change constants in the Interface Settings section.

Finally, display your simulation:

while sim.RUNNING():
 sim.update()

Fig. 5 Initial view of the interface

Please note that the coordinate system used is unconventional compared to the standard one. At the
bottom of the simulation window, there are two distinct sets of coordinates displayed. The ones on
the left indicate the cursor's position, while those on the right reflect the actual position of the robot
relative to the simulated environment.

The code runs until you exit the simulation window. Connecting an accepted controller will allow you
to move freely across the field.

Joystick Control

PythFinder is built on top of pygame's functionalities, from which it inherits support for XBOX, PS4,
and PS5 controllers.

Connecting them is as easy as plugging in the USB or connecting it via Bluetooth. The simulator will
recognize it most of the time; otherwise, it'll raise an error.

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 10/25

The controls used to manipulate the simulator are the following:
(the order of buttons is: ps4 / xbox)

△ / Y -- go forwards / backwards (when field centric is on);
□ / X -- enter / exit interface setting menu;
○ / B -- reset robot pose to origin / press buttons (when the menu is activated);
X / A -- show / hide trail;
left bumper -- erase trail / set values to default (when the menu is activated);
right bumper -- when held, enters selection mode;
D-pad -- move through the interface menu / select the robot's orientation (when selection

mode is on);
left joystick -- control robot's linear velocity + angular velocity (when field centric is on);
right joystick -- control angular velocity (ONLY when field centric is off);
options / start -- take a screenshot (found in the 'Screenshots' folder inside the locally

installed library location);

Fig. 6 Movement using a controller

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 11/25

When buttons are pressed, the simulator alerts the user to the changes made using both a pop-up
window with integrated images, created entirely by me, and text messages displayed in the terminal.

The trail left by the robot is managed through separate logic, allowing for the adjustment of both its
color and thickness. It consists of lines drawn between all consecutive positions of the robot.
Additionally, the default settings are configured so that after a short period of inactivity, the trail
begins to fade out gradually automatically, a process that stops when the user moves the robot
again.

The trail is not just a collection of points but is divided into segments. These segments are defined by
the distance between two different positions, a value that can be adjusted by the user. This allows
each segment to have its own color and thickness, which is extremely useful for drawing a complex
scheme, often representing strategies on the playing field.

Feedback?

I’ll pause the technical documentation to share the feedback I received from people to whom I
presented the project:

Presenting in front of the class during physics, both the teacher and classmates remarked, ' It’s
clear that a considerable amount of work has gone into achieving this level of detail and

performance. ' A former student of the high school supported this sentiment: ' I took a quick
look, it seems super professional. '
Speaking with members of other robotics teams from Satu Mare (Perpetuum Mobile), Timișoara
(Cybermoon), and Alba-Iulia (Xeo), they were deeply impressed. A member of the Robocorns
team from Baia Mare even suggested that I implement screen resizing, which I did immediately
afterward. As mentioned earlier, Arra was even enthusiastic about helping out.

Presets

A remarkable innovation introduced by this library is the feature called presets . These allow users to
completely transform the interface's appearance, robot configuration, and chassis type with a single
button press. Users have buttons numbered from 1 to 9 on the keyboard, each intended to apply a
distinct set of constants that adjust the simulation in various ways. The button with the number 0
resets the interface to the default settings.

On top of these predefined options, users have the ability to create their own presets, customized
according to their individual needs and preferences. This functionality adds an extra level of flexibility
and control over how the interface , robot behavior , and simulation parameters are configured.

By default, button 1 displays the latest field from the FLL competition:

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 12/25

Fig. 7 FLL preset

And button 2 displays the latest field from the First Tech Challenge (FTC) competition:

Fig. 8 FTC preset

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 13/25

Trajectory Usage

Ce sunt traiectoriile?
First, we define a specific set of data regarding the robot's position, speed, and distance traveled as a
state of motion.

Multiple states of motion that exhibit certain similarities are referred to as motion segments. These
segments are further categorized based on their complexity. Primitives denote movements with a
single degree of freedom (1D), such as pure rotation, pure linear movement, or even stationary states
(waiting). These primitives serve as building blocks for complex segments, which incorporate two or
more primitives and characterize movements with two or three degrees of freedom, primarily
intended for omnidirectional robots. For For FLL purposes, you'll mostly use primitives, but any
motion segment adapts automatically to the chassis used.

Ultimately, all motion segments and auxiliary elements that perform various functions (e.g., other
motors usage), known as markers, collectively constitute a trajectory .

How to Create Trajectories?
Trajectories are constructed using the 'TrajectoryBuilder' class. This class requires a Simulator object
as a parameter, and optionally, a starting position and a preset to use. By default, the initial
position is set at the origin of the Cartesian coordinate system.

The constructor offers intuitive methods for crafting precise trajectories, incorporating personalised
motion functions. These functions are engineered to accommodate both omnidirectional and
unidirectional robots.

The constructor identifies the type of chassis in use and adjusts the provided functions accordingly,
as certain chassis types may have physical limitations that render some movements impossible. By
default, non-holonomic chassis are tangent to the trajectory, whereas holonomic chassis are given
the option to interpolate orientation.

Here is a list of available motion functions:

wait() ;
inLineCM() ;
turnToDeg() ;
toPoint() or toPointTangentHead() ;
toPose() or toPoseTangentHead() or toPoseLinearHead() ;

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 14/25

What are Markers?
These functionalities can be integrated with markers, facilitating the management of parallel tasks
that are independent of the robots' movement by employing multithreading techniques. Markers
can be configured to activate after a certain time period or distance , either relative to the last
motion function or absolute with respect to the start of the trajectory.

The library also includes special types of markers:

interrupts : Disrupt the trajectory's continuity at the specified moment, based on time or
distance. Think of interrupts as the sudden braking of a car;
dynamic constraints : Allow you to modify portions of the trajectory to operate at different

speeds without sacrificing continuity.

Here is a list of all markers:

interruptTemporal() or interruptDisplacement() ;
addTemporalMarker() or addDisplacementMarker() ;
addRelativeTemporalMarker() or addRelativeDisplacementMarker() ;
addRelativeTemporalConstraints() or addRelativeDisplacementConstraints() ;

Interrupts and Constraints are strictly relative, as we have observed that users find it difficult to
visualize the trajectory segments to which they apply. They modify the trajectory's course itself, as
opposed to markers that call functions and might adversely affect the trajectory's construction.
However, if users request, I will reintroduce these functionalities, as they were included in the library's
initial prototypes.

Markers can also include negative values, which are interpreted as relative to the end of the trajectory
or motion segment, while positive values are interpreted as relative to the beginning of these
elements.

How are Markers processed?
Markers are initially separated into relative and absolute based on the trajectory segment. Those
specified by distance are converted into absolute markers, with negative distances corrected to
positive. The markers are then sorted by priority (constraints, triggers, functions), type (end-time
markers), sign (negative at the end), and value.

The sorted list is divided into distinct groups (constraints, triggers, functions), and each group is
processed separately. Function markers are converted into absolute markers, adjusting negative
distances to positive and converting distances into time units. This results in a final list consisting
solely of absolute time markers and a trajectory modified according to these markers.

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 15/25

Example
After specifying the desired motion, the .build() function must be called to compute the trajectory
values.
Putting it all together, we obtain:

first launch from our Masterpiece code

START_POSE = Pose(-47, 97, -45)
PRESET = 1

trajectory = (TrajectoryBuilder(sim, START_POSE, PRESET)
 .inLineCM(75)
 .addRelativeDisplacementMarker(35, lambda: print('womp womp'))
 .addRelativeDisplacementMarker(-12, lambda: print('motor goes brr'))
 .addRelativeDisplacementConstraints(cm = 30,
 constraints2d = Constraints2D(linear = Constraints(
 vel = 10,
 dec = -50)))
 .addRelativeDisplacementConstraints(cm = 36,
 constraints2d = Constraints2D(linear = Constraints(
 vel = 27.7,
 acc = 35,
 dec = -30)))
 .interruptDisplacement(cm = 66)
 .wait(2600)
 .addRelativeTemporalMarker(-1, lambda: print('motor goes :('))
 .inLineCM(-30)
 .turnToDeg(90)
 .inLineCM(-20)
 .turnToDeg(105)
 .inLineCM(-47)
 .turnToDeg(20)
 .wait(ms = 1200)
 .addRelativeTemporalMarker(0, lambda: print("spin'n'spin'n'spin.."))
 .addRelativeTemporalMarker(-1, lambda: print("the party's over :("))
 .turnToDeg(80)
 .inLineCM(-120)
 .build())

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 16/25

Trajectory Visualisation

After creating your trajectory, call the '.follow()' method and pass the 'Simulator' object to see your
code in action!

This method takes as an optional parameter the following type as a boolean:

perfect = simulator iterates through each motion state and displays the robot in the pre-
calculated position. For this mode, you can also change the step size in which the list is iterated.
A bigger step size means a faster robot on screen.
real = simulator gives the calculated powers to the robot object, which looks exactly like it

would run in real time. This mode is recommended for better visualization.

The last optional parameter is 'wait'. When this boolean is set to True, it waits until the simulator is
fully rendered on the user's screen before proceeding with the trajectory. This is useful when perfect
following and a big step number are set, it makes you be able to see even the start. Our fifth run
looks something like this:

default values
PERFECT_STEPS = 40
PERFECT_FOLLOWING = False
WAIT = True

trajectory.follow(PERFECT_FOLLOWING, WAIT, PERFECT_STEPS)

Fig. 9 Viewing the previous code in Autonomous mode

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 17/25

Velocity Graph

To facilitate the understanding of the 'trajectory' concept, I have implemented an easy-to-use
graphical visualization method for motion profiles.

I truly believe that this library represents one of the best ways to begin learning the concepts used in
industry, aiming to assist and inspire future engineers and programmers!

Calling the .graph() function will display a Matplotlib graph of the velocity and acceleration for the
left and right wheels. There are also optional parameters to display each value separately.
Additionally, users can choose whether they want to view the velocity and acceleration of the wheels
or the chassis.

An interesting aspect is the connect parameter. By default, it is set to True, causing lines to be drawn
between points. Setting it to False reveals discontinuities (in acceleration, as velocity is optimized for
continuity).

default values
CONNECT = True
VELOCITY = True
ACCELERATION = True

trajectory.graph(CONNECT, VELOCITY, ACCELERATION)

Fig. 10 Graph generated using values from the previous code

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 18/25

Generate Velocities

To actually make the robot move like in the simulator, you'll need to transfer the data through a '.txt'
file. This is accomplished with the '.generate()' method. Just pass the text file name / path and the
step size:

STEPS = 6
FILE_NAME = 'test'
WHEEL_SPEEDS = True
SEPARATE_LINES = False

trajectory.generate(FILE_NAME, STEPS, WHEEL_SPEEDS, SEPARATE_LINES)

Fig. 11 Example of generated values for the previous code, with step count = 1

The first line generated includes the times at which the markers should act, in chronological order.
The second line contains the number of steps to skip when inserting values into the text file, and the
last line lists, in order, the following set of data:

The first n values are the speeds for the n wheels of the robot, or the speeds on the X, Y axes,
and rotation axis;
The next value is the angle at which the robot is positioned;
The final value is the number of consecutive occurrences of the current set.

Each data set represents the state of motion in a millisecond, with each sequence being associated
with a time after which it will be selected. You can now copy the .txt file and load it into quick-
start to see it in action!

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 19/25

Interface Settings

There are two main ways you can manipulate your simulator environment through constants.

The first way is to simply pass a new instance of 'Constants' when creating the sim object, changing
any of the following values:

constants.py -- simplification

all modifiable values:
class Constants():
 def __init__(self,
 pixels_to_dec,
 fps,
 robot_img_source,
 robot_scale,
 robot_width,
 robot_height,
 text_color,
 text_font,
 max_trail_len,
 max_trail_segment_len,
 draw_trail_threshold,
 trail_color,
 trail_loops,
 trail_width,
 background_color,
 axis_color,
 grid_color,
 width_percent,
 backing_distance,
 arrow_offset,
 time_until_fade,
 fade_percent,
 real_max_velocity,
 max_power,

 screen_size,
 constraints2d,
 kinematics):
 ...

As described in the Create a Robot section, these changes will be automatically applied at the start of
the simulation. For an in-depth explanation of the constants, see the documentation.

The second way is through the interface menu (NOT FULLY IMPLEMENTED YET) with joystick control.
This is a more 'on-the-go' change and will reset every time you restart the simulator.

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 20/25

Fig. 12 'Other' section in the interface menu

Library Architecture

PythFinder is designed to be modular and incorporates multiple separate packages , each with its
own functionality isolated from the others.

To ensure code readability, I have used enums.

Variable names are descriptive, representing the full names of the objects they refer to.

I have adopted Python programming conventions by prefixing with double underscores (__) the
functions and variables that SHOULD NOT be accessed by users or from outside the class, similar to
private functions .

I have divided the calculation processes into multiple functions, avoiding long code sequences. This
approach facilitates code maintenance and expansion, while also ensuring better organization and
structure.

All these practices contribute to creating robust, easy-to-understand, and user-friendly code.

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 21/25

Fig. 13 File organization schema at the core of the library (partial view of files)

Trapezoidal Profiles

As a bonus for this documentation, I will present my own implementation of trapezoidal profiles
for acceleration limiting, which form the basis of the library's functionality.

Given the distance the robot needs to travel, the target speed, acceleration, deceleration, initial
speed, and final speed, we must analyze each phase of the trajectory: the acceleration phase, the
constant speed phase, and the deceleration phase. To achieve this, we need to determine the
duration of each phase using basic kinematic formulas.

Once we know when to transition to the next phase, we can calculate the robot’s speed for any
millisecond of the trajectory, ensuring smooth and efficient motion. Implementing this algorithm

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 22/25

allows the robot to adhere to all acceleration and deceleration constraints imposed.

There are 2 cases to consider: when the profile is trapezoidal or triangular. We calculate the time
required to reach the desired speed and the time needed to reduce the speed to zero. We then
determine the distance covered during these periods to see if we exceed the total allocated distance.
If we do not exceed the distance, the profile is trapezoidal, and we only need to calculate the
constant speed portion. If we exceed the distance, the profile becomes triangular, and we will need to
recalculate the maximum achievable speed and then adjust the remaining times.

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 23/25

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 24/25

Credits:
libraries used: pygame, matplotlib, pybricks, memory_profiler.
the photo of the robot: studio 2.0
documentation generator: md2pdf
design made with: illustrator
inspiration: roadrunner FTC
font: graffitiyouthregular
images uploaded on: imgbb
fields: reddit

v. 0.0.4-alpha

8/13/24, 5:20 PM PythFinder

https://md2pdf.netlify.app 25/25

https://www.pygame.org/docs/
https://matplotlib.org/stable/
https://pybricks.com/ev3-micropython/startinstall.html
https://pybricks.com/ev3-micropython/startinstall.html
https://www.bricklink.com/v3/studio/download.page
https://md2pdf.netlify.app/
https://www.adobe.com/ro/products/illustrator.html
https://github.com/acmerobotics/road-runner
https://www.dafont.com/graffiti-youth.font
https://imgbb.com/
https://www.reddit.com/r/FLL/comments/168hh95/hires_image_of_the_masterpiece_table_3208px_x/

