const std = @import("../std.zig");
const assert = std.debug.assert;
const build = std.build;
const fs = std.fs;
const macho = std.macho;
const math = std.math;
const mem = std.mem;
const testing = std.testing;
const CheckObjectStep = @This();
const Allocator = mem.Allocator;
const Builder = build.Builder;
const Step = build.Step;
const EmulatableRunStep = build.EmulatableRunStep;
pub const base_id = .check_object;
step: Step,
builder: *Builder,
source: build.FileSource,
max_bytes: usize = 20 * 1024 * 1024,
checks: std.ArrayList(Check),
dump_symtab: bool = false,
obj_format: std.Target.ObjectFormat,
pub fn create(builder: *Builder, source: build.FileSource, obj_format: std.Target.ObjectFormat) *CheckObjectStep {
const gpa = builder.allocator;
const self = gpa.create(CheckObjectStep) catch unreachable;
self.* = .{
.builder = builder,
.step = Step.init(.check_file, "CheckObject", gpa, make),
.source = source.dupe(builder),
.checks = std.ArrayList(Check).init(gpa),
.obj_format = obj_format,
};
self.source.addStepDependencies(&self.step);
return self;
}
pub fn runAndCompare(self: *CheckObjectStep) *EmulatableRunStep {
const dependencies_len = self.step.dependencies.items.len;
assert(dependencies_len > 0);
const exe_step = self.step.dependencies.items[dependencies_len - 1];
const exe = exe_step.cast(std.build.LibExeObjStep).?;
const emulatable_step = EmulatableRunStep.create(self.builder, "EmulatableRun", exe);
emulatable_step.step.dependOn(&self.step);
return emulatable_step;
}
const Action = struct {
tag: enum { match, not_present, compute_cmp },
phrase: []const u8,
expected: ?ComputeCompareExpected = null,
fn match(act: Action, haystack: []const u8, global_vars: anytype) !bool {
assert(act.tag == .match or act.tag == .not_present);
var candidate_var: ?struct { name: []const u8, value: u64 } = null;
var hay_it = mem.tokenize(u8, mem.trim(u8, haystack, " "), " ");
var needle_it = mem.tokenize(u8, mem.trim(u8, act.phrase, " "), " ");
while (needle_it.next()) |needle_tok| {
const hay_tok = hay_it.next() orelse return false;
if (mem.indexOf(u8, needle_tok, "{*}")) |index| {
var start = index;
var n_tok = needle_tok;
var h_tok = hay_tok;
while (true) {
n_tok = n_tok[start + 3 ..];
const inner = if (mem.indexOf(u8, n_tok, "{*}")) |sub_end|
n_tok[0..sub_end]
else
n_tok;
if (mem.indexOf(u8, h_tok, inner) == null) return false;
start = mem.indexOf(u8, n_tok, "{*}") orelse break;
}
} else if (mem.startsWith(u8, needle_tok, "{")) {
const closing_brace = mem.indexOf(u8, needle_tok, "}") orelse return error.MissingClosingBrace;
if (closing_brace != needle_tok.len - 1) return error.ClosingBraceNotLast;
const name = needle_tok[1..closing_brace];
if (name.len == 0) return error.MissingBraceValue;
const value = try std.fmt.parseInt(u64, hay_tok, 16);
candidate_var = .{
.name = name,
.value = value,
};
} else {
if (!mem.eql(u8, hay_tok, needle_tok)) return false;
}
}
if (candidate_var) |v| {
try global_vars.putNoClobber(v.name, v.value);
}
return true;
}
fn computeCmp(act: Action, gpa: Allocator, global_vars: anytype) !bool {
var op_stack = std.ArrayList(enum { add }).init(gpa);
var values = std.ArrayList(u64).init(gpa);
var it = mem.tokenize(u8, act.phrase, " ");
while (it.next()) |next| {
if (mem.eql(u8, next, "+")) {
try op_stack.append(.add);
} else {
const val = global_vars.get(next) orelse {
std.debug.print(
\\
\\========= Variable was not extracted: ===========
\\{s}
\\
, .{next});
return error.UnknownVariable;
};
try values.append(val);
}
}
var op_i: usize = 1;
var reduced: u64 = values.items[0];
for (op_stack.items) |op| {
const other = values.items[op_i];
switch (op) {
.add => {
reduced += other;
},
}
}
const exp_value = switch (act.expected.?.value) {
.variable => |name| global_vars.get(name) orelse {
std.debug.print(
\\
\\========= Variable was not extracted: ===========
\\{s}
\\
, .{name});
return error.UnknownVariable;
},
.literal => |x| x,
};
return math.compare(reduced, act.expected.?.op, exp_value);
}
};
const ComputeCompareExpected = struct {
op: math.CompareOperator,
value: union(enum) {
variable: []const u8,
literal: u64,
},
pub fn format(
value: @This(),
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = fmt;
_ = options;
try writer.print("{s} ", .{@tagName(value.op)});
switch (value.value) {
.variable => |name| try writer.writeAll(name),
.literal => |x| try writer.print("{x}", .{x}),
}
}
};
const Check = struct {
builder: *Builder,
actions: std.ArrayList(Action),
fn create(b: *Builder) Check {
return .{
.builder = b,
.actions = std.ArrayList(Action).init(b.allocator),
};
}
fn match(self: *Check, phrase: []const u8) void {
self.actions.append(.{
.tag = .match,
.phrase = self.builder.dupe(phrase),
}) catch unreachable;
}
fn notPresent(self: *Check, phrase: []const u8) void {
self.actions.append(.{
.tag = .not_present,
.phrase = self.builder.dupe(phrase),
}) catch unreachable;
}
fn computeCmp(self: *Check, phrase: []const u8, expected: ComputeCompareExpected) void {
self.actions.append(.{
.tag = .compute_cmp,
.phrase = self.builder.dupe(phrase),
.expected = expected,
}) catch unreachable;
}
};
pub fn checkStart(self: *CheckObjectStep, phrase: []const u8) void {
var new_check = Check.create(self.builder);
new_check.match(phrase);
self.checks.append(new_check) catch unreachable;
}
pub fn checkNext(self: *CheckObjectStep, phrase: []const u8) void {
assert(self.checks.items.len > 0);
const last = &self.checks.items[self.checks.items.len - 1];
last.match(phrase);
}
pub fn checkNotPresent(self: *CheckObjectStep, phrase: []const u8) void {
assert(self.checks.items.len > 0);
const last = &self.checks.items[self.checks.items.len - 1];
last.notPresent(phrase);
}
pub fn checkInSymtab(self: *CheckObjectStep) void {
self.dump_symtab = true;
const symtab_label = switch (self.obj_format) {
.macho => MachODumper.symtab_label,
else => @panic("TODO other parsers"),
};
self.checkStart(symtab_label);
}
pub fn checkComputeCompare(
self: *CheckObjectStep,
program: []const u8,
expected: ComputeCompareExpected,
) void {
var new_check = Check.create(self.builder);
new_check.computeCmp(program, expected);
self.checks.append(new_check) catch unreachable;
}
fn make(step: *Step) !void {
const self = @fieldParentPtr(CheckObjectStep, "step", step);
const gpa = self.builder.allocator;
const src_path = self.source.getPath(self.builder);
const contents = try fs.cwd().readFileAllocOptions(
gpa,
src_path,
self.max_bytes,
null,
@alignOf(u64),
null,
);
const output = switch (self.obj_format) {
.macho => try MachODumper.parseAndDump(contents, .{
.gpa = gpa,
.dump_symtab = self.dump_symtab,
}),
.elf => @panic("TODO elf parser"),
.coff => @panic("TODO coff parser"),
.wasm => try WasmDumper.parseAndDump(contents, .{
.gpa = gpa,
.dump_symtab = self.dump_symtab,
}),
else => unreachable,
};
var vars = std.StringHashMap(u64).init(gpa);
for (self.checks.items) |chk| {
var it = mem.tokenize(u8, output, "\r\n");
for (chk.actions.items) |act| {
switch (act.tag) {
.match => {
while (it.next()) |line| {
if (try act.match(line, &vars)) break;
} else {
std.debug.print(
\\
\\========= Expected to find: ==========================
\\{s}
\\========= But parsed file does not contain it: =======
\\{s}
\\
, .{ act.phrase, output });
return error.TestFailed;
}
},
.not_present => {
while (it.next()) |line| {
if (try act.match(line, &vars)) {
std.debug.print(
\\
\\========= Expected not to find: ===================
\\{s}
\\========= But parsed file does contain it: ========
\\{s}
\\
, .{ act.phrase, output });
return error.TestFailed;
}
}
},
.compute_cmp => {
const res = act.computeCmp(gpa, vars) catch |err| switch (err) {
error.UnknownVariable => {
std.debug.print(
\\========= From parsed file: =====================
\\{s}
\\
, .{output});
return error.TestFailed;
},
else => |e| return e,
};
if (!res) {
std.debug.print(
\\
\\========= Comparison failed for action: ===========
\\{s} {s}
\\========= From parsed file: =======================
\\{s}
\\
, .{ act.phrase, act.expected.?, output });
return error.TestFailed;
}
},
}
}
}
}
const Opts = struct {
gpa: ?Allocator = null,
dump_symtab: bool = false,
};
const MachODumper = struct {
const LoadCommandIterator = macho.LoadCommandIterator;
const symtab_label = "symtab";
fn parseAndDump(bytes: []align(@alignOf(u64)) const u8, opts: Opts) ![]const u8 {
const gpa = opts.gpa orelse unreachable;
var stream = std.io.fixedBufferStream(bytes);
const reader = stream.reader();
const hdr = try reader.readStruct(macho.mach_header_64);
if (hdr.magic != macho.MH_MAGIC_64) {
return error.InvalidMagicNumber;
}
var output = std.ArrayList(u8).init(gpa);
const writer = output.writer();
var symtab: []const macho.nlist_64 = undefined;
var strtab: []const u8 = undefined;
var sections = std.ArrayList(macho.section_64).init(gpa);
var imports = std.ArrayList([]const u8).init(gpa);
var it = LoadCommandIterator{
.ncmds = hdr.ncmds,
.buffer = bytes[@sizeOf(macho.mach_header_64)..][0..hdr.sizeofcmds],
};
var i: usize = 0;
while (it.next()) |cmd| {
switch (cmd.cmd()) {
.SEGMENT_64 => {
const seg = cmd.cast(macho.segment_command_64).?;
try sections.ensureUnusedCapacity(seg.nsects);
for (cmd.getSections()) |sect| {
sections.appendAssumeCapacity(sect);
}
},
.SYMTAB => if (opts.dump_symtab) {
const lc = cmd.cast(macho.symtab_command).?;
symtab = @ptrCast(
[*]const macho.nlist_64,
@alignCast(@alignOf(macho.nlist_64), &bytes[lc.symoff]),
)[0..lc.nsyms];
strtab = bytes[lc.stroff..][0..lc.strsize];
},
.LOAD_DYLIB,
.LOAD_WEAK_DYLIB,
.REEXPORT_DYLIB,
=> {
try imports.append(cmd.getDylibPathName());
},
else => {},
}
try dumpLoadCommand(cmd, i, writer);
try writer.writeByte('\n');
i += 1;
}
if (opts.dump_symtab) {
try writer.print("{s}\n", .{symtab_label});
for (symtab) |sym| {
if (sym.stab()) continue;
const sym_name = mem.sliceTo(@ptrCast([*:0]const u8, strtab.ptr + sym.n_strx), 0);
if (sym.sect()) {
const sect = sections.items[sym.n_sect - 1];
try writer.print("{x} ({s},{s})", .{
sym.n_value,
sect.segName(),
sect.sectName(),
});
if (sym.ext()) {
try writer.writeAll(" external");
}
try writer.print(" {s}\n", .{sym_name});
} else if (sym.undf()) {
const ordinal = @divTrunc(@bitCast(i16, sym.n_desc), macho.N_SYMBOL_RESOLVER);
const import_name = blk: {
if (ordinal <= 0) {
if (ordinal == macho.BIND_SPECIAL_DYLIB_SELF)
break :blk "self import";
if (ordinal == macho.BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
break :blk "main executable";
if (ordinal == macho.BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
break :blk "flat lookup";
unreachable;
}
const full_path = imports.items[@bitCast(u16, ordinal) - 1];
const basename = fs.path.basename(full_path);
assert(basename.len > 0);
const ext = mem.lastIndexOfScalar(u8, basename, '.') orelse basename.len;
break :blk basename[0..ext];
};
try writer.writeAll("(undefined)");
if (sym.weakRef()) {
try writer.writeAll(" weak");
}
if (sym.ext()) {
try writer.writeAll(" external");
}
try writer.print(" {s} (from {s})\n", .{
sym_name,
import_name,
});
} else unreachable;
}
}
return output.toOwnedSlice();
}
fn dumpLoadCommand(lc: macho.LoadCommandIterator.LoadCommand, index: usize, writer: anytype) !void {
try writer.print(
\\LC {d}
\\cmd {s}
\\cmdsize {d}
, .{ index, @tagName(lc.cmd()), lc.cmdsize() });
switch (lc.cmd()) {
.SEGMENT_64 => {
const seg = lc.cast(macho.segment_command_64).?;
try writer.writeByte('\n');
try writer.print(
\\segname {s}
\\vmaddr {x}
\\vmsize {x}
\\fileoff {x}
\\filesz {x}
, .{
seg.segName(),
seg.vmaddr,
seg.vmsize,
seg.fileoff,
seg.filesize,
});
for (lc.getSections()) |sect| {
try writer.writeByte('\n');
try writer.print(
\\sectname {s}
\\addr {x}
\\size {x}
\\offset {x}
\\align {x}
, .{
sect.sectName(),
sect.addr,
sect.size,
sect.offset,
sect.@"align",
});
}
},
.ID_DYLIB,
.LOAD_DYLIB,
.LOAD_WEAK_DYLIB,
.REEXPORT_DYLIB,
=> {
const dylib = lc.cast(macho.dylib_command).?;
try writer.writeByte('\n');
try writer.print(
\\name {s}
\\timestamp {d}
\\current version {x}
\\compatibility version {x}
, .{
lc.getDylibPathName(),
dylib.dylib.timestamp,
dylib.dylib.current_version,
dylib.dylib.compatibility_version,
});
},
.MAIN => {
const main = lc.cast(macho.entry_point_command).?;
try writer.writeByte('\n');
try writer.print(
\\entryoff {x}
\\stacksize {x}
, .{ main.entryoff, main.stacksize });
},
.RPATH => {
try writer.writeByte('\n');
try writer.print(
\\path {s}
, .{
lc.getRpathPathName(),
});
},
else => {},
}
}
};
const WasmDumper = struct {
const symtab_label = "symbols";
fn parseAndDump(bytes: []const u8, opts: Opts) ![]const u8 {
const gpa = opts.gpa orelse unreachable;
if (opts.dump_symtab) {
@panic("TODO: Implement symbol table parsing and dumping");
}
var fbs = std.io.fixedBufferStream(bytes);
const reader = fbs.reader();
const buf = try reader.readBytesNoEof(8);
if (!mem.eql(u8, buf[0..4], &std.wasm.magic)) {
return error.InvalidMagicByte;
}
if (!mem.eql(u8, buf[4..], &std.wasm.version)) {
return error.UnsupportedWasmVersion;
}
var output = std.ArrayList(u8).init(gpa);
errdefer output.deinit();
const writer = output.writer();
while (reader.readByte()) |current_byte| {
const section = std.meta.intToEnum(std.wasm.Section, current_byte) catch |err| {
std.debug.print("Found invalid section id '{d}'\n", .{current_byte});
return err;
};
const section_length = try std.leb.readULEB128(u32, reader);
try parseAndDumpSection(section, bytes[fbs.pos..][0..section_length], writer);
fbs.pos += section_length;
} else |_| {}
return output.toOwnedSlice();
}
fn parseAndDumpSection(section: std.wasm.Section, data: []const u8, writer: anytype) !void {
var fbs = std.io.fixedBufferStream(data);
const reader = fbs.reader();
try writer.print(
\\Section {s}
\\size {d}
, .{ @tagName(section), data.len });
switch (section) {
.type,
.import,
.function,
.table,
.memory,
.global,
.@"export",
.element,
.code,
.data,
=> {
const entries = try std.leb.readULEB128(u32, reader);
try writer.print("\nentries {d}\n", .{entries});
try dumpSection(section, data[fbs.pos..], entries, writer);
},
.custom => {
const name_length = try std.leb.readULEB128(u32, reader);
const name = data[fbs.pos..][0..name_length];
fbs.pos += name_length;
try writer.print("\nname {s}\n", .{name});
if (mem.eql(u8, name, "name")) {
try parseDumpNames(reader, writer, data);
} else if (mem.eql(u8, name, "producers")) {
try parseDumpProducers(reader, writer, data);
} else if (mem.eql(u8, name, "target_features")) {
try parseDumpFeatures(reader, writer, data);
}
},
.start => {
const start = try std.leb.readULEB128(u32, reader);
try writer.print("\nstart {d}\n", .{start});
},
else => {},
}
}
fn dumpSection(section: std.wasm.Section, data: []const u8, entries: u32, writer: anytype) !void {
var fbs = std.io.fixedBufferStream(data);
const reader = fbs.reader();
switch (section) {
.type => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
const func_type = try reader.readByte();
if (func_type != std.wasm.function_type) {
std.debug.print("Expected function type, found byte '{d}'\n", .{func_type});
return error.UnexpectedByte;
}
const params = try std.leb.readULEB128(u32, reader);
try writer.print("params {d}\n", .{params});
var index: u32 = 0;
while (index < params) : (index += 1) {
try parseDumpType(std.wasm.Valtype, reader, writer);
} else index = 0;
const returns = try std.leb.readULEB128(u32, reader);
try writer.print("returns {d}\n", .{returns});
while (index < returns) : (index += 1) {
try parseDumpType(std.wasm.Valtype, reader, writer);
}
}
},
.import => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
const module_name_len = try std.leb.readULEB128(u32, reader);
const module_name = data[fbs.pos..][0..module_name_len];
fbs.pos += module_name_len;
const name_len = try std.leb.readULEB128(u32, reader);
const name = data[fbs.pos..][0..name_len];
fbs.pos += name_len;
const kind = std.meta.intToEnum(std.wasm.ExternalKind, try reader.readByte()) catch |err| {
std.debug.print("Invalid import kind\n", .{});
return err;
};
try writer.print(
\\module {s}
\\name {s}
\\kind {s}
, .{ module_name, name, @tagName(kind) });
try writer.writeByte('\n');
switch (kind) {
.function => {
try writer.print("index {d}\n", .{try std.leb.readULEB128(u32, reader)});
},
.memory => {
try parseDumpLimits(reader, writer);
},
.global => {
try parseDumpType(std.wasm.Valtype, reader, writer);
try writer.print("mutable {}\n", .{0x01 == try std.leb.readULEB128(u32, reader)});
},
.table => {
try parseDumpType(std.wasm.RefType, reader, writer);
try parseDumpLimits(reader, writer);
},
}
}
},
.function => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
try writer.print("index {d}\n", .{try std.leb.readULEB128(u32, reader)});
}
},
.table => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
try parseDumpType(std.wasm.RefType, reader, writer);
try parseDumpLimits(reader, writer);
}
},
.memory => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
try parseDumpLimits(reader, writer);
}
},
.global => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
try parseDumpType(std.wasm.Valtype, reader, writer);
try writer.print("mutable {}\n", .{0x01 == try std.leb.readULEB128(u1, reader)});
try parseDumpInit(reader, writer);
}
},
.@"export" => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
const name_len = try std.leb.readULEB128(u32, reader);
const name = data[fbs.pos..][0..name_len];
fbs.pos += name_len;
const kind_byte = try std.leb.readULEB128(u8, reader);
const kind = std.meta.intToEnum(std.wasm.ExternalKind, kind_byte) catch |err| {
std.debug.print("invalid export kind value '{d}'\n", .{kind_byte});
return err;
};
const index = try std.leb.readULEB128(u32, reader);
try writer.print(
\\name {s}
\\kind {s}
\\index {d}
, .{ name, @tagName(kind), index });
try writer.writeByte('\n');
}
},
.element => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
try writer.print("table index {d}\n", .{try std.leb.readULEB128(u32, reader)});
try parseDumpInit(reader, writer);
const function_indexes = try std.leb.readULEB128(u32, reader);
var function_index: u32 = 0;
try writer.print("indexes {d}\n", .{function_indexes});
while (function_index < function_indexes) : (function_index += 1) {
try writer.print("index {d}\n", .{try std.leb.readULEB128(u32, reader)});
}
}
},
.code => {},
.data => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
const index = try std.leb.readULEB128(u32, reader);
try writer.print("memory index 0x{x}\n", .{index});
try parseDumpInit(reader, writer);
const size = try std.leb.readULEB128(u32, reader);
try writer.print("size {d}\n", .{size});
try reader.skipBytes(size, .{});
}
},
else => unreachable,
}
}
fn parseDumpType(comptime WasmType: type, reader: anytype, writer: anytype) !void {
const type_byte = try reader.readByte();
const valtype = std.meta.intToEnum(WasmType, type_byte) catch |err| {
std.debug.print("Invalid wasm type value '{d}'\n", .{type_byte});
return err;
};
try writer.print("type {s}\n", .{@tagName(valtype)});
}
fn parseDumpLimits(reader: anytype, writer: anytype) !void {
const flags = try std.leb.readULEB128(u8, reader);
const min = try std.leb.readULEB128(u32, reader);
try writer.print("min {x}\n", .{min});
if (flags != 0) {
try writer.print("max {x}\n", .{try std.leb.readULEB128(u32, reader)});
}
}
fn parseDumpInit(reader: anytype, writer: anytype) !void {
const byte = try std.leb.readULEB128(u8, reader);
const opcode = std.meta.intToEnum(std.wasm.Opcode, byte) catch |err| {
std.debug.print("invalid wasm opcode '{d}'\n", .{byte});
return err;
};
switch (opcode) {
.i32_const => try writer.print("i32.const {x}\n", .{try std.leb.readILEB128(i32, reader)}),
.i64_const => try writer.print("i64.const {x}\n", .{try std.leb.readILEB128(i64, reader)}),
.f32_const => try writer.print("f32.const {x}\n", .{@bitCast(f32, try reader.readIntLittle(u32))}),
.f64_const => try writer.print("f64.const {x}\n", .{@bitCast(f64, try reader.readIntLittle(u64))}),
.global_get => try writer.print("global.get {x}\n", .{try std.leb.readULEB128(u32, reader)}),
else => unreachable,
}
const end_opcode = try std.leb.readULEB128(u8, reader);
if (end_opcode != std.wasm.opcode(.end)) {
std.debug.print("expected 'end' opcode in init expression\n", .{});
return error.MissingEndOpcode;
}
}
fn parseDumpNames(reader: anytype, writer: anytype, data: []const u8) !void {
while (reader.context.pos < data.len) {
try parseDumpType(std.wasm.NameSubsection, reader, writer);
const size = try std.leb.readULEB128(u32, reader);
const entries = try std.leb.readULEB128(u32, reader);
try writer.print(
\\size {d}
\\names {d}
, .{ size, entries });
try writer.writeByte('\n');
var i: u32 = 0;
while (i < entries) : (i += 1) {
const index = try std.leb.readULEB128(u32, reader);
const name_len = try std.leb.readULEB128(u32, reader);
const pos = reader.context.pos;
const name = data[pos..][0..name_len];
reader.context.pos += name_len;
try writer.print(
\\index {d}
\\name {s}
, .{ index, name });
try writer.writeByte('\n');
}
}
}
fn parseDumpProducers(reader: anytype, writer: anytype, data: []const u8) !void {
const field_count = try std.leb.readULEB128(u32, reader);
try writer.print("fields {d}\n", .{field_count});
var current_field: u32 = 0;
while (current_field < field_count) : (current_field += 1) {
const field_name_length = try std.leb.readULEB128(u32, reader);
const field_name = data[reader.context.pos..][0..field_name_length];
reader.context.pos += field_name_length;
const value_count = try std.leb.readULEB128(u32, reader);
try writer.print(
\\field_name {s}
\\values {d}
, .{ field_name, value_count });
try writer.writeByte('\n');
var current_value: u32 = 0;
while (current_value < value_count) : (current_value += 1) {
const value_length = try std.leb.readULEB128(u32, reader);
const value = data[reader.context.pos..][0..value_length];
reader.context.pos += value_length;
const version_length = try std.leb.readULEB128(u32, reader);
const version = data[reader.context.pos..][0..version_length];
reader.context.pos += version_length;
try writer.print(
\\value_name {s}
\\version {s}
, .{ value, version });
try writer.writeByte('\n');
}
}
}
fn parseDumpFeatures(reader: anytype, writer: anytype, data: []const u8) !void {
const feature_count = try std.leb.readULEB128(u32, reader);
try writer.print("features {d}\n", .{feature_count});
var index: u32 = 0;
while (index < feature_count) : (index += 1) {
const prefix_byte = try std.leb.readULEB128(u8, reader);
const name_length = try std.leb.readULEB128(u32, reader);
const feature_name = data[reader.context.pos..][0..name_length];
reader.context.pos += name_length;
try writer.print("{c} {s}\n", .{ prefix_byte, feature_name });
}
}
};