Coverage for pygeodesy/latlonBase.py: 92%
464 statements
« prev ^ index » next coverage.py v7.2.2, created at 2023-12-02 13:46 -0500
« prev ^ index » next coverage.py v7.2.2, created at 2023-12-02 13:46 -0500
2# -*- coding: utf-8 -*-
4u'''(INTERNAL) Base class L{LatLonBase} for all elliposiodal, spherical and N-vectorial C{LatLon} classes.
6@see: I{(C) Chris Veness}' U{latlong<https://www.Movable-Type.co.UK/scripts/latlong.html>},
7 U{-ellipsoidal<https://www.Movable-Type.co.UK/scripts/geodesy/docs/latlon-ellipsoidal.js.html>} and
8 U{-vectors<https://www.Movable-Type.co.UK/scripts/latlong-vectors.html>} and I{Charles Karney}'s
9 U{Rhumb<https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1Rhumb.html>} and
10 U{RhumbLine<https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1RhumbLine.html>} classes.
11'''
13from pygeodesy.basics import isscalar, isstr, map1, _xinstanceof
14from pygeodesy.constants import EPS, EPS0, EPS1, EPS4, INT0, R_M, \
15 _EPSqrt as _TOL, _0_0, _0_5, _1_0, \
16 _360_0, _umod_360
17# from pygeodesy.datums import _spherical_datum # from .formy
18from pygeodesy.dms import F_D, F_DMS, latDMS, lonDMS, parse3llh
19# from pygeodesy.ecef import EcefKarney # _MODS
20from pygeodesy.errors import _AttributeError, _incompatible, \
21 _IsnotError, IntersectionError, \
22 _ValueError, _xattr, _xdatum, \
23 _xError, _xkwds, _xkwds_not
24# from pygeodesy.fmath import favg # _MODS
25from pygeodesy.formy import antipode, compassAngle, cosineAndoyerLambert_, \
26 cosineForsytheAndoyerLambert_, cosineLaw, \
27 equirectangular, euclidean, flatLocal_, \
28 flatPolar, _hartzell, haversine, isantipode, \
29 _isequalTo, isnormal, normal, philam2n_xyz, \
30 thomas_, vincentys, _spherical_datum
31from pygeodesy.interns import NN, _COMMASPACE_, _concentric_, _height_, \
32 _intersection_, _LatLon_, _m_, _negative_, \
33 _no_, _overlap_, _too_, _point_ # PYCHOK used!
34# from pygeodesy.iters import PointsIter, points2 # from .vector3d, _MODS
35# from pygeodesy.karney import Caps # _MODS
36from pygeodesy.lazily import _ALL_DOCS, _ALL_LAZY, _ALL_MODS as _MODS
37# from pygeodesy.ltp import Ltp, _xLtp # _MODS
38from pygeodesy.named import _NamedBase, notImplemented, notOverloaded, Fmt
39from pygeodesy.namedTuples import Bounds2Tuple, LatLon2Tuple, PhiLam2Tuple, \
40 Trilaterate5Tuple, Vector3Tuple
41# from pygeodesy.nvectorBase import _N_vector_ # _MODS
42from pygeodesy.props import deprecated_method, Property, Property_RO, \
43 property_RO, _update_all
44# from pygeodesy.streprs import Fmt, hstr # from .named, _MODS
45from pygeodesy.units import Distance_, Lat, Lon, Height, Radius, Radius_, \
46 Scalar, Scalar_
47from pygeodesy.utily import _unrollon, _unrollon3, _Wrap
48from pygeodesy.vector2d import _circin6, Circin6Tuple, _circum3, circum4_, \
49 Circum3Tuple, _radii11ABC
50from pygeodesy.vector3d import nearestOn6, Vector3d, PointsIter
52from contextlib import contextmanager
53from math import asin, cos, degrees, fabs, radians
55__all__ = _ALL_LAZY.latlonBase
56__version__ = '23.12.02'
59class LatLonBase(_NamedBase):
60 '''(INTERNAL) Base class for C{LatLon} points on spherical or
61 ellipsoidal earth models.
62 '''
63 _clipid = INT0 # polygonal clip, see .booleans
64 _datum = None # L{Datum}, to be overriden
65 _height = INT0 # height (C{meter}), default
66 _lat = 0 # latitude (C{degrees})
67 _lon = 0 # longitude (C{degrees})
69 def __init__(self, latlonh, lon=None, height=0, wrap=False, name=NN, datum=None):
70 '''New C{LatLon}.
72 @arg latlonh: Latitude (C{degrees} or DMS C{str} with N or S suffix) or
73 a previous C{LatLon} instance provided C{B{lon}=None}.
74 @kwarg lon: Longitude (C{degrees} or DMS C{str} with E or W suffix) or
75 C(None), indicating B{C{latlonh}} is a C{LatLon}.
76 @kwarg height: Optional height above (or below) the earth surface
77 (C{meter}, conventionally).
78 @kwarg wrap: If C{True}, wrap or I{normalize} B{C{lat}} and B{C{lon}}
79 (C{bool}).
80 @kwarg name: Optional name (C{str}).
81 @kwarg datum: Optional datum (L{Datum}, L{Ellipsoid}, L{Ellipsoid2},
82 L{a_f2Tuple} or I{scalar} radius) or C{None}.
84 @return: New instance (C{LatLon}).
86 @raise RangeError: A B{C{lon}} or C{lat} value outside the valid
87 range and L{rangerrors} set to C{True}.
89 @raise TypeError: If B{C{latlonh}} is not a C{LatLon}.
91 @raise UnitError: Invalid B{C{lat}}, B{C{lon}} or B{C{height}}.
93 @example:
95 >>> p = LatLon(50.06632, -5.71475)
96 >>> q = LatLon('50°03′59″N', """005°42'53"W""")
97 >>> r = LatLon(p)
98 '''
99 if name:
100 self.name = name
102 if lon is None:
103 lat, lon, height = _latlonheight3(latlonh, height, wrap)
104 elif wrap:
105 lat, lon = _Wrap.latlonDMS2(latlonh, lon)
106 else:
107 lat = latlonh
109 self._lat = Lat(lat) # parseDMS2(lat, lon)
110 self._lon = Lon(lon) # PYCHOK LatLon2Tuple
111 if height: # elevation
112 self._height = Height(height)
113 if datum:
114 self._datum = _spherical_datum(datum, name=self.name)
116 def __eq__(self, other):
117 return self.isequalTo(other)
119 def __ne__(self, other):
120 return not self.isequalTo(other)
122 def __str__(self):
123 return self.toStr(form=F_D, prec=6)
125 def antipode(self, height=None):
126 '''Return the antipode, the point diametrically opposite
127 to this point.
129 @kwarg height: Optional height of the antipode (C{meter}),
130 this point's height otherwise.
132 @return: The antipodal point (C{LatLon}).
133 '''
134 h = self._heigHt(height)
135 return self.classof(*antipode(*self.latlon), height=h)
137 @deprecated_method
138 def bounds(self, wide, tall, radius=R_M): # PYCHOK no cover
139 '''DEPRECATED, use method C{boundsOf}.'''
140 return self.boundsOf(wide, tall, radius=radius)
142 def boundsOf(self, wide, tall, radius=R_M, height=None):
143 '''Return the SW and NE lat-/longitude of a great circle
144 bounding box centered at this location.
146 @arg wide: Longitudinal box width (C{meter}, same units as
147 B{C{radius}} or C{degrees} if B{C{radius}} is C{None}).
148 @arg tall: Latitudinal box size (C{meter}, same units as
149 B{C{radius}} or C{degrees} if B{C{radius}} is C{None}).
150 @kwarg radius: Mean earth radius (C{meter}) or C{None} if I{both}
151 B{C{wide}} and B{C{tall}} are in C{degrees}.
152 @kwarg height: Height for C{latlonSW} and C{latlonNE} (C{meter}),
153 overriding the point's height.
155 @return: A L{Bounds2Tuple}C{(latlonSW, latlonNE)}, the
156 lower-left and upper-right corner (C{LatLon}).
158 @see: U{https://www.Movable-Type.co.UK/scripts/latlong-db.html}
159 '''
160 w = Scalar_(wide=wide) * _0_5
161 t = Scalar_(tall=tall) * _0_5
162 if radius is not None:
163 r = Radius_(radius)
164 c = cos(self.phi)
165 w = degrees(asin(w / r) / c) if fabs(c) > EPS0 else _0_0 # XXX
166 t = degrees(t / r)
167 y, t = self.lat, fabs(t)
168 x, w = self.lon, fabs(w)
170 h = self._heigHt(height)
171 sw = self.classof(y - t, x - w, height=h)
172 ne = self.classof(y + t, x + w, height=h)
173 return Bounds2Tuple(sw, ne, name=self.name)
175 def chordTo(self, other, height=None, wrap=False):
176 '''Compute the length of the chord through the earth between
177 this and an other point.
179 @arg other: The other point (C{LatLon}).
180 @kwarg height: Overriding height for both points (C{meter})
181 or C{None} for each point's height.
182 @kwarg wrap: If C{True}, wrap or I{normalize} the B{C{other}}
183 point (C{bool}).
185 @return: The chord length (conventionally C{meter}).
187 @raise TypeError: The B{C{other}} point is not C{LatLon}.
188 '''
189 def _v3d(ll):
190 t = ll.toEcef(height=height) # .toVector(Vector=Vector3d)
191 return Vector3d(t.x, t.y, t.z)
193 p = self.others(other)
194 if wrap:
195 p = _Wrap.point(p)
196 return _v3d(self).minus(_v3d(p)).length
198 def circin6(self, point2, point3, eps=EPS4, wrap=False):
199 '''Return the radius and center of the I{inscribed} aka I{In-}circle
200 of the (planar) triangle formed by this and two other points.
202 @arg point2: Second point (C{LatLon}).
203 @arg point3: Third point (C{LatLon}).
204 @kwarg eps: Tolerance for function L{pygeodesy.trilaterate3d2}.
205 @kwarg wrap: If C{True}, wrap or I{normalize} B{C{point2}} and
206 B{C{point3}} (C{bool}).
208 @return: L{Circin6Tuple}C{(radius, center, deltas, cA, cB, cC)}. The
209 C{center} and contact points C{cA}, C{cB} and C{cC}, each an
210 instance of this (sub-)class, are co-planar with this and the
211 two given points, see the B{Note} below.
213 @raise ImportError: Package C{numpy} not found, not installed or older
214 than version 1.10.
216 @raise IntersectionError: Near-coincident or -colinear points or
217 a trilateration or C{numpy} issue.
219 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}.
221 @note: The C{center} is trilaterated in cartesian (ECEF) space and converted
222 back to geodetic lat-, longitude and height. The latter, conventionally
223 in C{meter} indicates whether the C{center} is above, below or on the
224 surface of the earth model. If C{deltas} is C{None}, the C{center} is
225 I{un}ambigous. Otherwise C{deltas} is a L{LatLon3Tuple}C{(lat, lon,
226 height)} representing the differences between both results from
227 L{pygeodesy.trilaterate3d2} and C{center} is the mean thereof.
229 @see: Function L{pygeodesy.circin6}, method L{circum3}, U{Incircle
230 <https://MathWorld.Wolfram.com/Incircle.html>} and U{Contact Triangle
231 <https://MathWorld.Wolfram.com/ContactTriangle.html>}.
232 '''
233 with _toCartesian3(self, point2, point3, wrap) as cs:
234 r, c, d, cA, cB, cC = _circin6(*cs, eps=eps, useZ=True, dLL3=True,
235 datum=self.datum) # PYCHOK unpack
236 return Circin6Tuple(r, c.toLatLon(), d, cA.toLatLon(), cB.toLatLon(), cC.toLatLon())
238 def circum3(self, point2, point3, circum=True, eps=EPS4, wrap=False):
239 '''Return the radius and center of the smallest circle I{through} or I{containing}
240 this and two other points.
242 @arg point2: Second point (C{LatLon}).
243 @arg point3: Third point (C{LatLon}).
244 @kwarg circum: If C{True} return the C{circumradius} and C{circumcenter},
245 always, ignoring the I{Meeus}' Type I case (C{bool}).
246 @kwarg eps: Tolerance for function L{pygeodesy.trilaterate3d2}.
247 @kwarg wrap: If C{True}, wrap or I{normalize} B{C{point2}} and
248 B{C{point3}} (C{bool}).
250 @return: A L{Circum3Tuple}C{(radius, center, deltas)}. The C{center}, an
251 instance of this (sub-)class, is co-planar with this and the two
252 given points. If C{deltas} is C{None}, the C{center} is
253 I{un}ambigous. Otherwise C{deltas} is a L{LatLon3Tuple}C{(lat,
254 lon, height)} representing the difference between both results
255 from L{pygeodesy.trilaterate3d2} and C{center} is the mean thereof.
257 @raise ImportError: Package C{numpy} not found, not installed or older than
258 version 1.10.
260 @raise IntersectionError: Near-concentric, -coincident or -colinear points,
261 incompatible C{Ecef} classes or a trilateration
262 or C{numpy} issue.
264 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}.
266 @note: The C{center} is trilaterated in cartesian (ECEF) space and converted
267 back to geodetic lat-, longitude and height. The latter, conventionally
268 in C{meter} indicates whether the C{center} is above, below or on the
269 surface of the earth model. If C{deltas} is C{None}, the C{center} is
270 I{un}ambigous. Otherwise C{deltas} is a L{LatLon3Tuple}C{(lat, lon,
271 height)} representing the difference between both results from
272 L{pygeodesy.trilaterate3d2} and C{center} is the mean thereof.
274 @see: Function L{pygeodesy.circum3} and methods L{circin6} and L{circum4_}.
275 '''
276 with _toCartesian3(self, point2, point3, wrap, circum=circum) as cs:
277 r, c, d = _circum3(*cs, circum=circum, eps=eps, useZ=True, dLL3=True, # XXX -3d2
278 clas=cs[0].classof, datum=self.datum) # PYCHOK unpack
279 return Circum3Tuple(r, c.toLatLon(), d)
281 def circum4_(self, *points, **wrap):
282 '''Best-fit a sphere through this and two or more other points.
284 @arg points: The other points (each a C{LatLon}).
285 @kwarg wrap: If C{True}, wrap or I{normalize} the B{C{points}}
286 (C{bool}), default C{False}.
288 @return: L{Circum4Tuple}C{(radius, center, rank, residuals)} with C{center}
289 an instance of this (sub-)class.
291 @raise ImportError: Package C{numpy} not found, not installed or older than
292 version 1.10.
294 @raise NumPyError: Some C{numpy} issue.
296 @raise TypeError: One of the B{C{points}} invalid.
298 @raise ValueError: Too few B{C{points}}.
300 @see: Function L{pygeodesy.circum4_} and L{circum3}.
301 '''
302 def _cs(ps, C, wrap=False):
303 _wp = _Wrap.point if wrap else (lambda p: p)
304 for i, p in enumerate(ps):
305 yield C(i=i, points=_wp(p))
307 C = self._toCartesianEcef
308 c = C(point=self)
309 t = circum4_(c, Vector=c.classof, *_cs(points, C, **wrap))
310 c = t.center.toLatLon(LatLon=self.classof)
311 return t.dup(center=c)
313 @property
314 def clipid(self):
315 '''Get the (polygonal) clip (C{int}).
316 '''
317 return self._clipid
319 @clipid.setter # PYCHOK setter!
320 def clipid(self, clipid):
321 '''Get the (polygonal) clip (C{int}).
322 '''
323 self._clipid = int(clipid)
325 @deprecated_method
326 def compassAngle(self, other, **adjust_wrap): # PYCHOK no cover
327 '''DEPRECATED, use method L{compassAngleTo}.'''
328 return self.compassAngleTo(other, **adjust_wrap)
330 def compassAngleTo(self, other, **adjust_wrap):
331 '''Return the angle from North for the direction vector between
332 this and an other point.
334 Suitable only for short, non-near-polar vectors up to a few
335 hundred Km or Miles. Use method C{initialBearingTo} for
336 larger distances.
338 @arg other: The other point (C{LatLon}).
339 @kwarg adjust_wrap: Optional keyword arguments for function
340 L{pygeodesy.compassAngle}.
342 @return: Compass angle from North (C{degrees360}).
344 @raise TypeError: The B{C{other}} point is not C{LatLon}.
346 @note: Courtesy of Martin Schultz.
348 @see: U{Local, flat earth approximation
349 <https://www.EdWilliams.org/avform.htm#flat>}.
350 '''
351 p = self.others(other)
352 return compassAngle(self.lat, self.lon, p.lat, p.lon, **adjust_wrap)
354 def cosineAndoyerLambertTo(self, other, wrap=False):
355 '''Compute the distance between this and an other point using the U{Andoyer-Lambert correction<https://
356 navlib.net/wp-content/uploads/2013/10/admiralty-manual-of-navigation-vol-1-1964-english501c.pdf>}
357 of the U{Law of Cosines<https://www.Movable-Type.co.UK/scripts/latlong.html#cosine-law>} formula.
359 @arg other: The other point (C{LatLon}).
360 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll
361 the B{C{other}} point (C{bool}).
363 @return: Distance (C{meter}, same units as the axes of this
364 point's datum ellipsoid).
366 @raise TypeError: The B{C{other}} point is not C{LatLon}.
368 @see: Function L{pygeodesy.cosineAndoyerLambert} and methods
369 L{cosineForsytheAndoyerLambertTo}, L{cosineLawTo},
370 C{distanceTo*}, L{equirectangularTo}, L{euclideanTo},
371 L{flatLocalTo}/L{hubenyTo}, L{flatPolarTo}, L{haversineTo},
372 L{thomasTo} and L{vincentysTo}.
373 '''
374 return self._distanceTo_(cosineAndoyerLambert_, other, wrap=wrap)
376 def cosineForsytheAndoyerLambertTo(self, other, wrap=False):
377 '''Compute the distance between this and an other point using
378 the U{Forsythe-Andoyer-Lambert correction
379 <https://www2.UNB.Ca/gge/Pubs/TR77.pdf>} of the U{Law of Cosines
380 <https://www.Movable-Type.co.UK/scripts/latlong.html#cosine-law>}
381 formula.
383 @arg other: The other point (C{LatLon}).
384 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll
385 the B{C{other}} point (C{bool}).
387 @return: Distance (C{meter}, same units as the axes of
388 this point's datum ellipsoid).
390 @raise TypeError: The B{C{other}} point is not C{LatLon}.
392 @see: Function L{pygeodesy.cosineForsytheAndoyerLambert} and methods
393 L{cosineAndoyerLambertTo}, L{cosineLawTo}, C{distanceTo*},
394 L{equirectangularTo}, L{euclideanTo}, L{flatLocalTo}/L{hubenyTo},
395 L{flatPolarTo}, L{haversineTo}, L{thomasTo} and L{vincentysTo}.
396 '''
397 return self._distanceTo_(cosineForsytheAndoyerLambert_, other, wrap=wrap)
399 def cosineLawTo(self, other, radius=None, wrap=False):
400 '''Compute the distance between this and an other point using the
401 U{spherical Law of Cosines
402 <https://www.Movable-Type.co.UK/scripts/latlong.html#cosine-law>}
403 formula.
405 @arg other: The other point (C{LatLon}).
406 @kwarg radius: Mean earth radius (C{meter}) or C{None}
407 for the mean radius of this point's datum
408 ellipsoid.
409 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll
410 the B{C{other}} point (C{bool}).
412 @return: Distance (C{meter}, same units as B{C{radius}}).
414 @raise TypeError: The B{C{other}} point is not C{LatLon}.
416 @see: Function L{pygeodesy.cosineLaw} and methods L{cosineAndoyerLambertTo},
417 L{cosineForsytheAndoyerLambertTo}, C{distanceTo*}, L{equirectangularTo},
418 L{euclideanTo}, L{flatLocalTo}/L{hubenyTo}, L{flatPolarTo},
419 L{haversineTo}, L{thomasTo} and L{vincentysTo}.
420 '''
421 return self._distanceTo(cosineLaw, other, radius, wrap=wrap)
423 @property_RO
424 def datum(self): # PYCHOK no cover
425 '''I{Must be overloaded}.'''
426 notOverloaded(self)
428 def destinationXyz(self, delta, LatLon=None, **LatLon_kwds):
429 '''Calculate the destination using a I{local} delta from this point.
431 @arg delta: Local delta to the destination (L{XyzLocal}, L{Enu},
432 L{Ned} or L{Local9Tuple}).
433 @kwarg LatLon: Optional (geodetic) class to return the destination
434 or C{None}.
435 @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
436 arguments, ignored if C{B{LatLon} is None}.
438 @return: Destination as a C{B{LatLon}(lat, lon, **B{LatLon_kwds})}
439 instance or if C{B{LatLon} is None}, a L{LatLon3Tuple}C{(lat,
440 lon, height)} respectively L{LatLon4Tuple}C{(lat, lon,
441 height, datum)} depending on whether a C{datum} keyword
442 is un-/specified.
444 @raise TypeError: Invalid B{C{delta}}, B{C{LatLon}} or B{C{LatLon_kwds}}.
445 '''
446 t = self._ltp._local2ecef(delta, nine=True)
447 return t.toLatLon(LatLon=LatLon, **_xkwds(LatLon_kwds, name=self.name))
449 def _distanceTo(self, func, other, radius=None, **kwds):
450 '''(INTERNAL) Helper for distance methods C{<func>To}.
451 '''
452 p, r = self.others(other, up=2), radius
453 if r is None:
454 r = self._datum.ellipsoid.R1 if self._datum else R_M
455 return func(self.lat, self.lon, p.lat, p.lon, radius=r, **kwds)
457 def _distanceTo_(self, func_, other, wrap=False, radius=None):
458 '''(INTERNAL) Helper for (ellipsoidal) methods C{<func>To}.
459 '''
460 p = self.others(other, up=2)
461 D = self.datum
462 lam21, phi2, _ = _Wrap.philam3(self.lam, p.phi, p.lam, wrap)
463 r = func_(phi2, self.phi, lam21, datum=D)
464 return r * (D.ellipsoid.a if radius is None else radius)
466 @property_RO
467 def Ecef(self):
468 '''Get the ECEF I{class} (L{EcefKarney}), I{lazily, once}.
469 '''
470 LatLonBase.Ecef = E = _MODS.ecef.EcefKarney # overwrite property_RO
471 return E
473 @Property_RO
474 def _Ecef_forward(self):
475 '''(INTERNAL) Helper for L{_ecef9} and L{toEcef} (C{callable}).
476 '''
477 return self.Ecef(self.datum, name=self.name).forward
479 @Property_RO
480 def _ecef9(self):
481 '''(INTERNAL) Helper for L{toCartesian}, L{toEcef} and L{toCartesian} (L{Ecef9Tuple}).
482 '''
483 return self._Ecef_forward(self, M=True)
485 @property_RO
486 def ellipsoidalLatLon(self):
487 '''Get the C{LatLon type} iff ellipsoidal, overloaded in L{LatLonEllipsoidalBase}.
488 '''
489 return False
491 @deprecated_method
492 def equals(self, other, eps=None): # PYCHOK no cover
493 '''DEPRECATED, use method L{isequalTo}.'''
494 return self.isequalTo(other, eps=eps)
496 @deprecated_method
497 def equals3(self, other, eps=None): # PYCHOK no cover
498 '''DEPRECATED, use method L{isequalTo3}.'''
499 return self.isequalTo3(other, eps=eps)
501 def equirectangularTo(self, other, **radius_adjust_limit_wrap):
502 '''Compute the distance between this and an other point
503 using the U{Equirectangular Approximation / Projection
504 <https://www.Movable-Type.co.UK/scripts/latlong.html#equirectangular>}.
506 Suitable only for short, non-near-polar distances up to a
507 few hundred Km or Miles. Use method L{haversineTo} or
508 C{distanceTo*} for more accurate and/or larger distances.
510 @arg other: The other point (C{LatLon}).
511 @kwarg radius_adjust_limit_wrap: Optional keyword arguments
512 for function L{pygeodesy.equirectangular},
513 overriding the default mean C{radius} of this
514 point's datum ellipsoid.
516 @return: Distance (C{meter}, same units as B{C{radius}}).
518 @raise TypeError: The B{C{other}} point is not C{LatLon}.
520 @see: Function L{pygeodesy.equirectangular} and methods L{cosineAndoyerLambertTo},
521 L{cosineForsytheAndoyerLambertTo}, L{cosineLawTo}, C{distanceTo*},
522 C{euclideanTo}, L{flatLocalTo}/L{hubenyTo}, L{flatPolarTo},
523 L{haversineTo}, L{thomasTo} and L{vincentysTo}.
524 '''
525 return self._distanceTo(equirectangular, other, **radius_adjust_limit_wrap)
527 def euclideanTo(self, other, **radius_adjust_wrap):
528 '''Approximate the C{Euclidian} distance between this and
529 an other point.
531 See function L{pygeodesy.euclidean} for the available B{C{options}}.
533 @arg other: The other point (C{LatLon}).
534 @kwarg radius_adjust_wrap: Optional keyword arguments for function
535 L{pygeodesy.euclidean}, overriding the default mean
536 C{radius} of this point's datum ellipsoid.
538 @return: Distance (C{meter}, same units as B{C{radius}}).
540 @raise TypeError: The B{C{other}} point is not C{LatLon}.
542 @see: Function L{pygeodesy.euclidean} and methods L{cosineAndoyerLambertTo},
543 L{cosineForsytheAndoyerLambertTo}, L{cosineLawTo}, C{distanceTo*},
544 L{equirectangularTo}, L{flatLocalTo}/L{hubenyTo}, L{flatPolarTo},
545 L{haversineTo}, L{thomasTo} and L{vincentysTo}.
546 '''
547 return self._distanceTo(euclidean, other, **radius_adjust_wrap)
549 def flatLocalTo(self, other, radius=None, wrap=False):
550 '''Compute the distance between this and an other point using the
551 U{ellipsoidal Earth to plane projection
552 <https://WikiPedia.org/wiki/Geographical_distance#Ellipsoidal_Earth_projected_to_a_plane>}
553 aka U{Hubeny<https://www.OVG.AT/de/vgi/files/pdf/3781/>} formula.
555 @arg other: The other point (C{LatLon}).
556 @kwarg radius: Mean earth radius (C{meter}) or C{None} for
557 the I{equatorial radius} of this point's
558 datum ellipsoid.
559 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll
560 the B{C{other}} point (C{bool}).
562 @return: Distance (C{meter}, same units as B{C{radius}}).
564 @raise TypeError: The B{C{other}} point is not C{LatLon}.
566 @raise ValueError: Invalid B{C{radius}}.
568 @see: Function L{pygeodesy.flatLocal}/L{pygeodesy.hubeny}, methods
569 L{cosineAndoyerLambertTo}, L{cosineForsytheAndoyerLambertTo},
570 L{cosineLawTo}, C{distanceTo*}, L{equirectangularTo}, L{euclideanTo},
571 L{flatPolarTo}, L{haversineTo}, L{thomasTo} and L{vincentysTo} and
572 U{local, flat Earth approximation<https://www.edwilliams.org/avform.htm#flat>}.
573 '''
574 return self._distanceTo_(flatLocal_, other, wrap=wrap, radius=
575 radius if radius in (None, R_M, _1_0, 1) else Radius(radius)) # PYCHOK kwargs
577 hubenyTo = flatLocalTo # for Karl Hubeny
579 def flatPolarTo(self, other, **radius_wrap):
580 '''Compute the distance between this and an other point using
581 the U{polar coordinate flat-Earth<https://WikiPedia.org/wiki/
582 Geographical_distance#Polar_coordinate_flat-Earth_formula>} formula.
584 @arg other: The other point (C{LatLon}).
585 @kwarg radius_wrap: Optional keyword arguments for function
586 L{pygeodesy.flatPolar}, overriding the
587 default mean C{radius} of this point's
588 datum ellipsoid.
590 @return: Distance (C{meter}, same units as B{C{radius}}).
592 @raise TypeError: The B{C{other}} point is not C{LatLon}.
594 @see: Function L{pygeodesy.flatPolar} and methods L{cosineAndoyerLambertTo},
595 L{cosineForsytheAndoyerLambertTo}, L{cosineLawTo}, C{distanceTo*},
596 L{equirectangularTo}, L{euclideanTo}, L{flatLocalTo}/L{hubenyTo},
597 L{haversineTo}, L{thomasTo} and L{vincentysTo}.
598 '''
599 return self._distanceTo(flatPolar, other, **radius_wrap)
601 def hartzell(self, los=None, earth=None):
602 '''Compute the intersection of a Line-Of-Sight (los) from this Point-Of-View
603 (pov) with this point's ellipsoid surface.
605 @kwarg los: Line-Of-Sight, I{direction} to earth (L{Los}, L{Vector3d})
606 or C{None} to point to the ellipsoid's center.
607 @kwarg earth: The earth model (L{Datum}, L{Ellipsoid}, L{Ellipsoid2},
608 L{a_f2Tuple} or C{scalar} radius in C{meter}) overriding
609 this point's C{datum} ellipsoid.
611 @return: The ellipsoid intersection (C{LatLon}) with C{.height} set
612 to the distance to this C{pov}.
614 @raise IntersectionError: Null or bad C{pov} or B{C{los}}, this C{pov}
615 is inside the ellipsoid or B{C{los}} points
616 outside or away from the ellipsoid.
618 @raise TypeError: Invalid B{C{los}}.
620 @see: Function C{hartzell} for further details.
621 '''
622 return _hartzell(self, los, earth, LatLon=self.classof)
624 def haversineTo(self, other, **radius_wrap):
625 '''Compute the distance between this and an other point using the
626 U{Haversine<https://www.Movable-Type.co.UK/scripts/latlong.html>}
627 formula.
629 @arg other: The other point (C{LatLon}).
630 @kwarg radius_wrap: Optional keyword arguments for function
631 L{pygeodesy.haversine}, overriding the
632 default mean C{radius} of this point's
633 datum ellipsoid.
635 @return: Distance (C{meter}, same units as B{C{radius}}).
637 @raise TypeError: The B{C{other}} point is not C{LatLon}.
639 @see: Function L{pygeodesy.haversine} and methods L{cosineAndoyerLambertTo},
640 L{cosineForsytheAndoyerLambertTo}, L{cosineLawTo}, C{distanceTo*},
641 L{equirectangularTo}, L{euclideanTo}, L{flatLocalTo}/L{hubenyTo},
642 L{flatPolarTo}, L{thomasTo} and L{vincentysTo}.
643 '''
644 return self._distanceTo(haversine, other, **radius_wrap)
646 def _havg(self, other, f=_0_5, h=None):
647 '''(INTERNAL) Weighted, average height.
649 @arg other: An other point (C{LatLon}).
650 @kwarg f: Optional fraction (C{float}).
651 @kwarg h: Overriding height (C{meter}).
653 @return: Average, fractional height (C{float}) or
654 the overriding B{C{height}} (C{Height}).
655 '''
656 return Height(h) if h is not None else \
657 _MODS.fmath.favg(self.height, other.height, f=f)
659 @Property
660 def height(self):
661 '''Get the height (C{meter}).
662 '''
663 return self._height
665 @height.setter # PYCHOK setter!
666 def height(self, height):
667 '''Set the height (C{meter}).
669 @raise TypeError: Invalid B{C{height}} C{type}.
671 @raise ValueError: Invalid B{C{height}}.
672 '''
673 h = Height(height)
674 if self._height != h:
675 _update_all(self)
676 self._height = h
678 def _heigHt(self, height):
679 '''(INTERNAL) Overriding this C{height}.
680 '''
681 return self.height if height is None else Height(height)
683 def height4(self, earth=None, normal=True, LatLon=None, **LatLon_kwds):
684 '''Compute the height above or below and the projection of this point
685 on this datum's or on an other earth's ellipsoid surface.
687 @kwarg earth: A datum, ellipsoid, triaxial ellipsoid or earth radius
688 I{overriding} this datum (L{Datum}, L{Ellipsoid},
689 L{Ellipsoid2}, L{a_f2Tuple}, L{Triaxial}, L{Triaxial_},
690 L{JacobiConformal} or C{meter}, conventionally).
691 @kwarg normal: If C{True} the projection is the nearest point on the
692 ellipsoid's surface, otherwise the intersection of the
693 radial line to the center and the ellipsoid's surface.
694 @kwarg LatLon: Optional class to return the height and projection
695 (C{LatLon}) or C{None}.
696 @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments,
697 ignored if C{B{LatLon} is None}.
699 @note: Use keyword argument C{height=0} to override C{B{LatLon}.height}
700 to {0} or any other C{scalar}, conventionally in C{meter}.
702 @return: An instance of B{C{LatLon}} or if C{B{LatLon} is None}, a
703 L{Vector4Tuple}C{(x, y, z, h)} with the I{projection} C{x}, C{y}
704 and C{z} coordinates and height C{h} in C{meter}, conventionally.
706 @raise TriaxialError: No convergence in triaxial root finding.
708 @raise TypeError: Invalid B{C{earth}}.
710 @see: L{Ellipsoid.height4} and L{Triaxial_.height4} for more information.
711 '''
712 c = self.toCartesian()
713 if LatLon is None:
714 r = c.height4(earth=earth, normal=normal)
715 else:
716 r = c.height4(earth=earth, normal=normal, Cartesian=c.classof, height=0)
717 r = r.toLatLon(LatLon=LatLon, **_xkwds(LatLon_kwds, height=r.height))
718 return r
720 def heightStr(self, prec=-2, m=_m_):
721 '''Return this point's B{C{height}} as C{str}ing.
723 @kwarg prec: Number of (decimal) digits, unstripped (C{int}).
724 @kwarg m: Optional unit of the height (C{str}).
726 @see: Function L{pygeodesy.hstr}.
727 '''
728 return _MODS.streprs.hstr(self.height, prec=prec, m=m)
730 def intersecant2(self, *args, **kwds): # PYCHOK no cover
731 '''B{Not implemented}, throws a C{NotImplementedError} always.'''
732 notImplemented(self, *args, **kwds)
734 def _intersecend2(self, p, q, wrap, height, g_or_r, P, Q, unused): # in .LatLonEllipsoidalBaseDI.intersecant2
735 '''(INTERNAL) Interpolate 2 heights along a geodesic or rhumb
736 line and return the 2 intercant points accordingly.
737 '''
738 if height is None:
739 hp = hq = _xattr(p, height=INT0)
740 h = _xattr(q, height=hp) # if isLatLon(q) else hp
741 if h != hp:
742 s = g_or_r._Inverse(p, q, wrap).s12
743 if s: # fmath.fidw?
744 s = (h - hp) / s # slope
745 hq += s * Q.s12
746 hp += s * P.s12
747 else:
748 hp = hq = _MODS.fmath.favg(hp, h)
749 else:
750 hp = hq = Height(height)
752# n = self.name or unused.__name__
753 p = q = self.classof(P.lat2, P.lon2, datum=g_or_r.datum, height=hp) # name=n
754 p._iteration = P.iteration
755 if P is not Q:
756 q = self.classof(Q.lat2, Q.lon2, datum=g_or_r.datum, height=hq) # name=n
757 q._iteration = Q.iteration
758 return p, q
760 @deprecated_method
761 def isantipode(self, other, eps=EPS): # PYCHOK no cover
762 '''DEPRECATED, use method L{isantipodeTo}.'''
763 return self.isantipodeTo(other, eps=eps)
765 def isantipodeTo(self, other, eps=EPS):
766 '''Check whether this and an other point are antipodal,
767 on diametrically opposite sides of the earth.
769 @arg other: The other point (C{LatLon}).
770 @kwarg eps: Tolerance for near-equality (C{degrees}).
772 @return: C{True} if points are antipodal within the given
773 tolerance, C{False} otherwise.
774 '''
775 p = self.others(other)
776 return isantipode(*(self.latlon + p.latlon), eps=eps)
778 @Property_RO
779 def isEllipsoidal(self):
780 '''Check whether this point is ellipsoidal (C{bool} or C{None} if unknown).
781 '''
782 return self.datum.isEllipsoidal if self._datum else None
784 def isequalTo(self, other, eps=None):
785 '''Compare this point with an other point, I{ignoring} height.
787 @arg other: The other point (C{LatLon}).
788 @kwarg eps: Tolerance for equality (C{degrees}).
790 @return: C{True} if both points are identical,
791 I{ignoring} height, C{False} otherwise.
793 @raise TypeError: The B{C{other}} point is not C{LatLon}
794 or mismatch of the B{C{other}} and
795 this C{class} or C{type}.
797 @raise UnitError: Invalid B{C{eps}}.
799 @see: Method L{isequalTo3}.
800 '''
801 return _isequalTo(self, self.others(other), eps=eps)
803 def isequalTo3(self, other, eps=None):
804 '''Compare this point with an other point, I{including} height.
806 @arg other: The other point (C{LatLon}).
807 @kwarg eps: Tolerance for equality (C{degrees}).
809 @return: C{True} if both points are identical
810 I{including} height, C{False} otherwise.
812 @raise TypeError: The B{C{other}} point is not C{LatLon}
813 or mismatch of the B{C{other}} and
814 this C{class} or C{type}.
816 @see: Method L{isequalTo}.
817 '''
818 return self.height == self.others(other).height and \
819 _isequalTo(self, other, eps=eps)
821 @Property_RO
822 def isnormal(self):
823 '''Return C{True} if this point is normal (C{bool}),
824 meaning C{abs(lat) <= 90} and C{abs(lon) <= 180}.
826 @see: Methods L{normal}, L{toNormal} and functions
827 L{pygeodesy.isnormal} and L{pygeodesy.normal}.
828 '''
829 return isnormal(self.lat, self.lon, eps=0)
831 @Property_RO
832 def isSpherical(self):
833 '''Check whether this point is spherical (C{bool} or C{None} if unknown).
834 '''
835 return self.datum.isSpherical if self._datum else None
837 @Property_RO
838 def lam(self):
839 '''Get the longitude (B{C{radians}}).
840 '''
841 return radians(self.lon)
843 @Property
844 def lat(self):
845 '''Get the latitude (C{degrees90}).
846 '''
847 return self._lat
849 @lat.setter # PYCHOK setter!
850 def lat(self, lat):
851 '''Set the latitude (C{str[N|S]} or C{degrees}).
853 @raise ValueError: Invalid B{C{lat}}.
854 '''
855 lat = Lat(lat) # parseDMS(lat, suffix=_NS_, clip=90)
856 if self._lat != lat:
857 _update_all(self)
858 self._lat = lat
860 @Property
861 def latlon(self):
862 '''Get the lat- and longitude (L{LatLon2Tuple}C{(lat, lon)}).
863 '''
864 return LatLon2Tuple(self._lat, self._lon, name=self.name)
866 @latlon.setter # PYCHOK setter!
867 def latlon(self, latlonh):
868 '''Set the lat- and longitude and optionally the height
869 (2- or 3-tuple or comma- or space-separated C{str}
870 of C{degrees90}, C{degrees180} and C{meter}).
872 @raise TypeError: Height of B{C{latlonh}} not C{scalar} or
873 B{C{latlonh}} not C{list} or C{tuple}.
875 @raise ValueError: Invalid B{C{latlonh}} or M{len(latlonh)}.
877 @see: Function L{pygeodesy.parse3llh} to parse a B{C{latlonh}}
878 string into a 3-tuple C{(lat, lon, h)}.
879 '''
880 if isstr(latlonh):
881 latlonh = parse3llh(latlonh, height=self.height)
882 else:
883 _xinstanceof(list, tuple, latlonh=latlonh)
884 if len(latlonh) == 3:
885 h = Height(latlonh[2], name=Fmt.SQUARE(latlonh=2))
886 elif len(latlonh) != 2:
887 raise _ValueError(latlonh=latlonh)
888 else:
889 h = self.height
891 llh = Lat(latlonh[0]), Lon(latlonh[1]), h # parseDMS2(latlonh[0], latlonh[1])
892 if (self._lat, self._lon, self._height) != llh:
893 _update_all(self)
894 self._lat, self._lon, self._height = llh
896 def latlon2(self, ndigits=0):
897 '''Return this point's lat- and longitude in C{degrees}, rounded.
899 @kwarg ndigits: Number of (decimal) digits (C{int}).
901 @return: A L{LatLon2Tuple}C{(lat, lon)}, both C{float}
902 and rounded away from zero.
904 @note: The C{round}ed values are always C{float}, also
905 if B{C{ndigits}} is omitted.
906 '''
907 return LatLon2Tuple(round(self.lat, ndigits),
908 round(self.lon, ndigits), name=self.name)
910 @deprecated_method
911 def latlon_(self, ndigits=0): # PYCHOK no cover
912 '''DEPRECATED, use method L{latlon2}.'''
913 return self.latlon2(ndigits=ndigits)
915 latlon2round = latlon_ # PYCHOK no cover
917 @Property
918 def latlonheight(self):
919 '''Get the lat-, longitude and height (L{LatLon3Tuple}C{(lat, lon, height)}).
920 '''
921 return self.latlon.to3Tuple(self.height)
923 @latlonheight.setter # PYCHOK setter!
924 def latlonheight(self, latlonh):
925 '''Set the lat- and longitude and optionally the height
926 (2- or 3-tuple or comma- or space-separated C{str}
927 of C{degrees90}, C{degrees180} and C{meter}).
929 @see: Property L{latlon} for more details.
930 '''
931 self.latlon = latlonh
933 @Property
934 def lon(self):
935 '''Get the longitude (C{degrees180}).
936 '''
937 return self._lon
939 @lon.setter # PYCHOK setter!
940 def lon(self, lon):
941 '''Set the longitude (C{str[E|W]} or C{degrees}).
943 @raise ValueError: Invalid B{C{lon}}.
944 '''
945 lon = Lon(lon) # parseDMS(lon, suffix=_EW_, clip=180)
946 if self._lon != lon:
947 _update_all(self)
948 self._lon = lon
950 @Property_RO
951 def _ltp(self):
952 '''(INTERNAL) Cache for L{toLtp}.
953 '''
954 return _MODS.ltp.Ltp(self, ecef=self.Ecef(self.datum), name=self.name)
956 def nearestOn6(self, points, closed=False, height=None, wrap=False):
957 '''Locate the point on a path or polygon closest to this point.
959 Points are converted to and distances are computed in
960 I{geocentric}, cartesian space.
962 @arg points: The path or polygon points (C{LatLon}[]).
963 @kwarg closed: Optionally, close the polygon (C{bool}).
964 @kwarg height: Optional height, overriding the height of
965 this and all other points (C{meter}). If
966 C{None}, take the height of points into
967 account for distances.
968 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll
969 the B{C{points}} (C{bool}).
971 @return: A L{NearestOn6Tuple}C{(closest, distance, fi, j,
972 start, end)} with the C{closest}, the C{start}
973 and the C{end} point each an instance of this
974 C{LatLon} and C{distance} in C{meter}, same
975 units as the cartesian axes.
977 @raise PointsError: Insufficient number of B{C{points}}.
979 @raise TypeError: Some B{C{points}} or some B{C{points}}'
980 C{Ecef} invalid.
982 @raise ValueError: Some B{C{points}}' C{Ecef} is incompatible.
984 @see: Function L{pygeodesy.nearestOn6}.
985 '''
986 def _cs(Ps, h, w, C):
987 p = None # not used
988 for i, q in Ps.enumerate():
989 if w and i:
990 q = _unrollon(p, q)
991 yield C(height=h, i=i, up=3, points=q)
992 p = q
994 C = self._toCartesianEcef # to verify datum and Ecef
995 Ps = self.PointsIter(points, wrap=wrap)
997 c = C(height=height, this=self) # this Cartesian
998 t = nearestOn6(c, _cs(Ps, height, wrap, C), closed=closed)
999 c, s, e = t.closest, t.start, t.end
1001 kwds = _xkwds_not(None, LatLon=self.classof, # this LatLon
1002 height=height)
1003 _r = self.Ecef(self.datum).reverse
1004 p = _r(c).toLatLon(**kwds)
1005 s = _r(s).toLatLon(**kwds) if s is not c else p
1006 e = _r(e).toLatLon(**kwds) if e is not c else p
1007 return t.dup(closest=p, start=s, end=e)
1009 def nearestTo(self, *args, **kwds): # PYCHOK no cover
1010 '''B{Not implemented}, throws a C{NotImplementedError} always.'''
1011 notImplemented(self, *args, **kwds)
1013 def normal(self):
1014 '''Normalize this point I{in-place} to C{abs(lat) <= 90} and
1015 C{abs(lon) <= 180}.
1017 @return: C{True} if this point was I{normal}, C{False} if it
1018 wasn't (but is now).
1020 @see: Property L{isnormal} and method L{toNormal}.
1021 '''
1022 n = self.isnormal
1023 if not n:
1024 self.latlon = normal(*self.latlon)
1025 return n
1027 @Property_RO
1028 def _N_vector(self):
1029 '''(INTERNAL) Get the (C{nvectorBase._N_vector_})
1030 '''
1031 return _MODS.nvectorBase._N_vector_(*self.xyzh)
1033 @Property_RO
1034 def phi(self):
1035 '''Get the latitude (B{C{radians}}).
1036 '''
1037 return radians(self.lat)
1039 @Property_RO
1040 def philam(self):
1041 '''Get the lat- and longitude (L{PhiLam2Tuple}C{(phi, lam)}).
1042 '''
1043 return PhiLam2Tuple(self.phi, self.lam, name=self.name)
1045 def philam2(self, ndigits=0):
1046 '''Return this point's lat- and longitude in C{radians}, rounded.
1048 @kwarg ndigits: Number of (decimal) digits (C{int}).
1050 @return: A L{PhiLam2Tuple}C{(phi, lam)}, both C{float}
1051 and rounded away from zero.
1053 @note: The C{round}ed values are always C{float}, also
1054 if B{C{ndigits}} is omitted.
1055 '''
1056 return PhiLam2Tuple(round(self.phi, ndigits),
1057 round(self.lam, ndigits), name=self.name)
1059 @Property_RO
1060 def philamheight(self):
1061 '''Get the lat-, longitude in C{radians} and height (L{PhiLam3Tuple}C{(phi, lam, height)}).
1062 '''
1063 return self.philam.to3Tuple(self.height)
1065 @deprecated_method
1066 def points(self, points, closed=True): # PYCHOK no cover
1067 '''DEPRECATED, use method L{points2}.'''
1068 return self.points2(points, closed=closed)
1070 def points2(self, points, closed=True):
1071 '''Check a path or polygon represented by points.
1073 @arg points: The path or polygon points (C{LatLon}[])
1074 @kwarg closed: Optionally, consider the polygon closed,
1075 ignoring any duplicate or closing final
1076 B{C{points}} (C{bool}).
1078 @return: A L{Points2Tuple}C{(number, points)}, an C{int}
1079 and C{list} or C{tuple}.
1081 @raise PointsError: Insufficient number of B{C{points}}.
1083 @raise TypeError: Some B{C{points}} are not C{LatLon}.
1084 '''
1085 return _MODS.iters.points2(points, closed=closed, base=self)
1087 def PointsIter(self, points, loop=0, dedup=False, wrap=False):
1088 '''Return a C{PointsIter} iterator.
1090 @arg points: The path or polygon points (C{LatLon}[])
1091 @kwarg loop: Number of loop-back points (non-negative C{int}).
1092 @kwarg dedup: Skip duplicate points (C{bool}).
1093 @kwarg wrap: If C{True}, wrap or I{normalize} the
1094 enum-/iterated B{C{points}} (C{bool}).
1096 @return: A new C{PointsIter} iterator.
1098 @raise PointsError: Insufficient number of B{C{points}}.
1099 '''
1100 return PointsIter(points, base=self, loop=loop, dedup=dedup, wrap=wrap)
1102 def radii11(self, point2, point3, wrap=False):
1103 '''Return the radii of the C{Circum-}, C{In-}, I{Soddy} and C{Tangent}
1104 circles of a (planar) triangle formed by this and two other points.
1106 @arg point2: Second point (C{LatLon}).
1107 @arg point3: Third point (C{LatLon}).
1108 @kwarg wrap: If C{True}, wrap or I{normalize} B{C{point2}} and
1109 B{C{point3}} (C{bool}).
1111 @return: L{Radii11Tuple}C{(rA, rB, rC, cR, rIn, riS, roS, a, b, c, s)}.
1113 @raise IntersectionError: Near-coincident or -colinear points.
1115 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}.
1117 @see: Function L{pygeodesy.radii11}, U{Incircle
1118 <https://MathWorld.Wolfram.com/Incircle.html>}, U{Soddy Circles
1119 <https://MathWorld.Wolfram.com/SoddyCircles.html>} and U{Tangent
1120 Circles<https://MathWorld.Wolfram.com/TangentCircles.html>}.
1121 '''
1122 with _toCartesian3(self, point2, point3, wrap) as cs:
1123 return _radii11ABC(*cs, useZ=True)[0]
1125 def _rhumb3(self, exact, radius): # != .sphericalBase._rhumbs3
1126 '''(INTERNAL) Get the C{rhumb} for this point's datum or for the B{C{radius}}'
1127 earth model iff non-C{None}.
1128 '''
1129 try:
1130 d = self._rhumb3dict
1131 t = d[(exact, radius)]
1132 except KeyError:
1133 D = self.datum if radius is None else _spherical_datum(radius) # ellipsoidal OK
1134 try:
1135 r = D.ellipsoid.rhumb_(exact=exact) # or D.isSpherical
1136 except AttributeError as x:
1137 raise _AttributeError(datum=D, radius=radius, cause=x)
1138 t = r, D, _MODS.karney.Caps
1139 while d:
1140 d.popitem()
1141 d[(exact, radius)] = t # cache 3-tuple
1142 return t
1144 @Property_RO
1145 def _rhumb3dict(self): # in rhumbIntersecant2 below
1146 return {} # single-item cache
1148 def rhumbAzimuthTo(self, other, exact=False, radius=None, wrap=False, b360=False):
1149 '''Return the azimuth (bearing) of a rhumb line (loxodrome) between this
1150 and an other (ellipsoidal) point.
1152 @arg other: The other point (C{LatLon}).
1153 @kwarg exact: Exact C{Rhumb...} to use (C{bool} or C{Rhumb...}), see
1154 method L{Ellipsoid.rhumb_}.
1155 @kwarg radius: Optional earth radius (C{meter}) or earth model (L{Datum},
1156 L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}), overriding
1157 this point's datum.
1158 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the B{C{other}}
1159 point (C{bool}).
1160 @kwarg b360: If C{True}, return the azimuth in the bearing range.
1162 @return: Rhumb azimuth (compass C{degrees180} or C{degrees360}).
1164 @raise TypeError: The B{C{other}} point is incompatible or B{C{radius}}
1165 is invalid.
1166 '''
1167 r, _, Cs = self._rhumb3(exact, radius)
1168 z = r._Inverse(self, other, wrap, outmask=Cs.AZIMUTH).azi12
1169 return _umod_360(z + _360_0) if b360 else z
1171 def rhumbDestination(self, distance, azimuth, exact=False, radius=None, height=None):
1172 '''Return the destination point having travelled the given distance from
1173 this point along a rhumb line (loxodrome) of the given azimuth.
1175 @arg distance: Distance travelled (C{meter}, same units as this point's
1176 datum (ellipsoid) axes or B{C{radius}}, may be negative.
1177 @arg azimuth: Azimuth (bearing) of the rhumb line (compass C{degrees}).
1178 @kwarg exact: Exact C{Rhumb...} to use (C{bool} or C{Rhumb...}), see
1179 method L{Ellipsoid.rhumb_}.
1180 @kwarg radius: Optional earth radius (C{meter}) or earth model (L{Datum},
1181 L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}), overriding
1182 this point's datum.
1183 @kwarg height: Optional height, overriding the default height (C{meter}).
1185 @return: The destination point (ellipsoidal C{LatLon}).
1187 @raise TypeError: Invalid B{C{radius}}.
1189 @raise ValueError: Invalid B{C{distance}}, B{C{azimuth}}, B{C{radius}}
1190 or B{C{height}}.
1191 '''
1192 r, D, _ = self._rhumb3(exact, radius)
1193 d = r._Direct(self, azimuth, distance)
1194 h = self._heigHt(height)
1195 return self.classof(d.lat2, d.lon2, datum=D, height=h)
1197 def rhumbDistanceTo(self, other, exact=False, radius=None, wrap=False):
1198 '''Return the distance from this to an other point along a rhumb line
1199 (loxodrome).
1201 @arg other: The other point (C{LatLon}).
1202 @kwarg exact: Exact C{Rhumb...} to use (C{bool} or C{Rhumb...}), see
1203 method L{Ellipsoid.rhumb_}.
1204 @kwarg radius: Optional earth radius (C{meter}) or earth model (L{Datum},
1205 L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}), overriding
1206 this point's datum.
1207 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the B{C{other}}
1208 point (C{bool}).
1210 @return: Distance (C{meter}, the same units as this point's datum
1211 (ellipsoid) axes or B{C{radius}}.
1213 @raise TypeError: The B{C{other}} point is incompatible or B{C{radius}}
1214 is invalid.
1216 @raise ValueError: Invalid B{C{radius}}.
1217 '''
1218 r, _, Cs = self._rhumb3(exact, radius)
1219 return r._Inverse(self, other, wrap, outmask=Cs.DISTANCE).s12
1221 def rhumbIntersecant2(self, circle, point, other, height=None,
1222 **exact_radius_wrap_eps_tol):
1223 '''Compute the intersections of a circle and a rhumb line given as two
1224 points or as a point and azimuth.
1226 @arg circle: Radius of the circle centered at this location (C{meter}),
1227 or a point on the circle (this C{LatLon}).
1228 @arg point: The start point of the rhumb line (this C{LatLon}).
1229 @arg other: An other point I{on} (this C{LatLon}) or the azimuth I{of}
1230 (compass C{degrees}) the rhumb line.
1231 @kwarg height: Optional height for the intersection points (C{meter},
1232 conventionally) or C{None} for interpolated heights.
1233 @kwarg exact_radius_wrap_eps_tol: Optional keyword arguments, see
1234 methods L{rhumbLine} and L{RhumbLineAux.Intersecant2}
1235 or L{RhumbLine.Intersecant2}.
1237 @return: 2-Tuple of the intersection points (representing a chord),
1238 each an instance of this class. Both points are the same
1239 instance if the rhumb line is tangent to the circle.
1241 @raise IntersectionError: The circle and rhumb line do not intersect.
1243 @raise TypeError: If B{C{point}} is not this C{LatLon} or B{C{circle}}
1244 or B{C{other}} invalid.
1246 @raise ValueError: Invalid B{C{circle}}, B{C{other}}, B{C{height}}
1247 or B{C{exact_radius_wrap}}.
1249 @see: Methods L{RhumbLineAux.Intersecant2} and L{RhumbLine.Intersecant2}.
1250 '''
1251 def _kwds3(eps=EPS, tol=_TOL, wrap=False, **kwds):
1252 return kwds, wrap, dict(eps=eps, tol=tol)
1254 exact_radius, w, eps_tol = _kwds3(**exact_radius_wrap_eps_tol)
1256 p = _unrollon(self, self.others(point=point), wrap=w)
1257 try:
1258 r = Radius_(circle=circle) if isscalar(circle) else \
1259 self.rhumbDistanceTo(self.others(circle=circle), wrap=w, **exact_radius)
1260 rl = p.rhumbLine(other, wrap=w, **exact_radius)
1261 P, Q = rl.Intersecant2(self.lat, self.lon, r, **eps_tol)
1263 return self._intersecend2(p, other, w, height, rl.rhumb, P, Q,
1264 self.rhumbIntersecant2)
1266 except (TypeError, ValueError) as x:
1267 raise _xError(x, center=self, circle=circle, point=point, other=other,
1268 **exact_radius_wrap_eps_tol)
1270 def rhumbLine(self, other, exact=False, radius=None, wrap=False, **name_caps):
1271 '''Get a rhumb line through this point at a given azimuth or through
1272 this and an other point.
1274 @arg other: The azimuth I{of} (compass C{degrees}) or an other point
1275 I{on} (this C{LatLon}) the rhumb line.
1276 @kwarg exact: Exact C{Rhumb...} to use (C{bool} or C{Rhumb...}), see
1277 method L{Ellipsoid.rhumb_}.
1278 @kwarg radius: Optional earth radius (C{meter}) or earth model
1279 (L{Datum}, L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}),
1280 overriding this point's datum.
1281 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the B{C{other}}
1282 point (C{bool}).
1283 @kwarg name_caps: Optional C{B{name}=str} and C{caps}, see L{RhumbLine}
1284 or L{RhumbLineAux} C{B{caps}}.
1286 @return: A C{RhumbLine} instance.
1288 @raise TypeError: Invalid B{C{radius}} or B{C{other}} not C{scalar} nor
1289 this C{LatLon}.
1291 @see: Modules L{rhumb.aux_} and L{rhumb.ekx}.
1292 '''
1293 r, _, Cs = self._rhumb3(exact, radius)
1294 kwds = _xkwds(name_caps, name=self.name, caps=Cs.LINE_OFF)
1295 rl = r._DirectLine( self, other, **kwds) if isscalar(other) else \
1296 r._InverseLine(self, self.others(other), wrap, **kwds)
1297 return rl
1299 def rhumbMidpointTo(self, other, exact=False, radius=None,
1300 height=None, fraction=_0_5, wrap=False):
1301 '''Return the (loxodromic) midpoint on the rhumb line between this and
1302 an other point.
1304 @arg other: The other point (this C{LatLon}).
1305 @kwarg exact: Exact C{Rhumb...} to use (C{bool} or C{Rhumb...}), see
1306 method L{Ellipsoid.rhumb_}.
1307 @kwarg radius: Optional earth radius (C{meter}) or earth model (L{Datum},
1308 L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}), overriding
1309 this point's datum.
1310 @kwarg height: Optional height, overriding the mean height (C{meter}).
1311 @kwarg fraction: Midpoint location from this point (C{scalar}), 0 for this,
1312 1 for the B{C{other}}, 0.5 for halfway between this and
1313 the B{C{other}} point, may be negative or greater than 1.
1314 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the B{C{other}}
1315 point (C{bool}).
1317 @return: The midpoint at the given B{C{fraction}} along the rhumb line
1318 (this C{LatLon}).
1320 @raise TypeError: The B{C{other}} point is incompatible or B{C{radius}}
1321 is invalid.
1323 @raise ValueError: Invalid B{C{height}} or B{C{fraction}}.
1324 '''
1325 r, D, _ = self._rhumb3(exact, radius)
1326 f = Scalar(fraction=fraction)
1327 d = r._Inverse(self, self.others(other), wrap) # C.AZIMUTH_DISTANCE
1328 d = r._Direct( self, d.azi12, d.s12 * f)
1329 h = self._havg(other, f=f, h=height)
1330 return self.classof(d.lat2, d.lon2, datum=D, height=h)
1332 @property_RO
1333 def sphericalLatLon(self):
1334 '''Get the C{LatLon type} iff spherical, overloaded in L{LatLonSphericalBase}.
1335 '''
1336 return False
1338 def thomasTo(self, other, wrap=False):
1339 '''Compute the distance between this and an other point using
1340 U{Thomas'<https://apps.DTIC.mil/dtic/tr/fulltext/u2/703541.pdf>}
1341 formula.
1343 @arg other: The other point (C{LatLon}).
1344 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll
1345 the B{C{other}} point (C{bool}).
1347 @return: Distance (C{meter}, same units as the axes of
1348 this point's datum ellipsoid).
1350 @raise TypeError: The B{C{other}} point is not C{LatLon}.
1352 @see: Function L{pygeodesy.thomas} and methods L{cosineAndoyerLambertTo},
1353 L{cosineForsytheAndoyerLambertTo}, L{cosineLawTo}, C{distanceTo*},
1354 L{equirectangularTo}, L{euclideanTo}, L{flatLocalTo}/L{hubenyTo},
1355 L{flatPolarTo}, L{haversineTo} and L{vincentysTo}.
1356 '''
1357 return self._distanceTo_(thomas_, other, wrap=wrap)
1359 @deprecated_method
1360 def to2ab(self): # PYCHOK no cover
1361 '''DEPRECATED, use property L{philam}.'''
1362 return self.philam
1364 def toCartesian(self, height=None, Cartesian=None, **Cartesian_kwds):
1365 '''Convert this point to cartesian, I{geocentric} coordinates,
1366 also known as I{Earth-Centered, Earth-Fixed} (ECEF).
1368 @kwarg height: Optional height, overriding this point's height
1369 (C{meter}, conventionally).
1370 @kwarg Cartesian: Optional class to return the geocentric
1371 coordinates (C{Cartesian}) or C{None}.
1372 @kwarg Cartesian_kwds: Optional, additional B{C{Cartesian}}
1373 keyword arguments, ignored if
1374 C{B{Cartesian} is None}.
1376 @return: A B{C{Cartesian}} or if B{C{Cartesian}} is C{None},
1377 an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M,
1378 datum)} with C{C=0} and C{M} if available.
1380 @raise TypeError: Invalid B{C{Cartesian}} or B{C{Cartesian_kwds}}.
1381 '''
1382 r = self._ecef9 if height is None else self.toEcef(height=height)
1383 if Cartesian is not None: # class or .classof
1384 r = self._xnamed(Cartesian(r, **Cartesian_kwds))
1385 _xdatum(r.datum, self.datum)
1386 return r
1388 def _toCartesianEcef(self, height=None, i=None, up=2, **name_point):
1389 '''(INTERNAL) Convert to cartesian and check Ecef's before and after.
1390 '''
1391 p = self.others(up=up, **name_point)
1392 c = p.toCartesian(height=height)
1393 E = self.Ecef
1394 if E:
1395 for p in (p, c):
1396 e = _xattr(p, Ecef=None)
1397 if e not in (None, E): # PYCHOK no cover
1398 n, _ = name_point.popitem()
1399 if i is not None:
1400 n = Fmt.SQUARE(n, i)
1401 raise _ValueError(n, e, txt=_incompatible(E.__name__))
1402 return c
1404 def toDatum(self, datum2, height=None, name=NN):
1405 '''I{Must be overloaded}.'''
1406 notOverloaded(self, datum2, height=height, name=name)
1408 def toEcef(self, height=None, M=False):
1409 '''Convert this point to I{geocentric} coordinates, also known as
1410 I{Earth-Centered, Earth-Fixed} (U{ECEF<https://WikiPedia.org/wiki/ECEF>}).
1412 @kwarg height: Optional height, overriding this point's height
1413 (C{meter}, conventionally).
1414 @kwarg M: Optionally, include the rotation L{EcefMatrix} (C{bool}).
1416 @return: An L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)}
1417 with C{C=0} and C{M} if available.
1419 @raise EcefError: A C{.datum} or an ECEF issue.
1420 '''
1421 return self._ecef9 if height in (None, self.height) else \
1422 self._Ecef_forward(self.lat, self.lon, height=height, M=M)
1424 @deprecated_method
1425 def to3llh(self, height=None): # PYCHOK no cover
1426 '''DEPRECATED, use property L{latlonheight} or C{latlon.to3Tuple(B{height})}.'''
1427 return self.latlonheight if height in (None, self.height) else \
1428 self.latlon.to3Tuple(height)
1430 def toLocal(self, Xyz=None, ltp=None, **Xyz_kwds):
1431 '''Convert this I{geodetic} point to I{local} C{X}, C{Y} and C{Z}.
1433 @kwarg Xyz: Optional class to return C{X}, C{Y} and C{Z}
1434 (L{XyzLocal}, L{Enu}, L{Ned}) or C{None}.
1435 @kwarg ltp: The I{local tangent plane} (LTP) to use,
1436 overriding this point's LTP (L{Ltp}).
1437 @kwarg Xyz_kwds: Optional, additional B{C{Xyz}} keyword
1438 arguments, ignored if C{B{Xyz} is None}.
1440 @return: An B{C{Xyz}} instance or if C{B{Xyz} is None},
1441 a L{Local9Tuple}C{(x, y, z, lat, lon, height,
1442 ltp, ecef, M)} with C{M=None}, always.
1444 @raise TypeError: Invalid B{C{ltp}}.
1445 '''
1446 p = _MODS.ltp._xLtp(ltp, self._ltp)
1447 return p._ecef2local(self._ecef9, Xyz, Xyz_kwds)
1449 def toLtp(self, Ecef=None):
1450 '''Return the I{local tangent plane} (LTP) for this point.
1452 @kwarg Ecef: Optional ECEF I{class} (L{EcefKarney}, ...
1453 L{EcefYou}), overriding this point's C{Ecef}.
1454 '''
1455 return self._ltp if Ecef in (None, self.Ecef) else _MODS.ltp.Ltp(
1456 self, ecef=Ecef(self.datum), name=self.name)
1458 def toNormal(self, deep=False, name=NN):
1459 '''Get this point I{normalized} to C{abs(lat) <= 90}
1460 and C{abs(lon) <= 180}.
1462 @kwarg deep: If C{True} make a deep, otherwise a
1463 shallow copy (C{bool}).
1464 @kwarg name: Optional name of the copy (C{str}).
1466 @return: A copy of this point, I{normalized} and
1467 optionally renamed (C{LatLon}).
1469 @see: Property L{isnormal}, method L{normal} and function
1470 L{pygeodesy.normal}.
1471 '''
1472 ll = self.copy(deep=deep)
1473 _ = ll.normal()
1474 if name:
1475 ll.rename(name)
1476 return ll
1478 def toNvector(self, h=None, Nvector=None, **Nvector_kwds):
1479 '''Convert this point to C{n-vector} (normal to the earth's surface)
1480 components, I{including height}.
1482 @kwarg h: Optional height, overriding this point's
1483 height (C{meter}).
1484 @kwarg Nvector: Optional class to return the C{n-vector}
1485 components (C{Nvector}) or C{None}.
1486 @kwarg Nvector_kwds_wrap: Optional, additional B{C{Nvector}}
1487 keyword arguments, ignored if C{B{Nvector}
1488 is None}.
1490 @return: A B{C{Nvector}} or a L{Vector4Tuple}C{(x, y, z, h)}
1491 if B{C{Nvector}} is C{None}.
1493 @raise TypeError: Invalid B{C{Nvector}} or B{C{Nvector_kwds}}.
1494 '''
1495 return self.toVector(Vector=Nvector, h=self.height if h is None else h,
1496 ll=self, **Nvector_kwds)
1498 def toStr(self, form=F_DMS, joined=_COMMASPACE_, m=_m_, **prec_sep_s_D_M_S): # PYCHOK expected
1499 '''Convert this point to a "lat, lon[, +/-height]" string, formatted
1500 in the given C{B{form}at}.
1502 @kwarg form: The lat-/longitude C{B{form}at} to use (C{str}), see
1503 functions L{pygeodesy.latDMS} or L{pygeodesy.lonDMS}.
1504 @kwarg joined: Separator to join the lat-, longitude and heigth
1505 strings (C{str} or C{None} or C{NN} for non-joined).
1506 @kwarg m: Optional unit of the height (C{str}), use C{None} to
1507 exclude height from the returned string.
1508 @kwarg prec_sep_s_D_M_S: Optional C{B{prec}ision}, C{B{sep}arator},
1509 B{C{s_D}}, B{C{s_M}}, B{C{s_S}} and B{C{s_DMS}} keyword
1510 arguments, see function L{pygeodesy.latDMS} or
1511 L{pygeodesy.lonDMS}.
1513 @return: This point in the specified C{B{form}at}, etc. (C{str} or
1514 a 2- or 3-tuple C{(lat_str, lon_str[, height_str])} if
1515 C{B{joined}=NN} or C{B{joined}=None}).
1517 @see: Function L{pygeodesy.latDMS} or L{pygeodesy.lonDMS} for more
1518 details about keyword arguments C{B{form}at}, C{B{prec}ision},
1519 C{B{sep}arator}, B{C{s_D}}, B{C{s_M}}, B{C{s_S}} and B{C{s_DMS}}.
1521 @example:
1523 >>> LatLon(51.4778, -0.0016).toStr() # 51°28′40″N, 000°00′06″W
1524 >>> LatLon(51.4778, -0.0016).toStr(F_D) # 51.4778°N, 000.0016°W
1525 >>> LatLon(51.4778, -0.0016, 42).toStr() # 51°28′40″N, 000°00′06″W, +42.00m
1526 '''
1527 t = (latDMS(self.lat, form=form, **prec_sep_s_D_M_S),
1528 lonDMS(self.lon, form=form, **prec_sep_s_D_M_S))
1529 if self.height and m is not None:
1530 t += (self.heightStr(m=m),)
1531 return joined.join(t) if joined else t
1533 def toVector(self, Vector=None, **Vector_kwds):
1534 '''Convert this point to C{n-vector} (normal to the earth's
1535 surface) components, I{ignoring height}.
1537 @kwarg Vector: Optional class to return the C{n-vector}
1538 components (L{Vector3d}) or C{None}.
1539 @kwarg Vector_kwds: Optional, additional B{C{Vector}}
1540 keyword arguments, ignored if
1541 C{B{Vector} is None}.
1543 @return: A B{C{Vector}} or a L{Vector3Tuple}C{(x, y, z)}
1544 if B{C{Vector}} is C{None}.
1546 @raise TypeError: Invalid B{C{Vector}} or B{C{kwds}}.
1548 @note: These are C{n-vector} x, y and z components,
1549 I{NOT} geocentric (ECEF) x, y and z coordinates!
1550 '''
1551 r = self._vector3tuple
1552 if Vector is not None:
1553 r = Vector(*r, **_xkwds(Vector_kwds, name=self.name))
1554 return r
1556 def toVector3d(self):
1557 '''Convert this point to C{n-vector} (normal to the earth's
1558 surface) components, I{ignoring height}.
1560 @return: Unit vector (L{Vector3d}).
1562 @note: These are C{n-vector} x, y and z components,
1563 I{NOT} geocentric (ECEF) x, y and z coordinates!
1564 '''
1565 return self._vector3d # XXX .unit()
1567 def toWm(self, **toWm_kwds):
1568 '''Convert this point to a WM coordinate.
1570 @kwarg toWm_kwds: Optional L{pygeodesy.toWm} keyword arguments.
1572 @return: The WM coordinate (L{Wm}).
1574 @see: Function L{pygeodesy.toWm}.
1575 '''
1576 return self._wm if not toWm_kwds else _MODS.webmercator.toWm(
1577 self, **_xkwds(toWm_kwds, name=self.name))
1579 @deprecated_method
1580 def to3xyz(self): # PYCHOK no cover
1581 '''DEPRECATED, use property L{xyz} or method L{toNvector}, L{toVector},
1582 L{toVector3d} or perhaps (geocentric) L{toEcef}.'''
1583 return self.xyz # self.toVector()
1585 @Property_RO
1586 def _vector3d(self):
1587 '''(INTERNAL) Cache for L{toVector3d}.
1588 '''
1589 return self.toVector(Vector=Vector3d) # XXX .unit()
1591 @Property_RO
1592 def _vector3tuple(self):
1593 '''(INTERNAL) Cache for L{toVector}.
1594 '''
1595 return philam2n_xyz(self.phi, self.lam, name=self.name)
1597 def vincentysTo(self, other, **radius_wrap):
1598 '''Compute the distance between this and an other point using
1599 U{Vincenty's<https://WikiPedia.org/wiki/Great-circle_distance>}
1600 spherical formula.
1602 @arg other: The other point (C{LatLon}).
1603 @kwarg radius_wrap: Optional keyword arguments for function
1604 L{pygeodesy.vincentys}, overriding the
1605 default mean C{radius} of this point's
1606 datum ellipsoid.
1608 @return: Distance (C{meter}, same units as B{C{radius}}).
1610 @raise TypeError: The B{C{other}} point is not C{LatLon}.
1612 @see: Function L{pygeodesy.vincentys} and methods L{cosineAndoyerLambertTo},
1613 L{cosineForsytheAndoyerLambertTo}, L{cosineLawTo}, C{distanceTo*},
1614 L{equirectangularTo}, L{euclideanTo}, L{flatLocalTo}/L{hubenyTo},
1615 L{flatPolarTo}, L{haversineTo} and L{thomasTo}.
1616 '''
1617 return self._distanceTo(vincentys, other, **_xkwds(radius_wrap, radius=None))
1619 @Property_RO
1620 def _wm(self):
1621 '''(INTERNAL) Get this point as webmercator (L{Wm}).
1622 '''
1623 return _MODS.webmercator.toWm(self)
1625 @Property_RO
1626 def xyz(self):
1627 '''Get the C{n-vector} X, Y and Z components (L{Vector3Tuple}C{(x, y, z)})
1629 @note: These are C{n-vector} x, y and z components, I{NOT}
1630 geocentric (ECEF) x, y and z coordinates!
1631 '''
1632 return self.toVector(Vector=Vector3Tuple)
1634 @Property_RO
1635 def xyzh(self):
1636 '''Get the C{n-vector} X, Y, Z and H components (L{Vector4Tuple}C{(x, y, z, h)})
1638 @note: These are C{n-vector} x, y and z components, I{NOT}
1639 geocentric (ECEF) x, y and z coordinates!
1640 '''
1641 return self.xyz.to4Tuple(self.height)
1644class _toCartesian3(object): # see also .formy._idllmn6, .geodesicw._wargs, .vector2d._numpy
1645 '''(INTERNAL) Wrapper to convert 2 other points.
1646 '''
1647 @contextmanager # <https://www.Python.org/dev/peps/pep-0343/> Examples
1648 def __call__(self, p, p2, p3, wrap, **kwds):
1649 try:
1650 if wrap:
1651 p2, p3 = map1(_Wrap.point, p2, p3)
1652 kwds = _xkwds(kwds, wrap=wrap)
1653 yield (p. toCartesian().copy(name=_point_), # copy to rename
1654 p._toCartesianEcef(up=4, point2=p2),
1655 p._toCartesianEcef(up=4, point3=p3))
1656 except (AssertionError, TypeError, ValueError) as x: # Exception?
1657 raise _xError(x, point=p, point2=p2, point3=p3, **kwds)
1659_toCartesian3 = _toCartesian3() # PYCHOK singleton
1662def _latlonheight3(latlonh, height, wrap): # in .points.LatLon_.__init__
1663 '''(INTERNAL) Get 3-tuple C{(lat, lon, height)}.
1664 '''
1665 try:
1666 lat, lon = latlonh.lat, latlonh.lon
1667 height = _xattr(latlonh, height=height)
1668 except AttributeError:
1669 raise _IsnotError(_LatLon_, latlonh=latlonh)
1670 if wrap:
1671 lat, lon = _Wrap.latlon(lat, lon)
1672 return lat, lon, height
1675def _trilaterate5(p1, d1, p2, d2, p3, d3, area=True, eps=EPS1, # MCCABE 13
1676 radius=R_M, wrap=False):
1677 '''(INTERNAL) Trilaterate three points by I{area overlap} or by
1678 I{perimeter intersection} of three circles.
1680 @note: The B{C{radius}} is only needed for both the n-vectorial
1681 and C{sphericalTrigonometry.LatLon.distanceTo} methods and
1682 silently ignored by the C{ellipsoidalExact}, C{-GeodSolve},
1683 C{-Karney} and C{-Vincenty.LatLon.distanceTo} methods.
1684 '''
1685 p2, p3, w = _unrollon3(p1, p2, p3, wrap)
1687 r1 = Distance_(distance1=d1)
1688 r2 = Distance_(distance2=d2)
1689 r3 = Distance_(distance3=d3)
1690 m = 0 if area else (r1 + r2 + r3)
1691 pc = 0
1692 t = []
1693 for _ in range(3):
1694 try: # intersection of circle (p1, r1) and (p2, r2)
1695 c1, c2 = p1.intersections2(r1, p2, r2, wrap=w)
1697 if area: # check overlap
1698 if c1 is c2: # abutting
1699 c = c1
1700 else: # nearest point on radical
1701 c = p3.nearestOn(c1, c2, within=True, wrap=w)
1702 d = r3 - p3.distanceTo(c, radius=radius, wrap=w)
1703 if d > eps: # sufficient overlap
1704 t.append((d, c))
1705 m = max(m, d)
1707 else: # check intersection
1708 for c in ((c1,) if c1 is c2 else (c1, c2)):
1709 d = fabs(r3 - p3.distanceTo(c, radius=radius, wrap=w))
1710 if d < eps: # below margin
1711 t.append((d, c))
1712 m = min(m, d)
1714 except IntersectionError as x:
1715 if _concentric_ in str(x): # XXX ConcentricError?
1716 pc += 1
1718 p1, r1, p2, r2, p3, r3 = p2, r2, p3, r3, p1, r1 # rotate
1720 if t: # get min, max, points and count ...
1721 t = tuple(sorted(t))
1722 n = len(t), # as 1-tuple
1723 # ... or for a single trilaterated result,
1724 # min *is* max, min- *is* maxPoint and n=1, 2 or 3
1725 return Trilaterate5Tuple(t[0] + t[-1] + n) # *(t[0] + ...)
1727 elif area and pc == 3: # all pairwise concentric ...
1728 r, p = min((r1, p1), (r2, p2), (r3, p3))
1729 m = max(r1, r2, r3)
1730 # ... return "smallest" point twice, the smallest
1731 # and largest distance and n=0 for concentric
1732 return Trilaterate5Tuple(float(r), p, float(m), p, 0)
1734 n, f = (_overlap_, max) if area else (_intersection_, min)
1735 t = _COMMASPACE_(_no_(n), '%s %.3g' % (f.__name__, m))
1736 raise IntersectionError(area=area, eps=eps, wrap=wrap, txt=t)
1739__all__ += _ALL_DOCS(LatLonBase)
1741# **) MIT License
1742#
1743# Copyright (C) 2016-2023 -- mrJean1 at Gmail -- All Rights Reserved.
1744#
1745# Permission is hereby granted, free of charge, to any person obtaining a
1746# copy of this software and associated documentation files (the "Software"),
1747# to deal in the Software without restriction, including without limitation
1748# the rights to use, copy, modify, merge, publish, distribute, sublicense,
1749# and/or sell copies of the Software, and to permit persons to whom the
1750# Software is furnished to do so, subject to the following conditions:
1751#
1752# The above copyright notice and this permission notice shall be included
1753# in all copies or substantial portions of the Software.
1754#
1755# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
1756# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1757# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
1758# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
1759# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
1760# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
1761# OTHER DEALINGS IN THE SOFTWARE.