1 """
2 Rogue-like map utilitys such as line-of-sight, field-of-view, and path-finding.
3
4 """
5 import ctypes as _ctypes
6 import itertools as _itertools
7 import math as _math
8
9 import tdl as _tdl
10 from .__tcod import _lib, _PATHCALL
11 from . import __style as _style
12
13 _FOVTYPES = {'BASIC' : 0, 'DIAMOND': 1, 'SHADOW': 2, 'RESTRICTIVE': 12, 'PERMISSIVE': 11}
14
16 "Return a FOV from a string"
17 oldFOV = fov
18 fov = str(fov).upper()
19 if fov in _FOVTYPES:
20 return _FOVTYPES[fov]
21 if fov[:10] == 'PERMISSIVE' and fov[10].isdigit() and fov[10] != '9':
22 return 4 + int(fov[10])
23 raise _tdl.TDLError('No such fov option as %s' % oldFOV)
24
26 """A* pathfinder
27
28 Using this class requires a callback detailed in L{AStar.__init__}
29 """
30
31 __slots__ = ('_as_parameter_', '_callback', '__weakref__')
32
33 - def __init__(self, width, height, callback,
34 diagnalCost=_math.sqrt(2), advanced=False):
35 """Create an A* pathfinder using a callback.
36
37 Before crating this instance you should make one of two types of
38 callbacks:
39 - A function that returns the cost to move to (x, y)
40 or
41 - A function that returns the cost to move between
42 (destX, destY, sourceX, sourceY)
43 If path is blocked the function should return zero or None.
44 When using the second type of callback be sure to set advanced=True
45
46 @type width: int
47 @param width: width of the pathfinding area in tiles
48 @type height: int
49 @param height: height of the pathfinding area in tiles
50
51 @type callback: function
52 @param callback: A callback taking parameters depending on the setting
53 of 'advanced' and returning the cost of
54 movement for an open tile or zero for a
55 blocked tile.
56
57 @type diagnalCost: float
58 @param diagnalCost: Multiplier for diagonal movement.
59
60 Can be set to zero to disable diagonal movement
61 entirely.
62
63 @type advanced: boolean
64 @param advanced: A simple callback with 2 positional parameters may not
65 provide enough information. Setting this to True will
66 call the callback with 2 additional parameters giving
67 you both the destination and the source of movement.
68
69 When True the callback will need to accept
70 (destX, destY, sourceX, sourceY) as parameters.
71 Instead of just (destX, destY).
72
73 """
74 if not diagnalCost:
75 diagnalCost = 0.0
76 if advanced:
77 def newCallback(sourceX, sourceY, destX, destY, null):
78 pathCost = callback(destX, destY, sourceX, sourceY)
79 if pathCost:
80 return pathCost
81 return 0.0
82 else:
83 def newCallback(sourceX, sourceY, destX, destY, null):
84 pathCost = callback(destX, destY)
85 if pathCost:
86 return pathCost
87 return 0.0
88 self._callback = _PATHCALL(newCallback)
89 """A CFUNCTYPE callback to be kept in memory."""
90 self._as_parameter_ = _lib.TCOD_path_new_using_function(width, height,
91 self._callback, None, diagnalCost)
92
94 _lib.TCOD_path_delete(self)
95
96 - def getPath(self, origX, origY, destX, destY):
97 """
98 Get the shortest path from origXY to destXY.
99
100 @rtype: [(x, y), ...]
101 @return: Returns a list walking the path from origXY to destXY.
102 This excludes the starting point and includes the destination.
103
104 If no path is found then an empty list is returned.
105 """
106 found = _lib.TCOD_path_compute(self, origX, origY, destX, destY)
107 if not found:
108 return []
109 x, y = _ctypes.c_int(), _ctypes.c_int()
110 xRef, yRef = _ctypes.byref(x), _ctypes.byref(y)
111 recalculate = _ctypes.c_bool(True)
112 path = []
113 while _lib.TCOD_path_walk(self, xRef, yRef, recalculate):
114 path.append((x.value, y.value))
115 return path
116
117 -def quick_fov(x, y, callback, fov='PERMISSIVE', radius=7.5, lightWalls=True, sphere=True):
118 """All field-of-view functionality in one call.
119
120 Before using this call be sure to make a function, lambda, or method that takes 2
121 positional parameters and returns True if light can pass through the tile or False
122 for light-blocking tiles and for indexes that are out of bounds of the
123 dungeon.
124
125 This function is 'quick' as in no hassle but can quickly become a very slow
126 function call if a large radius is used or the callback provided itself
127 isn't optimized.
128
129 Always check if the index is in bounds both in the callback and in the
130 returned values. These values can go into the negatives as well.
131
132 @type x: int
133 @param x: x center of the field-of-view
134 @type y: int
135 @param y: y center of the field-of-view
136 @type callback: function
137 @param callback: This should be a function that takes two positional arguments x,y
138 and returns True if the tile at that position is transparent
139 or False if the tile blocks light or is out of bounds.
140 @type fov: string
141 @param fov: The type of field-of-view to be used. Available types are:
142
143 'BASIC', 'DIAMOND', 'SHADOW', 'RESTRICTIVE', 'PERMISSIVE',
144 'PERMISSIVE0', 'PERMISSIVE1', ..., 'PERMISSIVE8'
145 @type radius: float
146 @param radius: Raduis of the field-of-view.
147
148 When sphere is True a floating point can be used to fine-tune
149 the range. Otherwise the radius is just rounded up.
150
151 Be careful as a large radius has an exponential affect on
152 how long this function takes.
153 @type lightWalls: boolean
154 @param lightWalls: Include or exclude wall tiles in the field-of-view.
155 @type sphere: boolean
156 @param sphere: True for a spherical field-of-view. False for a square one.
157
158 @rtype: set((x, y), ...)
159 @return: Returns a set of (x, y) points that are within the field-of-view.
160 """
161 trueRadius = radius
162 radius = int(_math.ceil(radius))
163 mapSize = radius * 2 + 1
164 fov = _get_fov_type(fov)
165
166 setProp = _lib.TCOD_map_set_properties
167 inFOV = _lib.TCOD_map_is_in_fov
168
169 cTrue = _ctypes.c_bool(1)
170 cFalse = _ctypes.c_bool(False)
171 tcodMap = _lib.TCOD_map_new(mapSize, mapSize)
172 try:
173
174 for (x_, cX), (y_, cY) in _itertools.product(((i, _ctypes.c_int(i)) for i in range(mapSize)),
175 ((i, _ctypes.c_int(i)) for i in range(mapSize))):
176
177 pos = (x_ + x - radius,
178 y_ + y - radius)
179 transparent = bool(callback(*pos))
180 setProp(tcodMap, cX, cY, transparent, cFalse)
181
182
183 _lib.TCOD_map_compute_fov(tcodMap, radius, radius, radius, lightWalls, fov)
184 touched = set()
185 for (x_, cX),(y_, cY) in _itertools.product(((i, _ctypes.c_int(i)) for i in range(mapSize)),
186 ((i, _ctypes.c_int(i)) for i in range(mapSize))):
187 if sphere and _math.hypot(x_ - radius, y_ - radius) > trueRadius:
188 continue
189 if inFOV(tcodMap, cX, cY):
190 touched.add((x_ + x - radius, y_ + y - radius))
191 finally:
192 _lib.TCOD_map_delete(tcodMap)
193 return touched
194
196 """
197 Iterate over points in a bresenham line.
198
199 Implementation hastily copied from RogueBasin.
200
201 @return: Returns an iterator of (x, y) points.
202 """
203 points = []
204 issteep = abs(y2-y1) > abs(x2-x1)
205 if issteep:
206 x1, y1 = y1, x1
207 x2, y2 = y2, x2
208 rev = False
209 if x1 > x2:
210 x1, x2 = x2, x1
211 y1, y2 = y2, y1
212 rev = True
213 deltax = x2 - x1
214 deltay = abs(y2-y1)
215 error = int(deltax / 2)
216 y = y1
217 ystep = None
218 if y1 < y2:
219 ystep = 1
220 else:
221 ystep = -1
222 for x in range(x1, x2 + 1):
223 if issteep:
224 points.append((y, x))
225 else:
226 points.append((x, y))
227 error -= deltay
228 if error < 0:
229 y += ystep
230 error += deltax
231
232 if rev:
233 points.reverse()
234 return iter(points)
235
236 __all__ = [_var for _var in locals().keys() if _var[0] != '_']
237
238 quickFOV = _style.backport(quick_fov)
239