
RobotFramework TestsuitesManagement

v. 0.7.2

Mai Dinh Nam Son

13.06.2023

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Description 2

2.1 Meaning of ”Test Suites Management” . 2

2.2 Content of configuration files . 3

2.3 Access to configuration files . 6

2.4 Activation of ”Test Suites Management” . 7

2.5 Variants selection . 8

2.6 Local configuration . 9

2.7 Priority of configuration parameters . 10

2.8 Nested configuration files . 11

2.9 Overwritten parameters . 12

2.10 Tutorials . 13

3 CConfig.py 14

3.1 Function: bundle version . 14

3.2 Class: CConfig . 14

3.2.1 Method: loadCfg . 15

3.2.2 Method: verifyVersion . 15

3.2.3 Method: bValidateMinVersion . 15

3.2.4 Method: bValidateMaxVersion . 16

3.2.5 Method: bValidateSubVersion . 16

3.2.6 Method: tupleVersion . 16

3.2.7 Method: versioncontrol error . 17

4 COnFailureHandle.py 18

4.1 Class: COnFailureHandle . 18

4.1.1 Method: is noney . 18

5 CSetup.py 19

5.1 Class: CSetupKeywords . 19

5.1.1 Keyword: testsuite setup . 19

5.1.2 Keyword: testsuite teardown . 19

5.1.3 Keyword: testcase setup . 19

5.1.4 Keyword: testcase teardown . 20

5.2 Class: CGeneralKeywords . 20

5.2.1 Keyword: get config . 20

5.2.2 Keyword: load json . 20

A

CONTENTS CONTENTS

6 CStruct.py 21

6.1 Class: CStruct . 21

7 Event.py 22

7.1 Class: Event . 22

7.1.1 Method: trigger . 22

8 ScopeEvent.py 23

8.1 Class: ScopeEvent . 23

8.1.1 Method: trigger . 23

8.2 Class: ScopeStart . 23

8.3 Class: ScopeEnd . 23

9 init .py 24

9.1 Function: on . 24

9.2 Function: dispatch . 24

9.3 Function: register event . 24

10 LibListener.py 25

10.1 Class: LibListener . 25

11 init .py 26

11.1 Class: RobotFramework TestsuitesManagement . 26

11.1.1 Method: run keyword . 26

11.1.2 Method: get keyword tags . 26

11.1.3 Method: get keyword documentation . 26

11.1.4 Method: failure occurred . 26

11.2 Class: CTestsuitesCfg . 26

12 Appendix 27

13 History 28

B

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The RobotFramework TestsuitesManagement enables users to define dynamic configuration values within sep-
arate configuration files in JSON format.

These configuration values are available during test execution - but under certain conditions that can be defined by
the user (e.g. to realize a variant handling). This means: Not all parameter values are available during test execution
- only the ones that belong to the current test scenario.

To realize this, the RobotFramework TestsuitesManagement provides the following features:

1. Split all possible configuration values into several JSON configuration files, with every configuration file contains
a specific set of values for configuration parameter

2. Use nested imports of JSON configuration files

3. Follow up definitions in configuration files overwrite previous definitions (of the same parameter)

4. Select between several criteria to let the Robot Framework use a certain JSON configuration file

How to install

The RobotFramework TestsuitesManagement can be installed in two different ways: via PyPi (recommended
for users) and via GitHub (recommended for developers).

Installation details can be found in README

1

https://github.com/test-fullautomation/robotframework-testsuitesmanagement/blob/develop/README.rst

CHAPTER 2. DESCRIPTION

Chapter 2

Description

2.1 Meaning of ”Test Suites Management”

In the scope of the Robot Framework a test suite is either a single robot file containing one or more test cases, or a
set of several robot files.

Usually all test cases of a test suite run under the same conditions - but these conditions may be different. For
example the same test case is used to test several different variants of a system under test. Every variant requires
individual values for certain configuration parameters.

Tests are carried out at several test benches. All test benches have different hardware configurations. Also the different
test benches may require individual values for configuration parameters used in the tests.

Therefore the same tests have to run under different conditions!

The Robot Framework provides several places to define parameters: robot files, resource files, parameter files. But
these parameters are fixed. Therefore we need a more dynamic way of accessing parameters. And we postulate the
following: When switching between tests of several variants and test executions on several test benches, no changes
shall be required within the test code.

The outcome is that another position has to be introduced to store values for variant and test bench specific param-
eters. And a possibility has to be provided to dynamically make either the one or the other set of values vailable
during the execution of tests - depending on outer circumstances like ”which variant?” and ”which test bench?”.
Those dynamic configuration values are stored within separate configuration files in JSON format and the Robot-
Framework TestsuitesManagement makes the values available globally during the test execution.

Two different kinds of JSON configuration files are involved:

1. parameter configuration files

These configuration files contain all parameter definitions (can be more than one configuration file in a project)

2. variant configuration file

This is a single configuration file containing the mapping between the several parameter configuration files and
a name (usually the name of a variant). This name can be used in command line to select a certain parameter
configuration file containing the values for this variant.

Background: It’s easier simply to use a name for referencing a certain variant instead of having the need always
to mention the path and name of a configuration file.

To realize a concrete test suites management for your project, you need to

� identify the parameters that are variant specific, depending on the number of variants in your project,

� identify the parameters that are test bench specific, depending on the number of test benches in your project,

� identify the parameters that are both: variant specific and test bench specific,

� identify the parameters that have the same value in all variants and test benches.

2

CHAPTER 2. DESCRIPTION 2.2. CONTENT OF CONFIGURATION FILES

After this

� for every set of parameters (variant specific and bench specific) you have to introduce a certain parameter
configuration file,

� in the variant configuration file you have to define for every variant a variant name together with the path to
the corresponding parameter configuration file.

Basically all configuration files of the RobotFramework TestsuitesManagement are implemented in JSON for-
mat. This format is extended by some useful features like code comments and imports (nested configuration files).
This is explained in more detail in the following chapters. These features cause deviations from standard JSON format.
To give applications like editors or syntax checkers a chance to handle these deviations (without invalid findings),
all JSON configurations files of the RobotFramework TestsuitesManagement have the extension .jsonp ,

instead of .json .

The content of the configuration files is described in the next section.

2.2 Content of configuration files

1. variant configuration file

This file configures the access to all variant dependent robot_config*.jsonp files.

{
"default": {

"name": "robot_execution_config.jsonp",
"path": ".../config/"

},
"variant_1": {

"name": "robot_config_variant_1.jsonp",
"path": ".../config/"

},
"variant_2": {

"name": "robot_config_variant_2.jsonp",
"path": ".../config/"

},
"variant_3": {

"name": "robot_config_variant_3.jsonp",
"path": ".../config/"

}
}

The example above contains definitions for three variants with names:
variant_1 , variant_2 and variant_3 . Additionally a variant named default is defined. This default
configuration becomes active in case of no certain variant name is provided when the test suite is being executed.

Another aspect is important: the three dots. The path to the robot_config*.jsonp files depends on the test

file location. A different number of ../ is required dependent on the directory depth of the test case location.

Therefore we use here three dots to tell the RobotFramework TestsuitesManagement to search from the test
file location up till the robot_config*.jsonp files are found:

./config/robot_config.jsonp

../config/robot_config.jsonp

../../config/robot_config.jsonp

../../../config/robot_config.jsonp

and so on.

Hint: The paths to the robot_config*.jsonp files are relative to the position of the test suite - and not relative
to the position of the mapping file in which they are defined! You are free to move your test suites one
or more level up or down in the file system, but using the three dots notation enables you to let the position of the
config folder unchanged.

It is of course still possible to use the standard notation for relative paths:

"path": "./config/"

3

CHAPTER 2. DESCRIPTION 2.2. CONTENT OF CONFIGURATION FILES

2. parameter configuration files

In these configuration files all parameters are defined, that shall be available globally during test execution.

Some parameters are required. Optionally the user can add own ones. The following example shows the smallest
version of a parameter configuration file containing only the most important parameters. This version is a default
version and part of the RobotFramework TestsuitesManagement installation.

{
"WelcomeString" : "Hello... Robot Framework is running now!",
"Maximum_version" : "1.0.0",
"Minimum_version" : "0.6.0",
"Project" : "RobotFramework Testsuites",
"TargetName" : "Device_01"

}

Project , WelcomeString and TargetName are simple strings that can be used anyhow. Maximum_version

and Minimum_version are part of a version control mechanism: In case of the version of the currently installed

software is outside the range between Minimum_version and Maximum_version , the test execution stops with
an error message.

What is the meaning of ”currently installed software”?

� The first possibility is that the RobotFramework TestsuitesManagement runs stand-alone, that
means, it is not part of a larger bundle (like the RobotFramework AIO). The installation from PyPi or
GitHub causes such a stand-alone installation. In this case the component version of the RobotFrame-
work TestsuitesManagement itself is used for a version control against Minimum_version and

Maximum_version .

� The second possibility is that the RobotFramework TestsuitesManagement runs as part of the Robot-
Framework AIO. In this case the version of the entire RobotFramework AIO is used for a version control
instead.

The version control mechanism is optional. In case you do not need to have your tests under version control, you can
set the versions to the value null .

"Maximum_version" : null,
"Minimum_version" : null,

As an alternative it is also possible to remove Minimum_version and Maximum_version completely.

In case you define only one single version number, only this version number is considered. The following combination
makes sure, that the installed software at least is of version 0.6.0, but there is no upper version limit:

"Maximum_version" : null,
"Minimum_version" : "0.6.0",

Hint: The parameters are keys of an internal configuration dictionary. They have to be accessed in the following way:

Log Maximum_version : ${CONFIG}[Maximum_version]
Log Project : ${CONFIG}[Project]

The following example is an extended version of a configuration file containing also some user defined parameters.

{
"WelcomeString" : "Hello... Robot Framework is running now!",
"Maximum_version" : "1.0.0",
"Minimum_version" : "0.6.0",
"Project" : "RobotFramework Testsuites",
"TargetName" : "Device_01"
"params": {

// global parameters
"global" : {

"param1" : "ABC",
"param2" : 25

}
}

}

4

CHAPTER 2. DESCRIPTION 2.2. CONTENT OF CONFIGURATION FILES

User defined parameters have to be placed inside params:global . The intermediate level global is introduced

to enable further parameter scopes than global in future.

All user defined parameters have the scope params:global per default. Therefore they can be accessed directly:

Log param1 : ${param1}

And another feature can be seen in the example above:
In the context of the RobotFramework TestsuitesManagement the JSON format is an extended one. Deviating
from JSON standard it is possible to comment out lines with starting them with a double slash // . This allows to
add explanations about the meaning of the defined parameters already within the JSON file.

5

CHAPTER 2. DESCRIPTION 2.3. ACCESS TO CONFIGURATION FILES

2.3 Access to configuration files

With an installed RobotFramework TestsuitesManagement every test execution requires a configuration - that
is the accessibility of a configuration file in JSON format. The RobotFramework TestsuitesManagement pro-
vides four different possibilities - also called level - to realize such an access. These possibilities are sorted and the
RobotFramework TestsuitesManagement tries to access the configuration file in a certain order: Level 1 has
the highest priority and level 4 has the lowest priority.

Level 1

Path and name of a parameter configuration file is provided in command line of the Robot Framework.

Level 2 (recommended)

The name of the variant is provided in command line of the Robot Framework.

This level requires that a variant configuration file is passed to the suite setup of the RobotFrame-
work TestsuitesManagement.

Level 2 includes the automated selection of a default variant (in case of no variant name is provided in command
line). Also this default variant has to be defined within the variant configuration file.

Level 3

TheRobotFramework TestsuitesManagement searches for parameter configuration files within a folder config

in current test suite folder. In case of such a folder exists and parameter configuration files are inside, they will be
used.

Level 4 (unwanted, fallback solution only)

The RobotFramework TestsuitesManagement uses the default configuration file that is part of the installation.

Summary

� With highest priority a parameter configuration file provided in command line, is considered - even in case of
also other configuration files (level 2 - level 4) are available.

� If a parameter configuration file is not provided in command line, but a variant name, then the configuration
belonging to this variant, is loaded - even in case of also other configuration files (level 3 - level 4) are available.

� If nothing is specified in command line, then the RobotFramework TestsuitesManagement tries to find
parameter configuration files within a config folder and take them if available - even in case of also the level
4 configuration file is available.

� In case of the user does not provide any information about parameter configuration files to use, the Robot-
Framework TestsuitesManagement loads the default configuration from installation folder (fallback solu-
tion; level 4).

In this context two aspects are important to know for users:

1. Which parameter configuration file is selected for the test execution?
To answer this question the log file contains the path and the name of the selected parameter configuration file.

2. For which reason is this parameter configuration file selected?
To answer this question the log file also contains the level number. The level number indicates the reason.

With these log file entries the test execution is clearly understandable, traceable and scales for huge test suites.

Why is level 2 the recommended one?

Level 2 is the most flexible and extensible solution. Because the robot files contain a link to a variants configuration
file, the possible sets of parameter values can already be taken out of the code.

The values selected by level 1, you only see in the log files, but not in the code, because the selection happens in
command line only.

Level 3 has a rather strong binding between robot files and configuration files. If you start the test implementation
based on level 3 and after this want to have a variant handling, then you have to switch from level 3 to level 2 - and
this causes effort in implementation.

Wherease if you start with level 2 immediately and need to consider another set of configuration values for the same
tests, then you only have to add another parameter configuration file and another entry in the variants configuration
file, without changing any test implementation.

6

CHAPTER 2. DESCRIPTION 2.4. ACTIVATION OF ”TEST SUITES MANAGEMENT”

We strongly recommend not to mix up several different configuration levels in one project!

2.4 Activation of ”Test Suites Management”

To activate the test suites management you have to import the RobotFramework TestsuitesManagement library
in the following way:

Library RobotFramework_TestsuitesManagement WITH NAME tm

We recommend to use the WITH NAME option to shorten the robot code a little bit.

The next step is to call the testsuite_setup of the RobotFramework TestsuitesManagement within the

Suite Setup of your test:

Suite Setup tm.testsuite_setup

As long as you

� do not provide a parameter configuration file in command line when executing the test suite (level 1),

� do not provide a variants configuration file as parameter of the testsuite_setup (level 2),

� do not have a config folder containing parameter configuration files in your test suites folder (level 3),

the RobotFramework TestsuitesManagement falls back to the default configuration (level 4).

In case you want to realize a variant handling you have to provide the path and the name of a variants configuration
file to the testsuite_setup :

Suite Setup tm.testsuite_setup ./config/exercise_variants.jsonp

To ease the analysis of a test execution, the log file contains informations about the selected level and the path and
the name of the used configuration file, for example:

Running with configuration level: 2
CfgFile Path: ./config/exercise_config.jsonp

Please consider: The testsuite_setup requires a variants configuration file (in the example above:

exercise_variants.jsonp) - whereas the log file contains the resulting parameter configuration file (in

the example above: exercise_config.jsonp), that is selected depending on the name of the variant provided in
command line of the Robot Framework.

7

CHAPTER 2. DESCRIPTION 2.5. VARIANTS SELECTION

2.5 Variants selection

In a previous section the level concept for configuration files has been explained. This section contains corresponding
code examples.

1. Selection of a certain parameter configuration file in command line

--variable config_file:"(path to parameter configuration file)"

2. Selection of a certain variant per name in command line

--variable variant:"(variant name)"

3. Parameter configuration taken from config folder

This config folder has to be placed in the same folder than the test suites.

Parameter configuration files within this folder are considered under two different conditions:

� The configuration file has the name robot_config.jsonp . That is a fix name predefined by the Robot-
Framework TestsuitesManagement.

� The configuration file has the same name than a robot file inside the test suites folder, e.g.:

– Name of test suite file: example.robot

– Path and name of corresponding parameter configuration file: ./config/example.jsonp

With this rule it is possible to give every test suite in a certain folder an own individual configuration.

8

CHAPTER 2. DESCRIPTION 2.6. LOCAL CONFIGURATION

2.6 Local configuration

It might be required to execute tests on several different test benches with every test bench has it’s own individual
hardware that might require configuration parameter values that are test bench specific. This can be related to
common configuration parameters and also to parameters that are variant specific. In the second case a configuration
parameter is both variant specific and test bench specific.

The local configuration feature of the RobotFramework TestsuitesManagement provides the possibility to define
test bench specific configuration parameter values.

The meaning of local in this context is: placed on a certain test bench - and valid for this bench only.

Also this local configuration is based on configuration files in JSON format. These files are the last ones that are
considered when the configuration is loaded. The outcome is that it is possible to define default values for test bench
specific parameters in other configuration files - to be also test bench independent. And it is possible to use the local
configuration to overwrite these default values with values that are specific for a certain test bench.

Important:

� Local configuration files are fragments only - and not a full configuration! Even so they need to follow the JSON
syntax rules. This means, at least they have to start with an opening curly bracket and they have to end with
a closing curly bracket.

� Local configuration files must not contain the mandatory top level parameters like the WelcomeString and
others.

Using the local configuration feature is an option and the RobotFramework TestsuitesManagement provides
two ways to realize it:

1. per command line

Path and name of the local parameter configuration file is provided in command line of the Robot Framework
with the following syntax:

--variable local_config:"(path to local configuration file)"

2. per environment variable

An environment variable named ROBOT_LOCAL_CONFIG exists and contains path and name of a local parameter
configuration file.

The user has to create this environment variable!

This mechanism allows a user - without any command line extensions - automatically to refer on every test
bench to an individual local configuration, simply by giving on every test bench this environment variable an
individual value.

The command line has a higher priority than the environment variable. If both is available the local configuration is
taken from command line.

Recommendation: To avoid an accidental overwriting of local configuration files in version control systems we recom-
mend to give those files names that are test bench specific.

9

CHAPTER 2. DESCRIPTION 2.7. PRIORITY OF CONFIGURATION PARAMETERS

2.7 Priority of configuration parameters

In previous sections the level concept has been explained. This concept introduces four levels of priority that define,
which of the possible sources of configuration parameters are processed. But there are other rules involved that
influence the priority:

� The local configuration has higher priority than other parameter configurations

� The command line has higher priority than definitions within configuration files

Already in command line we have several possibilities to make settings:

� Set a parameter configuration file (with RobotFramework TestsuitesManagement command line variable
config_file , level 1)

� Set a variant name (with RobotFramework TestsuitesManagement command line variable variant ,
level 2)

� Set a local configuration (with RobotFramework TestsuitesManagement command line variable
local_config)

� Set any other variables (directly with Robot Framework command line variable --variable)

And it is possible that in all four use cases the same parameters are used. Or in other words: It is possible to use
the --variable mechanism to define a parameter that is also defined within a parameter configuration or within
a local configuration - or in both together.

Finally this is the order of processing (with highest priority first):

1. Single command line variable (--variable)

2. Local configuration (local_config)

3. Variant specific configuration (config_file or variant)

Meaning:

1. Variant specific configuration is overwritten by local configuration

2. Local configuration is overwritten by single command line variable

What happens in case of a command line contains both a config_file and a variant ?

config_file is level 1 and variant is level 2. Level 1 has higher priority than level 2. Therefore config_file

is the valid one. This does not mean that config_file overwrites variant ! In case of a certain level is identified

(here: level 1), all other levels are ignored. The outcome is that - in this example - the variant has no meaning.
Between different levels there is an either or relationship. And that is the reason for that it makes no sense to define
both in command line, a config_file and a variant . The RobotFramework TestsuitesManagement
throws an error in this case.

But when additionally --variable is used to define a new value for a parameter that is already defined in one of
the involved configuration files, then the configuration file value is overwritten by the command line value.

And even this is not all. The Robot Framework provides further possibilities to define parameters in com-
mand line, e.g. by --variablefile . --variable and --variablefile are Robot Framework

mechanisms to define parameters, whereas config_file and local_config are corresponding RobotFrame-
work TestsuitesManagement mechanisms.

The rules behind all are: --variable overrules --variablefile . Robot Framework mechanisms overrule
RobotFramework TestsuitesManagement mechanisms.

To avoid the things becoming too much complicated, we urgently recommend not to mixup both mechanisms to define
different values for the same parameters (but to overwrite only a single variable with --variable might be OK).

10

CHAPTER 2. DESCRIPTION 2.8. NESTED CONFIGURATION FILES

2.8 Nested configuration files

In case of a project requires more and more parameters, it makes sense to split the growing configuration file into
smaller ones.

This means, at first we have to split all configuration parameters in

1. parameters that are specific for a certain variant,

2. common parameters that have the same value for all variants

Placing those common parameters in every single variant specific parameter configuration file would create a lot of
redundancy. This would also complicate the maintenance.

The solution is to use the variant specific configuration files only for variant specific parameters and to put all common
parameters in a separate configuration file. This common parameter file has to be imported in every variant specific
parameter file.

The outcome is that still with the selection of a certain variant specific parameter file both types of parameters are
available: the variant specific ones and the common ones.

This can be done in the following way:

For example we have the following variant specific configuration files:

config/config_variant1.jsonp
config/config_variant2.jsonp

Additionaly we have a configuration file with common parameters:

config/config_common.jsonp

The import of config_common.jsonp into config_variant1.jsonp and into config_variant2.jsonp is
possible in the following way:

"params" : {
"global": {

"[import]" : "./config_common.jsonp",
"teststring" : "variant specific value"

}
}

The key [import] indicates the import of another configuration file. The value of the key is the path and name
of this file.

Imports can be nested. An imported configuration file is allowed to contain imports also.

The content of the importing file and the content of all imported files are merged. In case of duplicate parameter
names follow up definitions overwrite previous definitions of the same parameter!

Important:

� All imported configuration files are fragments only - and not a full configuration! Even so they need to follow
the JSON syntax rules. This means, at least they have to start with an opening curly bracket and they have to
end with a closing curly bracket.

� Imported configuration files must not contain the mandatory top level parameters like the WelcomeString

and others.

11

CHAPTER 2. DESCRIPTION 2.9. OVERWRITTEN PARAMETERS

2.9 Overwritten parameters

Summarized the RobotFramework TestsuitesManagement provides three different types of parameter configu-
ration files to define parameters:

1. A full standard parameter configuration file containing at least the mandatory parameters and - as option - also
user defined parameters

2. A parameter configuration file fragment that is imported in other configuration files by the [import] key

3. A local parameter configuration file that is also a fragment only, and accessed either by command line or
environment variable

All types of configuration file can be used

1. to define new parameters

2. to overwrite already existing parameters

This possibility only belongs to user defined parameters with scope params:global !

Example:

1. Define a new parameter:

"params" : {
"global": {

"teststring" : "initial value"
}

}

2. Overwrite an already existing parameter:

To overwrite a parameter is - after the initial definition - possible at any follow up position

� in the same configuration file or

� in other configuration files like the imported ones or

� in a local configuration file

With the following syntax:

${params}['global']['teststring'] : "new value"

The resulting value of a parameter at the end depends on the priority (computation order) described in previous
sections of this description.

12

CHAPTER 2. DESCRIPTION 2.10. TUTORIALS

2.10 Tutorials

What is described up to here can be experienced in the tutorial 900_building_testsuites .

It is also recommended to take a look at the tutorial 100_variables_and_datatypes . This tutorial goes more
into detail about data types and explaines how to handle also other data types like strings in configuration files of
the RobotFramework TestsuitesManagement.

13

CHAPTER 3. CCONFIG.PY

Chapter 3

CConfig.py

3.1 Function: bundle version

This function prints out the package version which is:

- RobotFramework TestsuitesManagement version when this module is installed stand-alone (via pip or directly from
sourcecode)

- RobotFramework AIO version when this module is bundled with RobotFramework AIO package

Arguments:

� No input parameter is required

Returns:

� No return variable

3.2 Class: CConfig

Imported by :

from RobotFramework TestsuitesManagement.Config.CConfig import CConfig

Defines the properties of configuration and holds the identified config files.

The loading configuration method is divided into 4 levels, level1 has the highest priority, Level4 has the lowest priority.

Level1: Handed over by command line argument

Level2: Read from content of json config file

{
"default": {

"name": "robot config.jsonp",
"path": ".../config/"

},
"variant 0": {

"name": "robot config.jsonp",
"path": ".../config/"

},
"variant 1": {

"name": "robot config variant 1.jsonp",
"path": ".../config/"

},
...
...

}

14

CHAPTER 3. CCONFIG.PY 3.2. CLASS: CCONFIG

According to the ConfigName, RobotFramework TestsuitesManagement will choose the corre-
sponding config file. ".../config/" indicats the relative path to json config file, RobotFrame-
work TestsuitesManagement will recursively find the config folder.

Level3: Read in testsuite folder: /config/robot config.jsonp

Level4: Read from RobotFramework AIO installation folder:

/RobotFramework/defaultconfig/robot config.jsonp

3.2.1 Method: loadCfg

This loadCfg method uses to load configuration’s parameters from json files.

Arguments:

� No input parameter is required

Returns:

� No return variable

3.2.2 Method: verifyVersion

This verifyVersion validates the current package version with maximum and minimum version (if provided in the
configuration file).

The package version is:

- RobotFramework TestsuitesManagement version when this module is installed stand-alone (via pip or directly from
sourcecode)

- RobotFramework AIO version when this module is bundled with RobotFramework AIO package

In case the current version is not between min and max version, then the execution of testsuite is terminated with
”unknown” state

Arguments:

� No input parameter is required

Returns:

� No return variable

3.2.3 Method: bValidateMinVersion

This bValidateMinVersion validates the current version with required minimun version.

Arguments:

� tCurrentVersion

/ Condition: required / Type: tuple /

Current package version.

� tMinVersion

/ Condition: required / Type: tuple /

The minimum version of package.

Returns:

� True or False

15

CHAPTER 3. CCONFIG.PY 3.2. CLASS: CCONFIG

3.2.4 Method: bValidateMaxVersion

This bValidateMaxVersion validates the current version with required minimun version.

Arguments:

� tCurrentVersion

/ Condition: required / Type: tuple /

Current package version.

� tMinVersion

/ Condition: required / Type: tuple /

The minimum version of package.

Returns:

� True or False

3.2.5 Method: bValidateSubVersion

This bValidateSubVersion validates the format of provided sub version and parse it into sub tuple for version com-
parision.

Arguments:

� sVersion

/ Condition: required / Type: string /

The version of package.

Returns:

� lSubVersion

/ Type: tuple /

3.2.6 Method: tupleVersion

This tupleVersion returns a tuple which contains the (major, minor, patch) version.

In case minor/patch version is missing, it is set to 0. E.g: ”1” is transformed to ”1.0.0” and ”1.1” is transformed to
”1.1.0”

This tupleVersion also support version which contains Alpha (a), Beta (b) or Release candidate (rc): E.g: ”1.2rc3”,
”1.2.1b1”, ...

Arguments:

� sVersion

/ Condition: required / Type: string /

The version of package.

Returns:

� lVersion

/ Type: tuple /

A tuple which contains the (major, minor, patch) version.

16

CHAPTER 3. CCONFIG.PY 3.2. CLASS: CCONFIG

3.2.7 Method: versioncontrol error

Wrapper version control error log:

Log error message of version control due to reason and set to unknown state.

Arguments:

� reason

/ Condition: required / Type: string /

reason can only be conflict min, conflict max and wrong minmax.

� version1

/ Condition: required / Type: string /

� version2

/ Condition: required / Type: string /

Returns:

� No return variable

17

CHAPTER 4. CONFAILUREHANDLE.PY

Chapter 4

COnFailureHandle.py

4.1 Class: COnFailureHandle

Imported by :

from RobotFramework TestsuitesManagement.Keywords.COnFailureHandle import
COnFailureHandle↪→

4.1.1 Method: is noney

18

CHAPTER 5. CSETUP.PY

Chapter 5

CSetup.py

5.1 Class: CSetupKeywords

Imported by :

from RobotFramework TestsuitesManagement.Keywords.CSetup import CSetupKeywords

This CSetupKeywords class uses to define the setup keywords which are using in suite setup and teardown of robot
test script.

Testsuite Setup keyword loads the RobotFramework AIO configuration, checks the version of RobotFramework
AIO, and logs out the basic information of the robot run.

Testsuite Teardown keyword currently do nothing, it’s defined here for future requirements.

Testcase Setup keyword currently do nothing, it’s defined here for future requirements.

Testcase Teardown keyword currently do nothing, it’s defined here for future requirements.

5.1.1 Keyword: testsuite setup

This testsuite setup defines the Testsuite Setup which is used to loads the RobotFramework AIO configuration,
checks the version of RobotFramework AIO, and logs out the basic information of the robot run.

Arguments:

� sTestsuiteCfgFile

/ Condition: required / Type: string /

sTestsuiteCfgFile='' and variable config file is not set RobotFramework AIO will check for config-
uration level 3, and level 4.

sTestsuiteCfgFile is set with a <json config file path> and variable config file is not set RobotFrame-
work AIO will load configuration level 2.

Returns:

� No return variable

5.1.2 Keyword: testsuite teardown

This testsuite teardown defines the Testsuite Teardown keyword, currently this keyword does nothing, it’s defined
here for future requirements.

5.1.3 Keyword: testcase setup

This testcase setup defines the Testcase Setup keyword, currently this keyword does nothing, it’s defined here for
future requirements.

19

CHAPTER 5. CSETUP.PY 5.2. CLASS: CGENERALKEYWORDS

5.1.4 Keyword: testcase teardown

This testcase teardown defines the Testcase Teardown keyword, currently this keyword does nothing, it’s defined
here for future requirements.

5.2 Class: CGeneralKeywords

Imported by :

from RobotFramework TestsuitesManagement.Keywords.CSetup import CGeneralKeywords

This CGeneralKeywords class defines the keywords which will be using in RobotFramework AIO test script.

Get Config keyword gets the current config object of robot run.

Load Json keyword loads json file then return json object.

In case new robot keyword is required, it will be defined and implemented in this class.

5.2.1 Keyword: get config

This get config defines the Get Config keyword gets the current config object of RobotFramework AIO.

Arguments:

� No parameter is required

Returns:

� oConfig.oConfigParams

/ Type: json /

5.2.2 Keyword: load json

Loads a json file and returns a json object.

Arguments:

� jsonfile

/ Condition: required / Type: string /

The path of Json configuration file.

� level

/ Condition: required / Type: int /

Level = 1 -> loads the content of jsonfile.

level != 1 -> loads the json file which is set with variant (likes loading config level2)

Returns:

� oJsonData

/ Type: json /

20

CHAPTER 6. CSTRUCT.PY

Chapter 6

CStruct.py

6.1 Class: CStruct

Imported by :

from RobotFramework TestsuitesManagement.Utils.CStruct import CStruct

This CStruct class creates the given attributes dynamically at runtime.

21

CHAPTER 7. EVENT.PY

Chapter 7

Event.py

7.1 Class: Event

Imported by :

from RobotFramework TestsuitesManagement.Utils.Events.Event import Event

7.1.1 Method: trigger

22

CHAPTER 8. SCOPEEVENT.PY

Chapter 8

ScopeEvent.py

8.1 Class: ScopeEvent

Imported by :

from RobotFramework TestsuitesManagement.Utils.Events.ScopeEvent import ScopeEvent

8.1.1 Method: trigger

8.2 Class: ScopeStart

Imported by :

from RobotFramework TestsuitesManagement.Utils.Events.ScopeEvent import ScopeStart

8.3 Class: ScopeEnd

Imported by :

from RobotFramework TestsuitesManagement.Utils.Events.ScopeEvent import ScopeEnd

23

CHAPTER 9. INIT .PY

Chapter 9

init .py

9.1 Function: on

9.2 Function: dispatch

9.3 Function: register event

24

CHAPTER 10. LIBLISTENER.PY

Chapter 10

LibListener.py

10.1 Class: LibListener

Imported by :

from RobotFramework TestsuitesManagement.Utils.LibListener import LibListener

This LibListener class defines the hook methods.

� start suite hooks to every starting testsuite of robot run.

� end suite hooks to every ending testsuite of robot run.

� start test hooks to every starting test case of robot run.

� end test hooks to every ending test case of robot run.

25

CHAPTER 11. INIT .PY

Chapter 11

init .py

11.1 Class: RobotFramework TestsuitesManagement

Imported by :

from RobotFramework TestsuitesManagement. init import
RobotFramework TestsuitesManagement↪→

11.1.1 Method: run keyword

11.1.2 Method: get keyword tags

11.1.3 Method: get keyword documentation

11.1.4 Method: failure occurred

11.2 Class: CTestsuitesCfg

Imported by :

from RobotFramework TestsuitesManagement. init import CTestsuitesCfg

26

CHAPTER 12. APPENDIX

Chapter 12

Appendix

About this package:

Table 12.1: Package setup

Setup parameter Value

Name RobotFramework TestsuitesManagement

Version 0.7.2

Date 13.06.2023

Description Functionality to manage RobotFramework testsuites

Package URL robotframework-testsuitesmanagement

Author Mai Dinh Nam Son

Email son.maidinhnam@vn.bosch.com

Language Programming Language :: Python :: 3

License License :: OSI Approved :: Apache Software License

OS Operating System :: OS Independent

Python required >=3.0

Development status Development Status :: 4 - Beta

Intended audience Intended Audience :: Developers

Topic Topic :: Software Development

27

https://github.com/test-fullautomation/robotframework-testsuitesmanagement
mailto:son.maidinhnam@vn.bosch.com

CHAPTER 13. HISTORY

Chapter 13

History

0.1.0 06/2022

Initial version

0.2.2 07/2022

Created documentation and updated message logs

0.3.0 07/2022

Added local configuration feature; documentation rework

0.4.0 03/2023

Maintenance of log output; maintenance of JSON schema validation of config-
uration file

0.7.1 05/2023

Introduce package context which allows RobotFrame-
work TestsuitesManagement work in many contexts:
- stand-alone
- as part of RobotFramework AIO package

RobotFramework TestsuitesManagement.pdf

Created at 13.06.2023 - 14:59:39

by GenPackageDoc v. 0.40.3

28

	1 Introduction
	2 Description
	2.1 Meaning of "Test Suites Management"
	2.2 Content of configuration files
	2.3 Access to configuration files
	2.4 Activation of "Test Suites Management"
	2.5 Variants selection
	2.6 Local configuration
	2.7 Priority of configuration parameters
	2.8 Nested configuration files
	2.9 Overwritten parameters
	2.10 Tutorials

	3 CConfig.py
	3.1 Function: bundle_version
	3.2 Class: CConfig
	3.2.1 Method: loadCfg
	3.2.2 Method: verifyVersion
	3.2.3 Method: bValidateMinVersion
	3.2.4 Method: bValidateMaxVersion
	3.2.5 Method: bValidateSubVersion
	3.2.6 Method: tupleVersion
	3.2.7 Method: versioncontrol_error

	4 COnFailureHandle.py
	4.1 Class: COnFailureHandle
	4.1.1 Method: is_noney

	5 CSetup.py
	5.1 Class: CSetupKeywords
	5.1.1 Keyword: testsuite_setup
	5.1.2 Keyword: testsuite_teardown
	5.1.3 Keyword: testcase_setup
	5.1.4 Keyword: testcase_teardown

	5.2 Class: CGeneralKeywords
	5.2.1 Keyword: get_config
	5.2.2 Keyword: load_json

	6 CStruct.py
	6.1 Class: CStruct

	7 Event.py
	7.1 Class: Event
	7.1.1 Method: trigger

	8 ScopeEvent.py
	8.1 Class: ScopeEvent
	8.1.1 Method: trigger

	8.2 Class: ScopeStart
	8.3 Class: ScopeEnd

	9 __init__.py
	9.1 Function: on
	9.2 Function: dispatch
	9.3 Function: register_event

	10 LibListener.py
	10.1 Class: LibListener

	11 __init__.py
	11.1 Class: RobotFramework_TestsuitesManagement
	11.1.1 Method: run_keyword
	11.1.2 Method: get_keyword_tags
	11.1.3 Method: get_keyword_documentation
	11.1.4 Method: failure_occurred

	11.2 Class: CTestsuitesCfg

	12 Appendix
	13 History

