Coverage for pygeodesy/geodesicw.py: 89%

222 statements  

« prev     ^ index     » next       coverage.py v7.2.2, created at 2024-06-10 14:08 -0400

1 

2# -*- coding: utf-8 -*- 

3 

4u'''Wrapper around Python classes C{geodesic.Geodesic} and C{geodesicline.GeodesicLine} from 

5I{Karney}'s Python package U{geographiclib<https://PyPI.org/project/geographiclib>}, provided 

6that package is installed. 

7 

8The I{wrapped} class methods return a L{GDict} instance offering access to the C{dict} items 

9either by C{key} or by C{attribute} name. 

10 

11With env variable C{PYGEODESY_GEOGRAPHICLIB} left undefined or set to C{"2"}, this module, 

12L{pygeodesy.geodesicx} and L{pygeodesy.karney} will use U{GeographicLib 2.0 

13<https://GeographicLib.SourceForge.io/C++/doc/>} transcoding, otherwise C{1.52} or older. 

14''' 

15 

16from pygeodesy.basics import _copysign, _xinstanceof 

17from pygeodesy.constants import EPS, NAN, _EPSqrt as _TOL, _0_5 

18from pygeodesy.datums import _earth_datum, _WGS84, _EWGS84 

19# from pygeodesy.dms import F_D # from .latlonBase 

20# from pygeodesy.ellipsoids import _EWGS84 # from .datums 

21from pygeodesy.errors import IntersectionError, GeodesicError 

22from pygeodesy.fsums import Fsum, Fmt, unstr 

23from pygeodesy.internals import _dunder_nameof, _under 

24from pygeodesy.interns import NN, _DOT_, _SPACE_, _to_, _too_ 

25from pygeodesy.karney import _atan2d, Caps, Direct9Tuple, GDict, \ 

26 _kWrapped, Inverse10Tuple 

27from pygeodesy.latlonBase import LatLonBase as _LLB, F_D, Radius_ 

28from pygeodesy.lazily import _ALL_LAZY, _ALL_MODS as _MODS 

29from pygeodesy.named import callername, classname, _name1__, _name2__ 

30from pygeodesy.namedTuples import Destination3Tuple, Distance3Tuple 

31from pygeodesy.props import Property, Property_RO, property_RO 

32# from pygeodesy.streprs import Fmt, unstr # from .fsums 

33# from pygeodesy.units import Radius_ # from .latlonBase 

34from pygeodesy.utily import _unrollon, _Wrap, wrap360, fabs # PYCHOK used! 

35 

36from contextlib import contextmanager 

37# from math import fabs # from .utily 

38 

39__all__ = _ALL_LAZY.geodesicw 

40__version__ = '24.05.24' 

41 

42_plumb_ = 'plumb' 

43_TRIPS = 65 

44 

45 

46class _gWrapped(_kWrapped): 

47 ''''(INTERNAL) Wrapper for some of I{Karney}'s U{geographiclib 

48 <https://PyPI.org/project/geographiclib>} classes. 

49 ''' 

50 

51 @Property_RO # MCCABE 24 

52 def Geodesic(self): 

53 '''Get the I{wrapped} C{geodesic.Geodesic} class from I{Karney}'s Python 

54 U{geographiclib<https://GitHub.com/geographiclib/geographiclib-python>}, 

55 provided the latter is installed. 

56 ''' 

57 _Geodesic = self.geographiclib.Geodesic 

58 # assert Caps._STD == _Geodesic.STANDARD 

59 

60 class Geodesic(_Geodesic): 

61 '''I{Wrapper} for I{Karney}'s Python U{geodesic.Geodesic 

62 <https://PyPI.org/project/geographiclib>} class. 

63 ''' 

64 _datum = _WGS84 

65 _debug = 0 # like .geodesicx.bases._GeodesicBase 

66 LINE_OFF = 0 # in .azimuthal._GnomonicBase and .css.CassiniSoldner 

67 _name = NN 

68 

69 def __init__(self, a_ellipsoid=_EWGS84, f=None, **name): # PYCHOK signature 

70 '''New I{wrapped} C{geodesic.Geodesic} instance. 

71 

72 @arg a_ellipsoid: The equatorial radius I{a} (C{meter}, conventionally), 

73 an ellipsoid (L{Ellipsoid}) or a datum (L{Datum}). 

74 @arg f: The ellipsoid's flattening (C{scalar}), ignored if B{C{a_ellipsoid}) 

75 is not C{meter}. 

76 @kwarg name: Optional C{B{name}=NN} (C{str}). 

77 ''' 

78 _earth_datum(self, a_ellipsoid, f=f, **name) # raiser=NN 

79 E = self.ellipsoid 

80 with _wargs(self, *E.a_f, **name) as args: 

81 _Geodesic.__init__(self, *args) 

82 if name: 

83 self._name, _ = _name2__(name, _or_nameof=E) 

84 

85 def ArcDirect(self, lat1, lon1, azi1, a12, outmask=Caps._STD): 

86 '''Return the C{_Geodesic.ArcDirect} result as L{GDict}. 

87 ''' 

88 with _wargs(self, lat1, lon1, azi1, a12, outmask) as args: 

89 d = _Geodesic.ArcDirect(self, *args) 

90 return GDict(d) 

91 

92 def ArcDirectLine(self, lat1, lon1, azi1, a12, caps=Caps._STD_LINE, **name): 

93 '''Return the C{_Geodesic.ArcDirectLine} as I{wrapped} C{GeodesicLine}. 

94 ''' 

95 return self._GenDirectLine(lat1, lon1, azi1, True, a12, caps, **name) 

96 

97 Area = _Geodesic.Polygon # like GeodesicExact.Area 

98 

99 @property_RO 

100 def datum(self): 

101 '''Get this geodesic's datum (C{Datum}). 

102 ''' 

103 return self._datum 

104 

105 @Property 

106 def debug(self): 

107 '''Get the C{debug} option (C{bool}). 

108 ''' 

109 return bool(self._debug) 

110 

111 @debug.setter # PYCHOK setter! 

112 def debug(self, debug): 

113 '''Set the C{debug} option (C{bool}) to include more 

114 details in L{GDict} results. 

115 ''' 

116 self._debug = Caps._DEBUG_ALL if debug else 0 

117 

118 def Direct(self, lat1, lon1, azi1, s12=0, outmask=Caps._STD): 

119 '''Return the C{_Geodesic.Direct} result as L{GDict}. 

120 ''' 

121 with _wargs(self, lat1, lon1, azi1, s12, outmask) as args: 

122 d = _Geodesic.Direct(self, *args) 

123 return GDict(d) 

124 

125 def Direct3(self, lat1, lon1, azi1, s12): # PYCHOK outmask 

126 '''Return the destination lat, lon and reverse azimuth 

127 in C{degrees} as L{Destination3Tuple}. 

128 ''' 

129 d = self.Direct(lat1, lon1, azi1, s12, outmask=Caps._DIRECT3) 

130 return Destination3Tuple(d.lat2, d.lon2, d.azi2) 

131 

132 def _DirectLine(self, ll1, azi12, s12=0, **caps_name): 

133 '''(INTERNAL) Short-cut version. 

134 ''' 

135 return self.DirectLine(ll1.lat, ll1.lon, azi12, s12, **caps_name) 

136 

137 def DirectLine(self, lat1, lon1, azi1, s12, caps=Caps._STD_LINE, **name): 

138 '''Return the C{_Geodesic.DirectLine} as I{wrapped} C{GeodesicLine}. 

139 ''' 

140 return self._GenDirectLine(lat1, lon1, azi1, False, s12, caps, **name) 

141 

142 @Property_RO 

143 def ellipsoid(self): 

144 '''Get this geodesic's ellipsoid (C{Ellipsoid}). 

145 ''' 

146 return self.datum.ellipsoid 

147 

148 @property_RO 

149 def f1(self): # in .css.CassiniSoldner.reset 

150 '''Get the geodesic's ellipsoid's I{1 - flattening} (C{float}). 

151 ''' 

152 return getattr(self, _under(Geodesic.f1.name), self.ellipsoid.f1) 

153 

154 def _GDictDirect(self, lat, lon, azi, arcmode, s12_a12, outmask=Caps._STD): 

155 '''(INTERNAL) Get C{_Geodesic._GenDirect} result as C{GDict}. 

156 ''' 

157 with _wargs(self, lat, lon, azi, arcmode, s12_a12, outmask) as args: 

158 t = _Geodesic._GenDirect(self, *args) 

159 return Direct9Tuple(t).toGDict() # *t 

160 

161 def _GDictInverse(self, lat1, lon1, lat2, lon2, outmask=Caps._STD): 

162 '''(INTERNAL) Get C{_Geodesic._GenInverse} result as L{Inverse10Tuple}. 

163 ''' 

164 with _wargs(self, lat1, lon1, lat2, lon2, outmask) as args: 

165 t = _Geodesic._GenInverse(self, *args) 

166 return Inverse10Tuple(t).toGDict(lon1=lon1, lon2=lon2) # *t 

167 

168 def _GenDirectLine(self, lat1, lon1, azi1, arcmode, s12_a12, *caps, **name): 

169 '''(INTERNAL) Invoked by C{_Geodesic.DirectLine} and C{-.ArcDirectLine}, 

170 returning the result as a I{wrapped} C{GeodesicLine}. 

171 ''' 

172 with _wargs(self, lat1, lon1, azi1, arcmode, s12_a12, *caps, **name) as args: 

173 t = _Geodesic._GenDirectLine(self, *args) 

174 return self._Line13(t, **name) 

175 

176 def _Inverse(self, ll1, ll2, wrap, **outmask): 

177 '''(INTERNAL) Short-cut version, see .ellipsoidalBaseDI.intersecant2. 

178 ''' 

179 if wrap: 

180 ll2 = _unrollon(ll1, _Wrap.point(ll2)) 

181 return self.Inverse(ll1.lat, ll1.lon, ll2.lat, ll2.lon, **outmask) 

182 

183 def Inverse(self, lat1, lon1, lat2, lon2, outmask=Caps._STD): 

184 '''Return the C{_Geodesic.Inverse} result as L{GDict}. 

185 ''' 

186 with _wargs(self, lat1, lon1, lat2, lon2, outmask) as args: 

187 d = _Geodesic.Inverse(self, *args) 

188 return GDict(d) 

189 

190 def Inverse1(self, lat1, lon1, lat2, lon2, wrap=False): 

191 '''Return the non-negative, I{angular} distance in C{degrees}. 

192 

193 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll 

194 B{C{lat2}} and BC{lon2}} (C{bool}). 

195 ''' 

196 # see .FrechetKarney.distance, .HausdorffKarney._distance 

197 # and .HeightIDWkarney._distances 

198 if wrap: 

199 _, lat2, lon2 = _Wrap.latlon3(lat1, lat2, lon2, True) # _Geodesic.LONG_UNROLL 

200 r = self.Inverse(lat1, lon1, lat2, lon2) 

201 # XXX _Geodesic.DISTANCE needed for 'a12'? 

202 return fabs(r.a12) 

203 

204 def Inverse3(self, lat1, lon1, lat2, lon2): # PYCHOK outmask 

205 '''Return the distance in C{meter} and the forward and reverse 

206 azimuths in C{degrees} as L{Distance3Tuple}. 

207 ''' 

208 r = self.Inverse(lat1, lon1, lat2, lon2, outmask=Caps._INVERSE3) 

209 return Distance3Tuple(r.s12, wrap360(r.azi1), wrap360(r.azi2)) 

210 

211 def _InverseLine(self, ll1, ll2, wrap, **caps_name): 

212 '''(INTERNAL) Short-cut version. 

213 ''' 

214 if wrap: 

215 ll2 = _unrollon(ll1, _Wrap.point(ll2)) 

216 return self.InverseLine(ll1.lat, ll1.lon, ll2.lat, ll2.lon, **caps_name) 

217 

218 def InverseLine(self, lat1, lon1, lat2, lon2, caps=Caps._STD_LINE, **name): 

219 '''Return the C{_Geodesic.InverseLine} as I{wrapped} C{GeodesicLine}. 

220 ''' 

221 with _wargs(self, lat1, lon1, lat2, lon2, caps, **name) as args: 

222 t = _Geodesic.InverseLine(self, *args) 

223 return self._Line13(t, **name) 

224 

225 def Line(self, lat1, lon1, azi1, caps=Caps._STD_LINE, **name): 

226 '''Set up a I{wrapped} C{GeodesicLine} to compute several points 

227 along a single, I{wrapped} (this) geodesic. 

228 ''' 

229 return _wrapped.GeodesicLine(self, lat1, lon1, azi1, caps=caps, **name) 

230 

231 def _Line13(self, t, **name): 

232 '''(INTERNAL) Wrap C{_GeodesicLine}, add distance and arc length 

233 to reference point 3. 

234 ''' 

235 gl = _wrapped.GeodesicLine(self, t.lat1, t.lon1, t.azi1, caps=t.caps, 

236 salp1=t.salp1, calp1=t.calp1, **name) 

237 gl.a13, gl.s13 = t.a13, t.s13 

238 return gl 

239 

240 @property_RO 

241 def name(self): 

242 '''Get the name (C{str}). 

243 ''' 

244 return self._name 

245 

246# Polygon = _Geodesic.Polygon 

247 

248 # Geodesic.ArcDirect.__doc__ = _Geodesic.ArcDirect.__doc__ 

249 # Geodesic.Direct.__doc__ = _Geodesic.Direct.__doc__ 

250 # Geodesic.Inverse.__doc__ = _Geodesic.Inverse.__doc__ 

251 # Geodesic.InverseLine.__doc__ = _Geodesic.InverseLinr.__doc__ 

252 # Geodesic.Line.__doc__ = _Geodesic.Line.__doc__ 

253 return Geodesic 

254 

255 @Property_RO # MCCABE 16 

256 def GeodesicLine(self): 

257 '''Get the I{wrapped} C{geodesicline.GeodesicLine} class from I{Karney}'s 

258 Python U{geographiclib<https://GitHub.com/geographiclib/geographiclib-python>}, 

259 provided the latter is installed. 

260 ''' 

261 _GeodesicLine = self.geographiclib.GeodesicLine 

262 

263 class GeodesicLine(_GeodesicLine): 

264 '''I{Wrapper} for I{Karney}'s Python U{geodesicline.GeodesicLine 

265 <https://PyPI.org/project/geographiclib>} class. 

266 ''' 

267 _geodesic = None 

268 _name = NN 

269 

270 def __init__(self, geodesic, lat1, lon1, azi1, **caps_name_): # salp1=NAN, calp1=NAN 

271 '''New I{wrapped} C{geodesicline.GeodesicLine} instance. 

272 

273 @arg geodesic: A I{wrapped} C{Geodesic} instance. 

274 @arg lat1: Latitude of the first points (C{degrees}). 

275 @arg lon1: Longitude of the first points (C{degrees}). 

276 @arg azi1: Azimuth at the first points (compass C{degrees360}). 

277 @kwarg caps_name_: Optional keyword arguments C{B{caps}=Caps.STANDARD}, 

278 a bit-or'ed combination of L{Caps} values specifying the 

279 capabilities the C{GeodesicLine} instance should possess, 

280 an optional C{B{name}=NN} plus C{salp1=NAN} and C{calp1=NAN} 

281 for I{INTERNAL} use. 

282 ''' 

283 _xinstanceof(_wrapped.Geodesic, geodesic=geodesic) 

284 with _wargs(self, geodesic, lat1, lon1, azi1, **caps_name_) as args: 

285 name, caps_ = _name2__(caps_name_, _or_nameof=geodesic) 

286 _GeodesicLine.__init__(self, *args, **caps_) # XXX avoid updates? 

287 if name: 

288 self._name = name 

289 self._geodesic = geodesic 

290 

291 @Property_RO 

292 def a1(self): 

293 '''Get the I{equatorial arc} (C{degrees}), the arc length between 

294 the northward equatorial crossing and point C{(lat1, lon1)}. 

295 

296 @see: U{EquatorialArc<https://GeographicLib.SourceForge.io/ 

297 C++/doc/classGeographicLib_1_1GeodesicLine.html>} 

298 ''' 

299 try: 

300 return _atan2d(self._ssig1, self._csig1) 

301 except AttributeError: 

302 return NAN # see .geodesicx.gxline._GeodesicLineExact 

303 

304 equatorarc = a1 

305 

306 def Arc(self): 

307 '''Return the angular distance to point 3 (C{degrees} or C{NAN}). 

308 ''' 

309 return self.a13 

310 

311 def ArcPosition(self, a12, outmask=Caps._STD): 

312 '''Return the position at C{B{a12} degrees} on this line. 

313 

314 @arg a12: Angular distance from this line's first point 

315 (C{degrees}). 

316 

317 @see: Method L{Position} for further details. 

318 ''' 

319 with _wargs(self, a12, outmask) as args: 

320 d = _GeodesicLine.ArcPosition(self, *args) 

321 return GDict(d) 

322 

323 @Property_RO 

324 def azi0(self): # see .css.CassiniSoldner.forward4 

325 '''Get the I{equatorial azimuth} (C{degrees}), the azimuth of the 

326 geodesic line as it crosses the equator in a northward direction. 

327 

328 @see: U{EquatorialAzimuth<https://GeographicLib.SourceForge.io/ 

329 C++/doc/classGeographicLib_1_1GeodesicLine.html>} 

330 ''' 

331 try: 

332 return _atan2d(self._salp0, self._calp0) 

333 except AttributeError: 

334 return NAN # see .geodesicx.gxline._GeodesicLineExact 

335 

336 equatorazimuth = azi0 

337 

338 def Distance(self): 

339 '''Return the distance to reference point 3 (C{meter} or C{NAN}). 

340 ''' 

341 return self.s13 

342 

343 @property_RO 

344 def geodesic(self): 

345 '''Get the I{wrapped} geodesic (L{Geodesic}). 

346 ''' 

347 return self._geodesic 

348 

349 def Intersecant2(self, lat0, lon0, radius, tol=_TOL): 

350 '''Compute the intersection(s) of this geodesic line and a circle. 

351 

352 @arg lat0: Latitude of the circle center (C{degrees}). 

353 @arg lon0: Longitude of the circle center (C{degrees}). 

354 @arg radius: Radius of the circle (C{meter}, conventionally). 

355 @kwarg tol: Convergence tolerance (C{scalar}). 

356 

357 @return: 2-Tuple C{(P, Q)} with both intersections points (representing 

358 a geodesic chord), each a L{GDict} from method L{Position} and 

359 extended to 14 items C{lat1, lon1, azi1, lat2, lon2, azi2, a12, 

360 s12, lat0, lon0, azi0, a02, s02, at} with the circle center 

361 C{lat0}, C{lon0}, azimuth C{azi0} at the intersection, distance 

362 C{a02} in C{degrees} and C{s02} in C{meter} along the geodesic 

363 from the circle center to the intersection C{lat2, lon2} and 

364 the angle C{at} between the geodesic and this line at the 

365 intersection. The I{geodesic} azimuth at the intersection is 

366 C{(at + azi2)}. If this line is tangential to the circle, both 

367 intersections are the same L{GDict} instance. 

368 

369 @raise IntersectionError: The circle and this geodesic line do not 

370 intersect. 

371 

372 @raise UnitError: Invalid B{C{radius}}. 

373 ''' 

374 return _Intersecant2(self, lat0, lon0, radius, tol=tol) 

375 

376 def PlumbTo(self, lat0, lon0, est=None, tol=_TOL): 

377 '''Compute the I{perpendicular} intersection of this geodesic line 

378 with a geodesic from the given point. 

379 

380 @arg lat0: Latitude of the point (C{degrees}). 

381 @arg lon0: Longitude of the point (C{degrees}). 

382 @kwarg est: Optional, initial estimate for the distance C{s12} of 

383 the intersection I{along} this geodesic line (C{meter}). 

384 @kwarg tol: Convergence tolerance (C(meter)). 

385 

386 @return: The intersection point on this geodesic line, a L{GDict} 

387 from method L{Position} extended to 14 items C{lat1, lon1, 

388 azi1, lat2, lon2, azi2, a12, s12, lat0, lon0, azi0, a02, 

389 s02, at} with C{a02} and C{s02} the distance in C{degrees} 

390 and C{meter} from the given point C{lat0, lon0} to the 

391 intersection C{lat2, lon2}, azimuth C{azi0} at the given 

392 point and the (perpendicular) angle C{at} between the 

393 geodesic and this line at the intersection point. The 

394 geodesic azimuth at the intersection is C{(at + azi2)}. 

395 See method L{Position} for further details. 

396 

397 @see: Methods C{Intersecant2}, C{Intersection} and C{Position}. 

398 ''' 

399 return _PlumbTo(self, lat0, lon0, est=est, tol=tol) 

400 

401 def Position(self, s12, outmask=Caps._STD): 

402 '''Return the position at distance C{B{s12} meter} on this line. 

403 

404 @arg s12: Distance from this line's first point (C{meter}). 

405 @kwarg outmask: Bit-or'ed combination of L{Caps} values specifying 

406 the quantities to be returned. 

407 

408 @return: A L{GDict} with up to 12 items C{lat1, lon1, azi1, lat2, 

409 lon2, azi2, m12, a12, s12, M12, M21, S12} with C{lat1}, 

410 C{lon1}, C{azi1} and arc length C{a12} always included, 

411 except when C{a12=NAN}. 

412 ''' 

413 with _wargs(self, s12, outmask) as args: 

414 d = _GeodesicLine.Position(self, *args) 

415 return GDict(d) 

416 

417 # GeodesicLine.ArcPosition.__doc__ = _GeodesicLine.ArcPosition.__doc__ 

418 # GeodesicLine.Position.__doc__ = _GeodesicLine.Position.__doc__ 

419 return GeodesicLine 

420 

421 @Property_RO 

422 def Geodesic_WGS84(self): 

423 '''Get the I{wrapped} C{Geodesic(WGS84)} singleton, provided the 

424 U{geographiclib<https://PyPI.org/project/geographiclib>} package 

425 is installed, otherwise an C{ImportError}. 

426 ''' 

427 return _EWGS84.geodesic 

428 

429_wrapped = _gWrapped() # PYCHOK singleton, .ellipsoids, .test/base.py 

430 

431 

432def Geodesic(a_ellipsoid, f=None, **name): 

433 '''Return a I{wrapped} C{geodesic.Geodesic} instance from I{Karney}'s 

434 Python U{geographiclib<https://PyPI.org/project/geographiclib>}, 

435 provide the latter is installed, otherwise an C{ImportError}. 

436 

437 @arg a_ellipsoid: An ellipsoid (L{Ellipsoid}) or datum (L{Datum}) 

438 or the equatorial radius I{a} of the ellipsoid (C{meter}). 

439 @arg f: The flattening of the ellipsoid (C{scalar}), ignored if 

440 B{C{a_ellipsoid}}) is not specified as C{meter}. 

441 @kwarg name: Optional ellipsoid C{B{name}=NN} (C{str}), ignored 

442 like B{C{f}}. 

443 ''' 

444 return _wrapped.Geodesic(a_ellipsoid, f=f, **name) 

445 

446 

447def GeodesicLine(geodesic, lat1, lon1, azi1, caps=Caps._STD_LINE): 

448 '''Return a I{wrapped} C{geodesicline.GeodesicLine} instance from I{Karney}'s 

449 Python U{geographiclib<https://PyPI.org/project/geographiclib>}, provided 

450 the latter is installed, otherwise an C{ImportError}. 

451 

452 @arg geodesic: A I{wrapped} L{Geodesic} instance. 

453 @arg lat1: Latitude of the first points (C{degrees}). 

454 @arg lon1: Longitude of the first points (C{degrees}). 

455 @arg azi1: Azimuth at the first points (compass C{degrees360}). 

456 @kwarg caps: Optional, bit-or'ed combination of L{Caps} values 

457 specifying the capabilities the C{GeodesicLine} 

458 instance should possess, i.e., which quantities can 

459 be returned by calls to C{GeodesicLine.Position} 

460 and C{GeodesicLine.ArcPosition}. 

461 ''' 

462 return _wrapped.GeodesicLine(geodesic, lat1, lon1, azi1, caps=caps) 

463 

464 

465def Geodesic_WGS84(): 

466 '''Get the I{wrapped} L{Geodesic}C{(WGS84)} singleton, provided 

467 U{geographiclib<https://PyPI.org/project/geographiclib>} is 

468 installed, otherwise an C{ImportError}. 

469 ''' 

470 return _wrapped.Geodesic_WGS84 

471 

472 

473class _wargs(object): # see also .formy._idllmn6, .latlonBase._toCartesian3, .vector2d._numpy 

474 '''(INTERNAL) C{geographiclib} caller and exception mapper. 

475 ''' 

476 @contextmanager # <https://www.Python.org/dev/peps/pep-0343/> Examples 

477 def __call__(self, inst, *args, **kwds): 

478 '''(INTERNAL) Yield C{tuple(B{args})} with any errors raised 

479 as L{GeodesicError} embellished with all B{C{kwds}}. 

480 ''' 

481 try: 

482 yield args 

483 except Exception as x: 

484 u = _DOT_(classname(inst), callername(up=2, underOK=True)) 

485 raise GeodesicError(unstr(u, *args, **_name1__(kwds)), cause=x) 

486 

487_wargs = _wargs() # PYCHOK singleton 

488 

489 

490def _Intersecant2(gl, lat0, lon0, radius, tol=_TOL, form=F_D): # MCCABE in LatLonEllipsoidalBaseDI.intersecant2, .geodesicx.gxline.Intersecant2 

491 # (INTERNAL) Return the intersections of a circle at C{lat0, lon0} 

492 # and a geodesic line as a 2-Tuple C{(P, Q)}, each a C{GDict}. 

493 r = Radius_(radius) 

494 n = _dunder_nameof(_Intersecant2)[1:] 

495 _P = gl.Position 

496 _I = gl.geodesic.Inverse 

497 _a = fabs 

498 

499 def _R3(s): 

500 # radius, intersection, etc. at distance C{s} 

501 P = _P(s) 

502 d = _I(lat0, lon0, P.lat2, P.lon2) 

503 return _a(d.s12), P, d 

504 

505 def _bisect2(s, c, Rc, r, tol, _R3): 

506 _s = Fsum(c).fsumf_ 

507 for i in range(_TRIPS): 

508 b = _s(s) 

509 Rb, P, d = _R3(b) 

510 if Rb > r: 

511 break 

512 else: # b >>> s and c >>> s 

513 raise ValueError(Fmt.no_convergence(b, s)) 

514 __2 = _0_5 # Rb > r > Rc 

515 for i in range(_TRIPS): # 47-48 

516 s = (b + c) * __2 

517 R, P, d = _R3(s) 

518 if Rb > R > r: 

519 b, Rb = s, R 

520 elif Rc < R < r: 

521 c, Rc = s, R 

522 t = _a(b - c) 

523 if t < tol: # or _a(R - r) < tol: 

524 break 

525 else: # t = min(t, _a(R - r)) 

526 raise ValueError(Fmt.no_convergence(t, tol)) 

527 i += C.iteration # combine iterations 

528 P.set_(lat0=lat0, lon0=lon0, azi0=d.azi1, iteration=i, 

529 a02=d.a12, s02=d.s12, at=d.azi2 - P.azi2, name=n) 

530 return P, s 

531 

532 # get the perpendicular intersection of 2 geodesics, 

533 # one the plumb, pseudo-rhumb line to the other 

534 C = _PlumbTo(gl, lat0, lon0, tol=tol) 

535 try: 

536 a = _a(C.s02) # distance between centers 

537 if a < r: 

538 c = C.s12 # distance along pseudo-rhumb line 

539 h = _copysign(r, c) # past half chord length 

540 P, p = _bisect2( h, c, a, r, tol, _R3) 

541 Q, q = _bisect2(-h, c, a, r, tol, _R3) 

542 if _a(p - q) < max(EPS, tol): 

543 Q = P 

544 elif a > r: 

545 raise ValueError(_too_(Fmt.distant(a))) 

546 else: # tangential 

547 P = Q = C 

548 except Exception as x: 

549 t = _LLB(C.lat2, C.lon2).toStr(form=form) 

550 t = _SPACE_(x, _plumb_, _to_, Fmt.PAREN(t)) 

551 raise IntersectionError(t, txt=None, cause=x) 

552 

553 return P, Q 

554 

555 

556def _PlumbTo(gl, lat0, lon0, est=None, tol=_TOL): 

557 # (INTERNAL) Return the I{perpendicular} intersection of 

558 # a geodesic from C{(lat0, lon0)} and a geodesic (line). 

559 pl = _MODS.rhumb.bases._PseudoRhumbLine(gl) 

560 return pl.PlumbTo(lat0, lon0, exact=gl.geodesic, 

561 est=est, tol=tol) 

562 

563# **) MIT License 

564# 

565# Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved. 

566# 

567# Permission is hereby granted, free of charge, to any person obtaining a 

568# copy of this software and associated documentation files (the "Software"), 

569# to deal in the Software without restriction, including without limitation 

570# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

571# and/or sell copies of the Software, and to permit persons to whom the 

572# Software is furnished to do so, subject to the following conditions: 

573# 

574# The above copyright notice and this permission notice shall be included 

575# in all copies or substantial portions of the Software. 

576# 

577# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

578# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

579# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

580# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

581# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

582# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

583# OTHER DEALINGS IN THE SOFTWARE.