const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;

/// Returns whether x is neither zero, subnormal, infinity, or NaN.
pub fn isNormal(x: anytype) bool {
    const T = @TypeOf(x);
    const TBits = std.meta.Int(.unsigned, @typeInfo(T).Float.bits);

    const increment_exp = 1 << math.floatMantissaBits(T);
    const remove_sign = ~@as(TBits, 0) >> 1;

    // We add 1 to the exponent, and if it overflows to 0 or becomes 1,

    // then it was all zeroes (subnormal) or all ones (special, inf/nan).

    // The sign bit is removed because all ones would overflow into it.

    // For f80, even though it has an explicit integer part stored,

    // the exponent effectively takes priority if mismatching.

    const value = @bitCast(TBits, x) +% increment_exp;
    return value & remove_sign >= (increment_exp << 1);
}

test "math.isNormal" {
    // TODO add `c_longdouble' when math.inf(T) supports it

    inline for ([_]type{ f16, f32, f64, f80, f128 }) |T| {
        const TBits = std.meta.Int(.unsigned, @bitSizeOf(T));

        // normals

        try expect(isNormal(@as(T, 1.0)));
        try expect(isNormal(math.floatMin(T)));
        try expect(isNormal(math.floatMax(T)));

        // subnormals

        try expect(!isNormal(@as(T, -0.0)));
        try expect(!isNormal(@as(T, 0.0)));
        try expect(!isNormal(@as(T, math.floatTrueMin(T))));

        // largest subnormal

        try expect(!isNormal(@bitCast(T, ~(~@as(TBits, 0) << math.floatFractionalBits(T)))));

        // non-finite numbers

        try expect(!isNormal(-math.inf(T)));
        try expect(!isNormal(math.inf(T)));
        try expect(!isNormal(math.nan(T)));

        // overflow edge-case (described in implementation, also see #10133)

        try expect(!isNormal(@bitCast(T, ~@as(TBits, 0))));
    }
}