PylG: Automated Input Generation for Python

Gary Wilson Jr. and Nandita Raman
Electrical & Computer Engineering
The University of Texas
. Austin, TX, USA .
{gary.wilson,nandita.raman88}@gmail.com

ABSTRACT

Automated input generation is important in the software
field because it reduces the cost of testing. In this paper,
we introduce Python Input Generator (PyIG). PyIG is our
implementation of an automated input generation tool for
the Python language, and to the best of our knowledge is the
first tool of its kind for Python. Our implementation is based
on the workings of Korat and, similarly, uses instrumenta-
tion and recording of field accesses to guide its pruning of
input space. We demonstrate a data structure example from
the Korat source code, as well as two non-data-structure ex-
amples that showcase PylG’s general applicability. For au-
tomated input generation and test execution, we provide a
custom extension to Python’s standard unit testing library.
We also present the technique our tool uses to increase per-
formance through the use of multiple execution processes.

1. INTRODUCTION

Software testing is both costly, and costly to ignore [8]. Au-
tomated input generation reduces the cost of testing because
it helps relieve developers from the burden of writing tests,
a burden involving tedious, repetitious tasks that are all too
easy for developers to ignore. Though it has been shown
that the earlier bugs are found, the least costly they are to
fix [8], in this paper we focus on reducing the cost of testing
during the development and testing lifecycle stages.

Most modern programming languages today have libraries
to facilitate unit testing!, or automated testing of a software
system’s individual components. While test execution and
reporting is well automated by these unit testing libraries,
the actual construction of input data and writing of tests is
typically still very much a manual process.

In this paper we introduce Python Input Generator (PyIG),
a tool that automates the creation of input data, including
complex data structures, structured documents, and other
scenarios that are able to map to a sequence or data struc-
ture (e.g. a series of function or method calls). This ad-

1
2

ditional automation — hooked into the automated unit test
library — removes the tedious input-parameter creation work
from the developer, saving time while also providing greater
test coverage of the system under test (SUT).

Our implementation language of choice for the tool pre-
sented in this paper was Python?, an interpreted, dynamic-
typed, high-level language that allows for rapid develop-
ment and prototyping. While Python’s dynamic type sys-
tem makes for quicker development and concise, readable
code, it also presents a challenge for input generation im-
plementations. Since variables and function parameters can
vary in type (and can even change during runtime), the pos-
sible input space becomes exponentially larger.

For example, a function that adds two parameters together
(see Listing 1) can take several different types of inputs, in-
cluding strings, ints, longs, floats, 1ists, and many more
— including custom types. In these scenarios, where multiple
input types are supported by a function, the search space is
essentially increased by a whole new dimension, adding an
exponentially increasing number of combinations to the in-
put search space.

| def add(a, b):
return a + b

1

Listing 1: A simple example of an add function in
Python that can take several different input types.

2. RELATED WORK

Korat [1] is a tool that generates non-isomorphic test cases
up to a finite bound. Type declaration of the data structure,
finitization, and a predicate (e.g. a RepOk() method) are
the required inputs to Korat. RepOk checks the consistency
of the representation of the data structure. Finitization is
a set of bounds that limits the input size, specifying the
number of objects in each class. Two test cases are said to
be isomorphic if parts of their object graphs reachable from
the root object are isomorphic. With the finitization and
predicate defined, Korat generates all non-isomorphic test
cases that satisfy the input predicate.

'E.g. Java has JUnit (http://www.junit.org/), C#
has NUnit (http://www.nunit.org/, Python has PyUnit
(http://docs.python.org/library/unittest.html)
“Python website: http://www.python.org/

Backtracking is a key feature of Korat that expedites explo-
ration of the bounded input space of finitized values. Korat
works efficiently by monitoring the execution of the RepOk
predicate and backtracking only on fields accessed by RepOk.
Korat prunes its state space depending on the evaluation of
the input predicate, i.e. if the method that checks the in-
put predicate returns false, then test case generation is not
necessary. Optionally, Korat uses a method pre-condition to
check the constraints/assumptions that the method makes
on the input, and a method post-condition to check the cor-
rectness of the method’s output.

Model checking is a technique for verifying finite state con-
current systems. Specifications about the system are ex-
pressed as temporal logic formulas, and efficient symbolic
algorithms are used to traverse the model defined by the
system and check if the specification holds or not.

Java Path Finder (JPF) [9] is an explicit state model checker
for Java Byte Code developed by NASA. Even if the state
space shrinks, JPF observes more about the program exe-
cution and finds more defects than normal tests. JPF uses
partial order, symmetry reduction, slicing, abstraction, and
runtime analysis techniques to reduce the state space. Sym-
bolic execution is an explicit state model checking technique.
Symbolic execution is useful for software testing because it
can analyze if and when errors in the code may occur. It
can be used to predict how code statements affect specified
inputs and outputs, and is important for path traversal. As
with automated input generation (e.g. Korat), symbolic ex-
ecution cannot handle large data.

To the best of our knowledge, PyIG is the first automated
input generation tool for the Python language. Hackner and
Memon [3] made use of a Python script to analyze GUI test
cases (written in jfcUnit) and output a set of paths for ac-
cessing a target GUI component. Swain and Scott [7] also
made use of Python scripts for test case execution and post-
processing. However, their Python scripts, which handled
assignment of runtime values for use as parameters on the
command line, were themselves generated from a saved file
containing test cases generated by a Java-based tool. Ian,
Manolis, and Thierry [2] made use of a few tools for case
studies on model-based testing, including a tool named Rule-
Based Python (RBP). While this tool was used for auto-
mated input generation, its similarity to our tool cannot be
determined because the literature includes little detail about
RBP and implies that it is a tool used internally within the
IBM corporation.

3. IMPLEMENTATION

Here, we present the implementation details of PyIG, our au-
tomated input generation tool written in and for the Python
language. The following sections describe the primary com-
ponents of our tool, show these components in action, and
describe a few of the tool’s primary features.

3.1 Components
Below is an overview of the classes used in PyIG and their
functions:

e FieldDescriptor - Performs the instrumentation for

finitized fields, using Python’s descriptor interface®.

e Field - Represents a single finitized field, and main-
tains information about the instrumented object, the
field’s domain, and the field’s current value.

e FieldDomain - Stores the possible values for each Field
instance. The values are separated by type, which is
used for generating non-isomorphic inputs (Section 3.7).

e ClassDomain - Stores possible instances of a specified
class, to be used within a finitized field’s FieldDomain.
This class creates and stores FieldDomain and Field
instances for the finitized fields of the specified class.

e Factory - Provides the primary machinery for auto-
mated input generation. Stores information about all
created ClassDomain and Field instances, as well as
all fields accessed during search of the input space (Sec-
tion 3.7).

e Warehouse - Stores a reference from each Field’s in-
stance object to the Factory instance that maintains
its state information. Primarily used for parallel oper-
ation (Section 3.8), where multiple Factory instances
are utilized.

e TestCase - A subclass of Python’s unittest.TestCase
class that executes user-defined hooks for finitization,
invariant checking, and functional testing. This class
also initializes the multiple execution processes for par-
allel input generation and test execution (Section 3.8).

We describe the use of these classes in more detail through-
out the following sections, where we demonstrate the use of
PyIG on the binary tree example — ported to Python — from
the Korat source code [6].

3.2 Object Factory

To facilitate generation of objects and their attribute com-
binations, we have created an object factory class, named
Factory, that generates new objects of the specified type
(ClassDomain objects) and provides the functionality for in-
strumentation and finitization of fields (Python attributes).
The Factory class keeps track of all constructed class do-
mains and contains data structures for looking up all fini-
tized fields by the instances those fields instrument.

In Listing 2, we show a binary tree example from the Ko-
rat source tree [6] that we have ported to Python. This
example first defines a BinaryTree class*and a Node class.
Each instance of the BinaryTree class is initialized with two
attributes: the root attribute which can reference a Node
object, and the size attribute which maintains the size of
the tree (i.e. the number of nodes reachable from its root
node). Each instance of the Node class is initialized with
left and right attributes that each may refer to another
Node instance or may be empty (i.e. assigned to Python’s
None object).

3Python Data Model Reference: http://docs.python.org/
reference/datamodel.html

4Note that for brevity we have left out the rek0OK class in-
variant method on the BinaryTree class. The full code for
this example can be found in Appendix A.1.

-~ O Ot w

e}

16' tree

import inputgen

class BinaryTree(object):

def __init__(self):
self.root = None
self.size = 0

class Node(object):

def __init__(self):
self.left = None
self . right = None

f = inputgen.Factory ()

Listing 2: BinaryTree and Node class definitions and
instantiation of a Factory instance.

With the necessary classes defined, next a Factory instance
is instantiated (line 15). This Factory object is used to
create class domains and to store references to the Field
instances and their state information, as described above.

3.3 Class Domains

With the Factory instance instantiated from Listing 2, we
now use that object to create class domains. Class domains
represent a set of objects of a specified class, where each
object in the set is a possible concrete instance used dur-
ing exhaustive exploration of the input space. Continuing
with the previous example, Listing 3 shows the creation of
a BinaryTree class domain and a Node class domain. The
create method of the Factory instance is used to create
these class domains.

f.create (BinaryTree)

17| nodes = f.create(Node, 3, none=True) I

Listing 3:
domains.

Creation of BinaryTree and Node class

The create method takes one required argument and two
optional arguments. The first (required) argument specifies
the class to represent, the second (optional) argument speci-
fies the number of objects to create, and the third (optional)
argument specifies whether or not Python’s None object is
an allowed value. The create method returns a ClassDo-
main instance, which stores information about any finitized
fields on the class it represents.

Listing 3 creates two ClassDomain instances: one with a sin-
gle BinaryTree object assigned to the variable tree, and one
with three Node objects assigned to the variable nodes. Ad-
ditionally, the Node class domain is created using the none
argument set to True, meaning that the nodes ClassDomain
instance will also allow Python’s None object to be a possi-
ble value. Both of these created ClassDomain instances are
stored within the Factory instance.

Although not used in this example, it is possible to create
multiple ClassDomain instances of the same class. The fields

for each class domain can be finitized independently, with
state maintained separately in each ClassDomain instance
without interference. In the next section, we show how the
fields of the classes represented by ClassDomain objects are
finitized.

3.4 Finitization and Instrumentation

With the class domains created from the previous section,
we now finitize fields for the BinaryTree and Node class do-
mains that were created and stored to the tree and nodes
variables, respectively. Listing 4 shows this finitization. Us-
ing the set method of the tree and nodes ClassDomain in-
stances from Listing 3, we set the field domain for the tree
attribute on the Factory instance itself, as well as the field
domains for the left and right attributes of the Node class.

In this example, both the left and right attributes of the
nodes ClassDomain instance are set to the nodes ClassDo-
main itself. From Listing 3, recall that nodes represents a
collection of four objects: the None object and three concrete
Node instances.

f.set(’tree’, tree)
nodes.set (’left ’, nodes)
nodes.set (’right’, nodes)

Listing 4: Finitization and instrumentation of the
tree attribute on the Factory instance and the
left and right attributes of the nodes ClassDomain
instance.

In general, the specified field domains can be any Python
collection object containing any number and any type of
values. Behind the scenes, each call of the set method per-
forms the following actions:

e A FieldDomain instance is created and all values given
are stored, separated by type, within the FieldDomain
instance.

e The newly created FieldDomain instance is stored within
the calling ClassDomain instance, referenceable by the
name of the field given as the first argument to set.

e The class represented by the calling ClassDomain in-
stance is instrumented with a created FieldDescrip-
tor instance.

The FieldDescriptor instance is what controls and records
get/set accesses to a finitized field for each concrete instance
within a ClassDomain. It is implemented as a Python de-
scriptor, an object that defines special __get__ and __set__
methods that act as hooks into Python’s standard get and
set actions for instance attributes. In our implementation,
FieldDescriptor instances maintain a reference back to a
Warehouse instance, from which they lookup the value of the
finitized field based on the state stored within the Factory
instance that maintains its state. Upon access to the field,
the FieldDescriptor instance also records the access on the
correct Factory instance. Section 3.7 shows how these access
recordings are used to help prune the input search space.

N

© 00 ~J O

11
12

3.5 Integration with Python’s unittest library
Python’s standard library includes a unit test library (named
unittest, and sometimes referred to as PyUnit), which is
based on Java’s JUnit. We have defined a custom TestCase
class that inherits from the standard unittest.TestCase
class and provides a framework for automated testing with
generated inputs.

Listing 5 shows the interface for defining custom test case
classes that make use of PyIG’s automated input generation.
With a class that inherits from inputgen.TestCase, below
is a description of the required methods:

e The repOK method takes a Factory instance as its
argument and returns True or False depending on
whether or not the desired objects attached to the Fac-
tory instance meet some user-defined constraints, class
invariant, and/or assertions.

e The fin method generates a Factory object and spec-
ifies the finitization of classes and fields. This is essen-
tially what has been shown throughout the binary tree
example from the previous sections, where the Fac-
tory object constructed in those examples would be
the value returned by the fin method.

e The run_method method takes a Factory object as its
argument and calls the desired method under test, us-
ing any objects available on the Factory instance.

class CustomTestCase(inputgen. TestCase):

def repO

def fin (self):
f = inputgen.Factory ()

(self , factory):

return f
def run_method (self ,
#

factory):

Listing 5: Interface for defining test cases that make
use of automated input generation.

3.6 Performing the Search

The key piece that ties the TestCase methods (Section 3.5)
together lies within the test method of our custom Test-
Case class. The following actions are performed within this
method:

1. A Factory instance is created by calling the fin method.

2. The Factory instance is initialized for search explo-
ration with a call to Factory.initialize, which trig-
gers creation of Field instances for maintaining the
state of each finitized field, on each concrete instance,
from all constructed class domains.

w

The Factory instance is passed to a call of the repOK
method, which determines if the current set of object-
s/values represented by the Factory instance’s state
meet the desired assertions or class invariant.

4. If repOK returns True, then run_method is called with
the Factory instance as its argument.

5. The Factory instance’s state is advanced to the next
input combination.

6. Steps 3-5 are repeated until all input combinations are
exhausted.

Internally, state is kept with a list of indicies, one index for
each finitized field. Each field’s index refers to the current
state of the field, an index into the list of the field’s possible
values stored within its associated FieldDomain instance.

3.7 Pruning the Input Search Space

Two major features of Korat that we have also implemented
for PyIG are backtracking and non-isomorphism. The main
algorithms for our implementations of these features live in
the Factory class and are essentially a direct port to Python
from the pseudo code and descriptions within the Korat MIT
technical report [4].

For backtracking, the Factory instance records all field ac-
cesses during each execution of the repOK method, storing
the accesses in the order of last accessed. When a repOK ex-
ecution returns False, the algorithm backtracks to the last
accessed field, incrementing to the next finitized value for
that field. Once all finitized values of a field have been tried,
the search continues with the remaining accessed fields in
order of last access. Since all combinations of non-accessed
fields are ignored, the input search space may be drastically
reduced in comparison to the full search space that includes
all combinations of all finitized fields, accessed or not.

In PyIG, we have also implemented the generation of non-
isomorphic inputs, or inputs that are unique in structure.
The key to our implementation for non-isomorphic inputs
lies in the fact that the FieldDomain class stores each fini-
tized field’s values separated by type. When the next fini-
tized value for a field is to be generated, the FieldDomain
instance will skip ahead to the next value that is not the
same type as the current value.

In some instances, it is desired that a FieldDomain instance
try all possible finitized values for the field instead of skip-
ping ahead to the next value of a different type. For instance,
the size field for the binary tree example should try all pos-
sible finitized values because we are interested in isomorphic
binary trees at every size from zero to the given maximum
number of nodes. We have added support for this behavior
with an all parameter for the ClassDomain.set method.
Listing 6 shows how the size field is finitized in the binary
tree example so that all possible size values are tried.

3.8 Parallel Execution

As the number of CPU cores on today’s workstations in-
crease, parallel execution becomes much more important
for improving the performance of a software system. Since

! then the two work units added to the queue are:

li sizes = range (0, max_size + 1) |
2| tree.set (”size”, sizes, all=True) I
1. (next_indicies(I, A, Ag), A})
Listing 6: Disabling non-isomorphic

input generation for a field by using all=True as a
parameter to the ClassDomain.set method.

Python’s global interpreter lock (GIL) prevents multiple threads

from running in parallel [5], we chose to utilize multiple pro-
cesses instead (using Python’s built-in multiprocessing li-
brary®).

The main code for parallel execution is built into our custom
TestCase class (see Section 3.5). One process is started for
each CPU detected on the machine running PyIG, and all
processes share a single work queue for adding and remov-
ing work units. Each work unit consists of a set of starting
indicies for the finitized fields and a list of accessed fields’
indicies. The list of accessed fields’ indicies acts as the stop-
ping point for that unit of work, i.e. a process will continue
generating inputs until its internal state of accessed fields
matches the work unit’s given list of accessed fields.

To begin work, a single work unit is pushed onto the queue
with indicies all at zero and an empty list of accessed fields.
When a process fetches a work unit from the queue, it will
initialize its Factory instance’s state to the given indicies
and, as stated above, will continue generating input combi-
nations until the list of accessed fields has worked down to
the given list of accessed fields. Therefore, starting with the
single work unit of zeroed indicies and an empty accessed
field list is all that is needed to cause generation of all input
combinations.

However, in order to break the work units up amongst all the
running processes, the search will watch the list of accessed
fields until the list grows in size. At that point, the process
stops execution of its current work unit and adds two new
work units to the queue. Given that:

e [represents the current state of field indicies,
e A represents the previous list of accessed fields,

e A’ represents the current, now larger list of accessed
fields,

e A, represents A’ truncated so that the length of Aj is
equal to the length of A,

e Aj represents the original list of accessed fields speci-
fied by the current work unit,

e and next_indicies is a pseudo function that returns
the next set of indicies (given a starting set of indicies,
a starting list of accessed fields, and a stopping list
of accessed fields) or None if there is no next set of
indicies,

Shttp://docs.python.org/library/multiprocessing.
html

2. (next_indicies(1, A, Ao), Ao)

In other words, the set of indicies for the first work unit
is the next set of indicies from the current state, given the
new, longer list of accessed fields. The stopping condition
for the first work unit is the new, longer list of accessed fields
truncated to the length of the previous list of accessed fields.
The set of indicies for the second work unit is the next set
of indicies from the current state, given the previous list of
accessed fields. The stopping condition for the second work
unit is the original list of accessed fields specified by the
current work unit. Additionally, the second work unit will
only get added if there is a next set of indicies, i.e. search has
not reached the list-of-accessed-fields stopping condition.

For example, looking within an execution of the binary tree
example for four Node objects, we have the set of indicies
and accessed fields shown in Listing 7. From line 2 to line 3,
the list of accessed fields grows; thus, execution stops and
new work units are added to the work queue. The first work
unit added to the queue processes from line 4 until before
line 6, when the list of accessed fields reduces back down to
its original length at the time it was added to the queue.
The second work unit added to the queue processes from
line 6 until the list of accessed fields reduces down to its
stopping condition (at some point in time after the last line
shown in Listing 7).

While not quite a linear performance improvement for each
additional process, the time taken to run the binary tree
example reduced by roughly three and a half times on the
authors’ quad-core workstation when going from single pro-
cess execution to multiprocess execution.

4. EXAMPLES

The binary tree example used throughout this paper is a
Python port of the binary tree Java example from the Ko-
rat source code [6], and can be seen in its entirety in Ap-
pendix A.1. In sections 4.1 and 4.2, we demonstrate the use
of PyIG on two non-data-structure examples: a form valida-
tion example using a popular Python Web framework and a
structured document example, respectively.

4.1 Web Framework Form Example

In this section, we demonstrate the use of PyIG for generat-
ing inputs that pass validation checks for a Web form object
from the Django Web framework®. Listing 8 shows a snippet
of code for this example (the full code listing can be found
in Appendix A.2).

Line 1 defines the form object, MyForm, containing:

e A character field, named name, that has a maximum
length of 10 characters

Shttp://www.djangoproject.com/

~ O U W N —

—_

=

10
11
12

13
14
15

17
18
19

20
21

23
24
25

26
27

Listing 7: An example input space search. At line 3, where the list of accessed field grows larger, execution
on the current work unit stops and two new work units are added to the work queue.

e An integer field, named age, that has a minimum value
of 0 and a maximum value of 10

In the fin method, we finitize three fields on the Factory
instance: form, name, and age. The repOK method uses
these fields to set data on the form instance in the format it
is expecting and then calls the form’s is_valid method to
determine if the data contained in the form object is valid
according to its fields and their specifications.

class MyForm(forms.Form) :

name = forms.CharField (max_length=10)
age = forms.IntegerField (min_value=0,
max_value=10)

class FormExample(inputgen . TestCase):

@staticmethod
def repOK(factory):
form = factory.form
form.data = {’name’: factory .name,
"age’: factory.age}
form.is_bound = True
form._errors = None
return form.is_valid ()

@staticmethod

def fin ():
f = inputgen.Factory (

iso_breaking_enabled=False)

form = f.create (MyForm, init=True)
f.set(’form’, form)

names = [’fred’, ’bob’, ’
areallylongname]

ages = [—3, 0, 3 , 99, 1000, ' . ..
5554, ..., ’'5’, ’notanumber’ |

f.set(’name’, names)

f.set(’age’, ages)

return f

Listing 8 An example that demonstrates using
PyIG to generate valid inputs for a Web form object.

4.2 XHTML Document Example

In this section, we demonstrate the use of PyIG for generat-
ing a valid-structured XHTML"document. Listing 9 shows
a snippet of code for this example (the full code listing can

be found in Appendix A.3).

In the fin method, we finitize the doc field on the Factory
instance, as well as a variable number of fields that depends
on the value given in the fin method’s size parameter. We
finitize size number of fields, named pos0, posl, etc., to a
list of possible strings including the <p> and XHTML
tags and a few simple words. The XHTMLExample.repOK
method then calls Document.repOK through the Document
instance stored in the doc field. Document.repOK concate-
nates all of the posX fields, inserts the generated string into
the body of a simple XHTML template, and then validates
the resulting content with the Ixml library® and XHTML
1.0’s document type definition (DTD)®.

5. FUTURE WORK

Ideas for future enhancements of PyIG include:
e Pre- and post-condition assertion integration into our
custom unit test class.

e A proper command line interface for executing PyIG
and specifying runtime options.

e Additional Korat features besides the backtracking and
non-isomorphism already implemented.

e Support for finitization of more than just class at-

<Factory, indicies: (0,1,0,0,2,1,0,0,0,0,0), accessed: (0,1,3,4,5)> i
<Factory, indicies: (0,1,0,0,2,2,0,0,0,0,0), accessed: (0,1,3,4,5)> |
<Factory, indicies: (0,1,0,0,2,3,0,0,0,0,0), accessed: (0,1,3,4,5,6,7,8,2)> |
<Factory, indicies: (0,1,1,2,0,0,0,0,0,0,0), accessed: (0,1,3,4,5,6,2)> I
<Factory, indicies: (0,1,0,2,0,1,0,0,0,0,0), accessed: (0,1,3,4,5)> |
<Factory, indicies: (0,1,0,2,0,2,0,0,0,0,0), accessed: (0,1,3,4,5)> I

tributes, e.g. list item lookup and dictionary key lookup.

6. CONCLUSIONS

Using the Python language, we have implemented an auto-
mated input generation tool, named PyIG. We have illus-
trated the implementation and usefulness of this tool with
three examples, including a complex data structure example
and two non-data-structure examples. Our tool implements
the backtracking and non-isomorphism features from Korat,
which we demonstrated with a binary tree example from the
Korat source code. We also used the binary tree example
to demonstrate how our tool implements finitization and in-
strumentation. In the two non-data-structure examples, we
showed how PylG was used to generate valid Web form data
inputs and valid XHTML documents. Additionally, we con-
tributed a method and implementation of parallel execution
for input generation, which significantly reduces execution

"http://www.w3.org/TR/xhtml1/
8http://codespeak.net/lxml/
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

—_

= QO

© 00 Ut

class Document(object):

def output(self):
content = ’’.join (getattr (self
pos%s’ % i) for i in xrange(
self .size))
return template % content

?

def repOK(self):
777 Validate using laml.
output = self.output ()
try:
root = etree .XML(output)
except etree.XMLSyntaxError:
return False
return dtd.validate (root)

29999

class XHTMLExample(inputgen . TestCase) :

@staticmethod
def repOK(factory):
return factory.doc.repOK ()

@staticmethod
def fin (size=5):
f = inputgen.Factory (
iso_breaking_enabled=False)
doc = f.create(Document)
f.set(’doc’, doc)

tags = ['<p>’, '</p>’, '’, '

content = [’textl’, ’text2’, ’text3
']

doc.set (’size’, [size])

for i in xrange(size):
doc.set ('poss’ % i, tags +
content)
return f

Listing 9: An example that demonstrates using
PyIG to generate valid XHTML documents.

time. With PyIG, developers are able to automatically gen-
erate large numbers of test case inputs with minimal time
and effort.

7. REFERENCES

[1] C. Boyapati, S. Khurshid, and D. Marinov. Korat:

automated testing based on java predicates. In ISSTA

’02: Proceedings of the 2002 ACM SIGSOFT

international symposium on Software testing and

analysis, pages 123-133, New York, NY, USA, 2002.

ACM.

I. Craggs, M. Sardis, and T. Heuillard. Agedis case

studies: Model-based testing in industry. In Ist

European Conference on Model Driven Software

Engineering, 2003.

[3] D. R. Hackner and A. M. Memon. Test case generator
for guitar. In Companion of the 30th international
conference on Software engineering, ICSE Companion
’08, pages 959-960, New York, NY, USA, 2008. ACM.

[4] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and

M. Rinard. An evaluation of exhaustive testing for data

structures. In Technical Report MIT-LCS-TR-921,

2003.

N. Matloff. Programming on Parallel Machines.

http://heather.cs.ucdavis.edu/ "matloff/168/PLN/

ParProcBook.pdf.

[6] A. Milicevic, S. Misailovic, D. Marinov, and
S. Khurshid. Korat source code. https://korat.svn.
sourceforge.net/svnroot/korat/trunk/, Nov. 2010.

[7] W. Swain and S. Scott. Model-based statistical testing
of a cluster utility. In V. Sunderam, G. van Albada,

P. Sloot, and J. Dongarra, editors, Computational
Science - ICCS 2005, volume 3514 of Lecture Notes in
Computer Science, pages 443—-450. Springer Berlin
Heidelberg, 2005. 10.1007/11428831_55.

[8] G. Tassey. The economic impacts of inadequate
infrastructure for software testing. National Institute of
Standards and Technology, RTI Project Number
7007.011, 2002.

[9] W. Visser, C. S. Pasareanu, and S. Khurshid. Test
input generation with java pathfinder. In ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis, pages
97-107, New York, NY, USA, 2004. ACM.

2

[5

APPENDIX
A. EXAMPLE CODE

This appendix presents the entire code for each of the three
examples described in Section 4.

A.1 Binary Tree Example

9999

A binary tree example ported from an

example found in the Korat source code.
20

from collections import deque

import inputgen

class BinaryTree(object):

def __init__(self):
self.root = None
self.size = 0

def repOK(self):
if not self.root:
return self.size = 0
checks that tree has mno cycle
visited = set ()
visited .add(self.root)
worklist = deque ()
worklist .append(self.root)
while worklist:
current = worklist.popleft ()
if current.left:
if current.left in visited:
return False
visited .add(current.left)
worklist .append(current .
left)
if current.right:
if current.right in visited

return False
visited .add(current.right)
worklist .append (current .

right)
checks that size is consistent
return len(visited) = self.size

class Node(object):

def __init__(self, left=None, right=
None) :

999

Create a Node object. left and
right are optional and should
be Node

objects themselves.

self.left = left
self .right = right

class BinaryTreeExample(inputgen. TestCase):

@staticmethod
def repOK(factory):
return factory.tree.repOK()

@staticmethod

def fin (num_nodes=5, max_size=5):
f = inputgen.Factory ()
tree = f.create (BinaryTree)
f.set(’tree’, tree)

nodes = f.create(Node, num_nodes,
none=True)

nodes.set (’left’, nodes)

nodes.set (’right’, nodes)

tree.set(’root’, nodes)

sizes = range (0, max_size + 1)
tree.set (’size’, sizes, all=True)
return f

def run_method (self , obj):

pass

A.2 Web Framework Form Example

29939

An example involving the walidation of a
Django Form object. This example
requires that you have Django installed :

http ://www. djangoproject.com/

23939

from django.conf import settings
settings.configure ()

from django import forms

import inputgen

class MyForm(forms.Form) :
name = forms.CharField (max_length=10)

age = forms.IntegerField (min_value=0,
max_value=10)

class FormExample(inputgen . TestCase):

@staticmethod
def repOK(factory):
form = factory.form
form.data = {’name’: factory .name,
"age’: factory.age}
form.is_bound = True
form. _errors = None

return form.is_valid ()

@staticmethod
def fin():
f = inputgen.Factory(
iso_breaking_enabled=False)
form = f.create (MyForm, init=True)
f.set(’form’, form)

names = [’fred’, ’bob’,
areallylongname ’]

ages = [—3, 0, 3 , 99, 1000, ’_. ...
55547, ’5’, ’'notanumber’]

f.set(’name’, names)

f.set(’age’, ages)

return f

def run_method(self , factory):
pass

A.3 XHTML Document Example

2939

An example involving the construction of a
valid XHTML document.

This example requires installation of the
laml library:

http://codespeak.net/lzml/

299

import os

from lxml import etree

import inputgen

parent_dir = os.path.dirname(__file__)
dtd = etree .DID(open(os.path.join (
parent_dir , ’xhtmll—strict.dtd’)))

template = 777

<IDOCTYPE html PUBLIC "—//W3C//DTD XHIML
1.0 Strict//EN”
"hittp ://www.w3. org /TR/xhtmll /DTD/chtml1
—strict.dtd”™>
<html zmilns="http://wuww.ws. org/1999/xhtml”>
<head>
<title></title>
</head>
<body>
%s
</body>
</htmi>

99°99 9

class Document(object):

def output(self):
content = ’’.join (getattr (self
pos%s’ % i) for i in xrange(
self.size))
return template % content

)

def repOK(self):
?7? Validate using laml.
output = self.output ()
try:
root = etree .XML(output)
except etree.XMLSyntaxError:
return False
return dtd.validate (root)

993 9

class XHTMLExample(inputgen . TestCase) :

@staticmethod
def repOK(factory):
return factory.doc.repOK()

@staticmethod
def fin (size=5):
f = inputgen.Factory (
iso_breaking_enabled=False)
doc = f.create(Document)
f.set(’doc’, doc)

tags = ['<p>’, '</p>’, '’, ’

content = [’textl’, ’text2’, ’text3
']

doc.set (’size’, [size])

for i in xrange(size):
doc.set ('poss’ % i, tags +
content)
return f

def run_method (self ,
pass

factory):

