Coverage for pygeodesy/vector3d.py: 97%

235 statements  

« prev     ^ index     » next       coverage.py v7.2.2, created at 2024-06-10 14:08 -0400

1 

2# -*- coding: utf-8 -*- 

3 

4u'''Extended 3-D vector class L{Vector3d} and functions. 

5 

6Function L{intersection3d3}, L{intersections2}, L{parse3d}, L{sumOf}, 

7L{trilaterate2d2} and L{trilaterate3d2}. 

8''' 

9 

10from pygeodesy.constants import EPS, EPS0, EPS1, EPS4, INT0, isnear0, \ 

11 _0_0, _1_0 

12from pygeodesy.errors import IntersectionError, _ValueError, VectorError, \ 

13 _xattr, _xError, _xkwds, _xkwds_get, _xkwds_item2 

14from pygeodesy.fmath import euclid, fabs, fdot, hypot, sqrt, fsum1_ 

15# from pygeodesy.fsums import fsum1_ # from .fmath 

16# from pygeodesy.formy import _radical2 # in _intersects2 below 

17from pygeodesy.interns import _COMMA_, _concentric_, _intersection_, \ 

18 _near_, _negative_, _no_, _too_ 

19from pygeodesy.iters import PointsIter, Fmt 

20from pygeodesy.lazily import _ALL_DOCS, _ALL_LAZY, _ALL_MODS as _MODS 

21from pygeodesy.named import _name__, _name2__, _xnamed, _xotherError 

22from pygeodesy.namedTuples import Intersection3Tuple, NearestOn2Tuple, \ 

23 NearestOn6Tuple, Vector3Tuple # Vector4Tuple 

24# from pygeodesy.nvectorBase import _nsumOf # _MODS 

25# from pygeodesy.streprs import Fmt # from .iters 

26from pygeodesy.units import _fi_j2, _isDegrees, Radius, Radius_ 

27from pygeodesy.utily import atan2b, sincos2d 

28# import pygeodesy.vector2d as _vector2d # _MODS.into 

29from pygeodesy.vector3dBase import Vector3dBase 

30 

31# from math import fabs, sqrt # from .fmath 

32 

33__all__ = _ALL_LAZY.vector3d 

34__version__ = '24.06.06' 

35 

36_vector2d = _MODS.into(vector2d=__name__) 

37 

38 

39class Vector3d(Vector3dBase): 

40 '''Extended 3-D vector. 

41 

42 In a geodesy context, these may be used to represent: 

43 - n-vector, the normal to a point on the earth's surface 

44 - Earth-Centered, Earth-Fixed (ECEF) cartesian (== spherical n-vector) 

45 - great circle normal to the vector 

46 - motion vector on the earth's surface 

47 - etc. 

48 ''' 

49 

50 def bearing(self, useZ=True): 

51 '''Get this vector's "bearing", the angle off the +Z axis, clockwise. 

52 

53 @kwarg useZ: If C{True}, use the Z component, otherwise ignore the 

54 Z component and consider the +Y as the +Z axis. 

55 

56 @return: Bearing (compass C{degrees}). 

57 ''' 

58 x, y = self.x, self.y 

59 if useZ: 

60 x, y = hypot(x, y), self.z 

61 return atan2b(x, y) 

62 

63 def circin6(self, point2, point3, eps=EPS4): 

64 '''Return the radius and center of the I{inscribed} aka I{In- circle} 

65 of a (3-D) triangle formed by this and two other points. 

66 

67 @arg point2: Second point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

68 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

69 @arg point3: Third point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

70 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

71 @kwarg eps: Tolerance for function L{pygeodesy.trilaterate3d2} if 

72 C{B{useZ} is True} otherwise L{pygeodesy.trilaterate2d2}. 

73 

74 @return: L{Circin6Tuple}C{(radius, center, deltas, cA, cB, cC)}. The 

75 C{center} and contact points C{cA}, C{cB} and C{cC}, each an 

76 instance of this (sub-)class, are co-planar with this and the 

77 two given points. 

78 

79 @raise ImportError: Package C{numpy} not found, not installed or older 

80 than version 1.10. 

81 

82 @raise IntersectionError: Near-coincident or -colinear points or 

83 a trilateration or C{numpy} issue. 

84 

85 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}. 

86 

87 @see: Function L{pygeodesy.circin6}, U{Incircle 

88 <https://MathWorld.Wolfram.com/Incircle.html>} and U{Contact 

89 Triangle<https://MathWorld.Wolfram.com/ContactTriangle.html>}. 

90 ''' 

91 try: 

92 return _vector2d._circin6(self, point2, point3, eps=eps, useZ=True) 

93 except (AssertionError, TypeError, ValueError) as x: 

94 raise _xError(x, point=self, point2=point2, point3=point3) 

95 

96 def circum3(self, point2, point3, circum=True, eps=EPS4): 

97 '''Return the radius and center of the smallest circle I{through} or 

98 I{containing} this and two other (3-D) points. 

99 

100 @arg point2: Second point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

101 or C{Vector4Tuple}). 

102 @arg point3: Third point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

103 or C{Vector4Tuple}). 

104 @kwarg circum: If C{True} return the C{circumradius} and C{circumcenter}, 

105 always, ignoring the I{Meeus}' Type I case (C{bool}). 

106 @kwarg eps: Tolerance passed to function L{pygeodesy.trilaterate3d2}. 

107 

108 @return: A L{Circum3Tuple}C{(radius, center, deltas)}. The C{center}, an 

109 instance of this (sub-)class, is co-planar with this and the two 

110 given points. 

111 

112 @raise ImportError: Package C{numpy} not found, not installed or older than 

113 version 1.10. 

114 

115 @raise IntersectionError: Near-concentric, -coincident or -colinear points 

116 or a trilateration or C{numpy} issue. 

117 

118 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}. 

119 

120 @see: Function L{pygeodesy.circum3} and methods L{circum4_} and L{meeus2}. 

121 ''' 

122 try: 

123 return _vector2d._circum3(self, point2, point3, circum=circum, 

124 eps=eps, useZ=True, clas=self.classof) 

125 except (AssertionError, TypeError, ValueError) as x: 

126 raise _xError(x, point=self, point2=point2, point3=point3, circum=circum) 

127 

128 def circum4_(self, *points): 

129 '''Best-fit a sphere through this and two or more other (3-D) points. 

130 

131 @arg points: Other points (each a C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

132 or C{Vector4Tuple}). 

133 

134 @return: L{Circum4Tuple}C{(radius, center, rank, residuals)} with C{center} 

135 an instance if this (sub-)class. 

136 

137 @raise ImportError: Package C{numpy} not found, not installed or 

138 older than version 1.10. 

139 

140 @raise NumPyError: Some C{numpy} issue. 

141 

142 @raise PointsError: Too few B{C{points}}. 

143 

144 @raise TypeError: One of the B{C{points}} invalid. 

145 

146 @see: Function L{pygeodesy.circum4_} and methods L{circum3} and L{meeus2}. 

147 ''' 

148 return _vector2d.circum4_(self, *points, useZ=True, Vector=self.classof) 

149 

150 def iscolinearWith(self, point1, point2, eps=EPS): 

151 '''Check whether this and two other (3-D) points are colinear. 

152 

153 @arg point1: One point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

154 or C{Vector4Tuple}). 

155 @arg point2: An other point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

156 or C{Vector4Tuple}). 

157 @kwarg eps: Tolerance (C{scalar}), same units as C{x}, 

158 C{y}, and C{z}. 

159 

160 @return: C{True} if this point is colinear with B{C{point1}} and 

161 B{C{point2}}, C{False} otherwise. 

162 

163 @raise TypeError: Invalid B{C{point1}} or B{C{point2}}. 

164 

165 @see: Method L{nearestOn}. 

166 ''' 

167 v = self if self.name else _otherV3d(NN_OK=False, this=self) 

168 return _vector2d._iscolinearWith(v, point1, point2, eps=eps) 

169 

170 def meeus2(self, point2, point3, circum=False): 

171 '''Return the radius and I{Meeus}' Type of the smallest circle I{through} 

172 or I{containing} this and two other (3-D) points. 

173 

174 @arg point2: Second point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

175 or C{Vector4Tuple}). 

176 @arg point3: Third point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

177 or C{Vector4Tuple}). 

178 @kwarg circum: If C{True} return the C{circumradius} and C{circumcenter} 

179 always, overriding I{Meeus}' Type II case (C{bool}). 

180 

181 @return: L{Meeus2Tuple}C{(radius, Type)}, with C{Type} the C{circumcenter} 

182 iff C{B{circum}=True}. 

183 

184 @raise IntersectionError: Coincident or colinear points, iff C{B{circum}=True}. 

185 

186 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}. 

187 

188 @see: Function L{pygeodesy.meeus2} and methods L{circum3} and L{circum4_}. 

189 ''' 

190 try: 

191 return _vector2d._meeus2(self, point2, point3, circum, clas=self.classof) 

192 except (TypeError, ValueError) as x: 

193 raise _xError(x, point=self, point2=point2, point3=point3, circum=circum) 

194 

195 def nearestOn(self, point1, point2, within=True): 

196 '''Locate the point between two points closest to this point. 

197 

198 @arg point1: Start point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} or 

199 C{Vector4Tuple}). 

200 @arg point2: End point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} or 

201 C{Vector4Tuple}). 

202 @kwarg within: If C{True} return the closest point between the given 

203 points, otherwise the closest point on the extended 

204 line through both points (C{bool}). 

205 

206 @return: Closest point, either B{C{point1}} or B{C{point2}} or an instance 

207 of this (sub-)class. 

208 

209 @raise TypeError: Invalid B{C{point1}} or B{C{point2}}. 

210 

211 @see: Method L{sphericalTrigonometry.LatLon.nearestOn3} and U{3-D Point-Line 

212 Distance<https://MathWorld.Wolfram.com/Point-LineDistance3-Dimensional.html>}. 

213 ''' 

214 return _nearestOn2(self, point1, point2, within=within).closest 

215 

216 def nearestOn6(self, points, closed=False, useZ=True): # eps=EPS 

217 '''Locate the point on a path or polygon closest to this point. 

218 

219 The closest point is either on and within the extent of a polygon 

220 edge or the nearest of that edge's end points. 

221 

222 @arg points: The path or polygon points (C{Cartesian}, L{Vector3d}, 

223 C{Vector3Tuple} or C{Vector4Tuple}[]). 

224 @kwarg closed: Optionally, close the path or polygon (C{bool}). 

225 @kwarg useZ: If C{True}, use the Z components, otherwise force C{z=INT0} (C{bool}). 

226 

227 @return: A L{NearestOn6Tuple}C{(closest, distance, fi, j, start, end)} 

228 with the C{closest}, the C{start} and the C{end} point each 

229 an instance of this point's (sub-)class. 

230 

231 @raise PointsError: Insufficient number of B{C{points}} 

232 

233 @raise TypeError: Non-cartesian B{C{points}}. 

234 

235 @note: Distances measured with method L{Vector3d.equirectangular}. 

236 

237 @see: Function L{nearestOn6}. 

238 ''' 

239 return nearestOn6(self, points, closed=closed, useZ=useZ) # Vector=self.classof 

240 

241 def parse(self, str3d, sep=_COMMA_, **name): 

242 '''Parse an C{"x, y, z"} string to a L{Vector3d} instance. 

243 

244 @arg str3d: X, y and z string (C{str}), see function L{parse3d}. 

245 @kwarg sep: Optional separator (C{str}). 

246 @kwarg name: Optional instance C{B{name}=NN} (C{str}), overriding this name. 

247 

248 @return: The instance (L{Vector3d}). 

249 

250 @raise VectorError: Invalid B{C{str3d}}. 

251 ''' 

252 return parse3d(str3d, sep=sep, Vector=self.classof, name=self._name__(name)) 

253 

254 def radii11(self, point2, point3): 

255 '''Return the radii of the C{Circum-}, C{In-}, I{Soddy} and C{Tangent} 

256 circles of a (3-D) triangle. 

257 

258 @arg point2: Second point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

259 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

260 @arg point3: Third point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

261 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

262 

263 @return: L{Radii11Tuple}C{(rA, rB, rC, cR, rIn, riS, roS, a, b, c, s)}. 

264 

265 @raise TriangleError: Near-coincident or -colinear points. 

266 

267 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}. 

268 

269 @see: Function L{pygeodesy.radii11}, U{Incircle 

270 <https://MathWorld.Wolfram.com/Incircle.html>}, U{Soddy Circles 

271 <https://MathWorld.Wolfram.com/SoddyCircles.html>} and U{Tangent 

272 Circles<https://MathWorld.Wolfram.com/TangentCircles.html>}. 

273 ''' 

274 try: 

275 return _vector2d._radii11ABC(self, point2, point3, useZ=True)[0] 

276 except (TypeError, ValueError) as x: 

277 raise _xError(x, point=self, point2=point2, point3=point3) 

278 

279 def soddy4(self, point2, point3, eps=EPS4): 

280 '''Return the radius and center of the C{inner} I{Soddy} circle of a 

281 (3-D) triangle. 

282 

283 @arg point2: Second point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

284 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

285 @arg point3: Third point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

286 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

287 @kwarg eps: Tolerance for function L{pygeodesy.trilaterate3d2} if 

288 C{B{useZ} is True} otherwise L{pygeodesy.trilaterate2d2}. 

289 

290 @return: L{Soddy4Tuple}C{(radius, center, deltas, outer)}. The C{center}, 

291 an instance of B{C{point1}}'s (sub-)class, is co-planar with the 

292 three given points. 

293 

294 @raise ImportError: Package C{numpy} not found, not installed or older 

295 than version 1.10. 

296 

297 @raise IntersectionError: Near-coincident or -colinear points or 

298 a trilateration or C{numpy} issue. 

299 

300 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}. 

301 

302 @see: Function L{pygeodesy.soddy4}. 

303 ''' 

304 return _vector2d.soddy4(self, point2, point3, eps=eps, useZ=True) 

305 

306 def trilaterate2d2(self, radius, center2, radius2, center3, radius3, eps=EPS4, z=INT0): 

307 '''Trilaterate this and two other circles, each given as a (2-D) center 

308 and a radius. 

309 

310 @arg radius: Radius of this circle (same C{units} as this C{x} and C{y}. 

311 @arg center2: Center of the 2nd circle (C{Cartesian}, L{Vector3d}, 

312 C{Vector2Tuple}, C{Vector3Tuple} or C{Vector4Tuple}). 

313 @arg radius2: Radius of this circle (same C{units} as this C{x} and C{y}. 

314 @arg center3: Center of the 3rd circle (C{Cartesian}, L{Vector3d}, 

315 C{Vector2Tuple}, C{Vector3Tuple} or C{Vector4Tuple}). 

316 @arg radius3: Radius of the 3rd circle (same C{units} as this C{x} and C{y}. 

317 @kwarg eps: Tolerance to check the trilaterated point I{delta} on all 

318 3 circles (C{scalar}) or C{None} for no checking. 

319 @kwarg z: Optional Z component of the trilaterated point (C{scalar}). 

320 

321 @return: Trilaterated point, an instance of this (sub-)class with C{z=B{z}}. 

322 

323 @raise IntersectionError: No intersection, near-concentric or -colinear 

324 centers, trilateration failed some other way 

325 or the trilaterated point is off one circle 

326 by more than B{C{eps}}. 

327 

328 @raise TypeError: Invalid B{C{center2}} or B{C{center3}}. 

329 

330 @raise UnitError: Invalid B{C{radius1}}, B{C{radius2}} or B{C{radius3}}. 

331 

332 @see: Function L{pygeodesy.trilaterate2d2}. 

333 ''' 

334 

335 def _xyr3(r, **name_v): 

336 v = _otherV3d(useZ=False, **name_v) 

337 return v.x, v.y, r 

338 

339 try: 

340 return _vector2d._trilaterate2d2(*(_xyr3(radius, center=self) + 

341 _xyr3(radius2, center2=center2) + 

342 _xyr3(radius3, center3=center3)), 

343 eps=eps, Vector=self.classof, z=z) 

344 except (AssertionError, TypeError, ValueError) as x: 

345 raise _xError(x, center=self, radius=radius, 

346 center2=center2, radius2=radius2, 

347 center3=center3, radius3=radius3) 

348 

349 def trilaterate3d2(self, radius, center2, radius2, center3, radius3, eps=EPS4): 

350 '''Trilaterate this and two other spheres, each given as a (3-D) center 

351 and a radius. 

352 

353 @arg radius: Radius of this sphere (same C{units} as this C{x}, C{y} 

354 and C{z}). 

355 @arg center2: Center of the 2nd sphere (C{Cartesian}, L{Vector3d}, 

356 C{Vector3Tuple} or C{Vector4Tuple}). 

357 @arg radius2: Radius of this sphere (same C{units} as this C{x}, C{y} 

358 and C{z}). 

359 @arg center3: Center of the 3rd sphere (C{Cartesian}, , L{Vector3d}, 

360 C{Vector3Tuple} or C{Vector4Tuple}). 

361 @arg radius3: Radius of the 3rd sphere (same C{units} as this C{x}, C{y} 

362 and C{z}). 

363 @kwarg eps: Pertubation tolerance (C{scalar}), same units as C{x}, C{y} 

364 and C{z} or C{None} for no pertubations. 

365 

366 @return: 2-Tuple with two trilaterated points, each an instance of this 

367 (sub-)class. Both points are the same instance if all three 

368 spheres intersect or abut in a single point. 

369 

370 @raise ImportError: Package C{numpy} not found, not installed or 

371 older than version 1.10. 

372 

373 @raise IntersectionError: Near-concentric, -colinear, too distant or 

374 non-intersecting spheres or C{numpy} issue. 

375 

376 @raise NumPyError: Some C{numpy} issue. 

377 

378 @raise TypeError: Invalid B{C{center2}} or B{C{center3}}. 

379 

380 @raise UnitError: Invalid B{C{radius}}, B{C{radius2}} or B{C{radius3}}. 

381 

382 @note: Package U{numpy<https://PyPI.org/project/numpy>} is required, 

383 version 1.10 or later. 

384 

385 @see: Norrdine, A. U{I{An Algebraic Solution to the Multilateration 

386 Problem}<https://www.ResearchGate.net/publication/275027725>} 

387 and U{I{implementation}<https://www.ResearchGate.net/publication/288825016>}. 

388 ''' 

389 try: 

390 c1 = _otherV3d(center=self, NN_OK=False) 

391 return _vector2d._trilaterate3d2(c1, Radius_(radius, low=eps), 

392 center2, radius2, 

393 center3, radius3, 

394 eps=eps, clas=self.classof) 

395 except (AssertionError, TypeError, ValueError) as x: 

396 raise _xError(x, center=self, radius=radius, 

397 center2=center2, radius2=radius2, 

398 center3=center3, radius3=radius3) 

399 

400 

401def _intersect3d3(start1, end1, start2, end2, eps=EPS, useZ=False): # MCCABE 16 in .formy.intersection2, .rhumbBase 

402 # (INTERNAL) Intersect two lines, see L{intersection3d3} below, 

403 # separated to allow callers to embellish any exceptions 

404 

405 def _corners2(s1, b1, s2, useZ): 

406 # Get the C{s1'} and C{e1'} corners of a right-angle 

407 # triangle with the hypotenuse thru C{s1} at bearing 

408 # C{b1} and the right angle at C{s2} 

409 dx, dy, d = s2.minus(s1).xyz 

410 if useZ and not isnear0(d): # not supported 

411 raise IntersectionError(useZ=d, bearing=b1) 

412 s, c = sincos2d(b1) 

413 if s and c: 

414 dx *= c / s 

415 dy *= s / c 

416 e1 = Vector3d(s2.x, s1.y + dx, s1.z) 

417 s1 = Vector3d(s1.x + dy, s2.y, s1.z) 

418 else: # orthogonal 

419 d = euclid(dx, dy) # hypot? 

420 e1 = Vector3d(s1.x + s * d, s1.y + c * d, s1.z) 

421 return s1, e1 

422 

423 def _outside(t, d2, o): # -o before start#, +o after end# 

424 return -o if t < 0 else (o if t > d2 else 0) # XXX d2 + eps? 

425 

426 s1 = t = _otherV3d(useZ=useZ, start1=start1) 

427 s2 = _otherV3d(useZ=useZ, start2=start2) 

428 b1 = _isDegrees(end1) 

429 if b1: # bearing, make an e1 

430 s1, e1 = _corners2(s1, end1, s2, useZ) 

431 else: 

432 e1 = _otherV3d(useZ=useZ, end1=end1) 

433 b2 = _isDegrees(end2) 

434 if b2: # bearing, make an e2 

435 s2, e2 = _corners2(s2, end2, t, useZ) 

436 else: 

437 e2 = _otherV3d(useZ=useZ, end2=end2) 

438 

439 a = e1.minus(s1) 

440 b = e2.minus(s2) 

441 c = s2.minus(s1) 

442 

443 ab = a.cross(b) 

444 d = fabs(c.dot(ab)) 

445 e = max(EPS0, eps or _0_0) 

446 if d > EPS0 and ab.length > e: # PYCHOK no cover 

447 d = d / ab.length # /= chokes PyChecker 

448 if d > e: # argonic, skew lines distance 

449 raise IntersectionError(skew_d=d, txt=_no_(_intersection_)) 

450 

451 # co-planar, non-skew lines 

452 ab2 = ab.length2 

453 if ab2 < e: # colinear, parallel or null line(s) 

454 x = a.length2 > b.length2 

455 if x: # make C{a} the shortest 

456 a, b = b, a 

457 s1, s2 = s2, s1 

458 e1, e2 = e2, e1 

459 b1, b2 = b2, b1 

460 if b.length2 < e: # PYCHOK no cover 

461 if c.length < e: 

462 return s1, 0, 0 

463 elif e2.minus(e1).length < e: 

464 return e1, 0, 0 

465 elif a.length2 < e: # null (s1, e1), non-null (s2, e2) 

466 # like _nearestOn2(s1, s2, e2, within=False, eps=e) 

467 t = s1.minus(s2).dot(b) 

468 v = s2.plus(b.times(t / b.length2)) 

469 if s1.minus(v).length < e: 

470 o = 0 if b2 else _outside(t, b.length2, 1 if x else 2) 

471 return (v, o, 0) if x else (v, 0, o) 

472 raise IntersectionError(length2=ab2, txt=_no_(_intersection_)) 

473 

474 cb = c.cross(b) 

475 t = cb.dot(ab) 

476 o1 = 0 if b1 else _outside(t, ab2, 1) 

477 v = s1.plus(a.times(t / ab2)) 

478 o2 = 0 if b2 else _outside(v.minus(s2).dot(b), b.length2, 2) 

479 return v, o1, o2 

480 

481 

482def intersection3d3(start1, end1, start2, end2, eps=EPS, useZ=True, 

483 **Vector_and_kwds): 

484 '''Compute the intersection point of two (2- or 3-D) lines, each defined 

485 by two points or by a point and a bearing. 

486 

487 @arg start1: Start point of the first line (C{Cartesian}, L{Vector3d}, 

488 C{Vector3Tuple} or C{Vector4Tuple}). 

489 @arg end1: End point of the first line (C{Cartesian}, L{Vector3d}, 

490 C{Vector3Tuple} or C{Vector4Tuple}) or the bearing at 

491 B{C{start1}} (compass C{degrees}). 

492 @arg start2: Start point of the second line (C{Cartesian}, L{Vector3d}, 

493 C{Vector3Tuple} or C{Vector4Tuple}). 

494 @arg end2: End point of the second line (C{Cartesian}, L{Vector3d}, 

495 C{Vector3Tuple} or C{Vector4Tuple}) or the bearing at 

496 B{C{start2}} (Ccompass C{degrees}). 

497 @kwarg eps: Tolerance for skew line distance and length (C{EPS}). 

498 @kwarg useZ: If C{True}, use the Z components, otherwise force C{z=INT0} (C{bool}). 

499 @kwarg Vector_and_kwds: Optional class C{B{Vector}=None} to return the 

500 intersection points and optional, additional B{C{Vector}} 

501 keyword arguments, otherwise B{C{start1}}'s (sub-)class. 

502 

503 @return: An L{Intersection3Tuple}C{(point, outside1, outside2)} with 

504 C{point} an instance of B{C{Vector}} or B{C{start1}}'s (sub-)class. 

505 

506 @note: The C{outside} values is C{0} for lines specified by point and bearing. 

507 

508 @raise IntersectionError: Invalid, skew, non-co-planar or otherwise 

509 non-intersecting lines. 

510 

511 @see: U{Line-line intersection<https://MathWorld.Wolfram.com/Line-LineIntersection.html>} 

512 and U{line-line distance<https://MathWorld.Wolfram.com/Line-LineDistance.html>}, 

513 U{skew lines<https://MathWorld.Wolfram.com/SkewLines.html>} and U{point-line 

514 distance<https://MathWorld.Wolfram.com/Point-LineDistance3-Dimensional.html>}. 

515 ''' 

516 try: 

517 v, o1, o2 = _intersect3d3(start1, end1, start2, end2, eps=eps, useZ=useZ) 

518 except (TypeError, ValueError) as x: 

519 raise _xError(x, start1=start1, end1=end1, start2=start2, end2=end2) 

520 v = _nVc(v, **_xkwds(Vector_and_kwds, clas=start1.classof, 

521 name=intersection3d3.__name__)) 

522 return Intersection3Tuple(v, o1, o2) 

523 

524 

525def intersections2(center1, radius1, center2, radius2, sphere=True, **Vector_and_kwds): 

526 '''Compute the intersection of two spheres or circles, each defined by a (3-D) 

527 center point and a radius. 

528 

529 @arg center1: Center of the first sphere or circle (C{Cartesian}, L{Vector3d}, 

530 C{Vector3Tuple} or C{Vector4Tuple}). 

531 @arg radius1: Radius of the first sphere or circle (same units as the 

532 B{C{center1}} coordinates). 

533 @arg center2: Center of the second sphere or circle (C{Cartesian}, L{Vector3d}, 

534 C{Vector3Tuple} or C{Vector4Tuple}). 

535 @arg radius2: Radius of the second sphere or circle (same units as the 

536 B{C{center1}} and B{C{center2}} coordinates). 

537 @kwarg sphere: If C{True} compute the center and radius of the intersection of 

538 two spheres. If C{False}, ignore the C{z}-component and compute 

539 the intersection of two circles (C{bool}). 

540 @kwarg Vector_and_kwds: Optional class C{B{Vector}=None} to return the 

541 intersection points and optional, additional B{C{Vector}} 

542 keyword arguments, otherwise B{C{center1}}'s (sub-)class. 

543 

544 @return: If B{C{sphere}} is C{True}, a 2-tuple of the C{center} and C{radius} 

545 of the intersection of the I{spheres}. The C{radius} is C{0.0} for 

546 abutting spheres (and the C{center} is aka the I{radical center}). 

547 

548 If B{C{sphere}} is C{False}, a 2-tuple with the two intersection 

549 points of the I{circles}. For abutting circles, both points are 

550 the same instance, aka the I{radical center}. 

551 

552 @raise IntersectionError: Concentric, invalid or non-intersecting spheres 

553 or circles. 

554 

555 @raise TypeError: Invalid B{C{center1}} or B{C{center2}}. 

556 

557 @raise UnitError: Invalid B{C{radius1}} or B{C{radius2}}. 

558 

559 @see: U{Sphere-Sphere<https://MathWorld.Wolfram.com/Sphere-SphereIntersection.html>} and 

560 U{Circle-Circle<https://MathWorld.Wolfram.com/Circle-CircleIntersection.html>} 

561 Intersection. 

562 ''' 

563 try: 

564 return _intersects2(center1, Radius_(radius1=radius1), 

565 center2, Radius_(radius2=radius2), sphere=sphere, 

566 clas=center1.classof, **Vector_and_kwds) 

567 except (TypeError, ValueError) as x: 

568 raise _xError(x, center1=center1, radius1=radius1, center2=center2, radius2=radius2) 

569 

570 

571def _intersects2(center1, r1, center2, r2, sphere=True, too_d=None, # in CartesianEllipsoidalBase.intersections2, 

572 **clas_Vector_and_kwds): # .ellipsoidalBaseDI._intersections2, .formy.intersections2 

573 # (INTERNAL) Intersect two spheres or circles, see L{intersections2} 

574 # above, separated to allow callers to embellish any exceptions 

575 

576 def _nV3(x, y, z): 

577 v = Vector3d(x, y, z) 

578 n = intersections2.__name__ 

579 return _nVc(v, **_xkwds(clas_Vector_and_kwds, name=n)) 

580 

581 def _xV3(c1, u, x, y): 

582 xy1 = x, y, _1_0 # transform to original space 

583 return _nV3(fdot(xy1, u.x, -u.y, c1.x), 

584 fdot(xy1, u.y, u.x, c1.y), _0_0) 

585 

586 c1 = _otherV3d(useZ=sphere, center1=center1) 

587 c2 = _otherV3d(useZ=sphere, center2=center2) 

588 

589 if r1 < r2: # r1, r2 == R, r 

590 c1, c2 = c2, c1 

591 r1, r2 = r2, r1 

592 

593 m = c2.minus(c1) 

594 d = m.length 

595 if d < max(r2 - r1, EPS): 

596 raise IntersectionError(_near_(_concentric_)) # XXX ConcentricError? 

597 

598 o = fsum1_(-d, r1, r2) # overlap == -(d - (r1 + r2)) 

599 # compute intersections with c1 at (0, 0) and c2 at (d, 0), like 

600 # <https://MathWorld.Wolfram.com/Circle-CircleIntersection.html> 

601 if o > EPS: # overlapping, r1, r2 == R, r 

602 x = _MODS.formy._radical2(d, r1, r2).xline 

603 y = _1_0 - (x / r1)**2 

604 if y > EPS: 

605 y = r1 * sqrt(y) # y == a / 2 

606 elif y < 0: # PYCHOK no cover 

607 raise IntersectionError(_negative_) 

608 else: # abutting 

609 y = _0_0 

610 elif o < 0: # PYCHOK no cover 

611 if too_d is not None: 

612 d = too_d 

613 raise IntersectionError(_too_(Fmt.distant(d))) 

614 else: # abutting 

615 x, y = r1, _0_0 

616 

617 u = m.unit() 

618 if sphere: # sphere center and radius 

619 c = c1 if x < EPS else ( 

620 c2 if x > EPS1 else c1.plus(u.times(x))) 

621 t = _nV3(c.x, c.y, c.z), Radius(y) 

622 

623 elif y > 0: # intersecting circles 

624 t = _xV3(c1, u, x, y), _xV3(c1, u, x, -y) 

625 else: # abutting circles 

626 t = _xV3(c1, u, x, 0) 

627 t = t, t 

628 return t 

629 

630 

631def iscolinearWith(point, point1, point2, eps=EPS, useZ=True): 

632 '''Check whether a point is colinear with two other (2- or 3-D) points. 

633 

634 @arg point: The point (L{Vector3d}, C{Vector3Tuple} or C{Vector4Tuple}). 

635 @arg point1: First point (L{Vector3d}, C{Vector3Tuple} or C{Vector4Tuple}). 

636 @arg point2: Second point (L{Vector3d}, C{Vector3Tuple} or C{Vector4Tuple}). 

637 @kwarg eps: Tolerance (C{scalar}), same units as C{x}, C{y} and C{z}. 

638 @kwarg useZ: If C{True}, use the Z components, otherwise force C{z=INT0} (C{bool}). 

639 

640 @return: C{True} if B{C{point}} is colinear B{C{point1}} and B{C{point2}}, 

641 C{False} otherwise. 

642 

643 @raise TypeError: Invalid B{C{point}}, B{C{point1}} or B{C{point2}}. 

644 

645 @see: Function L{nearestOn}. 

646 ''' 

647 p = _otherV3d(useZ=useZ, point=point) 

648 return _vector2d._iscolinearWith(p, point1, point2, eps=eps, useZ=useZ) 

649 

650 

651def nearestOn(point, point1, point2, within=True, useZ=True, Vector=None, **Vector_kwds): 

652 '''Locate the point between two points closest to a reference (2- or 3-D). 

653 

654 @arg point: Reference point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

655 or C{Vector4Tuple}). 

656 @arg point1: Start point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} or 

657 C{Vector4Tuple}). 

658 @arg point2: End point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} or 

659 C{Vector4Tuple}). 

660 @kwarg within: If C{True} return the closest point between both given 

661 points, otherwise the closest point on the extended line 

662 through both points (C{bool}). 

663 @kwarg useZ: If C{True}, use the Z components, otherwise force C{z=INT0} (C{bool}). 

664 @kwarg Vector: Class to return closest point (C{Cartesian}, L{Vector3d} 

665 or C{Vector3Tuple}) or C{None}. 

666 @kwarg Vector_kwds: Optional, additional B{C{Vector}} keyword arguments, 

667 ignored if C{B{Vector} is None}. 

668 

669 @return: Closest point, either B{C{point1}} or B{C{point2}} or an instance 

670 of the B{C{point}}'s (sub-)class or B{C{Vector}} if not C{None}. 

671 

672 @raise TypeError: Invalid B{C{point}}, B{C{point1}} or B{C{point2}}. 

673 

674 @see: U{3-D Point-Line Distance<https://MathWorld.Wolfram.com/Point-LineDistance3-Dimensional.html>}, 

675 C{Cartesian} and C{LatLon} methods C{nearestOn}, method L{sphericalTrigonometry.LatLon.nearestOn3} 

676 and function L{sphericalTrigonometry.nearestOn3}. 

677 ''' 

678 p0 = _otherV3d(useZ=useZ, point =point) 

679 p1 = _otherV3d(useZ=useZ, point1=point1) 

680 p2 = _otherV3d(useZ=useZ, point2=point2) 

681 

682 p, _ = _nearestOn2(p0, p1, p2, within=within) 

683 if Vector is not None: 

684 p = Vector(p.x, p.y, **_xkwds(Vector_kwds, z=p.z, name__=nearestOn)) 

685 elif p is p1: 

686 p = point1 

687 elif p is p2: 

688 p = point2 

689 else: # ignore Vector_kwds 

690 p = point.classof(p.x, p.y, _xkwds_get(Vector_kwds, z=p.z), name__=nearestOn) 

691 return p 

692 

693 

694def _nearestOn2(p0, p1, p2, within=True, eps=EPS): 

695 # (INTERNAL) Closest point and fraction, see L{nearestOn} above, 

696 # separated to allow callers to embellish any exceptions 

697 p21 = p2.minus(p1) 

698 d2 = p21.length2 

699 if d2 < eps: # coincident 

700 p = p1 # ~= p2 

701 t = 0 

702 else: # see comments in .points.nearestOn5 

703 t = p0.minus(p1).dot(p21) / d2 

704 if within and t < eps: 

705 p = p1 

706 t = 0 

707 elif within and t > (_1_0 - eps): 

708 p = p2 

709 t = 1 

710 else: 

711 p = p1.plus(p21.times(t)) 

712 return NearestOn2Tuple(p, t) 

713 

714 

715def nearestOn6(point, points, closed=False, useZ=True, **Vector_and_kwds): # eps=EPS 

716 '''Locate the point on a path or polygon closest to a reference point. 

717 

718 The closest point on each polygon edge is either the nearest of that 

719 edge's end points or a point in between. 

720 

721 @arg point: Reference point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} or 

722 C{Vector4Tuple}). 

723 @arg points: The path or polygon points (C{Cartesian}, L{Vector3d}, 

724 C{Vector3Tuple} or C{Vector4Tuple}[]). 

725 @kwarg closed: Optionally, close the path or polygon (C{bool}). 

726 @kwarg useZ: If C{True}, use the Z components, otherwise force C{z=INT0} (C{bool}). 

727 @kwarg Vector_and_kwds: Optional class C{B{Vector}=None} to return the closest 

728 point and optional, additional B{C{Vector}} keyword 

729 arguments, otherwise B{C{point}}'s (sub-)class. 

730 

731 @return: A L{NearestOn6Tuple}C{(closest, distance, fi, j, start, end)} with the 

732 C{closest}, the C{start} and the C{end} point each an instance of the 

733 B{C{Vector}} keyword argument of if {B{Vector}=None} or not specified, 

734 an instance of the reference B{C{point}}'s (sub-)class. 

735 

736 @raise PointsError: Insufficient number of B{C{points}} 

737 

738 @raise TypeError: Non-cartesian B{C{point}} and B{C{points}}. 

739 

740 @note: Distances measured with method L{Vector3d.equirectangular}. For 

741 geodetic distances use function L{nearestOn5} or one of the 

742 C{LatLon.nearestOn6} methods. 

743 ''' 

744 r = _otherV3d(useZ=useZ, point=point) 

745 D2 = r.equirectangular # distance squared 

746 

747 Ps = PointsIter(points, loop=1, name=nearestOn6.__name__) 

748 p1 = c = s = e = _otherV3d(useZ=useZ, i=0, points=Ps[0]) 

749 c2 = D2(c) # == r.minus(c).length2 

750 

751 f = i = 0 # p1..p2 == points[i]..[j] 

752 for j, p2 in Ps.enumerate(closed=closed): 

753 p2 = _otherV3d(useZ=useZ, i=j, points=p2) 

754 p, t = _nearestOn2(r, p1, p2) # within=True, eps=EPS 

755 d2 = D2(p) # == r.minus(p).length2 

756 if d2 < c2: 

757 c2, c, s, e, f = d2, p, p1, p2, (i + t) 

758 p1, i = p2, j 

759 

760 f, j = _fi_j2(f, len(Ps)) # like .ellipsoidalBaseDI._nearestOn2_ 

761 

762 kwds = _xkwds(Vector_and_kwds, clas=point.classof, name=Ps.name) 

763 v = _nVc(c, **kwds) 

764 s = _nVc(s, **kwds) if s is not c else v 

765 e = _nVc(e, **kwds) if e is not c else v 

766 return NearestOn6Tuple(v, sqrt(c2), f, j, s, e) 

767 

768 

769def _nVc(v, clas=None, Vector=None, **Vector_kwds_name): # in .vector2d 

770 # return a named C{Vector} or C{clas} instance 

771 name, Vector_kwds = _name2__(**Vector_kwds_name) 

772 if Vector is not None: 

773 v = Vector(v.x, v.y, v.z, **Vector_kwds) 

774 elif clas is not None: 

775 v = clas(v.x, v.y, v.z) # ignore Vector_kwds 

776 return _xnamed(v, name) if name else v 

777 

778 

779def _otherV3d(useZ=True, NN_OK=True, i=None, **name_v): 

780 # check named vector instance, return Vector3d 

781 n, v = _xkwds_item2(name_v) 

782 if useZ and isinstance(v, Vector3dBase): 

783 return v if NN_OK or v.name else v.copy(name=Fmt.INDEX(n, i)) 

784 

785 n = Fmt.INDEX(n, i) 

786 try: 

787 return Vector3d(v.x, v.y, (v.z if useZ else INT0), name=n) 

788 except AttributeError: # no .x, .y or .z attr 

789 pass 

790 raise _xotherError(Vector3d(0, 0, 0), v, name=n, up=2) 

791 

792 

793def parse3d(str3d, sep=_COMMA_, Vector=Vector3d, **Vector_kwds): 

794 '''Parse an C{"x, y, z"} string. 

795 

796 @arg str3d: X, y and z values (C{str}). 

797 @kwarg sep: Optional separator (C{str}). 

798 @kwarg Vector: Optional class (L{Vector3d}). 

799 @kwarg Vector_kwds: Optional B{C{Vector}} keyword arguments, 

800 ignored if C{B{Vector} is None}. 

801 

802 @return: A B{C{Vector}} instance or if B{C{Vector}} is C{None}, 

803 a named L{Vector3Tuple}C{(x, y, z)}. 

804 

805 @raise VectorError: Invalid B{C{str3d}}. 

806 ''' 

807 try: 

808 v = [float(v.strip()) for v in str3d.split(sep)] 

809 n = len(v) 

810 if n != 3: 

811 raise _ValueError(len=n) 

812 except (TypeError, ValueError) as x: 

813 raise VectorError(str3d=str3d, cause=x) 

814 return _xnamed((Vector3Tuple(v) if Vector is None else # *v 

815 Vector(*v, **Vector_kwds)), name__=parse3d) # .__name__ 

816 

817 

818def sumOf(vectors, Vector=Vector3d, **Vector_kwds): 

819 '''Compute the I{vectorial} sum of two oe more vectors. 

820 

821 @arg vectors: Vectors to be added (L{Vector3d}[]). 

822 @kwarg Vector: Optional class for the vectorial sum (L{Vector3d}). 

823 @kwarg Vector_kwds: Optional B{C{Vector}} keyword arguments, 

824 ignored if C{B{Vector} is None}. 

825 

826 @return: Vectorial sum as B{C{Vector}} or if B{C{Vector}} is 

827 C{None}, a named L{Vector3Tuple}C{(x, y, z)}. 

828 

829 @raise VectorError: No B{C{vectors}}. 

830 ''' 

831 try: 

832 t = _MODS.nvectorBase._nsumOf(vectors, 0, None, {}) # no H 

833 except (TypeError, ValueError) as x: 

834 raise VectorError(vectors=vectors, Vector=Vector, cause=x) 

835 x, y, z = t[:3] 

836 return Vector3Tuple(x, y, z, name__=sumOf) if Vector is None else \ 

837 Vector(x, y, z, **_xkwds(Vector_kwds, name__=sumOf)) # .__name__ 

838 

839 

840def trilaterate2d2(x1, y1, radius1, x2, y2, radius2, x3, y3, radius3, 

841 eps=None, **Vector_and_kwds): 

842 '''Trilaterate three circles, each given as a (2-D) center and a radius. 

843 

844 @arg x1: Center C{x} coordinate of the 1st circle (C{scalar}). 

845 @arg y1: Center C{y} coordinate of the 1st circle (C{scalar}). 

846 @arg radius1: Radius of the 1st circle (C{scalar}). 

847 @arg x2: Center C{x} coordinate of the 2nd circle (C{scalar}). 

848 @arg y2: Center C{y} coordinate of the 2nd circle (C{scalar}). 

849 @arg radius2: Radius of the 2nd circle (C{scalar}). 

850 @arg x3: Center C{x} coordinate of the 3rd circle (C{scalar}). 

851 @arg y3: Center C{y} coordinate of the 3rd circle (C{scalar}). 

852 @arg radius3: Radius of the 3rd circle (C{scalar}). 

853 @kwarg eps: Tolerance to check the trilaterated point I{delta} on all 

854 3 circles (C{scalar}) or C{None} for no checking. 

855 @kwarg Vector_and_kwds: Optional class C{B{Vector}=None} to return the 

856 trilateration and optional, additional B{C{Vector}} 

857 keyword arguments, otherwise (L{Vector3d}). 

858 

859 @return: Trilaterated point as C{B{Vector}(x, y, **B{Vector_kwds})} 

860 or L{Vector2Tuple}C{(x, y)} if C{B{Vector} is None}.. 

861 

862 @raise IntersectionError: No intersection, near-concentric or -colinear 

863 centers, trilateration failed some other way 

864 or the trilaterated point is off one circle 

865 by more than B{C{eps}}. 

866 

867 @raise UnitError: Invalid B{C{radius1}}, B{C{radius2}} or B{C{radius3}}. 

868 

869 @see: U{Issue #49<https://GitHub.com/mrJean1/PyGeodesy/issues/49>}, 

870 U{Find X location using 3 known (X,Y) location using trilateration 

871 <https://math.StackExchange.com/questions/884807>} and function 

872 L{pygeodesy.trilaterate3d2}. 

873 ''' 

874 return _vector2d._trilaterate2d2(x1, y1, radius1, 

875 x2, y2, radius2, 

876 x3, y3, radius3, eps=eps, **Vector_and_kwds) 

877 

878 

879def trilaterate3d2(center1, radius1, center2, radius2, center3, radius3, 

880 eps=EPS, **Vector_and_kwds): 

881 '''Trilaterate three spheres, each given as a (3-D) center and a radius. 

882 

883 @arg center1: Center of the 1st sphere (C{Cartesian}, L{Vector3d}, 

884 C{Vector3Tuple} or C{Vector4Tuple}). 

885 @arg radius1: Radius of the 1st sphere (same C{units} as C{x}, C{y} 

886 and C{z}). 

887 @arg center2: Center of the 2nd sphere (C{Cartesian}, L{Vector3d}, 

888 C{Vector3Tuple} or C{Vector4Tuple}). 

889 @arg radius2: Radius of this sphere (same C{units} as C{x}, C{y} 

890 and C{z}). 

891 @arg center3: Center of the 3rd sphere (C{Cartesian}, L{Vector3d}, 

892 C{Vector3Tuple} or C{Vector4Tuple}). 

893 @arg radius3: Radius of the 3rd sphere (same C{units} as C{x}, C{y} 

894 and C{z}). 

895 @kwarg eps: Pertubation tolerance (C{scalar}), same units as C{x}, 

896 C{y} and C{z} or C{None} for no pertubations. 

897 @kwarg Vector_and_kwds: Optional class C{B{Vector}=None} to return the 

898 trilateration and optional, additional B{C{Vector}} 

899 keyword arguments, otherwise B{C{center1}}'s 

900 (sub-)class. 

901 

902 @return: 2-Tuple with two trilaterated points, each a B{C{Vector}} 

903 instance. Both points are the same instance if all three 

904 spheres abut/intersect in a single point. 

905 

906 @raise ImportError: Package C{numpy} not found, not installed or 

907 older than version 1.10. 

908 

909 @raise IntersectionError: Near-concentric, -colinear, too distant or 

910 non-intersecting spheres. 

911 

912 @raise NumPyError: Some C{numpy} issue. 

913 

914 @raise TypeError: Invalid B{C{center1}}, B{C{center2}} or B{C{center3}}. 

915 

916 @raise UnitError: Invalid B{C{radius1}}, B{C{radius2}} or B{C{radius3}}. 

917 

918 @see: Norrdine, A. U{I{An Algebraic Solution to the Multilateration 

919 Problem}<https://www.ResearchGate.net/publication/275027725>}, 

920 the U{I{implementation}<https://www.ResearchGate.net/publication/ 

921 288825016>} and function L{pygeodesy.trilaterate2d2}. 

922 ''' 

923 try: 

924 return _vector2d._trilaterate3d2(_otherV3d(center1=center1, NN_OK=False), 

925 Radius_(radius1=radius1, low=eps), 

926 center2, radius2, center3, radius3, eps=eps, 

927 clas=center1.classof, **Vector_and_kwds) 

928 except (AssertionError, TypeError, ValueError) as x: 

929 raise _xError(x, center1=center1, radius1=radius1, 

930 center2=center2, radius2=radius2, 

931 center3=center3, radius3=radius3) 

932 

933 

934def _xyzhdlln4(xyz, height, datum, ll=None, **name): # in .cartesianBase, .nvectorBase 

935 '''(INTERNAL) Get a C{(h, d, ll, name)} 4-tuple. 

936 ''' 

937 _x = _xattr 

938 h = height or _x(xyz, height=None) or _x(xyz, h=None) or _x(ll, height=None) 

939 d = datum or _x(xyz, datum=None) or _x(ll, datum=None) 

940 return h, d, ll, _name__(name, _or_nameof=ll) 

941 

942 

943__all__ += _ALL_DOCS(intersections2, sumOf, Vector3dBase) 

944 

945# **) MIT License 

946# 

947# Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved. 

948# 

949# Permission is hereby granted, free of charge, to any person obtaining a 

950# copy of this software and associated documentation files (the "Software"), 

951# to deal in the Software without restriction, including without limitation 

952# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

953# and/or sell copies of the Software, and to permit persons to whom the 

954# Software is furnished to do so, subject to the following conditions: 

955# 

956# The above copyright notice and this permission notice shall be included 

957# in all copies or substantial portions of the Software. 

958# 

959# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

960# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

961# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

962# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

963# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

964# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

965# OTHER DEALINGS IN THE SOFTWARE.