
s c r i b l
A system for the semantic capture of relationships in biological literature
Amber Biology LLC
Version 0.8.0, July 2024

10 appleton rd. cambridge ma 02138 usa | (+1) 617 945 8709 | info@amberbiology.com

acknowledgments 4
introduction 5
scribl’s graph database approach 7
integration with open-source literature tools 11
integration with open-source graph databases 13
the scribl schema 14

article RELATES category 15
article REFERENCES resource 15
article DESCRIBES process 15
resource DESCRIBES process 15
article MENTIONS agent 15
resource MENTIONS agent 15
process ACTIVATES/INHIBITS/REGULATES process 16
process INVOLVES agent 16
process GENERATES/REMOVES agent 16
agent BINDS agent 16
agent MODIFIES agent 16

scribl syntax 17
statements, names, and fields 17
additional fields that are unique to agents 19
relationships 20

scribl workflow 22
inserting scribl statements as zotero tags 22
scribl curation in more detail 25
importing the literature database 28
exporting directly from the database 28
exporting Zotero to a CSV file 28
obtaining and setting up the scribl software 29
scribl software overview 30

the scribl Python modules 32
processing exported data from Zotero 33
parsing scribl statements 34
generating the graph data structure 35

managing a scribl graph database 39
GraphDBInstance.__init__ 39
GraphDBInstance.set_metadata 40
GraphDBInstance.add_annotation 40
GraphDBInstance.generate_metadata_cypher() 40

page 2 of 50

GraphDBInstance.import_zotero_csv 40
GraphDBInstance.import_zotero_library 41
GraphDBInstance.load_zotero_csv 41
GraphDBInstance.save_db_snapshot 41
GraphDBInstance.load_db_snapshot 41
GraphDBInstance.export_cypher_text 42
GraphDBInstance.export_graphml_text 42
GraphDBInstance.export_graphml_figure 42
GraphDBInstance.backup_db 42
GraphDBInstance.inspect_db 43
GraphDBInstance.check_synonyms 43
GraphDBInstance.check_agent_labels 43

semantic graphs for literature searches 44
appendix a: scribl formal grammar 49

page 3 of 50

acknowledgments
The development of the scribl platform was made possible by the funding and expertise
provided by the Association for Frontotemporal Degeneration (AFTD - https://www.theaftd.org/)
whose mission is to improve the quality of life of people affected by Frontotemporal
Degeneration and drive research to a cure. We are particularly grateful to AFTD leadership
team members Debra Niehoff and Penny Dacks for their invaluable direction and guidance, and
for getting us access to leading researchers in the field of neurodegenerative disease - all of
whose insights and advice were pivotal in the development of this free, open-source research
tool.

page 4 of 50

https://www.theaftd.org/

introduction
The digital capture of research articles and their attendant metadata in a database is an
excellent way to create a searchable catalog of scientific literature. In such a database however,
nearly all of the semantic detail contained in the curated articles is lacking. A typical literature
search based upon text and keywords can be a blunt instrument, often generating large sets of
articles of potential interest that still need to be read more closely in order to determine if the
processes or phenomena that they describe are actually relevant to the user. In life science
research in particular, a scientific literature database is most immediately useful to a scientist
looking for general literature on a broad research area, or conversely, to a scientist who has
very precise idea of what they are searching for - perhaps even down to the title of a specific
article, the name of a specific gene, or the name of an author who is working on a research
problem that is directly relevant to their own interests. In between these two extremes is the
scientist whose research is focused on a relatively narrow scientific area, the results of which
require a broader, more holistic perspective to make sense of. This latter category arguably
encompasses the great majority of life science researchers who find themselves working on a
relatively small set of biological processes and entities that are themselves components of a
much larger system to which they contribute, and whose properties and behaviors are largely
defined by the context of this larger system in which they are embedded.

As a concrete use case for this situation, consider a researcher whose work focuses upon a
narrow set of genes and proteins that are implicated in a neurodegenerative disease via some
set of processes and mechanisms that have yet to be elucidated. In a laboratory cell assay, this
researcher observes that the death of cultured cells is clearly accompanied by some dysfunction
in the clearance from these cells of aggregated and misfolded proteins. Based upon this
observation and pursuing a hypothesis that a breakdown in autophagy may play a role in this
disease, the researcher starts a PubMed search using the term “autophagy” which at the time1

of writing yields 65,638 articles . This number could certainly be reduced by the inclusion of2

some additional terms, perhaps even including the names of the genes and proteins that are the
focus of the researcher’s experiments. But in the search for mechanistic insights that might link
their own data with their disease of interest in a manner that also accounts for the role of
autophagy, the researcher may well need to wade through a great deal of reading material in
search of the precise pieces that can make sense of this puzzle.

As biology has become ever more quantitative with the advent of lab automation and digital data
capture, the rate of generation of scientific data has significantly outstripped our ability to
generate real knowledge and insight from that data. As a case in point, the differential
expression of a panel of genes between a healthy and a distressed cell might initially appear to
be a set of unconnected data points from which it is challenging to draw any conclusions, until
the relationships between the differentially expressed genes are made clear by mapping them

2 https://pubmed.ncbi.nlm.nih.gov/?term=autophagy
1 https://pubmed.ncbi.nlm.nih.gov/

page 5 of 50

onto a specific cell signaling pathway. It is these relationships between the many components of
complex biological systems and between the processes that they participate in, that are central
to the properties and behaviors of these systems to which we would apply the term “biology”.

Beyond merely listing the names of the agents (proteins, genes, compounds, receptor
complexes etc. etc.) and processes underlying the biology, it would therefore be extremely
valuable for the researcher to be able to query a scientific literature database based also upon
the relationships between these agents and processes. It is to this end that the simple scribl
syntax was developed to allow for the curation of these relationships along with the articles that
describe them - relationships that would otherwise be buried in the texts of those articles.

To be clear, the biological relationships captured in scribl are not intended to replace a reading
of the literature but rather to further narrow down the search for relevant biological agents and
processes. Nor is scribl intended to provide a semantic platform for the construction of formal
models of biological process and interacting agents such as the modeling languages Kappa3

and SBML . The development of such models requires a much narrower focus on a specific set4

of agents and reactions, and is significantly constrained by the requirement for a level of
specific, quantitative detail that most life science articles do not provide. In this sense then,
scribl could be considered a platform for the development of a kind of coarse-grained model of
biological systems that sits somewhere between the very low resolution representation of a
system by keywords and literature terms, and the very high resolution representation of a
formal, kinetic model. It is worth noting that at the time of writing, even though a biological
system might be comprehensively described in great detail by a particular scientific article, the
kind of natural language processing technology required to extract an accurate, formal model of5

that system from the article text has yet to reach the level at which this could realistically be
achieved algorithmically.

Nor is scribl intended to be a replacement for biological graph databases such as Reactome
(https://reactome.org). The Reactome database is actually based upon the same graph
database engine that is the current default supported by scribl, so scribl could actually serve
as a useful aid to facilitate the curation of biological pathways from newly-published literature, in
a format that is ready for graph data repositories like Reactome. It is also often desirable for
researchers to curate literature databases that are focused on narrower, more specific areas of
interest, including those that may also be poorly represented in the larger data repositories.

5 https://en.wikipedia.org/wiki/Natural_language_processing
4 https://synonym.caltech.edu/
3 https://kappalanguage.org/

page 6 of 50

https://reactome.org

scribl’s graph database approach
The primary purpose of scribl is the curation from scientific articles, of the relationships
between the various biological agents and processes that they describe, with a view to
generating a graph database that captures these relationships as a connected network. In
contrast with a traditional relational database with tables of rows and columns, a graph6

database captures data as a collection of nodes connected by edges that define the7

relationships between the nodes. The easiest way to appreciate how a graph database works
and the advantages that it has over a traditional, relational database, is to see one in action.
Shown in Figure 2 below, is a tiny portion of a scientific literature database for a disease that
was developed using scribl.

Figure 2.

In this graph database of articles about neurodegenerative disease, an article (shown in blue)
entitled “Progranulin: A Proteolytically Processed Protein at the Crossroads of Inflammation and
Neurodegeneration” describes the process (shown in green) “lysosomal protein degradation”,
and mentions 2 of the agents (shown in orange) “sortilin” and “progranulin” that are involved in
this process. The agents are the “players” in the biological processes - typically genes and

7 https://towardsdatascience.com/an-introduction-to-graph-databases-cd81a0d5aa12
6 https://en.wikipedia.org/wiki/Relational_database

page 7 of 50

proteins, but also any biochemical entity ranging from a simple ion to a large, macromolecular
complex. It can also be seen in the graph, that the agent “sortilin” binds the agent “progranulin.
The process “lysosomal protein degradation” involves 4 other agents that are not mentioned
in this article and here we can see one of the advantages of a graph database. These other 4
agents were curated from other articles that also describe the process “lysosomal protein
degradation”, but from a different perspective. Effectively then, the graph database is connecting
the information from different articles that describe the same process, as well as showing the
relationships between them. With this graph database it is possible to do searches of the kind
“Show me all of the agents that are involved in the process ‘lysosomal degradation’ and the
articles that describe them”.

The graph itself can also be expanded beyond the bounds defined by the initial search. For
example, in Figure 3 below, we have expanded the graph to include the immediate neighbors of
the agent “cathepsin l”. We can see that this agent is also mentioned in 2 other articles, and that
the agent itself is generated by the process “procathepsin l processing”. This graph expansion
can be repeated by expanding successive nodes as needed. In the graph below for example,
we might be interested in further expanding the process “procathepsin l processing” as a
potential line of research enquiry.

Figure 3.

The graph also reveals some of the causal relationships between biological processes and
agents. In Figure 3 we can see that the process “procathepsin l processing” impacts the process
“lysosomal protein degradation” since it generates one of the agents that is involved in that

page 8 of 50

process. It is also possible to move away from the literature database paradigm completely, and
explore the documented relationships between biological processes and agents without
reference to the articles that describe or mention them. In Figure 4 below, we can trace one of
the causal relationships between mutations in the c9orf72 gene and the dysfunction in
nucleocytoplasmic transport that result from them. The hexanucleotide expansion of the
c9orf72 gene generates hexanucleotide repeats that sequester the ran-GTPase-activating
protein rangap1. The protein rangap1 facilitates the maintenance of a gradient of ran-GTP and
ran-GDP species between the nucleus and the cytoplasm, a gradient that is essential for
nucleocytoplasmic transport. Through this graph whose relationships span multiple articles and
connect the information in them, we can see one of the ways that mutations in the c9orf72 gene
can result in nuclear transport dysfunction. It also illustrates that an agent can be as specific as
a particular gene or protein, or as generic as an undefined, repeating sequence pattern in a
gene. Although no articles are shown in Figure 4, we can of course, expand any node in the
graph - if for example, we also wish to retrieve the articles that discuss a particular process or
agent.

Figure 4.

Both nodes and edges in the graph can be assigned a rich variety of metadata that facilitates
more focused searches. The article nodes for example, contain all of the essential fields that
would be expected in a scientific literature database - title, abstract, journal title, authors, year of
publication etc. etc. and these metadata are almost infinitely customizable in a way that would
be very laborious in a traditional, relational database in which the entire database schema would

page 9 of 50

need to be changed in order to introduce a new data field. In Figure 5 below, you can see the
current metadata for the database article that was used to retrieve some of the relationships
shown in Figure 4 above.

Figure 5.

This metadata also allows for all of the search queries that one would make using a traditional
(relational) literature database - searching by title, keyword, author, year etc. etc. The big
difference with the graph database however, is that the results generated by these queries can
subsequently be expanded to show the relationships captured in the articles, as well as the
connections and overlapping areas between the contents of the articles.

page 10 of 50

integration with open-source literature tools
The scribl platform was developed with the intention of creating an open-source tool that would
be freely available to all researchers. In keeping with this goal, the excellent, open-source
literature database tool Zotero (https://www.zotero.org) was chosen for the integration of scribl
with existing literature database platforms - although in theory there is no reason why scribl
could not be used with any literature database platform (including proprietary platforms) that
supports the manual addition of metadata. Zotero was also chosen because it natively supports
the creation of collaborative, cloud-based databases that facilitate the global sharing and
collaborative curation of data between researchers, via the web.

The basis of scribl is a very simple syntax for tagging articles with metadata that can be
processed to generate a graph database using a data file exported from the Zotero relational
database. No direct access to Zotero’s SQLite database engine or application programming8

interface (API) is required since scribl is able to generate a graph database entirely from an
exported file. It is also possible to access the Zotero database programmatically via the Zotero
API and so scribl can skip the file export step and access the Zotero database directly The
addition of some extra manually-curated metadata to the entries in the Zotero database does
not in any way impair the normal functionality of a Zotero database and scribl can (and should)
be used in conjunction with, and as a complement to, an existing Zotero database.

In the current version of scribl, each scribl statement is a tag consisting of a simple line of text
that is added to the manual tags that a Zotero user can attach to each article entry in the
database. The relationships between the article itself and the biological processes and agents
that it discusses are generated automatically by the addition of scribl statements to the manual
tags field of a particular article in the database, and do not need to be explicitly defined by the
user.

The structure and syntax of scribl will be discussed in much more detail in subsequent
sections, but in Figure 6 below, you can see what scribl statements look like when they have
been added to the manual tags field in a Zotero article. Following the access to the Zotero
database (either via a file in CSV format, or by direct API access), the scribl statements from9

all articles in the database are compiled and integrated into an internal graph database format in
Python that represents all of the literature in the Zotero database. After compiling this10

graph-formatted data structure, the next step is to export this data in a form that can be
recognized by one of the currently available graph database platforms. The current version of
scribl can convertthe graph-formatted data into both the cypher query language that is used11

11 https://neo4j.com/developer/cypher/
10 https://www.python.org/
9 https://en.wikipedia.org/wiki/Comma-separated_values
8 https://en.wikipedia.org/wiki/SQLite

page 11 of 50

https://www.zotero.org

for creating, editing and querying the open-source graph database neo4j , (discussed further in12

the next section), as well as GraphML , which can be read by NetworkX .13 14

Figure 6.

14 https://networkx.org/
13 http://graphml.graphdrawing.org/
12 https://neo4j.com/

page 12 of 50

https://networkx.org/
http://graphml.graphdrawing.org/

integration with open-source graph databases
In keeping with the requirement that scribl and the tools it integrates with are freely available
and open-source, we chose the free, open-source graph database neo4j12 as our default graph
database engine for scribl. As is the case with Zotero, scribl has a loosely coupled integration
with neo4j insofar as it does not currently require access to the neo4j API or internals. In the
current version of scribl, the internal graph database generated from Zotero data can be
exported in cypher11, which is the language used in neo4j for creating, editing and querying the
graph database. Although neo4j is the only database that this first iteration of scribl currently
supports, there is no reason why it would not be able to support multiple graph databases via
extension of the platform code to enable graph data exports in other formats.

Once the internal graph database has been compiled from data exported from Zotero, it can be
used to generate a series of cypher statements that can be input directly to neo4j (the workflow
for creating and updating a neo4j database using scribl, will be covered in subsequent
sections). The exported cypher text encodes all of the articles in the Zotero database, including
their associated metadata (author, journal, year etc.), along with the agents and processes
described by the articles and their relationships. The relationships between the articles and the
processes and agents they describe are compiled automatically and do not need to be explicitly
encoded by the user. The scribl syntax also allows for the categorization of articles in the
database under major subheadings, and for the capture of relevant online resources such as
other databases that might be referenced in the articles.

The exported cypher text is human-readable text that can be input directly into neo4j, Some
examples of cypher statements are shown in Figure 7 below (very long statements are shown
truncated for improved readability).

Figure 7.

page 13 of 50

the scribl schema
The scribl schema comprises a hierarchy of the 5 basic entities, article, category, resource,
process, and agent. The valid relationships for each entity are shown in Table 1 below and
schematically in Figure 8 that follows it (details of the scribl syntax will be discussed later)

entity relationship entity

article RELATES category

article REFERENCES resource

article
resource DESCRIBES process

article
resource MENTIONS agent

process
ACTIVATES

INHIBITS
REGULATES

process

process
INVOLVES

GENERATES
REMOVES

agent

agent BINDS
MODIFIES agent

Table 1.

Figure 8.

page 14 of 50

article RELATES category

Articles can be categorized into subtopics to make searches easier. An individual article can
belong to multiple categories. The RELATES relationship is compiled automatically for each
article based upon the category statements that appear in its tags.

article REFERENCES resource

Articles often reference an online resource such as a database or a scientific data repository. An
individual article can reference multiple resources. The REFERENCES relationship is compiled
automatically for each article based upon the resource statements that appear in its tags.

article DESCRIBES process

Articles describe biological processes. An individual article typically describes many processes.
The DESCRIBES relationship is compiled automatically for each article based upon the
process statements that appear in its tags. A process can be as specific as the expression of a
particular gene, or as generic as a general cellular activity such as nuclear export.

resource DESCRIBES process

Like articles, resources also describe biological processes and an individual resource can
describe multiple processes. Unlike articles however, the DESCRIBES relationship is not
compiled automatically for each resource that appears in an article and must be tagged within
the resource statement itself.

article MENTIONS agent

Articles mention agents and an individual article typically mentions many agents. As previously
stated, agents are the “players” in biological processes, and an agent can be any biochemical
entity from a simple calcium ion to a multi-protein receptor complex or even an organelle like a
mitochondrion. The MENTIONS relationship is compiled automatically for each article based
upon the agent statements that appear in its tags.

resource MENTIONS agent

Like articles, resources also mention agents and an individual resource can mention multiple
agents. Unlike articles however, the MENTIONS relationship is not compiled automatically for
each resource that appears in an article and must be tagged within the resource statement
itself.

page 15 of 50

process ACTIVATES/INHIBITS/REGULATES process

A process can impact the activity of other processes in 3 ways; activating another process,
inhibiting another process, or regulating another process. ACTIVATES spans the gamut from
simply enabling another process to occur (as a prerequisite for it) to accelerating or enhancing
the activity of the other process. INHIBITS means reducing or ablating the activity of the other
process. When one process REGULATES another, it is capable of activating or inhibiting the
activity of the other process, dependent upon its own activity/state. These 3 relationships can be
declared in any process statement.

process INVOLVES agent

If an agent plays a role in a particular process, it can be tagged using an INVOLVES relationship
in a process statement. The agent does not need to be essential for the process, it only needs
to affect its activity.

process GENERATES/REMOVES agent

Agents can be generated or removed by processes. For example, the process of gene
expression GENERATES an agent - the RNA transcript of that gene; the process of lysosomal
degradation of a particular protein REMOVES an agent - the degraded protein. REMOVES
spans the gamut from reducing the levels of an agent to removing it entirely.

agent BINDS agent

Agents can bind other agents in the biochemical/kinetic sense. The BINDS relationship implies
a direct binding between the two agents. If the two agents are components of a complex, but
may not necessarily bind each other directly, the complex itself can be defined as another agent
and each of the individual agents can be assigned a BINDS relationship with the complex.

agent MODIFIES agent

Agents can modify other agents biochemically. For example, a kinase agent can phosphorylate
a protein agent, or a protease agent may cleave a protein agent. In order for this to happen,
the two agents must also be able to come in contact with one another i.e. bind one another. For
this reason, a BINDS relationship is automatically added between two agents involved in a
MODIFIES relationship. In other words, the BINDS relationship is implied by the MODIFIES
relationship so there is no need to also specify the BINDS relationship when assigning a
MODIFIES relationship.

page 16 of 50

scribl syntax

statements, names, and fields

In the current version of scribl, statements appear as individual tags in the “Tags” field of an
article, as shown below in Figure 9.

Figure 9.

Each statement is a separate line/tag in the tags field of the article and starts with a header that
designates a process, agent, category or resource statement. It should be noted that there is
no article header, since the tags already appear within the metadata of a specific article and all
of the relationships that link that article to the scribl entities captured in its tags, can be
automatically generated.

Each statement header consists of a double colon, followed by the entity type and the entity
name, like this:

::process lysosomal protein degradation

::agent mtor

::category autophagy

::resource protein data bank

Entity names in scribl can be any set of whitespace separated words. A word must always start
with an alphanumeric character (a-z,A-Z,0-9) but may contain any other printable character
except the colon (:), the comma (,), and the semicolon (;).

If a statement gets very long it may become difficult to read or it will not be correctly handled by
Zotero, which limits tag lengths to 255 characters. This is easily remedied however since a
statement can be split across multiple lines, by repeating the statement header. It should be

page 17 of 50

noted that the statement headers for a multi-line statement must be identical on each line. If the
name is spelled differently on one of the lines, scribl will treat it as a separate entity.

For example, a valid multi-line agent statement looks like this:

::agent inpp5d :protein :gene :url https://www.uniprot.org/uniprot/Q92835

::agent inpp5d :syn phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1

In every statement type, a set of optional fields follows the statement header and these can
occur in any order, and more than once in a statement. There are 3 general fields that are
common to all statement types:

:url - a valid internet url

:tag - one or more free form text tags separated by commas

:txt - a free form text annotation

The :url field must be followed by a valid URL, like this:

:url https://www.uniprot.org/uniprot/Q92835

If more than one url is required, multiple :url fields can be added.

In the case of agents, particularly for entities like genes, proteins, or defined biochemical
structures, the :url field can be an invaluable method for identifying a specific gene, protein, or
molecule, by linking it to a database such as uniprot (https://www.uniprot.org) or pubchem
(https://pubchem.ncbi.nlm.nih.gov/) as a reference. This not only serves to make clear which
specific entity the agent is intended to represent, but it also provides an invaluable data
resource for that agent, allowing the user to retrieve additional information such as functional
data, sequences, synonyms, chemical structures etc. etc.

The :tag field is essentially a comma-separated list of tags. Tags can be single or multiple
words, but commas are treated as delimiters between tags.

:tag trna synthetase, class 2a trna synthetase, alanyl trna synthetase

As with the other fields, multiple :tag fields can be included - when for example, the list of tags
has become inconveniently long.

The :txt field is for text annotations, but it does not support comma-separated values in the way
that the :tag field does. If multiple annotations are required for a statement, multiple :txt fields
can be added. Here for example, is the annotation for a biological models resource.

:txt A repository of mathematical models of biological and biomedical systems

page 18 of 50

https://www.uniprot.org/uniprot/Q92835
https://www.uniprot.org/uniprot/Q92835
https://www.uniprot.org/uniprot/?query=ulk1&sort=score
https://pubchem.ncbi.nlm.nih.gov/

additional fields that are unique to agents

In addition to these 3 general fields that can be used in any statement, there are 2 further fields
that are unique to agent statements.

The :syn field allows for the assignment of synonyms to an agent. Experience has shown that
this can be a significant problem when using biological databases. The serine/threonine protein
kinase ulk1 for example is also known as unc-51-like kinase 1, autophagy-related protein 1,
and atg1. The :syn field like the tag field, is a comma-separated list of single or multi-word
names that allows the agent to be searched by its alternative names, for example:

::agent ulk1 :syn unc-51-like kinase 1, autophagy-related protein 1, atg1

As with the :tag field, if the list of synonyms is extremely long, the synonyms can be
divided into multiple :syn fields

Agents can also be classified into types using one or more of the following labels:

:protein, :gene, :dna, :rna, :mrna, :complex, :organelle, :biomarker

These labels are preceded by a single colon like the fields discussed previously, and are
standalone items that require no additional text following them. They designate biological
types and an agent may have no labels, a single label or multiple labels. Like synonyms,
these labels are intended to make database searches easier, for example by narrowing down
a list of searched agents to proteins. If the agent does not fall into any of the biological
classes represented by these labels it will have no labels, for example:

::agent gtp :url https://pubchem.ncbi.nlm.nih.gov/compound/6830 :syn guanosine triphosphate

The number of different classes of chemical compounds is so vast that it would be impractical to
have a unique label for each one. In such cases, the :tag field can be useful; for example:

::agent gtp :tag nucleoside, purine, nucleoside triphosphate

Conversely, an agent of a biological type may appear under the same name in an article as
both a gene and its protein product.

::agent c9orf72 :gene :protein :url https://www.uniprot.org/uniprot/Q96LT7

As with all of the other fields, the :syn and label fields can appear in any order in the statement

page 19 of 50

https://www.uniprot.org/uniprot/Q96LT7

relationships

As previously stated, all of the relationships that link an article to the entities defined in its tags
using scribl, are automatically generated. In contrast, any relationship that a defined entity
shares with other defined entities must be explicitly declared in the scribl statement for that
entity. For example, if a defined process INVOLVES a particular agent the relationship with that
agent must be defined in the statement for that process. The @ symbol is used as the flag for
the process INVOLVES agent relationship, so if the process “exportin releases cargo into
cytoplasm” involves the agent “exportin-1”, the statement for that process might look something
like this:

::process exportin releases cargo into cytoplasm @ exportin-1

The relationship symbols for each type of user-defined relationship are as follows:

entity relationship entity relationship symbol

resource DESCRIBES process &

resource MENTIONS agent %

process ACTIVATES process >

process INHIBITS process <

process REGULATES process =

process INVOLVES agent @

process GENERATES agent +

process REMOVES agent -

agent BINDS agent |

agent MODIFIES agent ~

Only one item should follow a relationship flag - the single or multi-word name of the other entity
that participates in the relationship. Relationship flags do not support comma-separated lists the
way that synonyms do. If a process for example, involves multiple agents, each of them should
be defined with a separate @ flag like this:

::process tnf-alpha induction of il8 release @ progranulin @ tnf-alpha @ il8

It should also be noted that any of the single-character relationship flags must always
surrounded on both sides by whitespace, for example:

page 20 of 50

@ ubiquitin

is a valid INVOLVES relationship statement, whereas:

@ubiquitin

is not.

The easiest way to understand the user-defined relationships is to see them in action. The
following examples illustrate their use in scribl statements:

Process activates one process and inhibits another

::process rcc1 recycles ran-gdp to ran-gtp > importin releases cargo into nucleus < nuclear import of fus

Process activates multiple other processes (multi-line statement)

::process cellular stress > nucleocytoplasmic transport dysfunction > mislocalization of nuclear proteins

::process cellular stress > cellular stress response > transportin-1 localizes to stress granules

::process cellular stress > stress-related phosphorylation of nucleoporins

Process activates, inhibits, and regulates other processes

::process smcr8 mutation > ulk1 phosphorylation < autophagy = smcr8 expression

Process involves several agents (and activates another process)

::process tbk1 activation of autophagy @ tbk1 @ optn @ sqstm1 @ ubiquitin > autophagy

Process involves one agent and generates another

::process procathepsin l processing @ procathepsin l + cathepsin l

Process involving an agent, removes one agent and generates another

::process phosphatase conversion of pi35p to pi3p @ fig4 - pi35p + pi3p

Agent (a protein and a biomarker) binds two other agents

::agent lc3 :protein :biomarker :url https://www.uniprot.org/uniprot/Q9GZQ8 | sqstm1 | optn

Agent modifies another agent

::agent caspase8 :protein :url https://www.uniprot.org/uniprot/Q14790 ~ beclin1

page 21 of 50

scribl workflow

inserting scribl statements as zotero tags

Starting to compile a scribl graph database requires only a working copy of the Zotero app.
Upon opening a Zotero database using the local app (downloadable from
https://www.zotero.org), each article will have a default view of its curated data that looks
something like Figure 10a shown below. Clicking on the “Tags” button at the top of the right
pane, switches to the tab that displays the article’s tags, as shown in Figure 10b.

Figure 10a.

Figure 10b.

page 22 of 50

https://www.zotero.org

If the article contains some automatically curated tags, they will appear in this pane. These tags
will be ignored by the scribl parser but they will generate warnings during parsing, as well as
making it harder to keep your scribl statements organized (we have found from experience that
it is easier to delete them and start afresh).

To start adding tags, just click on the “Add” button at the top of the pane and you can type in
your scribl statements to capture the information in the article, as you are reading it. Figure 11,
shows the tags pane after adding a category and a resource statement. The resource
statement contains a :url field that links to the online resource and a :txt field annotation that
describes the resource itself.

Figure 11.

You will notice that Zotero has the very nice feature of automatically sorting tags alphabetically,
no matter in which order you enter them. This conveniently groups together all statements of a
particular type (agent, category, process, resource) and sorts them alphabetically within the
group, making it very easy to locate a particular statement when the collection of statements in
an article starts to get large.

Another extremely useful feature in Zotero, is that it offers autocompletion for statements. As
you start typing an agent statement for example, if the partially-typed agent name matches any
other agent in any other article in the database, one or more autocomplete options will be
offered. This is useful not only for reducing the amount of typing, but it also maintains
consistency in the spelling of statement names. Figure 12. shows an example of autocomplete
in action as an agent statement is being added, but this feature works when starting to type any
of the 4 statement types.

Figure 12.

The consistent spelling of agents and processes in particular, is very important for the
compilation of the relationships between them. If, for example, an agent name has a different
spelling in two separate articles, the relationships it shares with other processes and agents that

page 23 of 50

span the 2 articles, will not be correctly compiled. The autocomplete is not a perfect solution to
this by any means, but it does go a long way to ensuring the consistency of name spellings
between articles. When adding process or agent names to relationships within statements, the
autocomplete feature cannot be relied upon. When scribl compiles the statements from the
Zotero database upon loading its data, it does however check every name in every relationship
against the catalog of all known entities of the appropriate type, to make sure that the name
exists in the catalog. It also checks every relationship to make sure that it is valid for the type of
statement in which it is being used. This extensive error-checking will be discussed in more
detail later on, but it does allow the user to pinpoint the exact articles and statements in which
any spelling and/or syntax errors occur, and fix them before reloading the database.

It is a requirement that all named processes and agents that appear in the relationships defined
in the tags of a particular article, also have their own process and agent statements that define
them within that article. What does this mean?

For example, say a process is being defined that involves a particular agent and generates
another one - like this:

::process procathepsin l processing @ procathepsin l + cathepsin l

It is required that the agents procathepsin l and cathepsin l are also defined within the scribl
statements for the article in which this process statement appears - like this:

::agent cathepsin l :protein :url https://www.uniprot.org/uniprot/P07711

::agent procathepsin l :protein :url https://www.uniprot.org/uniprot/P07711

When you start to type either of these agent statements, the autocomplete feature in Zotero
may indicate that these agents are already defined in other articles, at which point it might be
tempting to skip adding them because they are already defined elsewhere.

This will not work! Any process or agent named in a relationship, must also have its own
process or agent statement within that article.

This means that the curation of data for each article is a standalone, consistent dataset that
does not depend upon the data curated in any other article in the database. Without this
requirement, if one curator were, for example, to edit or remove an agent from the data that they
had curated in another article, this would destroy the relationships defined by another curator
who was relying upon their presence in this other article. This requirement facilitates a
distributed and collaborative curation model for scribl by forcing each curator to be explicit
about the entities and relationships they are curating, and not depending upon what they might
assume about the intentions of other curators.

page 24 of 50

https://www.uniprot.org/uniprot/P07711

scribl curation in more detail

category: Categories are broad subtopic definitions whose purpose is really to recapitulate in
the graph database, the subtopic headings in the literature database. Zotero for example, does
not export subheadings as tags, but the use of the ::category statement in scribl enables these
groupings to persist in the graph database.

::category rna processing

resource: A resource is a source of data or information that is referenced in an article.
Resources include databases and other data repositories, the contents of which may also be
related to the article’s biological processes (via the DESCRIBES relationship) and/or agents (via
the MENTIONS relationship). A ::resource statement will almost always have at least one :url,
and it is also useful to include :txt and :tag fields to better describe it. A resource may contain
data relevant to many processes and agents, but these should be limited to the processes and
agents that are specifically discussed in the article. An article may discuss a resource in general
terms without reference to any particular processes and agents, in which case there is no need
to catalog its processes and agents. Any number of articles may reference the same resource
and in general it is best to link the resource only to the processes and agents that are
specifically described in a particular article. Remember to use multi-line statements if the lists of
processes and agents get too long for single lines.

::resource protein data bank :url https://www.rcsb.org/search

::resource protein data bank :txt archive of structural data of biological macromolecules

::resource model of rangtp gradient :txt A model of the nucleocytoplasmic ranGTP gradient

::resource model of rangtp gradient :url https://www.ebi.ac.uk/biomodels/BIOMD0000000192

::resource model of rangtp gradient % ran % rangap1 % gtp & nucleocytoplasmic transport

::resource model of rangtp gradient & ran binds gtp & rangap1 hydrolyzes ran-gtp to ran-gdp

process: As previously discussed, a process can be as specific as the binding of two agents or
as generic as a broad cellular function such as nuclear export. It is often stated in research
articles that a particular protein regulates a process. What this really means is that the protein
regulates the process by binding and/or modifying another protein or biochemical entity. Since
scribl agents do not regulate processes directly, all that is necessary in order to capture such a
relationship is to define the binding and/or modification interaction in a ::process statement that
INVOLVES the relevant agents. For example, to capture the statement “AMPK regulates
autophagy”, we define the process by which this regulation occurs and the agents involved in it.

page 25 of 50

https://www.ebi.ac.uk/biomodels/BIOMD0000000192

::agent ampk :protein :url https://www.uniprot.org/uniprot/Q9Y478 | ulk1

​​::agent ulk1 :protein :syn kiaa0722

::process ampk binds ulk1 @ ampk @ ulk1 = autophagy

::process autophagy

agent: The ::agent statements have additional fields because agents can be harder to pin down
than other entities. One significant problem in biology for example, is the plethora of names that
are often used for the same agent, as well as the endless variety of variants - mutants and
splice-variants in proteins for example. The :syn field allows the user to enter agent synonyms
and the scribl graph database not only allows the user to catch errors such as misspellings, but
it can also scan all of the synonyms in the database to catch for example:

● the same agent appearing more than once but under different names
● synonyms that occur in agents with different names

For this reason, it is very important to use the :syn field extensively, wherever possible, to
capture alternative names for agents. It is not necessary to include the long names of agents in
the synonyms, since these can be captured in the :txt or even the :tag fields. Another useful tip
is to include possible alternative spellings of agent names that include modifiers that may or
may not be separated by dashes, such as ulk1, mcp1, il12, etc. For example:

::agent ulk1 :syn ulk-1

::agent mcp1 :syn mcp-1

::agent il12 :syn il-12, interleukin-12

The label fields allow the user to also specify any biological types for agents, to facilitate
searching by biological type. It is up to the user whether to define separate agents for genes
and the proteins that they encode. This can be complicated by the fact that many proteins are
simply named after their genes, for example, c9orf72 refers both to the chromosomal locus of
the gene, as well as the protein that it encodes. In other cases, the gene and its protein may
have completely separate names and can be easily distinguished, for example, the gene
TARDBP that encodes the protein TDP-43 (or TDP43).

Given this problem, and since agents can have multiple labels, one approach is to treat a
protein that has the same name as its gene, as the same entity - and to rely upon the context for
which type is relevant. This approach can work very well - for example:

page 26 of 50

::agent c9orf72 :protein :gene :url https://www.uniprot.org/uniprot/Q96LT7 | smcr8

::agent smcr8 :protein :url https://www.uniprot.org/uniprot/Q8TEV9

::process c9orf72 binds smcr8 @ c9orf72 @ smcr8

::process c9orf72 hexanucleotide repeat expansion @ c9orf72 < nuclear transport

::process nuclear transport

The agent c9orf72 is labeled as both a protein and a gene, since the protein and the gene
share the same name. In the first process c9orf72 binds smcr8 the agent is clearly acting as
protein binding another protein. In the second process c9orf72 hexanucleotide repeat
expansion, it is clearly acting as a gene.

Since no two agents may share the same name, if another curator labels an agent you have
already defined with an additional type, the agents will be merged anyway. One alternative
option would be to create some kind of clunky naming scheme such as:

::agent c9orf72_protein :protein :url https://www.uniprot.org/uniprot/Q96LT7

::agent c9orf72_gene :gene :url https://www.uniprot.org/uniprot/Q96LT7

But this is not recommended.

When it comes to non-biological agents such as chemical compounds, it would be a challenge
to realistically implement definitions for all possible chemical types. In such cases however, the
:syn, :tag, and :txt fields can all be your friend. For example:

::agent gtp :url https://pubchem.ncbi.nlm.nih.gov/compound/6830 :syn guanosine triphosphate

::agent gtp :txt chemical formula C10 H16 N5 O14 P3 :tag nucleoside, purine

The importance of the :url field in an agent statement is also clear from the examples above,
since it serves to show the database user exactly which entity is intended.

page 27 of 50

https://www.uniprot.org/uniprot/Q96LT7
https://www.uniprot.org/uniprot/Q8TEV9
https://www.uniprot.org/uniprot/Q96LT7
https://www.uniprot.org/uniprot/Q96LT7

importing the literature database

The current version of scribl supports the import of Zotero database via both a direct querying
via the Zotero API, as well as via a file exported from the Zotero database formatted as
comma-separated values (CSV)9. Based upon the notion that a literature database is never truly
“complete”, scribl is designed to update its internal graph database incrementally with each
import of literature data. In other words, as the literature database grows, scribl determines
which articles and data are new and should be added to its internal graph database. This means
that scribl data imports can be performed as needed while the literature database is being
developed. This is also a good practice since there will inevitably be a few errors in each batch
of new data, and these are easier to track down and fix in smaller batches.

exporting directly from the database

scribl can directly query the database via the Zotero API. This method is described later.

exporting Zotero to a CSV file

To export the database of articles with their scribl statements, use the File menu in Zotero and
select Export Library, as shown in Figure 13 below.

Figure 13.

When the export pop-up menu appears, select the CSV option for Format, and the Unicode
(UTF-8) option for Character Encoding, as shown in Figure 14.

Figure 14.

After selecting OK you can then select a folder and file name for the exported CSV data.

page 28 of 50

obtaining and setting up the scribl software

In order to obtain and run scribl, a basic, working knowledge of Python, GitHub, and Python
virtual environments is required.

scribl is a freely available, open-source platform written entirely in Python10, which is itself a
freely-available, open source programming language. All that is needed to run scribl is a
Python 3 runtime, and the scribl source code that is currently available at GitHub
(https://github.com/amberbiology/scribl). The easiest way to get started with scribl is to clone
the GitHub repository referenced above and set up a virtual environment to run it in, that
includes other Python dependencies, such as pyparsing , pyzotero and others.15

There are a number of different ways to set up the scribl software but the basic steps are as
follows, and all of the required software and tools are free and open-source. Note that the most
up-to-date installation instructions are always maintained in the README.md
(https://github.com/amberbiology/scribl/tree/main#readme) in the GitHub repository, and in the
event of a discrepancy, those instructions should always supercede the following:

1. Install Python 3 if you don’t already have it (https://www.python.org)
2. Install pip if you don’t already have it (https://pypi.org/project/pip)
3. Install Git if you don’t already have it (https://git-scm.com)
4. Use Python to create a virtual environment in which to run scribl.

○ python3 -m venv /path_to_my_virtual_environments/scribl

5. Activate the new virtual environment:
○ source /path_to_my_virtual_environments/scribl/bin/activate

6. Clone the GitHub scribl repository to your local drive16

○ git clone https://github.com/amberbiology/scribl.git

7. Change into the scribl directory and install scribl and its Python dependencies into the
new virtual environment:

○ cd scribl

○ pip install .

Now you can run the scribl Python code within your new virtual environment either by running
the Python interpreter in the virtual environment (in the example above, this would be located at:
/path_to_my_virtual_environments/scribl/bin/python3) - or if you are running the code from
within a Python development environment like PyCharm (https://www.jetbrains.com/pycharm)
you would select the new virtual environment in the Project Interpreter options.In addition, we
have provided an installed script, scribl, that can be used to run several common scribl tasks -
such database creation, and outputs, directly from the command-line, without needing to write
any Python. More details are available on the README.md and via running scribl --help.

16 Once the package is available via PyPI steps 6 and 7 can be replaced with “pip install scribl”
15 https://pyparsing-docs.readthedocs.io/en/latest/pyparsing.html

page 29 of 50

https://github.com/amberbiology/scribl
https://github.com/amberbiology/scribl/tree/main#readme
https://www.python.org
https://pypi.org/project/pip
https://git-scm.com
https://github.com/amberbiology/scribl.git
https://www.jetbrains.com/pycharm

scribl software overview

As shown in Figure 15 below, the 2 major workflows for the scribl software are creating a new
graph database and updating an existing one.

Figure 15.

In the left hand workflow, Zotero export datais loaded into scribl, which checks for, and
pinpoints, errors as it parses the data. The articles and their associated scribl tags are
converted into an internal graph database format which can be viewed and also saved as a
snapshot of the current database. This internal graph database can also be used to generate
the cypher11 language statements that are used to create the graph database in neo4j12.

In the right-hand workflow, the neo4j is updated with any newly added data, by taking the
previous internal database snapshot, and comparing it with the newly-loaded Zotero data. In
this case, scribl will generate only the cypher statements that are needed to define the new
entities and relationships in the neo4j graph database, or to update any additional data or
relationships that were added to existing ones.

The scribl Python code is not written as a standalone application, but rather a system of Python
modules that can be integrated into a workflow. These modules provide all of the functionality
needed for i. processing the exported literature data; ii. parsing the scribl statements attached
to each article; iii. generating the internal graph data structure; and iv. exporting the graph data
in formats that can be recognized by a graph database engine such as neo4j12 or via Python

page 30 of 50

network library, such as NetworkX. The scribl Python code also includes a number of tools for
error-checking and inspection of the graph data, and these are described in more detail in the
next section.

In order to demonstrate how the scribl modules can be used in the workflows shown in Figure
15, the Python code also includes a template for a kind of simple, administrative front end for a
graph database that uses scribl as its data resource. A set of simple Python functions capture
the basic database operations described above, and can be used to initialize a new database,
import data from Zotero, check the data for errors, and export the cypher statements for input
into neo4j.

At the time of writing, there are two graph databases supported by scribl: neo4j and
GraphML/NetworkX (and could be extended to even more graph databases in the future). To
connect to neo4j scribl, can export its internal graph data as cypher11, the language used to
create, edit, and query the neo4j database. To allow import directly into the various Python
modules for handling graph data structures, such as NetworkX, scribl can output a subset of
the database to the GraphML format. We have provided some preliminary support in Python for
reading and visualizing the GraphML within scribl itself. At the time of writing, this is a
work-in-progress, and does not yet have complete feature-parity with the neo4j output, and
therefore the rest of the guide largely focuses on using scribl in the context of neo4j.

page 31 of 50

the scribl Python modules
The scribl Python package contains the following modules:

process_zotero

parse_scribl

process_graphdb_data

manage_graphdb

graph_db_commands

The manage_graph_db module contains some high-level methods for creating and managing a
graph database that utilizes the more granular methods in the other modules. These granular
methods will be documented first, and this will make it easier to understand what is happening
at the higher level in the manage_graph_db module.

page 32 of 50

processing exported data from Zotero

The ZoteroCSV class is imported from the process_zotero module and instantiated by providing
the path to a CSV formatted file containing the Zotero export data. For example:

from scribl.process_zotero import ZoteroCSV

zotero_csv_data = ‘/user/me/zotero/exports/my_latest_zotero_export.csv’

zotero_data = ZoteroCSV(zotero_csv_data)

The default choice of columns that are processed and their mapping to the article fields in the
graph database, are defined in default_keymap in the scribl package’s init.py. These can be
changed however by using the ZoteroCSV object’s map_keys() method. For example:

zotero_keys = ['Key', 'Title', 'Url', 'Publication Year', 'Author', 'Publication Title']

cypher_keys = ['zotero_key', 'title', 'url', 'year', 'author', 'journal_title']

zotero_data.map_keys(zotero_keys, cypher_keys)

It should be noted that the first 2 keys in each set cannot be changed, since these define critical
fields used by scribl to store Zotero articles.

page 33 of 50

parsing scribl statements

A ScriblParser object is imported from the parse_scribl module, and its parse() method can be
used to parse scribl statements. In Zotero, tags are separated by a semicolon (;) so this is the
default delimiter for the parse() method. This can however be changed should the parser be
supplied scribl statements with a different delimiter.

from scribl.parse_scribl import ScriblParser

scribl_parser = ScriblParser()

scribl_parser.parse(my_scribl_text)

The parser will automatically check for errors such as unrecognized agents or processes, as
well as ensuring that the defined relationships are valid for the entities to which they are applied.
It will also flag any statements that are longer than 255 characters, the current maximum for
Zotero. All warnings and errors can be inspected in the parser’s data dictionary, for example:

print(scribl_parser.data[‘warnings’]

print(scribl_parser.data[‘errors’]

The parser has a get() method to retrieve the data for a parsed statement, for example:

ampk = scribl_parser.get(‘::agent’, ‘ampk’)

print(ampk)

{'urls': ['https://www.uniprot.org/uniprot/Q9Y478'], 'labels': [':protein'], 'tags': [], 'notes': [], …

There’s also a catalog() method to list all the entities of a given type, for example:

print(scribl_parser.catalog(‘::agent’)[:5])

['ambra', 'ampk', 'atg1-atg13 complex', 'atg13', 'atg14']

And finally, a parse_summary() method that provides the counts for each statement type, as
well as the counts for any warnings and errors, for example:

print(scribl_parser.parse_summary)

{'::category': 2, '::agent': 35, '::process': 34, '::resource': 0, 'errors': 0, 'warnings': 0}

page 34 of 50

generating the graph data structure

The GraphDB class in the process_graphdb_data module is a higher-level object for creating
and storing graph data structures from the article data and scribl data imported from Zotero, as
well as providing the functionality for exporting it for use in other graph database platforms. As
such, it aggregates much of the functionality in the process_zotero and parse_scribl modules.
The GraphDB class also provides functionality for saving and loading snapshots of its graph
data, as well as some tools for inspecting and error-checking it.

A GraphDB object can be instantiated with a path to a file of exported Zotero CSV data:

zotero_csv_data = ‘/user/me/zotero/exports/my_latest_zotero_export.csv’

graphdb = GraphDB(zotero_csv_data)

Or, to load a previously saved database snapshot:

graphdb_snapshot = ‘/user/me/graphdb/snapshots/my_latest_graphdb_snapshot.dat’

graphdb = GraphDB(graphdb_snapshot, export_type=scribl.DB_EXPORT)

The default export_type (defined in the scribl package’s init) is scribl.ZOTERO_EXPORT.
When loading a file of exported Zotero data, the GraphDB class also provides options for
defining the mapping of Zotero data columns to fields in the graph database. For inspecting the
contents of the graph database, the GraphDB class also provides get() and catalog() methods.
These work very similarly to those in the ScriblParser class, except that they now enable the
user to inspect the entirety of the graph data (aggregated from all of the articles), instead of just
the data parsed from a single article.

print(graphdb.get(‘agent’, ‘ulk1’)

{'urls': ['https://www.uniprot.org/uniprot/O75385'], 'tags': [], 'notes': ['ulk1 is phosphorylated by

mtor'],'labels': [':protein'], 'synonyms': ['ulk1', 'atg1']}

print(graphdb.catalog('agent')[:5])

['alpha-synuclein', 'ambra', 'ampk', 'arp2', 'arp3']

The GraphDB catalog() method can also catalog all of the different types of relationships that
have been generated from the scribl statements.

page 35 of 50

relationships = graphdb.catalog('BINDS', relationship=True)

for r in relationships[:5]:

print(‘BINDS’, r)

BINDS ('ambra', 'beclin1')

BINDS ('ambra', 'uvrag')

BINDS ('atg1-atg13 complex', 'atg13')

BINDS ('atg1-atg13 complex', 'atg9')

BINDS ('atg1-atg13 complex', 'fip200')

For examining the relationships generated within the graph data, the GraphDB class provides a
show_relationships() method that lists all of the relationships for the specified entity in a Python
dictionary format, for example:

ulk1_relationships = graphdb.show_relationships('agent', 'ulk1')

print(ulk1_relationships[‘MODIFIES’])

[('mtor', 'ulk1')]

The entire graph data structure (all articles, entities, and their relationships) can be saved as a
single file using the GraphDB save_db() method:

snapshot_filepath = ‘/user/me/graphdb/snapshots/my_latest_graphdb_snapshot.dat’

graphdb.save_db(snapshot_filepath)

The GraphDB class also provides the load_db() method for reading in a snapshot file as a new
graph database. It is important to note that the load_db() method returns a new graph database
and does not re-instantiate the current database. This method allows the current version of the
database to be compared with a previous snapshot of the database, which facilitates the export
of database updates to neo4j that contain only the data that was added to the database since
the last snapshot. This enables incremental updates to be made to the external graph database
(currently neo4j) without having to build it entirely from scratch each time the exported Zotero
database contains new data. How this works will become apparent when we get to the
description of the generate_cypher() method.

snapshot_filepath = ‘/user/me/graphdb/snapshots/previous_graphdb_snapshot.dat’

previous_db = graphdb.load_db(snapshot_filepath)

The generate_cypher() method can be used either to export the entire graph data set as input to
neo4j, or it can be used to export just the data that has been added since a previous database
snapshot was taken. If no previous database snapshot is supplied to the generate_cypher()
method, it will generate cypher text for the entire, current graph data structure. If a previous
database snapshot is supplied, only the cypher text corresponding to the differences between
the current and previous version of the graph data is generated:

page 36 of 50

cypher = graphdb.generate_cypher()

The example above generates the cypher text for the current version of the entire graph data
structure. Loading a previous snapshot of the graph data structure allows the user to generate
the cypher text only for the new data.

snapshot_filepath = ‘/user/me/graphdb/snapshots/previous_graphdb_snapshot.dat’

previous_db = graphdb.load_db(snapshot_filepath)

cypher = graphdb.generate_cypher(diff_db=previous_db)

The export_cypher() method returns a Python list of cypher statements. If you want to export the
cypher as text with each statement on a separate line, the list of statements can be passed to
the export_cypher_text() method for conversion into text.

cypher_text = graphdb.export_cypher_text(cypher)

This is also useful for writing the exported cypher statements into a file for input into neo4j, as
we will see later in the description of the graph_db_commands module.

The GraphDB class provides 2 essential error-checking tools that should be part of the workflow
for the creation and/or maintenance of a graph database generated using scribl. The use of
different agent names in biology has already been raised as an issue and it is for this reason
that the ability to add synonyms to scribl agents is so important, and is strongly encouraged.
The check_synonyms() method enables the user to see if the same agent exists in the database
under different synonyms. The check_synonyms() method looks for synonyms that are used as
agent names, and for agents that share the same synonyms despite having different names. In
some cases, these anomalies will be the result of the same agent being present in the database
under different names, but in some cases they will also identify errors in which agents are
incorrectly named or have the wrong synonyms. For example:

synonym_check = graphdb.check_synonyms()

The check_synonyms() method returns a dictionary with the keys 'synonym appears in different
agents' and 'synonym appears as an agent', as shown below.

print(synonym_check['synonym appears in different agents'])

{'dup_sym': ['ambra', 'caspase-1']}

print(synonym_check['synonym appears as an agent'])

[]

The other essential error-checking tool is the check_agent_labels() method that provides a list
of all agents that have no biological labels. In many cases these will not be errors, since the
agents are non-biological entities such as chemical compounds. It is however very easy to
forget to add biological labels to biological agents, and the check_agent_labels() method is a
quick and easy way to check this.

page 37 of 50

print(graphdb.check_agent_labels())

['ca2+', 'rapamycin', ‘gtp’, ‘gdp’, ‘actinomycin’]

When loading a new set of exported Zotero data, it is recommended to always use the
check_synonyms() and check_agent_labels() methods as validation tools in tandem with the
automatic error checking. This enables errors and inconsistencies to be identified and fixed in
the Zotero database, before reloading and running these checks again.

page 38 of 50

managing a scribl graph database
The manage_graphdb module in the scribl Python package, is provided as a simple template to
demonstrate how the scribl modules might be used to create and maintain a graph database
based upon Zotero and neo4j. The basic workflows follow the schemas shown in Figure 15,
with some additional operations added for file management, as follows:

If no database already exists:

● Create a new graph database folder structure and metadata

Then:

● Import the latest Zotero CSV data as a timestamped file into the exports folder
● Load the latest Zotero data and check for general and synonym errors
● Fix the errors in Zotero and re-import the CSV data (keeping the same timestamp)

If generating or reloading the entire neo4j graph database from scratch:

● Export the scribl graph data structure as cypher
● Import the cypher into neo4j
● Save the current, timestamped data as a new snapshot

If updating the neo4j graph database with only the data added since the last upload:

● Load the latest scribl database snapshot
● Export only the cypher for the new data using the previous snapshot for reference
● Import the cypher into neo4j
● Save the current, timestamped data as a new snapshot

The manage_graphdb module has a template class GraphDBInstance whose methods,
described below, cover the functionality needed to implement a workflow of the kind described
above.

Note that if no return is specified, the method returns None.

GraphDBInstance.__init__(str: folder_path,
bool: overwrite=False,
bool: verbose=False)

This method takes a folder_path as an argument, and will either open an existing scribl graph
database if one exists at that location, or it will create one if not. Optionally can be set to
overwrite the current one (defaults to False), and verbose output can be set (defaults to False).

page 39 of 50

Returns: GraphDBInstance: an instance of the class

GraphDBInstance.set_metadata(str: db_name,
str: curator,
str: description,
bool: overwrite=False)

This method takes three arguments: db_name, curator, and description and writes them to the
metadata.txt file in the database’s configuration folder. It will also create an annotations.txt file in
that folder if one does not already exist. Can optionally overwrite.

GraphDBInstance.add_annotation(str: your_name,
str: note_text)

The GraphDBInstance class provides a simple template for the use of metadata and
annotations for the database as a whole. The add_annotation() method provides the
functionality of a rudimentary database log, enabling time-stamped annotations to be added to
the database by the curators and editors.

GraphDBInstance.generate_metadata_cypher()

The metadata and annotations can also be exported as a metadata node into neo4j, so that
anybody using the neo4j graph database can also have access to it.

Returns: str: the line-separated metadata in Cypher text format

GraphDBInstance.import_zotero_csv(str: import_file_path,
bool: overwrite=False,
bool: verbose=False)

This method takes a Zotero export file from a defined location and adds it to the database
exports folder. If the overwrite argument is set to True (the default is False) the import operation
will use the same timestamp as the latest import. This is to allow one or more cycles of
error-checking and editing of the Zotero database, and its re-import, without having to create a
bunch of new time-stamped files. Also accepts the verbose argument.

Returns: str: the newly imported file path

page 40 of 50

GraphDBInstance.import_zotero_library(int: zotero_library_id,
str: zotero_library_type,
str: zotero_library_api=None,
bool: overwrite=False,
bool: verbose=False)

This method connects directly to the Zotero library via the Zotero API and then internally adds
it to the database exports folder. The two required arguments are zotero_library_id (an int library
number), zotero_library_type (this is a str, with value of either group or user). There are then
three optional arguments zotero_library_api (a str, only needed when supplying an API key for
accessing private libraries), and the previously described overwrite and verbose arguments
(both default to False). Otherwise this functions in the same way as import_zotero_csv().

GraphDBInstance.load_zotero_csv(str: zotero_csv_filename=None,
list: zotero_keys=None,
list: cypher_keys=None,
bool: verbose=False)

This method has no required arguments, it loads, parses, and error-checks the latest
time-stamped Zotero data file in the database exports folder if no specific file name is provided
as an argument. The method also allows optional zotero_csv_filename, and alternative Zotero
keymap provided as a list of strings (zotero_keys) and equivalent list of Cypher strings
(cypher_keys) to be provided if the user wishes to override the defaults. Lastly it includes the
optional verbose argument.

Returns: tuple: a tuple consisting of two lists of warnings and errors.

GraphDBInstance.save_db_snapshot(bool: verbose=False)

This method has no required arguments and saves the current database as a snapshot in a
Python data format, in the database snapshots folder. The saved file will have the same
timestamp as the latest Zotero export. It optionally can take the verbose flag (defaults to False).

Returns: str: the new saved filename.

GraphDBInstance.load_db_snapshot(str: db_snapshot_filename=None,
bool: verbose=False)

This method has no required arguments and loads an entire scribl database from the latest
time-stamped file in the database snapshots folder, unless a specific snapshot filename is
provided (db_snapshot_filename). The method does not overwrite the current database, but
simply returns the new database that was loaded from the snapshot file. This method is used to

page 41 of 50

load the latest, previous database snapshot when generating cypher that contains only data
added since the last version of the database.

Returns: dict: the loaded snapshot file as a dictionary

GraphDBInstance.export_cypher_text(dict: diff=None,
bool: verbose=False,
bool: filepath=None)

This method has no required arguments and exports either the entire scribl graph data
structure as cypher for input to neo4j - or - if a previous snapshot (as a dict) is also provided in
the method’s optional diff argument, it will generate only the cypher necessary to update the
database from its previous version (as defined in the database snapshot). It also, optionally, can
be set to produce verbose output (defaults to False), and also save the output to filepath
(defaults to not saving to a file).

Returns: str: the Cypher text

GraphDBInstance.export_graphml_text(bool: verbose=False,
bool: filepath=None)

This method exports the entire scribl graph data structure as GraphML for input to Python’s
own NetworkX - this method does not support the diff argument. It also, optionally, can be set to
produce verbose output (defaults to False), and also save the output to filepath (defaults to not
saving to a file).

Returns: str: the GraphML XML text

GraphDBInstance.export_graphml_figure(bool: verbose=False,
bool: filepath=None)

This method generates an output figure of the entire scribl graph data structure using the
NetworkX library, based on the GraphML representation generated by export_graphml_text(). It
also, optionally, can be set to produce verbose output (defaults to False), and also saves the
image to filepath

GraphDBInstance.backup_db(bool: verbose=False)

This method is essentially the same as the save_db_snapshot() method, except that it allows
the user to save a time-stamped version of the current scribl database as a snapshot in the
database backup folder. It also, optionally, can be set to produce verbose output (defaults to
False).

page 42 of 50

Returns: str: the path to the new backup

GraphDBInstance.inspect_db(list: list_contents=[],
bool: verbose=False,
int: contents_length=5)

This method enables the contents of the currently loaded scribl database to be inspected. By
default, this method returns a Python dictionary of counts for each entity and relationship type in
the database, as well as the counts of any warnings and errors. Listings of the catalog for any
named entity or relationship can also be generated by optionally adding to the list_contents
argument, either a single name in the case of entities, or a tuple containing the key
‘relationships’ and the name of the relationship type - for example:

gdb.inspect_db(list_contents=['agent', 'process', ('relationships','BINDS')])

This method also optionally takes a verbose flag which displays more detailed information on
each entity, and in this verbose mode, the contents_length can be modified (the output is limited
to 5 by default).

Returns: dict: containing counts for each entity

GraphDBInstance.check_synonyms(bool: verbose=False)

Unlike regular error-checking, synonym checking is not run automatically when the scribl
database is loaded. It is recommended that the check_synonyms() method be run each time
new data is loaded, to flag any problems and allow them to be fixed in Zotero. This method
takes the optional verbose flag (set to False).

Returns: dict: containing synonym information

GraphDBInstance.check_agent_labels(bool: verbose=False)

Unlike regular error-checking, agent label checking is also not run automatically when the scribl
database is loaded. It is recommended that the check_agent_labels() method be run each time
new data is loaded, to flag any problems and allow them to be fixed in Zotero. This method
takes the optional verbose flag (set to False).

Returns: list: agents missing labels

page 43 of 50

semantic graphs for literature searches
The ultimate goal of using scribl to capture all of these relationships between articles,
resources, processes, and agents, is the generation of semantic graphs that support
relationship-based literature searches that are more biologically-focused than the keyword and
metadata-based searches offered by traditional literature databases. A semantic graph
database enables the researcher to run literature searches based upon the meaning captured in
the articles rather than just the presence or absence of certain terms or keywords. For example,
imagine that a researcher is interested in the cellular events that inhibit autophagy, and the
genes and proteins that might play a role in this.

A traditional literature search query might look something like this:

article contains_terms(‘autophagy’, ‘inhibition’)

and would likely return a collection of articles in which the terms ‘autophagy’ and ‘inhibition’
would appear, albeit not necessarily together. Some of the articles may well contain the term
‘inhibition’ in a context that is not necessarily related to autophagy, while some of the articles
may discuss autophagy more generally but not necessarily in the context of its inhibition. The
use of the conjoined term ‘autophagy inhibition’ may miss a lot of articles in which this specific
term is absent, even if the search algorithm was capable of matching keywords and synonyms -
recognizing for example that terms like ‘prevent’, ‘hinder’, or ‘impede’ are synonyms for ‘inhibit’.
After this initial search, a closer reading of the subset of retrieved articles that do turn out to be
relevant would then be necessary in order to identify candidates for the genes and/or proteins
that are actually involved in autophagy inhibition.

For comparison, a semantic graph search using a graph database created with scribl, allows
the researcher to frame such a search like this:

articles that mention agents involved in processes that inhibit autophagy

With this single query, a graph database built for the neo4j platform using scribl, can retrieve a
connected graph like the one shown in Figure 16 below. This graph (from the partially curated
current version of the database) consists of 22 articles (shown in yellow) that mention 7 agents
(shown in red) involved in 7 biological processes (shown in blue) that inhibit autophagy (also
shown in blue since it is itself a biological process). Not only does the graph identify the agents
(proteins, genes etc.) and biological processes involved in the inhibition of autophagy and the
articles that describe them, but it also shows some of the relationships between the individual
agents and processes (which agents participate in which processes) and which specific articles
describe each of them.

If we zoom in on a portion of the graph (as shown in Figure 17) we can see for example that the
agent c9orf72 is mentioned in several of the retrieved articles and that it inhibits autophagy
through the process c9orf72 hexanucleotide expansion. If we double-click on one of the

page 44 of 50

articles that mentions c9orf72 (as shown in Figure 18) we can view the complete database
entry for the article with all of the associated metadata that you would expect to pull up from a
literature database search - authors, title, publication year, journal title etc. along with an internet
url that takes you straight to the article online.

Figure 16.

The entities shown as nodes in the graph actually have a much richer, interconnecting set of
relationships (shown as labeled edges in the graph) than what is shown based upon the query.
The set of relationships that is shown is only a subset of all relationships between the nodes in
the graph, that is bounded by the terms of the query itself. In this case for example, we only
asked to see the MENTIONS, INVOLVES, and INHIBITS relationships. Once a graph has been
retrieved however, it can be expanded to include other relationships and entities, as will be
shown subsequently.

It should also be noted that the query itself was framed in an idiom that is very close to natural
language. This is because neo4j has the ability to build the more syntactically rigorous cypher
queries that it actually uses for search queries, from more natural, informal statements in which
it can recognize entity labels (e.g. AGENT, PROCESS), entity names (e.g. c9orf72,
autophagy), and relationship labels such as INVOLVES, INHIBITS, MENTIONS.

page 45 of 50

Figure 17.

Figure 18.

page 46 of 50

The retrieved graph can be expanded by either selecting nodes in the graph and expanding
them to show more of their relationships and neighboring nodes, or by extending the terms of
the query itself. In Figure 19 for example, we have expanded the node for the mtor agent. This
reveals other articles that also mention mtor, and that mtor binds the agent rapamycin and
binds and modifies the agents ulk1 and atg13.

Figure 19.

We could also have expanded the set of agents returned by the query by expanding the terms
of the query itself to include not only the agents involved in biological processes that inhibit
autophagy, but also the agents that interact with them. For example, in the following query:

article mentions agent - agent involved in a process that inhibits autophagy

We are expressing that the query should return not only agents that are involved in the inhibition
of autophagy, but also the agents that interact with them. As shown in Figure 20 below, with this
query we are effectively starting to build a graph that shows not only the literature on the
inhibition of autophagy, but also the cellular interactome for the inhibition of autophagy.

page 47 of 50

Figure 20.

The formal query language for neo4j is cypher, the same language that is used for adding and
editing entities and their relationships in the graph database. As previously described, the
syntax for cypher is far more formal and rigorously defined than the kind of natural language
queries described here. As such however, it also offers more fine-grained control over the data
that can be retrieved. The previous informal query statement for example, could be written in
cypher like this:

MATCH (a:ARTICLE)-[x:MENTIONS]-(b:AGENT)--(c:AGENT)<-[y:INVOLVES]-

(d:PROCESS)-[z:INHIBITS]->(e:PROCESS{name:'autophagy'}) return a,b,c,d,e,x,y,z

The informal query interface is a great deal easier to use for researchers with only limited
experience of graph databases. The modicum of time and effort required to learn cypher
however, is definitely worthwhile for a researcher who would like to run more advanced queries
and take advantage of some of the powerful graph algorithms that can be used to query and
analyze their graph data in more sophisticated ways. While a full description of the cypher
language is outside the scope of this guide, there are many excellent cypher documents,
lessons, and tutorials available online, first and foremost at the neo4j website12.

page 48 of 50

appendix a: scribl formal grammar
For reference the formal grammar for the scribl language used to capture semantic
relationships, is provided below in Backus–Naur form17

start_name_char ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
"a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" |
"o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" | "A" | "B" |
"C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |
"Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" |

symbol ::= "!" | """ | "#" | "$" | "'" | "(" | ")" | "*" | "." | "/" | "?" | "[" |
"\" | "]" | "^" | "_" | "`" | "{" | "}"

url_symbol ::= "!" | """ | "#" | "$" | "(" | ")" | "*" | "." | "/" | ";" | "?" |
"_" | ">" | "<" | "=" | "@" | "+" | "-" | "&" | "%"

relation_flag ::= ">" | "<" | "=" | "@" | "|" | "~" | "+" | "-" | "&" | "%"

space ::= " "

scribl_token ::= ":"

comma ::= ","

statement_type ::= "agent" | "category" | "process" | "resource"

url_flag ::= "url"

tag_flag ::= "tag"

txt_flag ::= "txt"

syn_flag ::= "syn"

label ::= "protein" | "gene" | "dna" | "rna" |
"mrna" | "complex" | "organelle" | "biomarker"

whitespace ::= <space> | <whitespace> <space>

header ::= <scribl_token> <scribl_token> <statement_type>

name_char ::= <start_name_char> | <symbol> | <relation_flag>

name_word ::= <start_name_char> | <word> <name_char>

name ::= <name_word> | <name> <whitespace> <name_word>

url_start ::= "http:" | "https:"

url_char ::= <start_name_char> | <url_symbol>

17 https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

page 49 of 50

url_body ::= <url_char> | <url_body> <url_char>

url_link ::= <url_start> <url_body>

comma_delimiter ::= <comma> | <comma> <whitespace> | <whitespace> <comma> <whitespace>

comma_list ::= <name> | <comma_list> <comma_delimiter> <name>

url_field ::= <scribl_token> <url_flag> <whitespace> <url_link>

tag_field ::= <scribl_token> <tag_flag> <whitespace> <comma_list>

txt_field ::= <scribl_token> <txt_flag> <whitespace> <name>

syn_field ::= <scribl_token> <syn_flag> <whitespace> <comma_list>

agent_label ::= <scribl_token> <label>

relationship ::== <relation_flag> <whitespace> <name>

statement_header ::= <header> <name>

optional_field = <url_field> | <tag_field> | <txt_field> | <syn_field> |
<agent_label> | <relationship>

statement_body ::= <optional_field> | <statement_body> <whitespace> <optional_field>

statement ::= <statement_header> <whitespace> <statement_body>

page 50 of 50

