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Sommario

La capacità di controllare con precisione lo stato di polarizzazione di un
fascio X si sta rivelando sempre più importante nelle beamline di sincrotrone
specializzate nello studio di materiali magnetici. L’uso di cristalli come phase
plate è una delle migliori alternative per raggiungere lo scopo, in quanto essi
offrono alte rese e la possibilità di variare rapidamente energia ed elicità.

Lo scopo di questo progetto di tesi era creare una libreria Python per la
simulazione di effetti di birifrangenza diffrattiva in phase plate ricavati da
cristalli perfetti. Questa libreria doveva poi essere integrata nell’ambiente
grafico OASYS per simulazioni di ottica di raggi X tramite widget dedicati,
mettendo in questo modo a disposizione dell’utente un’interfaccia sempli-
ce e la facoltà di utilizzare le nuove funzionalità assieme ad altri software
nell’ambito di un più ampio esperimento virtuale.

Il risultato di questo progetto è la libreria crystalpy. Essa lavora nel
formalismo di Müller-Stokes e usa la teoria dinamica della diffrazione come
presentata da Zachariasen per calcolare come la diffrazione da un cristal-
lo perfetto influenzi lo stato di polarizzazione di un fascio X. Il pacchetto
crystalpy in OASYS è ora pienamente integrato con SHADOW e in futuro
sostituirà e rinnoverà il codice sui cristalli in ShadowOui.
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Abstract

The ability to precisely control the polarization state of X radiation is be-
coming more and more important in synchrotron beamlines which specialize
in the study of magnetic materials. The use of crystal phase plates is one
of the best alternatives to achieve this goal as they offer high yields, energy-
tunability, and fast reversal of helicity.

The aim of this thesis work was to create a Python library for the simu-
lation of diffractive birefringence effects in perfect crystal phase plates. This
library was then to be integrated into the OASYS graphical environment for
x-ray optics simulation through dedicated widgets, thereby offering both a
user-friendly interface and the possibility to work hand in hand with other
software and include the new functionalities into a full virtual experiment.

The result of this work is the crystalpy library. It works in the Müller-
Stokes formalism and uses Zachariasen theory of dynamical diffraction to
compute how the diffraction from a crystal phase plate affects the polariza-
tion state of an X-ray beam. The crystalpy package in OASYS is now fully
integrated with SHADOW and will in time replace and renew the crystal
code in ShadowOui.
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Introduction

The polarization properties of synchrotron radiation play an outstanding role
in experimental techniques such as non-resonant magnetic X-ray scattering
[1, 2] and resonant exchange scattering [3]. In particular, circularly polarized
photons have a definite angular momentum and can couple with magnetic
moments in materials. This makes them an important probe for studies on
magnetic materials [4].

Synchrotron radiation has specific polarization properties depending on
the type of source:

• the radiation from a bending magnet (BM) is linearly polarized if ob-
served in the orbit plane and elliptically polarized elsewhere, with dif-
ferent helicities (i.e. the sense of the electric field rotation) above and
below the plane [5].

• the radiation from an undulator is mainly linearly polarized parallel to
the plane of the electron oscillation (normal to the magnetic field) in
the central radiation cone. There is also elliptical polarization out of
the orbit plane and helical undulators can produce circularly polarized
beams [6].

Circularly/elliptically-polarized X-rays can be obtained essentially in three
ways: (i) viewing the source above or below the electron orbit plane, (ii)
using special insertion devices to produce elliptical polarization on-axis [7],
and (iii) using a phase plate to convert linear polarization into elliptical
[8]. This last option offers several advantages, such as the possibility of fast
reversal of helicity [9], a polarization state independent from changes of the
electron orbit, and less disturbances to the polarization from other optical
components [4].

Crystal phase plates work thanks to a phenomenon called diffractive bire-
fringence: when X-rays diffract off a perfect crystal close to the Bragg condi-
tion, dynamical theory predicts the introduction of a phase shift Φ between
the two orthogonal components of the electric field Eσ and Eπ, leading to
elliptical polarization [8].

Simulating the behavior of these crystal plates helps to choose the right
crystal plate (type of crystal, thickness, cut et cetera) and the appropriate
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setup geometry for a certain experiment. This allows one to control the
degree of circular polarization of the resulting radiation and the stability of
the polarization state, as well as to tune the energy without changing the
polarization.

During my traineeship at ESRF in Grenoble I developed the crystalpy
Python library to simulate the diffraction of x-rays from perfect crystal phase
plates. It was built upon previous work done by Mark Glass at ESRF1. The
simulation of crystal diffraction close to a Bragg peak is performed using the
formulas derived by Zachariasen [10] and the polarization state is described
in the Müller-Stokes formalism.

I also integrated crystalpy in the OASYS Graphical Environment2 [11]
through several widgets with the aim of simplifying the process of setting
the parameters and observing the results. This also allows the library to
be interfaced with SHADOW [12] and other tools for beamline simulation
which are presently being added to OASYS.

In this thesis work I will describe both the theoretical concepts and for-
malism upon which the algorithms are based and their implementation in the
library itself. I will illustrate the basic features of the OASYS environment
and the structure of the widgets I created. I will also present the reader with
some results of calculations performed with the library and confront them
with analogous results from published literature.

The thesis contents are organized as follows:

• Chapter 1 reviews some basic concepts about polarization states and
introduces Stokes parameters and Müller matrices as a way to deal
with partially polarized light. A way to switch between Müller-Stokes
and Jones formalisms is also presented.

• Chapter 2 deals with the dynamical theory of diffraction, starting from
perfect crystals and deriving the results that were used in the library.

• Chapter 3 provides an overview on the world of beamline software,
focusing on the OASYS project and its goal of achieving a full virtual
experiment.

• Chapter 4 describes schematically how the crystalpy library works
and its integration into OASYS, the structure of an Orange widget
and the Orange workflow.

• Chapter 5 shows the results that can be obtained with crystalpy and
compares them with other programs and scientific literature.

1The code by Mark Glass can be found at https://github.com/mark-glass/
Orange-Crystal.

2The OrAnge SYnchrotron Suite is being developed by Manuel Sanchez del Rio at
ESRF and Luca Rebuffi at ELETTRA.

https://github.com/mark-glass/Orange-Crystal
https://github.com/mark-glass/Orange-Crystal


Chapter 1

Polarization Optics in the
Stokes-Müller Formalism

"Christian Huygens was the first to suggest that light was not a scalar quan-
tity, based on his work on the propagation of light through crystals; it ap-
peared that light had ’sides’ in the words of Newton. This vectorial nature
of light is called polarization."

- Dennis Goldstein

1.1 Plane waves

X-rays, like all electromagnetic waves, can be described mathematically as
traveling wave solutions to the Maxwell equations. In Maxwell’s theory, time-
varying electric fields generate magnetic fields and vice versa, accounting for
the existence of self-perpetuating oscillations able to transport energy from
one point in space to another [13, p. 269].

The force exerted on a test charge by an array on n other charges is
the vector sum of the force exerted by any one charge individually, this is
called the superposition principle. As a result of this, Maxwell’s equations
are linear and, in the absence of sources, they form a set of 4 homogeneous
partial differential equations:

∇ ·E = 0 ; ∇×E +
1

c

∂B

∂t
= 0

∇ ·B = 0 ; ∇×B− µε

c

∂E

∂t
= 0

(1.1)

By applying the curl operator to the time-dependent equations and using
the well-known vector identity ∇× (∇×F) = ∇(∇ ·F)−∇2F, we see that:

∇(∇ ·E)−∇2E +
1

c

∂

∂t
(
µε

c

∂E

∂t
) = 0

1



2 CHAPTER 1. STOKES-MÜLLER FORMALISM

∇2E− µε

c2

∂2E

∂t2
= 0

This is called the wave equation. Analogous equations can be written for
each scalar component of the electric and magnetic fields:

∇2u− 1

v2

∂2u

∂t2
= 0 (1.2)

where v = c/
√
µε is the speed of light in a medium characterized by a

magnetic permittivity µ and a dielectric constant ε.
The set of all harmonic plane waves of the form:

u = eik·x−iωt with k =
ω

v
(1.3)

constitutes a vector space of fundamental solutions to the wave equation.
They owe their name to the fact that they are constant over each of the
planes

k · x = constant

and they are harmonic with respect to time [14, pp. 14,16]. Simple plane wave
solutions can then be linearly superimposed according to Fourier integral
theorem to form a general solution [13, p. 68]. Considering the vector nature
of the electric and magnetic fields and with the convention that the physical
quantities are obtained by taking the real parts, we can write plane-wave
fields of the form:

E(x, t) = E0e
ik·x−iωt

B(x, t) = B0e
ik·x−iωt (1.4)

with E0, B0 and k constant in time and space. The divergence equations in
(1.1) lead to:

∇ · (E0e
ik·x)e−iωt = 0

E0 · k = 0 (1.5)

and the same holds for the B field. Thus, the oscillations of the fields take
place on a plane perpendicular to the wave vector. Waves with such behavior
are called transverse waves [13, p. 271]. Moreover, one can see that the curl
equations imply that electric and magnetic fields be linked as follows:

∇×E +
1

c

∂B

∂t
= 0 ⇒ k×E0 =

ω

c
B0 (1.6)

If k is real, this means E0 and B0 are in phase and perpendicular to each
other.

Following this analysis we can say that, once a wave vector has been
specified, a plane-wave solution can be fully determined by a two-dimensional
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vector on the (E, B) plane. This vector is in general complex and is called
Jones vector :

j =

 Ex

Ey

 =

 E0,xe
iδx

E0,ye
iδy

 (1.7)

1.2 The polarization ellipse

At a point in space, the end point of the electric field describes a curve over
time. The same curve would be obtained by looking at the projection of the
end points onto a plane perpendicular to the direction of propagation at a
fixed time.

If we define the z direction to be parallel to k and we take the real part,
the electric field can be written as:

Ex = E0,x cos (τ + δx)

Ey = E0,y cos (τ + δy)

Ez = 0

where τ = k · x− ωt (1.8)

We can find the curve’s analytic expression by eliminating τ from the previ-
ous equations as described in Born and Wolf [14, p. 25]. To do it, we start by
expanding the cosine term according to cos (α+ β) = cosα cosβ−sinα sinβ:

Ex
E0,x

= cos τcosδx − sin τ sin δx

Ey
E0,y

= cos τcosδy − sin τ sin δy

therefore
Ex
E0,x

sin δy −
Ey
E0,y

sin δx = cos τ sin δ

Ex
E0,x

cos δy −
Ey
E0,y

cos δx = sin τ sin δ

where δ = δy − δx .

Squaring and adding both equations gives(
Ex
E0,x

)2

+

(
Ey
E0,y

)2

− 2
Ex
E0,x

Ey
E0,y

cos δ = sin2 δ (1.9)

This curve can be shown to be an ellipse and is called the polarization ellipse.
It is independent of space and time coordinates and is thus an intrinsic char-
acteristic of the plane wave. Different ellipses correspond to different polar-
ization states. Some of the most interesting kinds of polarization correspond
to degenerate forms of the ellipse: if the phase difference δ is zero, the wave
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is said to be linearly polarized, forming an angle θ = tan−1(Ey/Ex) with the
x direction; whereas if δ = 90◦ and Ex = Ey the wave is circularly polarized.

To sum up, a polarization state for a plane wave is characterized by a
pair of components (E0,x, E0,y) and a phase difference δ. To each state we
can associate an ellipse. This relation is not one-to-one though, because the
electric field vector can trace an ellipse in two senses. For an observer looking
at an oncoming optical beam, the polarization is right-handed if the tip of
the electric field vector describes the ellipse in the clockwise sense [15, p. 58].

If we try to apply what we have derived until now to practical situations,
we are faced with two main issues:

• Since the electric field vector traces the ellipse in roughly 10−18 seconds
for 1keV x-rays, one cannot measure the polarization by following its
rotation. It is then necessary to find some measurable parameters
which can be associated to each polarization state.

• Strictly monochromatic light can always be associated to a well-defined
polarization state, and is thus said to be polarized. Real light sources,
however, never produce perfectly monochromatic light; in general, the
variation of the field vectors is neither completely regular, nor com-
pletely irregular and the light is called partially polarized. In this case
the two orthogonal components of the electric field do not have a con-
stant phase difference and the observable effects depend on the corre-
lation between them [14, p. 544].

We have to find an extended framework that we can apply to partially po-
larized light.

1.3 Stokes parameters

In 1852, Sir George Gabriel Stokes (1819–1903) discovered that the polar-
ization behavior could be represented in terms of observables. He found that
any state of polarized light could be completely described by four measurable
quantities now known as the Stokes polarization parameters [15, p. 59].

Let’s start by considering the case of a monochromatic plane wave as we
did before. This wave will have a well-defined polarization state to which
we can associate a polarization ellipse. We can only hope to measure the
time-averaged behavior of the electric field vector, so we take the average of
the fields along the ellipse:

〈Ex2(t)〉
E0,x

2 +
〈Ey2(t)〉
E0,y

2 − 2
〈Ex(t)Ey(t)〉
E0,xE0,y

cos δ = sin2 δ

where

〈Ei(t)Ej(t)〉 = lim
T→∞

1

T

∫ T

0
Ei(t)Ej(t)dt i, j = x, y .
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After some calculations (see Goldstein [15, p. 61]) we get:

(E0,x
2 + E0,y

2)− (E0,x
2 − E0,y

2)− (2E0,xE0,y cos δ)2 = (2E0,xE0,y sin δ)2

(1.10)
and we define the 4 Stokes parameters to be:

s0 = E0,x
2 + E0,y

2 = ExEx
∗ + EyEy

∗,

s1 = E0,x
2 − E0,y

2 = ExEx
∗ − EyEy∗,

s2 = 2E0,xE0,y cos δ = ExEy
∗ + EyEx

∗,

s3 = 2E0,xE0,y sin δ = i(ExEy
∗ + EyEx

∗);

 (1.11)

where Eη = E0,ηe
iδηeik·x−iωt and η = x, y.

It is common to group these parameters together in a Stokes vector,
defined as

s =


s0

s1

s2

s3

 (1.12)

We can now write equation (1.10) as

s0
2 = s1

2 + s2
2 + s3

2. (1.13)

In Born andWolf, Chapter 10.8, the "polarization properties of quasi-monochromatic
light" are explored in detail, yielding the following:

s0 = I(0◦, 0) + I(90◦, 0),

s1 = I(0◦, 0)− I(90◦, 0),

s2 = I(45◦, 0)− I(135◦, 0),

s3 = I

(
45◦,

π

2

)
− I
(

135◦,
π

2

)
;


(1.14)

where I(θ, ε) denotes the intensity of light vibrations in the direction making
an angle θ with the x-axis when a retardation ε has been applied to the Ey
component of the field.

These relations show how Stokes parameters can be calculated starting
from measurable quantities (i.e. intensities) and bring into focus the con-
nections between each parameter and a special kind of polarization state: s0

represents the total intensity, s1 is equal to the excess of intensity transmitted
by a device accepting radiation along the θ = 0◦ direction over the intensity
transmitted by a similar device accepting light along the θ = 90◦ direction;
s2 and s3 have analogous interpretations, respectively with θ = 45◦ direction
over θ = 135◦ direction and right-handed circular over left-handed circular.
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If we now have partially polarized light, then equations 1.11 are valid for
short time intervals, since amplitudes and phases fluctuate slowly [15, p. 62].
Using Schwarz’s inequality, one can show that the Stokes parameters always
satisfy this relation:

s0
2 ≥ s1

2 + s2
2 + s3

2.

This is an equality for fully polarized light and an inequality for partially
polarized light.

It is also possible to determine the degree of polarization, i.e. the ratio
of the intensity that can be associated to specific polarization states and the
total intensity:

P =
Ipol
Itot

=

√
s1

2 + s2
2 + s3

2

s0
with 0 ≤ P ≤ 1 . (1.15)

Furthermore, Stokes parameters are additive if we are dealing with the inco-
herent superposition of two or more beams (for a proof of this statement, see
Goldstein [15, Chapter 5.6]). Using this property and acknowledging that
s = I0 (1 0 0 0) describes unpolarized light, we can write partially-polarized
light through the following decomposition:

s =


s0

s1

s2

s3

 = (1− P )I0


1

0

0

0

+ PI0


1

s1/PI0

s2/PI0

s3/PI0

 (1.16)

POLARIZATION STATE STOKES VECTOR δ

Linear Horizontally Polarized (LHP) E0,x
2 (1 1 0 0) N/A

Linear Vertically Polarized (LVP) E0,y
2 (1 −1 0 0) N/A

Linear +45◦ Polarized (L+45) 2E0
2 (1 0 1 0) 0◦

Linear −45◦ Polarized (L−45) 2E0
2 (1 0 −1 0) 180◦

Right Circularly Polarized (RCP) 2E0
2 (1 0 0 1) 90◦

Left Circularly Polarized (LCP) 2E0
2 (1 0 0 −1) 270◦

Table 1.1: Stokes vectors and phase differences for the most commonly en-
countered polarization states.

1.4 Müller matrices

Up to now we have stated what we mean when we talk about polarization
states, polarized, unpolarized and partially-polarized light and we have built
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a mathematical formulation that can be applied to all these concepts in the
form of the Stokes parameters. The next step is to develop a formalism to
describe the change in polarization properties when an electromagnetic wave
interacts with matter.

Let us briefly list the different ways in which a polarization state can be
changed and the names given to the corresponding optical devices:

• A polarizer or diattenuator changes the orthogonal amplitudes of the
fields unequally;

• A retarder or phase plate changes the relative phase between orthogo-
nal components of the fields;

• A rotator changes the direction of the electric field vector;

• A depolarizer transfers energy from the polarized states to the unpo-
larized state.

If we assume that the {s′i} of the outgoing beam can be expressed as a linear
combination of the 4 Stokes parameters of the incoming beam, we can define
a matrix M such that

s′ = M · s; (1.17)

such a matrix is called a Müller matrix.
Imagine we have an optical element of which we can model the optical

properties so that we are able to express them in the form:

j′ = J · j =

 J00 J01

J10 J11

 j, with {Jmn} complex; (1.18)

here j is a Jones vector as defined in (1.7) and J is the Jones matrix
that converts one electric field configuration to another. For each Jones
matrix one can always find a Müller matrix which represents the same optical
element in the Stokes parameters formalism (i.e. Müller-Stokes formalism);
the inverse is not true, e.g. the Müller matrix for a depolarizer cannot have
a matching Jones matrix, since the latter is defined only for fully-polarized
plane waves [15, p. 150]. To find out how we can transform one into the
other, let us follow the derivation found in [16, Appendix 4].

The Kronecker product between an m× n matrix A and a p× q matrix
B is defined as the mp× nq block matrix

A ⊗B =


a00B . . . a0nB

...
. . .

...

am0B . . . amnB

 (1.19)
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and has the mixed-product property :

(A C )⊗ (BD) = (A ⊗B)(C ⊗D). (1.20)

From (1.19)

j⊗ j∗ =

 Ex

Ey

⊗
 E∗x

E∗y

 =


ExEx

∗

ExEy
∗

EyEx
∗

EyEy
∗

 .

From (1.11)

s =


ExEx

∗ + EyEy
∗

ExEx
∗ − EyEy∗

ExEy
∗ + EyEx

∗

i(ExEy
∗ + EyEx

∗)

 =


1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

 (j⊗ j∗) ≡H (j⊗ j∗)

From (1.18) and (1.20)

s′ = H (j′ ⊗ j′
∗
) = H (J j⊗J ∗j∗) = H (J ⊗J ∗)H −1H (j⊗ j∗).

Thus, according to (1.17),

M = H (J ⊗J ∗)H −1 . (1.21)

With this equation we are able to calculate the Müller matrix for any optical
object provided we can find a linear relation between the Jones vectors of
the incoming and outgoing fields.

The matrix elements can also be found by means of the Pauli matrices
as derived by Huard [17] using the following formula:

Mij =
1

2
Tr
(
J σjJ

†σi

)
where † stands for Hermitian transpose and the Pauli matrices are:

σ0 =

 1 0

0 1

 , σ1 =

 1 0

0 −1

 , σ2 =

 0 1

1 0

 , σ3 =

 0 −i

i 0

 .

(1.22)
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Chapter 2

The Dynamical Theory of
X-Ray Diffraction from Perfect
Crystals

"The environment of a particular atom in a crystal has a certain arrange-
ment, and if you look at the same kind of an atom at another place farther
along, you will find one whose surroundings are exactly the same. If you
pick an atom farther along by the same distance, you will find the conditions
exactly the same once more. The pattern is repeated over and over again —
and, of course, in three dimensions".

- Richard Feynman

2.1 Perfect crystals

In the following few pages we are going to derive the basic equations gov-
erning the diffraction of x-rays from perfect crystals according to dynamical
theory, roughly following the treatments by Zachariasen and Batterman and
Cole. As a first step, it is necessary to define some concepts from the physics
of perfect crystals.

A. The lattice abstraction

A perfect crystal is an idealized model of a real crystal, consisting of a three-
dimensional array of repeating "blocks", filling space without leaving empty
portions. These "blocks" can be single atoms, groups of atoms , molecules
or ions and are called unit cells.

A Bravais lattice is an infinite array of discrete points with position
vectors R of the form

R = n1a1 + n2a2 + n3a3 (2.1)

11
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where the primitive vectors a1,2,3 span 3D lattice and n1,2,3 range through
all integers [18, pp. 64,65].

For each crystal Bravais lattice (also called real lattice), one can define a
reciprocal lattice as the set of all wave vectors H yielding plane waves with
the same periodicity as the crystal lattice itself. It can be proved that the
reciprocal lattice is a Bravais lattice in its own right, with primitive vectors

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, b2 = 2π

a3 × a1

a1 · (a2 × a3)
, b3 = 2π

a1 × a2

a1 · (a2 × a3)

and lattice vectors

H = h1b1 + h2b2 + h3b3 where the {hi} are integers. (2.2)

It is easy to see how the {bi} we chose respect the definition of reciprocal
lattice. In fact:

bi · aj = 2πδij

and
H ·R = 2π(h1n1 + h2n2 + h3n3) ;

thus
eiH·(x+R) = eiH·xeiH·R = eiH·x . (2.3)

A lattice plane is a plane containing at least three non-collinear Bravais
lattice points and a family of lattice planes is a set of equidistant parallel
lattice planes which together contain every point of the Bravais lattice.

According to the previous definitions, one can prove that to each family of
lattice planes separated by a distance d corresponds a set of reciprocal lattice
vectors orthogonal to the planes, the shortest of which has modulus 2π/d [18,
p. 90]. This shortest reciprocal vector can be used to unambiguously identify
a family of lattice planes through its components with respect to a set of basis
vectors. A lattice plane has Miller indices h, k, l if the shortest reciprocal
lattice vector orthogonal to it can be written as H = hb1 + kb2 + lb3.

Figure 2.1: A schematic depiction
of the elastic scattering of radiation
from two lattice points separated by
a distance vector d. k and k′ are re-
spectively the wavevectors of the in-
cident and the scattered radiation,
their moduli are k = k′ = 2π/λ.
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B. The Laue and Bragg equations

The von Laue approach to crystal diffraction consists in considering the lat-
tice as made up of individual scatterers (sets of atoms or ions) situated at
the Bravais lattice points. Intensity peaks will occur if the elastically scat-
tered beams from these points interfere constructively. This happens when
the optical path difference is an integral number of wavelengths. Following
the simple geometrical model displayed in figure 2.1 for two scatterers, we
get:

d · n− d · n′ = mλ =⇒ d · (k− k′) = 2πm (2.4)

We can extend this condition to the whole lattice by writing

R · (k− k′) = 2πm =⇒ eR·(k−k
′) = 1 ∀R ∈ Bravais lattice.

This is the Laue condition: constructive interference will occur if and only
if H = k − k′ is a reciprocal lattice vector. Thus, to each reciprocal lattice
vector corresponds one diffraction peak with wavevector given by the Laue
equation:

kH = k0 + H (2.5)

Furthermore, in elastic scattering |kH | = |k0| = k and, as we said before,

Figure 2.2: First order of diffraction from the family of lattice planes asso-
ciated to the reciprocal vector H. θB is the Bragg angle.

the reciprocal lattice vectors corresponding to a family of lattice planes are
orthogonal to the planes themselves and have moduli k = (2π/d)m. As
we can see in figure 2.2, by simply drawing a sketch of the system we can
appreciate how the vectors k0 and kH make equal angles with the lattice
planes. We call this angle the Bragg angle, θB. We can now easily derive the
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famous Bragg equation just from these geometrical considerations:

H =
2π

d
m

H = 2k sin θB

k =
2π

λ

 =⇒ 2d sin θB = mλ . (2.6)

Inside a crystal, if surface effects can be neglected and the infinite crys-
tal abstraction can be applied, all physical properties are going to have
the translational symmetry of the Bravais lattice; meaning that a property
Ω(x) = Ω(x + R) can be expanded in a Fourier series as:

Ω(x) =
∑
H1

∑
H2

∑
H3

ΩH1H2H3e
i(H1x1+H2x2+H3x3) =

∑
H

ΩHe
iH·x (2.7)

with

ΩH =
1

V

∫
V

Ω(x)e−iH·xdv (2.8)

where V is the volume of the unit cell (the spacial period of the function)
and the sum is over all the reciprocal lattice vectors, i.e. over all the plane
waves which have the periodicity of the lattice (as expressed in equation 2.3).

2.2 The structure factor

All diffraction phenomena happening in a crystal can ultimately be traced
back to the interaction between electrons and electromagnetic waves. We
will limit our treatment to a classical description.

Let us consider an atom with z electrons orbiting a nucleus which stays
still at the origin of the coordinate system. In fact, any motion of the nucleus
(e.g. thermal vibrations) will take place on a much longer time frame, as
it is thousands of times more massive than an electron, and the dynamics
of the electron cloud can be effectively decoupled from that of the nuclei
(Born-Oppenheimer approximation). Each electron will be accelerated by
the incoming wave field and will in turn radiate as an oscillating electric
dipole [13, p. 658], (14.18).

If the distances {xj} between the electrons and the nucleus are much
smaller than the distances {Rj} to the observation point, we can consider
the emitted radiation field as a linear superposition of plane waves. With
this approximation we can express the total emitted radiation as the product
between the free-electron emission and a phase term:

Eatom = Ee

∑
j

e−i(k−k
0)·xj = Ee

∑
j

eis·xj . (2.9)



2.2. THE STRUCTURE FACTOR 15

Figure 2.3: Schematic classical representation of the atomic system at a given
instant. The proportions are greatly exaggerated.

The {s · xj} represent the phase difference between the radiation emitted
by an electron at xj and an electron at the origin; X-ray wavelengths are
comparable to these distances, so these terms cannot be neglected. Since the
electrons move very rapidly, however, in the time scales we are considering
the radiation is effectively averaged over an electron "orbit" [10, p. 92]. To
take into account only the average positions for each electron, we can substi-
tute the electrons for a charge distribution function σ(x), with σ(x)dv being
the electric charge in volume dv. The mean amplitude then becomes

Ēatom = Ee

∫
σ(x)eis·xdv︸ ︷︷ ︸
≡f(s)

. (2.10)

where f(s) is the atomic form factor [19, p. 11].

Figure 2.4: Face-centered cubic structure with a two-atom basis (e.g. sili-
con).
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We now take this reasoning one step further by considering the scattering
from a single unit cell of the crystal lattice: we fix the origin of the coordi-
nates at a corner of the unit cell and label the position of the k -th atom in
the cell with a vector rk as shown in figure 2.4. By following the same logic
as before:

Ecell = Ee

∫
Ω(x)eis·x (2.11)

where Ω(x) is the distribution of electric charge throughout the unit cell
volume. This distribution is roughly equal to the sum of the atomic charge
distributions {σk} for each atom in the unit cell. We can express the ampli-
tude emitted by the unit cell as F Ee, where F is called "scattering power
of the unit cell" or, more commonly, structure factor [19, p. 151]:

F =

∫
Ω(x)eis·x ≈

∑
k

fk(s)eis·rk (2.12)

2.3 The fundamental equations

Diffraction from a thick crystal is a phenomenon characterized by the inter-
play between incident and scattered fields: the scattered wave depends on the
electric field felt by the electrons in the medium, and this is in turn shaped
by both incident and scattered fields. This contribution of the scattered
field is a second order effect and is of particular importance only when the
crystal is nearly perfect and big enough to generate a significant diffracted
amplitude. This is the domain of the dynamical theory of diffraction, which
is thus based upon a self-consistent set of coupled fields inside the crystal,
constrained by the boundary conditions at the surfaces1.

First, let us describe the orientation of the crystal in space by a unit
normal n̂ pointing outwards in the z direction and let us fix the origin of the
coordinates on the surface plane, so that it can be described as n̂ · x = 0.
The external field Ee

0 and the internal field D0 are:

Ee = Ee
0 e

ike0·x−iωt

D = D0 e
iβ0·x−iωt

}
(2.13)

The refractive index in the x-ray region is only slightly different from unity,
so we can write it as 1 + δ0 with δ0 a very small quantity and find an

1We will restrict our treatment to the diffraction of monochromatic waves from perfect
crystals. Crystal imperfections and/or spacial and spectral dispersion can be introduced
through a posteriori corrections.
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approximate relation between β0 and ke0:

β2
0 = k2

0(1 + δ0)2 ≈ k2
0(1 + 2δ0)

β0 = ke0 + ∆n̂︸ ︷︷ ︸
at the boundary the exponential functions must agree,

so the wave vectors can only differ by a multiple of the normal.

 =⇒ β0 = ke0 +
k0δ0

γ0
n̂

(2.14)

where γ0 ≡ −n̂ · ue0.

Figure 2.5: The Ewald construction: O is the origin of the reciprocal lat-
tice, β0 is the wavevector of the incident radiation inside the crystal, to
each lattice point corresponds a reciprocal vector. The Laue condition for
diffraction is satisfied only if at least one reciprocal lattice point lies on the
Ewald sphere (a circumference in this 2D representation), and in that case
the vector connecting the centre of the sphere to that point is the diffracted
wavevector.

While the dynamical theory is necessary to provide an accurate description
of the intensities of the diffracted waves, the directions are well predicted
by the kinematical approach: the amplitude of scattering is negligible unless
the Laue vector equation is exactly or very nearly satisfied [10, p. 113]. The
internal wave field can thus be written as the sum of the incident field and
the diffracted fields, each one satisfying βH = β0 + H:

D =
∑
H

DHe
iβH ·x−iωt (2.15)

Referring to figure 2.5, we will have that DH ≈ 0 for each reciprocal lattice
point H lying relatively far from the sphere of reflection. Specifically, we shall
henceforth assume that the crystal produces only one scattered beam at a
time, i.e. only the wave fields D0 and one DH have significant amplitudes
(two-wave approximation).
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A. The dielectric constant of the crystal lattice

As we have discussed in the previous section, the crystal responds to an elec-
tric field by having its electrons displaced from their ground state positions
and the material can be said to have a net instantaneous polarization pe−iωt.
This polarization vector has very little to share with the optical polarization
vector and one has to think of it as a "volume density of electric dipoles".
The material’s polarizability α is defined so that:

p = αE . (2.16)

Remembering the distribution Ω from (2.11), we have that the polarizability
for the entire unit cell is

α(x) = − e2

mω2
Ω(x) . (2.17)

We follow the notation in [10] and define ψ = 4πα. The dielectric constant
of the crystal is thus:

ε ≈ 1 + 4πα = 1 + ψ . (2.18)

The polarizability has the same periodicity as the crystal lattice, so we can
expand it in a Fourier series as described in (2.7) and (2.8):

ψ = 4πα = 4π
∑
H

αHe
iH·x, αH =

1

V

∫
V
αe−iH·xdv (2.19)

In the two-wave approximation the phase relation between incident and
diffracted wave depends on the pair of wavevectors (β0,βH) satisfying the
Laue condition for a specific vector H of the reciprocal lattice. For a partic-
ular H, we have a particular structure factor FH , given by:

FH =

∫
Ω(x) e−i(βH−β0)·x dv

=

∫
Ω(x)e−iH·x dv

(2.20)

Putting together (2.17), (2.19), and (2.20) we get:

ψH = 4παH = −4πe2FH
mω2V

= −reλ
2FH
V π

(2.21)

where re = e2/mc2 is the classical electron radius and V is the volume of
the unit cell.
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B. The general case

Now that we have described the internal field as a sum of plane waves whose
wavevectors satisfy the Laue condition (2.15) and we have calculated the
crystal’s dielectric constant (2.18), we can proceed to compute the intensities
of the different wave components by applying Maxwell’s equations in the
crystal lattice. But first let us make some assumptions:

• ψ is a small quantity at x-ray frequencies, E ≈ (1− ψ)D;

• the magnetic permeability is negligible, B ≈ H;

• there are no conduction currents, Jf ≈ 0.

∇×H =
1

c

∂D

∂t

∇×E = −1

c

∂B

∂t

 =⇒ ∇×
(
∇× (1− ψ)D

)
= − 1

c2

∂2D

∂t2
(2.22)

Let us focus on the left hand side of (2.22). Using (2.15) and (2.19), we get:

(1− ψ)D = e−iωt
{∑

H

DHe
iβH ·x −

∑
K

∑
L

ψKDLe
i(βL+K)·x)

}
(2.23)

where summing over H, K or L means summing over the whole reciprocal
lattice. From our definition of βH as βH = β0 + H, we can say that

βL + K = β0 + L + K = βL+K ≡ βH

and ∑
K

∑
L

ψKDL ≡
∑
H

CH .

Moreover, one can easily prove that ∇× (ea·xA) = ea·x(a×A +∇×A). In
our case ψK and DL are not functions of the position, since they are Fourier
coefficients, so ∇ × CH = 0. By applying this formula to the previous
equation:

∇×
(
∇× (1− ψ)D

)
= −e−iωt

{∑
H

βH ×
(
βH × (DH −CH)

)
eiβH ·x

}
.

The right hand side of (2.22) can be written as:

− 1

c2

∂2D

∂t2
= e−iωt

{ω2

c2

∑
H

DHe
iβH ·x

}
.

Equation (2.22) holds only if all the corresponding coefficients of the Fourier
expansions are equal:

− βH ×
(
βH × (DH −CH)

)
=
ω2

c2
DH = k2

0DH (2.24)
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By applying the vector identity a× (a×b) = (a ·b)a− a2b and by noticing
that (2.24) implies DH ·βH = 0, this can be rewritten in the more intelligible
form: ∑

L

{
ψH−L(βH ·DL)βH − ψH−Lβ2

HDL

}
= (k2

0 − β2
H)DH (2.25)

This is the fundamental system of equations for the dynamical theory: in
principle, every diffracted wave should be coupled to all the other waves
which satisfy the Laue condition. In practice, as we have said previously, it is
almost always the case that an incoming field only excites one diffracted wave
at a time [10, p. 113]. In the following we will work in this approximation.

C. The two-wave approximation

The system in (2.24) becomes a system of two equations:{
ψH̄(β0 ·DH)β0 − ψH̄β2

0DH =
(
k2

0 − β2
0(1− ψ0)

)
D0

ψH(βH ·D0)βH − ψHβ2
HD0 =

(
k2

0 − β2
H(1− ψ0)

)
DH

(2.26)

where H̄ ≡ −H.
The second equation implies that DH is linearly dependent on βH and D0,
which means they all lie in the same plane and DH is normal to βH as we
stated before. These vector equations can be turned into scalar by taking
the scalar product respectively with D0 and DH :{

(2δ0 − ψ0)D0 − ψH̄ sinχDH = 0

−ψH sinχD0 + (2δH − ψ0)DH = 0
(2.27)

where χ is the angle between D0 and βH as shown in figure 2.6. The equa-

Figure 2.6: The geometry of the D0,
DH and βH vectors.

tions in (2.27) are the self-consistency conditions for incoming and diffracted
fields and they have a non-trivial solution only if the determinant vanishes,
i.e. if:

(2δ0 − ψ0)(2δH − ψ0) = ψH ψH̄ sin2 χ (2.28)

and the solution is:
x ≡ DH

D0
=

2δ0 − ψ0

ψH̄ sinχ
. (2.29)
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2.4 The dispersion surfaces

In the previous section we have found the general solution to the coupled
system describing crystal diffraction in the two-wave approximation. Next
we will develop a graphical representation of the scattering process which
extends the simple Ewald construction seen in figure 2.5 to the more general
case we are considering.

As a first step, let us describe the incident wave field as the sum of two
orthogonal fields σ and π so that we can represent its polarization state as
a Jones vector (see chapter 1, 1.7). In figures 2.7a and 2.7b we see that we

(a) The normal component (σ) is perpen-
dicular to the plane containing β0 and
βH , so that
χ = π/2 =⇒ sinχ = 1.

(b) The parallel component (π) lies in the
plane containing β0 and βH , so that
χ = π/2− 2θ =⇒ sinχ = cos 2θ.

Figure 2.7

can set sinχ = P , with

P = 1, σ − component
P = cos 2θ, π − component

}

From equation (2.14) and (2.18) and knowing that β2
H = k2

0(1 + 2δH), we
can write equation (2.28) as:

ξ0 ξH =
1

4
k2

0 P
2 ψH ψH̄ (2.30)

where
2k0ξi ≡ βi · βi − k2

0(1 + ψ0) i = 0, H (2.31)

This is the fundamental equation describing the dispersion surfaces [20,
p. 687].

The surfaces in reciprocal space described by ξ0 = 0 and ξH = 0 are
spheres centred, respectively, at the origin O of the reciprocal lattice and at
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point H. The (ξ0, ξH) = (0, 0) point Q is, to terms of the order of the square
of 10−5, located at a distance k0n ≈ k0(1 + 1

2ψ0) from both O and H.
Following Batterman and Cole [20, p. 687], in proximity of Q we can

approximate these spheres with tangent planes and the dispersion surfaces
of equation (2.30) become hyperbolas centred around Q. The incoming and
scattered wavevectors can be determined in a way analogous to the Ewald
construction in figure 2.5: for each reciprocal vector H, the vectors β0 and
βH can be drawn starting from every point on the hyperbolic surfaces as
depicted in figures 2.8 and 2.9.

Figure 2.8: In this revised Ewald construction the proportions are exagger-
ated: the segment AH should be roughly six orders of magnitude longer
than AQ.

2.5 The Bragg & Laue geometries

We have used dispersion surfaces as a graphical tool to determine the direc-
tion and modulus of the incident and scattered wavevectors; now we want to
go further and find out the amplitude ratio between incident and scattered
wave fields2.

Going back to equations (2.28) and (2.29) and following the calculations
in [10, pp. 117-119], we find that the dispersion equation yields two solutions

2The following treatment holds for both the σ and π components, the only difference
being the value of the polarization coefficient P .
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Figure 2.9: The blue and red hyperbolas correspond respectively to the σ
and π components of the wave field. A point on one of the dispersion surface
branches is called a tie point.

for the parameter x ≡ DH/D0:

x1

x2

}
=
−z ±

√
q + z2

ψH̄ P
(2.32)

where the parameters z and q are defined as:

1

b
≡ n̂ · (ke0 + H)

n̂ · ke0
≈ γH

γ0
, α ≡ 1

k2
0

{H2 + 2ke0 ·H}, (2.33)

z ≡ 1− b
2

ψ0 +
b

2
α, q ≡ b ψH ψH̄ P 2. (2.34)

There are also two possible values for the parameter δ0:

δ′0

δ′′0

}
=

1

2
{ψ0 − z ±

√
q + z2} (2.35)

Thus we can describe the internal fields (both incident and diffracted) in
the general case as the sum of the two components which satisfy the self-
consistency conditions (2.27):

incident wave field: eik
e
0·x−iωt(D′0 e

iφ1d +D′′0 e
iφ2d)

diffracted wave field: ei(k
e
0+H)·x−iωt(x1D

′
0 e

iφ1d + x2D
′′
0 e

iφ2d)
(2.36)
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with
φ1 ≡

k0δ
′
0

γ0
, φ2 ≡

k0δ
′′
0

γ0
, d ≡ −n̂ · x. (2.37)

Up to now we have considered the interaction between the incident field
entering a crystal and the diffracted (or scattered) field it generates within
it. A unique solution to this problem can be found only by applying adequate
boundary conditions.

Let us deal with a bounded crystal in the form of a plane parallel plate
with unlimited lateral extension; the incident wave enters the crystal through
the n̂ ·x = d = 0 plane, whilst the diffracted wave can emerge either through
the d = 0 or the d = d0 plane. We distinguish sharply between these two
cases which present very different boundary conditions and we treat them
separately:

Figure 2.10

A. The Laue case

The geometry of the Laue case is illustrated in figure 2.10: at the d = 0
surface the internal incident field must equal the external incident field,
whereas the diffracted field amplitude must vanish. These conditions are
formalized in the following system:

at d = 0 :

{
incident field: D′0 +D′′0 = Ee0

diffracted field: x1D
′
0 + x2D

′′
0 = 0

(2.38)

This leads to the following solution for the internal fields’ intensities:

D′0 =
x2

x2 − x1
Ee0 , D′′0 =

−x1

x2 − x1
Ee0 (2.39)
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which can be inserted in equations (2.36) to yield the intensity ratios at the
d = d0 plane for both the diffracted wave and the transmitted wave, i.e. the
part of the incident field which propagates out of the crystal without having
been diffracted:

diffracted wave field
incoming wave field

=
EdH
Ee0

=
x1x2(c1 − c2)

x2 − x1
(2.40)

transmitted wave field
incoming wave field

=
EtH
Ee0

=
x2c1 − x1c2

x2 − x1
(2.41)

where c1 ≡ e−iφ1d0 and c2 ≡ e−iφ2d0 . From the amplitude ratio we can
calculate both the intensity ratio and the phase.

B. The Bragg case

We can approach the Bragg case (see figure 2.10) as done with the Laue case,
by imposing that the diffracted field amplitude at the d = d0 plane be zero;

diffracted field at d = d0 : c1x1D
′
0 + c2x2D

′′
0 = 0 . (2.42)

As done in the previous case, we can derive the expressions for the intensity
ratios3:

at d = 0 :
diffracted wave field
incoming wave field

=
IdH
Ie0

=
x1x2(c2 − c1)

x2c2 − x1c1
(2.43)

at d = d0 :
transmitted wave field
incoming wave field

=
ItH
Ie0

=
c1c2(x2 − x1)

x2c2 − x1c1
(2.44)

Notice that the equations we have found still contain the polarization coeffi-
cient P hidden in the xi parameters, so each of the four cases we considered
can actually be split in two: one case for the σ and one for the π plane wave
component. The general polarization state can then be expressed as a linear
combination of the two.

3In (2.43) we write c2 − c1 whereas Zachariasen writes c1 − c2. However, Zachariasen
gives the formula for the intensities instead of the amplitudes, so these terms are squared
and the results are the same even with a sign difference. In our case the sign cannot be
ignored because the phases would be different.
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Chapter 3

The OASYS Graphical
Environment for Beamline
Optics Design

In 2009 the ESRF has embarked upon an ambitious upgrade programme [21]
consisting of two distinct phases:

• Phase I (2009-2015) consists of an overhaul of about one third of the
beamlines (8 new, 7 fully refurbished) with some being extended to
reach source-sample distances of up to 140 meters. A longer beamline
allows to reach a higher level of coherence for phase contrast imaging
techniques as well as to focus the x-rays into micro and nano beams,
achieving a very high demagnification of the ESRF source [22, p. 173].

• ESRF-EBS (2015-2022) aims to renovate the whole storage ring in
order to reduce electricity costs (20%) and increase both brilliance and
coherence by a factor of 100. It will also provide four new state-of-the-
art beamlines and new instrumentation able to make the most of the
new source’s characteristics [23, p. 9].

The new beamlines have unique characteristics, thus a thorough analysis
of the performances and an accurate optimization of the design are needed.
This, together with similar upgrade programmes under way in other facilities
around the world (e.g. the APS Upgrade at Argonne National Laboratory,
Illinois) and the construction of entirely new fourth-generation synchrotron
light sources (e.g. MAX IV in Lund, Sweden) has prompted a collective
effort to improve, renovate and integrate different existing software packages
for x-ray optics simulations both inside and outside the ESRF.

27
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3.1 Beamline simulation software

When designing a synchrotron beamline, it is essential to resort to com-
puter modelling techniques in order to assess what the criticalities are for
the different experiments and address them by optimizing the design. A
full beamline simulation routine consists of a study of source emission, a
thorough heat load analysis on the white mirrors and monochromators using
finite element methods and optics calculations with ray-tracing [24]. Many
of the codes used to perform these analyses were developed in academic and
research institutions and some of them are open-source.

Let’s consider two codes which are well established in the synchrotron
community: SHADOW [12] and SRW [25]. They both have the goal of
simulating x-ray propagation along the beamline, but they do it through dif-
ferent models: SHADOW uses geometrical optics (ray tracing) while SRW
uses physical optics (wavefront propagation from single electrons). Ray trac-
ing provides incomplete functionality when diffraction effects due to finite
apertures become relevant, while wavefront propagation methods based on
scalar diffraction theory become computationally cumbersome when dealing
with partially coherent sources modelled as emitted from incoherent "micro-
electrons" (which is the case for synchrotron radiation)[26]. A user might
then want to harness the advantages of both methods by using both to get
complementary information and to do it in a compatible mode, with the
same user interface and allowing for information exchange between the two.

Figure 3.1: Both SHADOW (left) and SRW (right) have their own GUIs.

Apart from these two, a host of other codes are available: McXtrace for
Monte Carlo ray tracing [27] and XRayTracer (xrt) [28] are among the best
known in the community. Additional algorithms have also been proposed
to be integrated with SHADOW or other ray tracing tools with the aim of
getting around some of their shortcomings: notable examples are the hy-
brid method [26] and coherent-mode decomposition, which is currently being
implemented by Mark Glass at ESRF.
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In order to make sense of this jungle of different software, packages and
algorithms, enhancing collaborations between the developers and making
it possible for users to operate several codes side-by-side in an interactive
fashion, with a common interface and notation, OASYS has been created.

3.2 Virtual experiments in OASYS

OASYS (OrAnge SYnchrotron Suite) is an Open Source Graphical Envi-
ronment developed by Manuel Sanchez del Rio (ESRF) and Luca Rebuffi
(ELETTRA) [29]. Its goal is to model a virtual experiment by integrating
different programs into a single user-friendly GUI (Graphical User Interface)
to give long term support to synchrotron facilities in beamline simulations.

A virtual experiment consists in modeling and simulating a whole syn-
chrotron experiment from storage ring dynamics to light-matter interaction
in the detectors. It requires specific codes able to tackle all the different
steps involved, namely:

• calculation of the electron beam parameters based on a detailed de-
scription of the storage ring lattice (electromagnetic lenses, bending
magnets, insertion devices, RF cavities et cetera);

• calculation of the radiation emitted by the electrons when accelerated
by magnetic fields in bending magnets, undulators or wigglers, based
on the electron beam parameters from the previous step;

• simulation of how beamline optical elements (mirrors, gratings, crys-
tals, multilayers, lenses et cetera) determine the propagation and prop-
erties of the emitted x-ray radiation;

• simulation of the interaction with samples and detectors.

We can then see that the virtual experiment is made up of a sequence of
calculations where each step (undulator, mirror, lens, sample . . . ) determines
the input to be fed to the next. The system can then be modeled as a
workflow composed of a chain of components each receiving and/or sending
out a beam or "signal" which contains all the data required for the next
step, these may be information about electron beam parameters or photon
energy, polarization, coherence of the photon beam, divergences et cetera.

Python was chosen as interaction language because of its popularity in
the scientific community which stems from (and has led to) a high number
of tools and libraries being developed in Python so that many programs
(SHADOW and SRW among others) have a Python Application Program
Interface.

Orange was developed at the University of Ljubljana as an open source
platform for data mining [30] and was chosen as GUI because of its adapt-
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SAMPLE

Figure 3.2: The main steps of the virtual experiment

ability and its beautiful workflow based on connected widgets which truly
resembles an actual optical system.

At the moment (March, 2017) a beta release for OASYS is already avail-
able which includes ShadowOui, the OASYS user interface for SHADOW3.
More and more features are going to be added in the coming months and
years and several workshops have already been organised (e.g. [31]) to allow
both users and programmers to familiarize with this new platform in the
hope of creating a broad and bustling community.

The work in this thesis is driven by the need of some particular beam-
lines to perform calculations with polarized beams and to study the effect
of crystal phase shifters. A code called polarsim was written by Christian
Vettier in the 1980’s and has been available at the ESRF for many years. It
was used in early works of crystal phase plates [32, 33]. The functionalities of
polarsim, which also included Müller-Stokes analysis, are now implemented
and improved in the new crystalpy package in OASYS.
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Chapter 4

The crystalpy Library

crystalpy is a Python library which performs calculations on diffraction
from perfect crystals using the Zachariasen formalism (see chapter 2) and
simulates the changes in the polarization state of the x-ray beam brought
about by the diffraction using Müller-Stokes formalism. The library was
developed mainly by myself and Mark Glass with valuable insight, sugges-
tions and contributions by Manuel Sanchez del Rio. It is divided into three
directories: util, diffraction and polarization1.

4.1 The util toolbox

The util toolbox contains auxiliary classes which take part in the diffraction
process but have their own significance independently of it.

• The Vector class represents a physical vector containing methods for
addition, scalar product, cross product, normalization, rotation around
an axis et cetera. This object is fundamental as the whole library
was written with the idea of making everything work with vectorial
quantities instead of using angles. To clarify the advantages of this
approach, let us imagine we have an x-ray beam impinging on the
surface of a crystal at an angle θ with respect to the normal: how do
we describe this in the code? The simplest way would be to identify its
direction by assigning θ to a variable, e.g. angle_with_normal, while
a more complicated way would be to use an object-oriented approach
and write:

normal = Vector(0, 0, 1) # z axis
beam_direction = normal.rotateAroundAxis(Vector(1, 0, 0), theta)

This is more cumbersome, both at design and run time, but it allows
for a very straightforward manipulation of the vectors: if, for example,

1The code can be found at https://github.com/edocappelli/crystalpy.
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we wanted to know the angle between the beam direction and the
reciprocal vector H, we would also have to keep track of the angle
between H and the normal and pay attention to the sign of the angles
in order to avoid mistakes. The object-oriented approach becomes even
more advantageous in a three-dimensional system, where storing one
angle is not enough and finding the angle between vectors that do not
share the same plane with the normal can be quite a head-scratcher2.

• The StokesVector class has the four Stokes parameters as class at-
tributes and contains a method for calculating the degree of circular
polarization, defined as Pc = S3/S0.

• The Photon class is characterised by an energy (in eV) and a direc-
tion vector. The PolarizedPhoton class inherits from it and has a
StokesVector attribute in addition to the two attributes of the parent
class. It is an abstraction of a monochromatic plane wave rather than
of a physical photon.

• Both Photon and PolarizedPhoton have a corresponding PhotonBunch
object, which is simply an iterable containing a collection of photons3,
this means it can be indexed and called iteratively by using the in
keyword:

for photon in PhotonBunch:
do_something()

These classes are used as "beam" or "signal" between different widgets
when integrating the library into OASYS.

4.2 The diffraction toolbox

This part of the library is concerned with the calculation of x-ray diffraction
from perfect crystals as discussed in chapter 2 using the formulation from
Zachariasen [10]. Let us explore this toolbox and see how the computation
is handled.

1. The DiffractionSetup class handles the information about the crystal
setup and collects all the parameters needed to fully define the physical
system we are modelling:

geometry_type clarifies which is the diffraction geometry among
BraggDiffraction, BraggTransmission, LaueDiffraction and
LaueTransmission. These are the four cases we distinguished in
chapter 2, section 2.5.

2The rotateAroundAxis function is implemented using Rodrigues’ formula [34].
3Please notice that the term photon will be used here to refer to a Photon object even

if it does not correspond to a physical photon.
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crystal_name is a string (e.g. Si, Ge . . . ) specifying which crystal
is being used for the diffraction.

thickness of the crystal in centimetres; we are considering par-
allel plane plates, so this parameter is always well defined.

miller_h(,k,l) are the Miller indices identifying the family of lattice
planes which satisfy the Laue condition. Remember that in the
two-wave approximation only one family of planes takes part in
the diffraction process, so three indices are enough to fix the H
vector once the crystal structure is known.

asymmetry_angle is shown graphically in figure 4.1 and is the angle
between the crystal surface and the planes hkl as defined in [35].
It depends on how the crystal has been cut.

It takes advantage of the functions implemented in the xraylib library
[36] to provide methods able to yield important parameters such as the
Bragg angle at a certain energy: angleBragg(energy), the structure
factor Fourier components F0, FH and FH̄ : F0(energy), FH(energy),
FH_bar(energy), the unit cell volume: unitCellVolume(), the lattice
spacing for the hkl family of planes: dSpacing() and the reciprocal
vector H = hb1 + kb2 + lb3: normalBragg(). If one just wants to
plot the reflectivities/trasmittivities as functions of angular deviation
or energy, the DiffractionSetupSweeps class can be used to build
a PhotonBunch containing all the photons for whom the calculations
are going to be carried out. It needs to know how many photons to
create and in which angular and/or energy range, so it takes as at-
tributes energy_min, energy_max,energy_points for the energy and
angle_deviation_min, angle_deviation_max and angle_deviation_
points for the angular deviations from the (0, 1, 0) direction.

2. The Diffraction class manages the computations without actually
doing anything at initialization. It behaves as an administrator, di-
recting the inputs to where they are needed and collecting the results
in an orderly fashion to create the output. The advantage of this solu-
tion is that, in order to compute the results from the main, an Orange
widget or a user script, one only needs to do this:

diffraction = Diffraction()
outgoing_photon_bunch = diffraction.calculateDiffractedPhotonBunch(

diffraction_setup,
incoming_photon_bunch)

The calculateDiffractedPhotonBunch method iterates over all the
photons in the incoming bunch and for each one calls the calculate-
DiffractedPhoton function. This in turn creates an instance of the
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Figure 4.1: Schematic drawings of Bragg (left) and Laue (right) diffraction
setups: H is the reciprocal vector associated with the hkl family of lattice
planes, also called the Bragg normal, θB is the Bragg angle and αX is the
asymmetry angle as defined in [35].

PerfectCrystalDiffraction class. This class contains methods to
perform the actual calculations. This matryoshka-like structure is il-
lustrated in figure 4.2. Diffraction is designed to propose differ-
ent methods of calculation, or different algorithms. At present, only
Zachariasen theory for perfect crystals is available.

3. PerfectCrystalDiffraction is the class which handles the actual
computations. It calculates the Zachariasen parameters by means of
several methods and then plugs them into the formulae 2.40, 2.41, 2.43
or 2.44 according to the specified experimental geometry: for each
one setup the results are two amplitude ratios for the two polarization
states S (i.e. σ) and P (i.e π). A graphical representation of the steps
of the calculation is shown in figure 4.3.
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Figure 4.2: Structure and data flow of the Diffraction class. The
_checkSetupmethod checks whether the parameters from DiffrationSetup
are not contradictory, e.g. it verifies that, if the declared geometry type is
Bragg, the asymmetry angle be smaller than the Bragg angle (why it must
be so becomes clear by inspecting figure 4.1); if this is not true, then the an-
gles are not compatible with the expected geometry and an exception must
be raised. We will see when dealing with the polarization toolbox that
the amplitudes are used to generate a "polarized photon" as output. The ψ
parameters are computed via equation 2.21.
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Figure 4.3: This is a board-game-style representation of the calculation pro-
cess in the PerfectCrystalDiffraction class: the letters stand for the pa-
rameters used by Zachariasen which are computed using the equations we
have derived in chapter 2. Each one of the concentric circles is one "layer"
of computation, i.e. the innermost parameters are computed starting from
the parameters surrounding them on the outside. For example, to obtain z
using equation 2.34 we need b, ψ0 and α, which are adjacent to z and located
further out; to compute x1,2 via 2.32 we need z, q, ψH̄ and P , and so on.

4.3 The polarization toolbox

This toolbox is made up of classes needed to allow Diffraction to perform
polarization calculations through class methods such as calculateDiffracted-
PolarizedPhotonBunch and calculateDiffractedPolarizedPhoton, which
follow the same process described in figure 4.2 but have PolarizedPhoton
objects as inputs and outputs. These functions compute photon_out and
amplitudes through the dedicated PerfectCrystalDiffraction methods
and then use the field amplitudes to build the Müller matrix for a crystal
phase plate. The matrix is then applied to the Stokes vector attribute of
the incoming PolarizedPhoton object to get the outgoing polarized photon.
The single Stokes parameters can then be extracted and plotted as a func-
tion of angular deviation from the Bragg angle to analyse the birefringence
of the crystal phase plates.
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To do this the toolbox contains:

• The MuellerMatrix class has a matrix attribute which contains a
4× 4 numpy matrix. It has a few methods which allow it to behave as
a Müller matrix should: matrix_by_scalar(scalar) for scalar multi-
plication, mueller_times_mueller(matrix) for matrix multiplication,
and calculate_stokes_vector(incoming_stokes_vector) to apply
the matrix to an incoming Stokes vector to get an outgoing Stokes
vector.

• The CrystalPhasePlate class inherits from MuellerMatrix, since the
matrix for a specific phase plate is nothing but a particular instance of
the abstract concept of a Müller matrix.

The crystal plate’s reference frame will in general be rotated with re-
spect to the source frame as shown in figures 4.4 and 4.5. The Jones
matrix for the phase plate is then made up of a rotation by an angle
α, called the inclination angle, and the subsequent crystal diffraction: Etσ

Etπ

 =

 tσ e
iφσ 0

0 tπ e
iφπ

 cosα sinα

− sinα cosα

 Eσ

Eπ


=

 tσ e
iφσ cosα tσ e

iφσ sinα

−tπ eiφπ sinα tπ e
iφπ cosα

 Eσ

Eπ

 (4.1)

This result can then be translated into the more general Müller-Stokes
formalism and we can do so by applying equation 1.21, which yields:

s′ = MBT · s

=


(t2σ + t2π)/2 (t2σ − t2π) cos 2α/2 (t2σ − t2π) sin 2α/2 0

(t2σ − t2π)/2 (t2σ + t2π) cos 2α/2 (t2σ + t2π) sin 2α/2 0

0 −tσtπ cos Φ sin 2α tσtπ cos Φ cos 2α −tσtπ sin Φ

0 −tσtπ sin Φ sin 2α tσtπ sin Φ cos 2α tσtπ cos Φ




s0

s1

s2

s3


(4.2)

where Φ = φπ − φσ is the phase difference between the two field com-
ponents.

At initialization time the class needs five parameters: intensity_sigma,
intensity_pi, phase_sigma, phase_pi and inclination_angle. With
these it computes all the entries of the matrix at 4.2, writes them on a
numpy matrix and then calls the constructor of the parent class with
this matrix as parameter.



40 CHAPTER 4. CRYSTALPY

Figure 4.4

Figure 4.5

The Diffraction.calculateDiffractedPolarizedPhotonmethod uses these
classes as follows:

1. It reads intensities and phases for both π and σ polarizations from the
amplitudes dictionary;

intensity_pi = amplitudes["P"].intensity()
intensity_sigma = amplitudes["S"].intensity()
phase_pi = amplitudes["P"].phase()
phase_sigma = amplitudes["S"].phase()

2. It then uses them to create a CrystalPhasePlate object;

phase_plate = CrystalPhasePlate(
intensity_sigma=intensity_sigma,
phase_sigma=phase_sigma,
intensity_pi=intensity_pi,
phase_pi=phase_pi,
inclination_angle=inclination_angle)

3. It applies the phase plate Müller matrix to the incoming wave’s Stokes
vector and calculates the outgoing vector;
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outgoing_stokes_vector =
phase_plate.calculate_stokes_vector(incoming_stokes_vector)

4. It returns a PolarizedPhoton object which has the energy and direc-
tion of outgoing_photon and the computed Stokes vector;

outgoing_polarized_photon = PolarizedPhoton(
energy_in_ev=outgoing_photon.energy(),
direction_vector=outgoing_photon.unitDirectionVector(),
stokes_vector=outgoing_stokes_vector)

4.4 The oasys-crystalpy graphical interface

The oasys-crystalpy library aims to integrate the crystalpy functionali-
ties into the OASYS Graphical Environment through several Orange widgets.
The ultimate goal is to provide a tool that can easily be used together with
SHADOW and become a part of a full-beamline simulation4.

CrystalCalculator and CrystalViewer were developed as stand-alone
widgets, giving the user a fast way to get crystal diffraction results and plot
them. The first takes from the users all the parameters needed to define
the diffraction setup (crystal parameters, diffraction geometry et cetera) as
well as the incoming photons in a grid-like source (energy range, angular
deviation range, number of points, Stokes vector) while the second plots the
results.

The idea behind the remaining widgets was to separate the photon-
creation part from the crystal diffraction part as it is the case in a real
experiment and as is required for integration with other OASYS tools. This
resulted in a more complex but far more versatile structure in which the
different widgets perform more specialized tasks and exchange information
in the form of PhotonBunch objects. The photon bunch is defined in a coor-
dinate system we are going to refer to as the lab frame, whereas the crystal
parameters are defined in the crystal frame, in which x1 and x2 are on the
crystal surface plane and x3 is parallel to the surface normal, as shown in
figures 4.4 and 4.5.

4The full code can be found at https://github.com/edocappelli/oasys-crystalpy.

https://github.com/edocappelli/oasys-crystalpy
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4.5 The oasys-crystalpy widgets

PhotonSource generates a polarized photon bunch with grid-
like energy and deviation distributions around the x2 = (0, 1, 0)
direction in the lab frame, letting the user specify the ranges,
number of points and the Stokes parameters’ values. A Stokes
vector (1, 1, 0, 0) corresponding to horizontal linear polarization
indicates that the electric field is oscillating along the x1 direc-
tion, while the vertical direction is x3.

BendingMagnet simulates the Stokes parameters for bending
magnet radiation starting from the electron beam and magnet
parameters using the results by Sokolov and Ternov [37] de-
scribed in Appendix A.

Figure 4.6: Generated photon bunch with default settings: maximum devi-
ation 100 µrad, energy 8000 eV, Stokes vector (1, 1, 0, 0).

AlignmentTool rotates the photon bunch so that a photon with
an energy=base_energy will impinge on the selected family of
crystal planes at an angle θBragg (see figure 4.1). To do this it
needs to know the Miller indices of the diffraction planes, the
base energy and the asymmetry angle α. It acts as an inter-
face between the lab frame and the crystal frame, setting the
crystal up according to the specified parameters. It can work
both ways and can be used in two modes: lab-to-crystal and
crystal-to-lab.

Crystal allows the user to set the diffraction parameters, takes
an incoming polarized photon bunch as input and sends out an-
other polarized photon bunch. It uses the crystalpy library to
generate the diffracted bunch according to the user’s specifica-
tions.
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ShadowConverter was written by Manuel Sanchez del Rio to
convert a PolarizedPhotonBunch object into a Shadow Beam
and vice versa, making it possible to use the crystalpy library
in a beamline simulation along with SHADOW tools.

PhotonViewer takes a PolarizedPhotonBunch as input and plots
the Stokes vectors as functions of angular deviation or energy
using matplotlib [38] plotting tools.

Figure 4.7: Example of an OASYS workflow for crystal phase plate simula-
tions.

4.6 Anatomy of an Orange widget

The goal of OASYS is to create an open source project to which users can
add tools or scripts with relative ease, therefore some effort was put into
creating some basic widget templates which can be edited even with little
understanding of the underlying Orange structure. The crystalpy widgets
were created with the following structure:

1. The widget must be defined as a child class of the widget.OWWidget
class. We will use the AlignmentTool widget as an example.

class OWAlignmentTool(widget.OWWidget):

2. Some basic information is specified, e.g. widget name, widget de-
scription, path to the icon file, author, maintainer e-mail et cetera.

3. Inputs and outputs are defined: one has to include name and ob-
ject type for both. An input also requires a handler method which
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should assign it to a class attribute and, for example, check whether
the input is within a certain range of values or do some initial pro-
cessing. The specification of input and output object types allows
Orange to know which widgets are compatible with one another and
to suggest which ones the user might want to link together. The
program does not allow the user to link widgets if output and in-
put types do not match, thereby avoiding potential runtime errors.

4. The default values are set by creating an instance of the Orange Setting
class. For combo-boxes (the choice of crystal type in this example) one
has to specify an array of strings from which to choose from and the
default is specified via the array index.

5. The "Apply", "Defaults" and "Help" buttons are created in a dedicated
box. Each one calls a specific class method: an apply method to align
the photon bunch and generate the output, a defaults method to
reset the parameter to the default values, or a get_doc method which
shows the user a help text file.
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6. The user can insert the setup parameters using different kinds of inter-
faces e.g. lineEdit, where the user can type the value, or comboBox,
where the user can choose one out of the available options. With a
lineEdit interface one can make sure the user can only type in the
right kind of value by specifying the valueType parameter.

7. When the "Apply" button is pushed, the apply method creates an out-
going photon bunch object and sends it out through the send method.
The output object is now available to the widgets downstream.

self.send("photon bunch", outgoing_bunch)
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Chapter 5

Results

In order to assess the program’s performance, some tests were conducted
against SHADOW and computations/measurements found in existing liter-
ature. In the following we will look at some example of these comparative
tests.

5.1 Testing against Hirano et al.

A 1993 article by Hirano et al. on "Perfect crystal X-ray phase retarders"
[4] offers an in-depth analysis of the use of x-ray phase plates to produce cir-
cularly polarized synchrotron radiation based on several calculated intensity
and phase profiles for different experimental geometries and crystal types.
Since the early stages of the development the code has been tested using
some of these results as controls, leading to the detection of several bugs and
to substantial improvements.

The figures on the left are those by Hirano et al., those on the right
are the corresponding crystalpy simulations. Notice how Hirano uses the
parameter Wσ on the horizontal axis, whereas crystalpy uses the angular
deviation from the Bragg condition measured in µrad. Since Wσ relates
linearly to the deviation δθ = θ−θBragg [4, p. 344], we should expect Hirano’s
diffraction peaks’ shapes to be contracted and shifted with respect to the
crystalpy ones. Indeed, Hirano’s figures are all centered at Wσ = 0, while
the diffraction peak is actually displaced from the Bragg direction as is visible
in figure 5.1.

The oscillations in the phase difference in figures 5.2 and 5.3 are caused
by the fact that the function is wrapped within the interval [−π, π] while
diverging to infinity. Since there is a divergence, by adding more sample
points to the plot we get faster and faster oscillations as shown in figure 5.4.

47



48 CHAPTER 5. RESULTS

Ge 220 Bragg diffraction at 10 keV

(a) Hirano fig. 3 (b) CrystalViewer plot

Figure 5.1: Calculated reflectivities for σ (s) and π (p) polarizations and
phase retardation (s - p) for Ge 220 Bragg diffraction at 10 keV. Figure (a)
is actually the result of 4 successive Ge 220 reflections, so the cumulative
phase difference is bigger in (a) than in (b).

Si 220 Bragg transmission at 10 keV

(a) Hirano fig. 4 (b) CrystalViewer plot

Figure 5.2: Calculated transmittivities for σ (s) and π (p) polarizations and
phase retardation (s - p) for Si 220 Bragg transmission at 10 keV from a
crystal 50-µm thick.
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Diamond 220 Bragg transmission at 10 keV

(a) Hirano fig. 5 (b) CrystalViewer plot

Figure 5.3: Calculated transmittivities for σ (s) and π (p) polarizations and
phase retardation (s - p) for diamond 220 Bragg transmission at 10 keV from
a crystal 1-mm thick.

(a) 200 points (b) 20000 points

Figure 5.4: The figure shows how the oscillation of the phase increases with
the number of sample points inside the divergence region. The numpy.unwrap
function can normally be used to eliminate these wrapping artifacts, but the
presence of a divergent behavior makes it very difficult to properly unwrap
the plot, since this leads to the rightmost values changing unpredictably with
the number of points in the plot (i.e. the number of phase jumps).
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Si 220 Laue diffraction at 10 keV

(a) Hirano fig. 6 (b) CrystalViewer plot

Figure 5.5: Calculated reflectivities for σ (s) and π (p) polarizations and
phase retardation (s - p) for Si 220 Laue diffraction at 10 keV from a crystal
50-µm thick.

Ge 220 Laue diffraction at 20 keV

(a) Hirano fig. 8 (b) CrystalViewer plot

Figure 5.6: Calculated reflectivities for σ (s) and π (p) polarizations and
phase retardation (s - p) for Ge 220 Laue diffraction at 20 keV from a crystal
180-µm thick.
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Si 220 Laue transmission at 10 keV

(a) Hirano fig. 9 (b) CrystalViewer plot

Figure 5.7: Calculated transmittivities for σ (s) and π (p) polarizations and
phase retardation (s - p) for Si 220 Laue transmission at 10 keV from a
crystal 150-µm thick.

Ge 220 Laue transmission at 20 keV

(a) Hirano fig. 11a (b) CrystalViewer plot

Figure 5.8: Calculated transmittivities for σ (s) and π (p) polarizations and
phase retardation (s - p) for Ge 220 Laue transmission at 20 keV from a
crystal 180-µm thick.
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The integration into the OASYS environment allows to simulate more
complex systems with two or more crystals in succession. Figures 5.9 and
5.10 show Bragg-Laue optics for production of Circularly Polarized X-rays
(CPX) as presented by Hirano et al. and a corresponding simulation using
crystalpy. The degree of circular polarization is defined as

Pc =
s3

s0
. (5.1)

Ge 220 Bragg-Laue reflections at 20 keV

(a) Hirano fig. 12a (b) Virtual representation with crystalpy widgets

Figure 5.9: Bragg-Laue optics to produce CPX.

(a) Hirano fig. 12b (b) PhotonViewer plot of Pc

Figure 5.10: The photon beam is initialized with a Stokes vector (1 0 1 0)
and it undergoes Bragg and Laue diffraction from Ge 220 planes at 20 keV.
The first crystal acts as a collimator, the second acts as phase retarder and
is 180 µm thick. The scattering plane is inclined by an angle α = 48.25◦.
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5.2 Testing against SHADOW

On top of the testing against results in published literature, tests were per-
formed against software such as polarsim and SHADOW. The latter doesn’t
use Müller-Stokes calculus to compute the Stokes parameters, instead it
keeps track of the complex amplitudes of the "photon" field components1

during the interaction with the beamline’s optical elements. Amplitudes
and phases can then be used to obtain the Stokes vector according to 1.11.

Since crystalpy and SHADOW follow different procedures to get to the
same result, a correspondence between the two is a sign things are most
probably working as expected in both programs, as a systematic error is not
likely.

The s1 and s3 parameters have opposite signs in the SHADOW and
crystalpy simulations because in SHADOW s1 = |Eπ|2 − |Eσ|2 and s3 ∝
sin (φσ − φπ), whereas in crystalpy s1 = |Eσ|2−|Eπ|2 and s3 ∝ sin (φπ − φσ)
4.2.

Figure 5.11: The upper part of the figure shows the optical setup for crystal
diffraction consisting of the familiar crystalpy widgets.
The lower part shows an equivalent setup made of SHADOW widgets: Bragg
preprocessor creates a file with data about the crystal structure, Geometrical
Source emits photons in random directions from a custom area (a point, a
rectangle, an ellipse, . . . ), Plane Crystal performs the diffraction computa-
tions, and PlotXY can plot several parameters including intensity and phases
for the different polarization components and the Stokes parameters.

1Note that the term photon is not used with its physical meaning, but to refer to a
Photon object.



54 CHAPTER 5. RESULTS

Si 111 Bragg diffraction at 10 keV
sinitial = (1 0 1 0)

Figure 5.12: Stokes parameters for L+45◦-polarized x-rays that underwent Si
111 Bragg diffraction at 10 keV from a 100-µm crystal with α = 0 calculated
with crystalpy widgets.

Figure 5.13: The same calculation performed with SHADOW widgets. The
fact that s2 and s3 are half the crystalpy values can be attributed to a dif-
ference in the definition of the field amplitudes: ESHADOW0 = Ecrystalpy0 /

√
2.
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As a last test, let us examine whether the Stokes parameters computed by
the BendingMagnet widget match those from SHADOW’s bending magnet.

Figure 5.14: At the top: setup with crystalpy’s BendingMagnet widget and
different viewers. At the bottom: setup with SHADOW’s bending magnet.

Figure 5.15: Stokes parameters computed by crystalpy’s BendingMagnet
widget. The parameters are observed for the radiation at 8keV generated
with electron beam energy E = 6GeV , electron beam current I = 0.2A,
horizontal divergence 1mrad and magnetic radius R = 25m.
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Figure 5.16: Stokes parameters computed by SHADOW’s Bending Magnet
widget. The parameters are observed for the radiation at 8keV generated
with electron beam energy E = 6GeV , electron beam current I = 0.2A,
horizontal divergence 1mrad and magnetic radius R = 25m.

The comparison with the results by Hirano et al. and with SHADOW
show nearly perfect agreement. This proves that both the diffraction
and polarization toolboxes work as expected. Nonetheless, more tests are
needed to make sure the tool is reliable: testing against data from [8, 9] and
[39] could be the next steps, as well as starting to use crystalpy alongside
SHADOW for real beamline simulations at ESRF. Some more effort also
needs to be put into the integration into OASYS, especially when linking
together multiple crystals.



Conclusions

In this thesis I have presented the formalism of polarization states, the theory
of dynamical diffraction of X-rays from perfect crystals and how I used both
to create a Python library which is able to simulate the changes in X-ray
polarization brought about by crystal diffraction. I also showed how I inte-
grated the crystalpy library into the OASYS Graphical Environment in the
form of user-friendly widgets that can be included in a complete beamline
simulation.

The calculations performed with crystalpy match those found in ex-
isting literature, in particular they are in good agreement with the results
obtained by Hirano et al. [4]. Moreover, the comparison of the results with
corresponding SHADOW simulations allowed to eliminate some bugs in the
latter.

The code is still under development and needs to be further tested. It will
be improved in the coming months to work better with multiple crystals and
it will be applied to real-world cases in collaboration with ESRF beamlines
which employ crystal phase plates (e.g. BM28). In the future it will be used
as cross-reference for crystal simulations in many OASYS packages, and will
eventually replace and renew the crystal code in ShadowOui.
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Appendix A.
Bending Magnet Radiation

The BendingMagnet widget in the oasys-crystalpy library simulates the
radiation from a bending magnet in the Stokes formalism. It calculates
the polarization properties of the radiation emitted by a relativistic charged
particle on a circular path, following the treatments by Sokolov and Ternov
[37] and Green [40].

A bending magnet is a curved electromagnet used to bend the electrons
into their racetrack orbit. As the electrons are deflected from their straight
path when passing through the magnet, they emit X-rays tangentially to the
plane of the electron beam like a "sweeping searchlight". The synchrotron
light from a bending magnet covers a wide and continuous spectrum, from
microwaves to hard X-rays [41].

Figure A.1: Schematic representation of a bending magnet (figure from [41]).

The power radiated by a non-relativistic accelerated charge is given by
Larmor’s formula [13] and is distributed in a torus around the centripetal ac-
celeration vector. For ultrarelativistic electrons2 however, Larmor’s formula
must be generalized to be invariant under Lorentz transformation. The rel-
ativistic formula predicts that the power be distributed in a narrow cone
tangential to the instantaneous trajectory as shown in figure A.2.

2An electron moving at near the speed of light, i.e. for which relativistic effects are
prominent (γ � 1)
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Figure A.2: Figure (a) shows the Larmor emission profile for a non-
relativistic charged particle on a circular trajectory. Figure (b) shows the
ultrarelativistic emission profile for the same particle when v ≈ c.

Synchrotron radiation is normally generated over an orbital arc θ much
larger than the radiation angle of emission, and is usually collected in such a
manner as to sum over the angles in the orbital plane [40]. Let us compute
the power emitted by an electron beam with energy E, current I, critical
energy ε3, and horizontal divergence θ. The power associated with radiation
of energy ε and observed at an angle ψ from the orbit plane can be calculated
using the formula [40, p. 6]:

dP

dψ
=f
(
E(GeV ), I(A), εc(eV ), θ(mrad)

)
×
{

(1 + γ2ψ2)3/2
[
l2K2/3(ξ) + l3γψ(1 + γ2ψ2)−1/2K1/3(ξ)

]}2
(5.2)

where
ξ =

ε

2εc
(1 + γ2ψ2)3/2,

γ is the Lorentz factor,Km/n are the Bessel functions of the third kind, l2 and
l3 are the parameters which describe the polarization state. In particular,

Linear Horizontally Polarized (LHP) =⇒ l2 = 1, l3 = 0;

Linear Vertically Polarized (LVP) =⇒ l2 = 0, l3 = 1;

Right Circularly Polarized (RCP) =⇒ l2 = 1/
√

2, l3 = −l2;

Left Circularly Polarized (LCP) =⇒ l2 = 1/
√

2, l3 = l2.

The phase difference δ between the horizontal and vertical field components
Ex and Ey is given by Sokolov (3.23):

δ = δy − δx = sin−1 PLCP − PRCP

2
√
PLHPPLVP

(5.3)

3The critical energy divides the emission spectrum in two parts, each containing half
of the total radiated power. It can be calculated as εc(keV ) = 2.2183E(GeV )3/R(m),
where R is the Larmor radius of an electron in a magnetic field B [40, p. 3].
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From these elements we can calculate the Stokes parameters for bending
magnet radiation:

s0 = PLHP + PLVP,

s1 = PLHP − PLVP,

s2 = 2
√
PLHP

√
PLVP cos δ,

s3 = 2
√
PLHP

√
PLVP sin δ.

 (5.4)

The BendingMagnet widget uses these equations to create a PolarizedPhoton-
Bunch object made up by photons with different angular deviations ψ from
the horizontal direction in the orbit plane (conventionally the y-axis).

Figure A.3: Example of Stokes parameters for different angular deviations
from the orbit plane calculated with the BendingMagnet widget. On the left
the user can set the necessary parameters. The default values correspond to
the ESRF beam.
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