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Abstract

The ‘pre-train, prompt, predict’ paradigm of large language
models (LLMs) has achieved remarkable success in open-
domain question answering (OD-QA). However, few works
explore this paradigm in multi-document question answer-
ing (MD-QA), a task demanding a thorough understanding
of the logical associations among the contents and structures
of documents. To fill this crucial gap, we propose a Knowl-
edge Graph Prompting (KGP) method to formulate the right
context in prompting LLMs for MD-QA, which consists of
a graph construction module and a graph traversal module.
For graph construction, we create a knowledge graph (KG)
over multiple documents with nodes symbolizing passages or
document structures (e.g., pages/tables), and edges denoting
the semantic/lexical similarity between passages or document
structural relations. For graph traversal, we design an LLM-
based graph traversal agent that navigates across nodes and
gathers supporting passages assisting LLMs in MD-QA. The
constructed graph serves as the global ruler that regulates the
transitional space among passages and reduces retrieval la-
tency. Concurrently, the graph traversal agent acts as a local
navigator that gathers pertinent context to progressively ap-
proach the question and guarantee retrieval quality. Extensive
experiments underscore the efficacy of KGP for MD-QA, sig-
nifying the potential of leveraging graphs in enhancing the
prompt design and retrieval augmented generation for LLMs.
Our code: https://github.com/YuWVandy/KG-LLM-MDQA.

1 Introduction
Due to the emergence of large language models (LLMs),
the ‘pre-train, prompt, and predict’ paradigm has revolution-
ized natural language processing (NLP) in real-world ap-
plications, such as open-domain question answering, fact-
checking, and arithmetic reasoning (Chen et al. 2017;
Thorne et al. 2018; Asai et al. 2019; Karpukhin et al. 2020;
Aly et al. 2021; Qin et al. 2023; Zou and Caragea 2023;
Liu, Dong, and Zhang 2023). However, no significant ef-
forts have investigated this framework in the scenario of
multi-documental question answering (MD-QA), which en-
joys practical usage in academic research, customer support,
and financial/legal inquiries that require deriving insightful
analysis from multiple documents (Tessuto 2011; Bolino,
Long, and Turnley 2016).

Copyright © 2024, Association for the Advancement of Artificial
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Figure 1: MD-QA performance when prompting ChatGPT
with the context retrieved using different strategies.

To investigate the capability of LLMs for MD-QA,
we randomly sample multi-document questions from the
development set of 2WikiMQA (Ho et al. 2020) and
MuSiQue (Trivedi et al. 2022b), and then prompt LLMs in
four different strategies for the answer1. Successfully an-
swering these questions requires knowledge from multiple
Wikipedia documents. As shown in Figure 1, on 2WikiMQA
and MuSiQue, directly prompting LLMs without providing
any context, i.e., None, achieves only 25.07%/10.58% F1
and 18.60%/4.60% EM on 2WikiMQA/MuSiQue, which is
far less than 59.69%/47.75% F1 and 40.20%/30.60% EM
when prompting with supporting facts2 provided as con-
texts, i.e., the Golden one. This demonstrates the limitation
of fulfilling MD-QA using solely the knowledge encoded
in LLMs. One common solution to overcome this limita-
tion in conventional OD-QA and single document question-
answering (D-QA) (Xu et al. 2020; Mathew, Karatzas, and
Jawahar 2021) is to retrieve grounding contexts and de-
rive faithful answers from the contexts, i.e., retrieve-and-
read (Zhu et al. 2021; Ju et al. 2022). However, unlike OD-
QA and D-QA, the primary challenge of MD-QA roots in its
demands for alternatively retrieving and reasoning knowl-
edge across different documents (Pereira et al. 2023; Caciu-
laru et al. 2023). For example, successfully answering ques-
tions in Figure 2(a)-(b) requires reasoning over distinct pas-
sages from two different documents (in these two cases,
Wikipedia pages). Moreover, each document is essentially a

1Detailed experimental setting is presented in Section 5.
2Supporting facts: passages that are assumed to contain the an-

swer to the question.

ar
X

iv
:2

30
8.

11
73

0v
3 

 [
cs

.C
L

] 
 2

5 
D

ec
 2

02
3



Figure 2: Three popular questions that require reasoning and retrieving over passages/pages/tables from multiple documents.
(a) Bridging questions rely on sequential reasoning while (b) Comparing questions rely on parallel reasoning over different
passages. (c) Structural questions rely on fetching contents in the corresponding document structures.

compilation of multi-modality structured data (e.g., pages,
sections, paragraphs, tables, and figures) and some ques-
tions may specifically ask for the content in certain struc-
tures, which necessitates a comprehensive grasp of these
complex document structures. For example, the question in
Figure 2(c) asks about the difference between Page 1 and Ta-
ble 2, which is unanswerable if leveraging heuristic methods
like BM25 or deep-learning ones like DPR (Karpukhin et al.
2020). Building on top of previous challenges, the advent of
LLMs introduces new complexities.

For the challenge of alternatively retrieving and reasoning
knowledge across different documents, although previous
works train a multi-hop retriever (Xiong et al. 2020; Yavuz
et al. 2022) to imitate such process by sequentially fetch-
ing the next passage based on the already-retrieved ones,
none of them explore the potential of engaging LLMs into
this process. More recent works design different prompt-
ing strategies such as Chain/Tree/Graph-of-thought (Trivedi
et al. 2022a; Wei et al. 2022; Yao et al. 2023; Yao, Li, and
Zhao 2023) to guide LLMs approaching answers progres-
sively. However, prompting non-open-sourced LLMs back
and forth incurs forbiddable latency as well as unaffordable
consumption. In addition, how to integrate different docu-
ment structures into the prompt design so that LLMs can
understand them is still an open-ended question.

Given the above challenges, we propose a knowledge
graph prompting (KGP) method for enhancing LLMs in
MD-QA. Specifically, we construct a KG over the given doc-
uments with nodes symbolizing passages or document struc-
tures and edges denoting their lexical/semantic similarity be-
tween passages or intra-document structural relations. Then
for the first challenge of alternative reasoning and retrieving
knowledge across different documents, we design an LLM-
based KG traversal agent, which can alternatively generate
the next evidence to approach the question, i.e., reasoning,
and select the most promising neighbor to visit from the con-
structed KG based on the generated evidence, i.e., retrieval.
Moreover, we apply the instruction fine-tuning strategy to
augment the reasoning capability of the LLM-based KG
traversal agent and hence refrain from repeatedly prompting
non-open-sourced LLMs for evidence generation. For the

multi-modality challenge, we add different types of nodes
to the KG characterizing different document structures and
hence enabling content retrieval within those specific struc-
tures. We highlight our contributions as follows:

• Generally-applicable KG Construction. We propose
three KG construction methods over documents, with pas-
sages or document structures as nodes and their lexical/se-
mantical similarity or structural relations as edges. Then
we empirically evaluate the quality of the constructed
KGs in MD-QA by checking the level of overlap between
the neighborhood and the supporting facts for each ques-
tion (Figure 5). Additionally, we provide a comprehensive
summary of both our proposed and existing KG construc-
tion methods in Table 5 in Supplementary.

• Engaging KG for Prompt Formulation. We design a
Knowledge Graph Prompting (KGP) method, which lever-
ages the LLM-based KG traversal agent to retrieve the
question-relevant contexts by traversing the constructed
KG. Moreover, we fine-tune this agent to adaptively tra-
verse the most promising neighbors for approaching the
question based on the visited nodes (retrieved passages).

• Case Studies Verifying MD-QA Framework. We com-
pare the performance of MD-QA when using different
types of LLM agents in graph traversal (Table 2) on the
KGs constructed over different numbers of documents
(Figure 7(c)). We conduct case studies on visualizing KGP
for MD-QA in Section 8.7 in Supplementary.

2 Notations
Following (Tian et al. 2023a), let G = (V, E) be a knowl-
edge graph constructed from a set of documents D, where
the node set V = {vi}ni=1 representing document structures
(e.g., passages/pages/tables, etc.) and the edge set E ⊂ V×V
representing the connections among different nodes (e.g.,
semantic/lexical similarity and belonging relations among
document structures, etc.). Let X = {Xi}ni be node fea-
tures and Xi corresponds to the feature of node vi, the form
of which could be the text for the passage, the markdown for
the table and the page number for the page.



Figure 3: Knowledge Graph Construction. We split each document in the document collection into passages. For each passage,
we either directly obtain their embeddings via pre-trained encoders or extract their keywords to build bag-of-word (BOW)
features. Then we connect two passages based on their embedding similarity or whether they share common keywords. Addi-
tionally, we extract tables/pages via Extract-PDF API and add them as structural nodes to the KG. If pages include passages
and tables, we add a directed edge to denote the belonging relations. The table nodes include the markdown formatted content
of that table as Figure 8 in Supplementary has empirically shown that LLMs are able to understand tables in this format.

3 Knowledge Graph Construction
Despite numerous well-established KGs (Hoffart et al. 2013;
Tian et al. 2023b), they treat nodes/edges as entities/rela-
tions, which necessitates sophisticated relational extraction
techniques and thereby limits their applicability in general
domains (Huang et al. 2021). Additionally, their primary fo-
cus on the Wikipedia domain also restricts their usage for
answering non-Wikipedia questions such as ones over legal
or financial documents. To remedy this issue, we propose
generally applicable KG construction methods.

We first analyze two representative questions in Fig-
ure 2(a)-(b) to motivate our KG construction. Answering
these two questions necessitates the deduction of logical as-
sociations among different passages. These associations are
encoded either through 1) lexical similarity: common key-
words shared among different passages, e.g., ‘Alf Clausen’
bridges passage S1 and passage S2 in Figure 2(a), or 2) se-
mantic similarity: syntactic elements that convey semantic
relations, e.g., ‘nationality’ and ‘American director’ in Fig-
ure 2(b). This motivates us to construct the graph by mod-
eling passages as nodes and their lexical/semantic similarity
as edges. More specifically in Figure 3, we split each docu-
ment into individual passages, and for each passage Si, we
add a node vi to the KG with its feature being the text of that
passage Xi. Then we add edges by checking the lexical/se-
mantic similarity between pairs of passage nodes.

TF-IDF KG Construction For adding edges according to
lexical similarity, we first apply TF-IDF keyword extrac-
tion (Ramos et al. 2003) over each document to filter out
meaningless words such as supporting verbs and articles,
which also reduces the dimension of bag-of-word (BOW)
features, sparsifies the constructed graph and increases the
graph traversal efficiency. In addition, we add the document
title into the extracted keyword set since some questions fo-
cus on title entities. We collect the extracted keywords from
all documents to form the keyword space W and then con-
nect two passages if they share any common keyword in W .

KNN-ST/MDR KG Construction For adding edges ac-
cording to semantic similarity, we can readily employ pre-
existing models such as sentence transformers to gener-
ate passage embedding Xi for each node vi and subse-
quently compute pairwise similarity matrix to construct the
K-nearest neighbor (KNN) graph. However, these off-the-
shelf models, typically trained on tasks not so-related to
MD-QA, may not adequately encapsulate necessary logical
associations in their embedding similarity demanded by the
question. To overcome this problem, we follow the train-
ing strategy of MDR (Xiong et al. 2020) and train a sen-
tence encoder by predicting the subsequent supporting facts
based on previously supporting facts, thereby endowing the
encoder with reasoning capability. Consequently, the em-
bedding similarity and the corresponding constructed KNN
graph fundamentally encapsulate the necessary logical asso-
ciations between different passages.

TAGME Moreover, we employ TAGME (Min et al. 2019)
to extract Wikipedia entities from each passage and con-
struct the graph based on whether two passage nodes share
common Wikipedia entities.

In addition to passage nodes, we further add structural
nodes into the graph by extracting document structures via
Extract-PDF 3. In this paper, we only consider adding pages
and tables but the constructed KG can include more differ-
ent types of document structures. The feature of table nodes
is the markdown since LLMs can understand this as demon-
strated in Figure 8 in Supplementary. The feature of page
nodes is the page number and we add directed edges from
it to sentence/table nodes in that page. Note that we do not
aim to propose a one-size-fits-all KG construction method.
Instead, we seek to compare the merits and limitations of
various methods in Table 5, offering guidance on which KGs
are best suited for specific scenarios.

3https://developer.adobe.com/document-services/docs/
overview/pdf-extract-api/



Figure 4: LLM-based KG traversal agent for context retrieval. For questions on document structures (left), we employ LLM
to extract structures and retrieve their corresponding contents (the content of pages are passages belonging to that page and
the content of tables is the markdown-formatted text). For questions on document content, we concatenate it with the currently
retrieved context and prompt the LLM to generate the next evidence to answer the question. By comparing the similarity
between the candidate neighboring sentences and the generated passage, we determine the next passage node to traverse.
Correspondingly, the candidate neighbors are updated for the next round of traversal.

Figure 5: Quality of KGs on HotpotQA. For each KG Con-
struction method, as the average number of neighbors in-
creases (KG becomes denser) in the right y-axis, the SF-
EM increases while the precision decreases. KNN-MDR
achieves a better trade-off than TF-IDF and KNN-ST. KGs
constructed by TAGME are denser than others.

To verify the constructed KGs indeed encode the neces-
sary information for MD-QA, we randomly sample ques-
tions from HotpotQA and construct KGs over the set of
documents for each of these questions using our proposed
methods. We vary the hyperparameters to control the spar-
sity of the constructed KG and measure how much percent-
age of the supporting facts are covered by neighbors of the
seeding passages initially searched by TF-IDF. More details
about the four construction methods and their hyperparame-
ters are included in Section 8.5 in Supplementary. As shown
in Figure 5, as the constructed graph becomes denser, the
chance that the neighboring node passages hit the support-
ing facts increases (i.e., SF-EM increases) although the re-
dundant information also increases (i.e., the precision de-
creases). Given the common keywords shared between one
passage to all other passages are typically far less than the
total number of passages across all documents, the density of

the constructed graph by TF-IDF would be upper-bounded,
causing lower SF-EM (evidenced by SF-EM below 0.7 in
Figure 5 for TF-IDF curve). For TAGME, we empirically
find it identifies a larger quantity of entities mentioned in
a single passage, which leads to a denser graph and causes
the starting SF-EM of TAGME to be already around 0.95.
In addition, since KNN-MDR is pre-trained by predicting
the next supporting facts (Xiong et al. 2020) on HotpotQA,
it achieves better trade-off than KNN-ST where the embed-
dings are directly obtained from the sentence transformer
without dataset-specific pre-training.

To summarize, although high SF-EM indicates that the
supporting facts for most questions are fully covered by
the neighbors of seeding passages, low precision signifies
that most of these neighboring passages are irrelevant to the
question. Therefore, if we blindly perform graph traversal
without any question-tailored adaptation, our retrieved con-
texts would include redundant passages and compromise the
capability of LLMs in MD-QA (which is also verified by the
lower performance of KGP-Random in Table 2). To remedy
this issue, in the next section, we introduce an LLM-based
KG traversal agent to adaptively visit neighboring passages
that are most conducive to answering the given question.

4 LLM-based KG Traversal Agent
A natural solution to enable adaptive knowledge graph
traversal is to rank the candidate nodes, i.e., the neighbors
of the already-visited nodes in our case, thereby determining
which ones to visit next. The most straightforward way is to
apply heuristic-based fuzzy matching or embedding-based
similarity ranking, which cannot capture the intrinsic logical
relations between the already traversed paths and the nodes
to visit next. Instead, we fine-tune a large language model
(LLM) to guide the knowledge graph traversal towards the
next most promising passages in approaching the question
based on the visited passages, which we term as the LLM-
based KG traversal agent.



Given a question q asking about the document content, the
LLM-based graph traversal agent reasons over previously
visited nodes/retrieved passages {sk}jk=0 and then generates
the next passage sj+1 as follows:

sj+1 = argmax
v∈Nj

ϕ(g(Xv), f(||jk=0Xk)), (1)

where ||jk=0Xk concatenates the textual information of pre-
viously retrieved passages/visited nodes. For the choice of
f , one way is to employ encoder-only models like Roberta-
base (Asai et al. 2019; Xiong et al. 2020; Yavuz et al. 2022)
and correspondingly g would be another encoder model with
ϕ(·) being the inner product measuring the embedding sim-
ilarity. Another way is to employ encoder-decoder models
such as T5 (Brown et al. 2020; Touvron et al. 2023) and
correspondingly g would be an identity function with ϕ(·)
measuring the textual similarity. To mitigate the hallucina-
tion issue and enhance the reasoning capability (Wei et al.
2022; Ji et al. 2023) of the LLM traversal agent, we fur-
ther instruction fine-tune f (Chung et al. 2022) by predicting
the next supporting facts based on previous supporting facts,
thereby integrating commonsense knowledge encoded orig-
inally in their pre-trained parameters with the enhanced rea-
soning capability inherited from the instruction fine-tuning.
After visiting the top-scoring nodes selected from the candi-
date neighbor queue by Eq (1), the candidate neighbor queue
is updated by adding neighbors of these newly visited nodes.
We iteratively apply this process until hit the preset budget.
Next, we illustrate the above process with an example in Fig-
ure 4 and present the algorithm thereafter.

Figure 4 presents the content-based question asking ‘In
what year was the creator of the current arrangement of
Simpson’s Theme born?’. We use TF-IDF search to initial-
ize the seeding passage Node 1, which reads: ‘Alf Heiberg
Clausen (born March 28, 1941) is an American film com-
poser’. Subsequently, we prefix the currently retrieved-
context (Node 1) with the question and prompt the LLM to
generate the next evidence required to approach the question
one step closer. Because we augment the reasoning capabil-
ity of the LLM by instruction fine-tuning, it is expected to
recognize the logical association between the question and
the currently retrieved context. Consequently, it can predict
the subsequent passage that maintains logical coherence, al-
beit may contain factual mistakes, i.e., ‘Alf Clausen (born
April 16, 1941) is an American composer of film and tele-
vision scores.’ To rectify this potential factual mistake, we
select nodes from the candidate neighbors that match the
most with the LLM-generated passage, in this case, Node
4 ‘Alf Heiberg Clausen (born March 28, 1941) is an Ameri-
can film composer’. Since this passage sources directly from
documents, it inherently ensures the validity of the informa-
tion. Then we prompt LLMs along with the retrieved context
Node 1 and 4 for the answer.

Additionally, for questions asking about document struc-
tures, we extract the document structure names and locate
their corresponding structural nodes in the KG. For the table
node, we retrieve its markdown formatted content while for
the page node, we traverse its one-hop neighbor and obtain
passages belonging to that page.

Algorithm 1: LLM-based KG Traversal Algorithm to Re-
trieve Relevant Context for Content-based Question.

Input: A question q over a set of documents D, the
constructed KG G = {V, E ,X} over D, the
fine-tuned LLM-guided graph traversal fGT, the
preset context budget K, the TF-IDF search
function g.

1 Initialize seed passages Vs = g(V,X , q)
2 Initialize the retrieved passage queue P = [{vi}|vi ∈ Vs]
3 Initialize the candidate neighbor queue C = [Ni|vi ∈ Vs]
4 Initialize the retrieved passage counter k =

∑
Pi∈P |Pi|

5 while queue P and queue C are not empty do
6 Pi ← P.dequeue(), Ci ← C.dequeue()
7 V ′

i = Graph Traversal({q} ∪ Pi, Ci, k) by Eq (1)
8 for v ∈ V ′

i do
9 P.enqueue(Pi ∪ {v}), C.enqueue(Nv)

10 k ← k + 1
11 if k > K then
12 Terminate
13 return Retrieved Passage Queue P

Here we present the algorithm for our proposed KGP
method for MD-QA. Given a question, we first apply LLM
to classify whether the question is asking about the docu-
ment structure or content. If the question focuses on the doc-
ument structure, we extract the structural keywords such as
Page or Table, and retrieve the content in the correspond-
ing structural nodes in KG. If the question focuses on the
document content, we follow the step according to Algo-
rithm 1. Specifically, we first initialize seeding passages Vs

and the reasoning path queue P by TF-IDF search. Then
for each seeding passage vi ∈ Vs, we add its neighbor-
ing passage nodes Ni into the candidate neighbor queue C
(lines 1-4). After that, we iteratively dequeue the earliest en-
queued reasoning path/candidate neighborhood Pi/Ci from
P/C and employ the fine-tuned LLM-based graph traver-
sal agent to rank the dequeued neighbors in Ci by Eq. (1)
(lines 5-7). Last, we select top-k passage nodes V ′

i from Ci to
visit next based on their rank and correspondingly update the
candidate neighbor queue and reasoning path queue (lines 8-
13). The above process terminates when either the candidate
neighbor queue becomes empty or the prefixed budget K for
the retrieved passages is met. The time and space complexity
are thoroughly analyzed in Section 8.3 in Supplementary.

5 Experiment
In this section, we conduct experiments to verify the pro-
posed knowledge graph prompting method (KGP) for MD-
QA. In particular, we answer the following questions:

• Q1 - Section 5.1: How well does KGP perform MD-QA
compared with existing baselines?

• Q2 - Section 5.2-5.3: How do the quality of the con-
structed KG and the LLM-based graph traversal agent
impact the MD-QA performance?

Due to the space limitation, we comprehensively introduce
our experimental setting, including dataset collection, base-
lines, and evaluation criteria, in Supplementary 8.1-8.2.



Table 1: MD-QA Performance (%) of different baselines. The best and runner-up are in bold and underlined. None: no passages
but only the question is provided. Golden: supporting facts are provided along with the question.

Method
HotpotQA IIRC 2WikiMQA MuSiQue PDFTriage Rank

Acc EM F1 Acc EM F1 Acc EM F1 Acc EM F1 Struct-EM w PDFTriage w/o PDFTriage

None 41.80 19.00 30.50 19.50 8.60 13.17 44.40 18.60 25.07 30.40 4.60 10.58 0.00 8.53 9.00
KNN 71.57 40.73 57.97 43.82 25.15 37.24 52.40 31.20 42.13 44.70 18.86 30.04 – 7.00 7.33
TF-IDF 76.64 45.97 64.64 47.47 27.22 40.80 58.40 34.60 44.50 44.40 21.59 32.50 – 4.85 5.00
BM25 71.95 41.46 59.73 41.93 23.48 35.55 55.80 30.80 40.55 44.47 21.11 31.15 – 6.92 7.25
DPR 73.43 43.61 62.11 48.11 26.89 41.85 62.40 35.60 51.10 44.27 20.32 31.64 – 5.31 5.50
MDR 75.30 45.55 65.16 50.84 27.52 43.47 63.00 36.00 52.44 48.39 23.49 37.03 – 3.07 3.08
IRCoT 74.36 45.29 64.12 49.78 27.73 41.65 61.81 37.75 50.17 45.14 22.46 34.21 – 4.00 4.08
KGP-T5 76.53 46.51 66.77 48.28 26.94 41.54 63.50 39.80 53.50 50.92 27.90 41.19 67.00 2.69 2.75
Golden 82.19 50.20 71.06 62.68 35.64 54.76 72.60 40.20 59.69 57.00 30.60 47.75 100.00 1.00 1.00

Figure 6: The performance/latency increases as the KG den-
sity increases. The results are averaged across 100 randomly
sampled questions on HotpotQA.

5.1 Performance Comparison on MD-QA
We compare the MD-QA performance of the proposed
KGP-T5 and other baselines in Table 1. Firstly, the base-
lines ‘None/Golden’ achieve the worst/best performance be-
cause one provides no context and the other provides the
golden context. All other baselines achieve the performance
in-between because the retrieved context only covers the
partial of the golden supporting facts. Our proposed methods
KGP-T5 rank at the Top-1 except for the Golden baseline.
The 2nd-performing baseline MDR fine-tunes a RoBERTa-
base encoder by predicting the next supporting fact based
on the question and the already retrieved contexts (Xiong
et al. 2020). This next-passage prediction pretext task equips
the model with the reasoning capability of the knowledge
across different passages and hence increases the quality
of the retrieved contexts. The other deep-learning-based re-
triever DPR achieves much worse performance than MDR
because it only fine-tunes the encoder by maximizing the
similarity between the query and its supporting facts regard-
less of their sequential order, demonstrating the importance
of understanding the logical order of different knowledge
when solving MD-QA (Xiong et al. 2020). By comparing
the MD-QA performance across different datasets, we find
that all baselines perform better on HotpotQA than on IIRC.
This is because questions in HotpotQA are generally sim-
pler than in IIRC. Existing works (Jiang and Bansal 2019)
have shown that some questions in HotpotQA can be easily
answered following shortcuts while questions in IIRC some-
times necessitate arithmetic skills to derive answers numer-
ically, e.g., ‘How many years did the event last when Wing-
field lost his fortune?’, which poses unique difficulty due to
LLMs’ inferior arithmetic capability (Yuan et al. 2023).

Table 2: Comparing different LLM-based KG Traversal
Agents, including off-the-shelf ChatGPT equipped with
few-shot demonstration with fine-tuned LLaMA/T5/MDR
on TAGME-constructed KG.
Traversal HotpotQA IIRC 2WikiMQA MuSiQue
Agent Acc EM F1 Acc EM F1 Acc EM F1 Acc EM F1
TF-IDF 73.52 43.79 63.14 46.30 27.70 41.43 58.12 35.07 45.95 44.67 21.93 32.90
MDR 75.72 46.09 65.77 49.58 29.32 43.21 60.94 37.22 51.29 51.22 27.76 41.11
ChatGPT 77.80 46.03 66.57 46.27 26.01 39.35 61.62 36.16 49.39 50.61 26.92 38.66
LLaMA 75.66 46.22 66.31 49.57 28.09 42.56 62.45 37.55 52.45 50.81 26.72 40.01
T5 76.53 46.51 66.77 48.28 26.94 41.54 63.50 39.80 53.50 50.92 27.90 41.19

Moreover, without any particular design for document
structures, no existing baselines can handle structural ques-
tions in PDFTriage, e.g. ‘What is the difference between
Page 1 and Page 2’ or ‘In Table 3, which station has the high-
est average flow rate?’. Fortunately, with the constructed KG
incorporating structural nodes and our designed traversal al-
gorithm retrieving structural contexts, our proposed method
achieves 67% Struct-EM.

5.2 Impact of the Constructed Graph
We construct KGs with varying densities by varying the
hyperparameters of TF-IDF/KNN-ST/KNN-MDR/TAGME,
and studying its impact on the performance and the neighbor
matching time of MD-QA using KGP-T5. Since the LLM-
based graph traversal agent selects the next node to visit
from neighbors of already visited nodes, the chance that it
hits the supporting facts increases as neighbors increase. In
contrast, the neighbor matching efficiency decreases as the
candidate pool, i.e., Nj in Eq (1), increases. As evidenced
in Figure 6, we observe a similar trend, i.e., as KG density
increases, the F1/EM increases and stays stable while the
latency for selecting the most promising neighbors to visit
next also increases. KNN-MDR achieves better performance
than KNN-ST when the density of the two constructed KGs
is the same. This is because the encoder in KNN-ST is
pre-trained on wide-spectrum datasets while the encoder in
MDR is specifically pre-trained on the HotpotQA by the pre-
text task of predicting the next supporting facts. Therefore,
the embedding similarity and the corresponding neighbor re-
lations better reflect the logical associations among differ-
ent passages, which aligns with the better constructed KG
by KNN-MDR than KG by KNN-ST in Figure 5. Com-
pared with KNN-MDR/ST, TAGME delivers superior per-
formance at the cost of increasing latency since the gener-
ated KG by TAGME is denser than KGs by KNN-ST/MDR.



Figure 7: (a)-(b): Performance first increases and then decreases as the branching factor increases. The results are averaged
across 100 sampled questions on 2WikiMQA and MuSiQue. (c): Performance/Efficiency increases/decreases as the number of
documents increases on MuSiQue. KGP-T5 achieves higher performance/efficiency than DPR.

5.3 Impact of Graph Traversal Agent
Here we study the influence of using different LLM agents to
traverse over TAGME-constructed KG on MD-QA. Specif-
ically, we compare agents that select the next neighbor to
visit randomly or intelligently via guidance from ChatGPT,
LLaMA, T5, and MDR in Table 2. Because the random
agent only blindly traverses the KG without any guidance
from LLM, it unavoidably collects irrelevant passages and
hence achieves the worst performance than others under
LLMs’ guidance. This aligns with our previous observation
on the low precision in Figure 5 and further demonstrates the
necessity of using LLMs to guide the graph traversal. Inter-
estingly, we find that KGP-T5 performs better than LLaMA
even though the parameters of LLaMA-7B are more than the
ones with T5-0.7B. We hypothesize this is because LLaMA-
7B requires more data to fine-tune than T5-0.7B.

5.4 Sensitivity Analysis
Here we perform the sensitivity analysis of the branching
factor (the number of nodes selected from candidate neigh-
bors to visit next). In Figure 7(a)-(b), the performance first
increases as the branching factor increases because more
passage nodes selected from the candidate neighbors lead to
more reasoning paths to reach the final answer. However, as
we fix the context budget to ensure fair comparison (i.e., the
total number of passages we are allowed to retrieve for each
question is the same across all baselines), the performance
declines as the branching factor increases because the num-
ber of initial seeding nodes diminishes, leading to reduced
coverage of the KG. Furthermore, we compare the efficiency
of KGP when the constructed KG includes different num-
bers of documents in Figure 7(c). KGP consistently achieves
higher performance than other baselines and higher effi-
ciency than embedding-based DPR. TF-IDF is slightly faster
than KGP because it is a purely heuristic-based method.

6 Related Work
Question answering Question Answering (QA) aims to
provide answers to users’ questions in natural language (Zhu
et al. 2021; Pandya and Bhatt 2021), and most QA sys-
tems are composed of information retrieval (IR) and an-
swer extraction (AE) (Mao et al. 2021; Ju et al. 2022;
Liu and Qin 2022). In IR, the system searches for
query-relevant factual passages using heuristic methods

(BM25) (Robertson, Zaragoza et al. 2009) or neural-ranking
ones (DPR) (Karpukhin et al. 2020). In AE, the final an-
swer is extracted usually as a textual span from related pas-
sages. Although this framework has been broadly applied
in O-QA (Mao et al. 2021) and D-QA (Xu et al. 2020;
Mathew, Karatzas, and Jawahar 2021), no previous work fo-
cus on MD-QA, which demands alternatively reasoning and
retrieving knowledge from multiple documents. To tackle
this issue, we construct KGs to encode logical associations
among different passages across documents and design an
LLM-based graph traversal agent to alternatively generate
the reason and visit the most matching passage node.
Pre-train, Prompt, and Predict with LLMs With the
emergence of LLMs, the paradigm of ‘pre-train, prompt,
predict’ has gained magnificent popularity in handling a
wide spectrum of tasks (Gururangan et al. 2020; Liu et al.
2023; Yu et al. 2023). This approach begins with pre-training
LLMs by pretext tasks to encode world knowledge into
tremendous parameters (Wu et al. 2023) followed by a
prompting function to extract pertinent knowledge for down-
stream tasks (Yang et al. 2023). Recent advancements ex-
plore different prompting strategies to enhance LLMs’ rea-
soning capabilities (Wei et al. 2022; Jin et al. 2023). In con-
trast to that, our work offers a novel perspective by trans-
forming the prompt formulation into the KG traversal.

7 Conclusion
Answering multi-document questions demands knowledge
reasoning and retrieving from different documents across
various modalities, presenting challenges for applying the
paradigm of ‘pre-train, prompt and predict’ with LLMs.
Recognizing the logical associations among passages and
structural relations within documents, we propose a Knowl-
edge Graph Prompting method (KGP) for aiding LLMs in
MD-QA. The KGP constructs KGs from documents with
nodes as sentences or document structures, and edges as
their lexical/semantic similarity/structural relations. Since
constructed KGs may contain irrelevant neighbor informa-
tion, we further design an LLM-based graph traversal agent
that selectively visits the most promising node in approach-
ing the question. In the future, we plan to investigate the
capability of LLMs in understanding graph topology and ex-
plore the potential of fine-tuning/prompting LLMs to encode
complex topological signals hidden in the graph.
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8 Supplementary
8.1 Dataset Collection
This section introduces the collection of datasets used for
the experiments conducted in this paper.

Document Set Collection and Procession As no previ-
ous works focus on MD-QA, we create our own datasets to
simulate real-world scenarios where users maintain folders
containing various documents and pose questions to which
the answers are only from certain parts of these documents.
To imitate this scenario, we randomly sample questions
from the development set of existing datasets: HotpotQA/I-
IRC/2WikiMQA/MuSiQue, and then for each specific ques-
tion, we fetch documents from Wikipedia that encompass
supporting facts pertaining to the question 4 and term these
documents as golden documents. Then we randomly sam-
ple negative documents from Wikipedia and pair them with
golden documents to constitute the document collection. For
each document in the collected document set, we split it into
multiple passages with the default passage length being 250
as it empirically yields superior performance. As questions
from these existing datasets only focus on document con-
tents, we additionally incorporate the ‘PDFTriage’ dataset,
an internal company collection of real-world questions fo-
cusing on document structures. We refer readers to the pa-
per (Saad-Falcon et al. 2023) for more details.

Knowledge Graph Construction We construct a knowl-
edge graph for each question and its corresponding collec-
tion of documents. For datasets where the questions are from
Wikipedia: HotpotQA, IIRC, WikiMHop, and Musique, we
only have passage nodes since answering questions in these
datasets does not require information about document struc-
tures. For the PDFTriage dataset, in addition to passage
nodes, we apply ExtractAPI to obtain the page and table
information so that the constructed KG also has pages/ta-
bles as nodes. For all of these datasets, we add edges fol-
lowing Section 3. Table 3 summarizes the average statistics
of the document collections across all questions with their
corresponding KGs. The code for the dataset collection and
preprocessing is publically available at https://github.com/
YuWVandy/KG-LLM-MDQA.

Table 3: Statistics of document collections and their corre-
sponding knowledge graph used in Table 1 and 2 average
across all questions.

Dataset #Docs #Questions #Passages #Edges
Passage

Avg. Length
KG

Density
HotpotQA 12 500 715.22 70420.68 37.55 0.23
IIRC 12 477 1120.55 143136.17 37.24 0.20
WikiMHop 12 500 294.19 19235.15 37.24 0.27
MuSiQue 12 500 748.04 97931.28 38.56 0.29

More details about the PDFTriage dataset can be found at
PDFTriage (Saad-Falcon et al. 2023).

4The HotpotQA/IIRC/2WikiMQA/Musique datasets already
have the supporting facts for each question.

Sequential Data Collection Training MDR (Xiong et al.
2020) requires rearranging supporting facts into the sequen-
tial order that progressively approaches the answer. To fulfill
this requirement, we directly follow MDR and use the pre-
processed HotpotQA data from the GitHub Repository5 to
train the encoder and apply it to other datasets that do not
provide the sequential order of supporting facts. For instruc-
tion fine-tuning LLaMA, we still use the above HotpotQA
data and rearrange it into the instruction-input-output for-
mat and use the instruction ‘What evidence do we need to
answer the question given the current evidence’. We present
one example in Listing 1. For T5-large, we use the same
input-output but prefix the reasoning instruction to the input
following the original T5 input format (Raffel et al. 2020).

8.2 Experiment Details
Training DPR and MDR For training DPR (Karpukhin
et al. 2020), we pair each question with its supporting facts
as its positive passages, and some randomly sampled pas-
sages as its negative passages. For training MDR (Xiong
et al. 2020), as each question in HotpotQA only requires 2
supporting facts to derive the answer, we set the first sup-
porting fact as the positive pair for each question. Further,
we concatenate this question and the first supporting fact
to form a new question and for this newly-formed ques-
tion, we set the second supporting fact as its positive pair.
For both the original question and the concatenated one, we
randomly sample other passages as the negative pair. Fol-
lowing (Xiong et al. 2020; Karpukhin et al. 2020), we use
RoBERTa-base as the default encoder. The search space of
hyperparameters is summarized in Table 4.

Table 4: Hyperparameters used for tuning DPR and MDR.
The value of most of them are directly taken from their orig-
inal GitHub Repository.

Hyperparameter Search Space
Encoder RoBERTa-base
Hidden Dimension 768
Max Context Length {128, 256, 350}
Batch Size {128, 256, 512}
Epoch 50
Warmup Steps 300
Learning Rate 2e-5
Gradient Clipping Range 2

Instruction Fine-tuning LLaMA6 and T5-Large7 We
fine-tune LLaMA using instruction data in Listing 1. Due to
the computational limitation, we choose LLaMA-7B and use
LoRA (Hu et al. 2021). For fine-tuning T5-Large, we use the
same instruction data except that we remove the instruction
but only prefix the reasoning instruction to the input (Raffel
et al. 2020). We use the default hyperparameters from their
original GitHub repository to fine-tune these two LLMs.

5https://github.com/facebookresearch/multihop dense retrieval/tree/main
6https://github.com/Lightning-AI/lit-llama
7https://shivanandroy.com/fine-tune-t5-transformer-with-

pytorch/



Prompting LLMs for MD-QA - Table 1 and 2 Follow-
ing (Trivedi et al. 2022a), we randomly select questions from
the development set for reporting the performance. To en-
sure a fair comparison, we set the number of retrieved pas-
sages to 30 across all baselines and use ChatGPT as the
downstream LLM for reading the retrieved passages and
generating the answer. We summarize the key implementa-
tion details for each baseline as follows:

• KNN: We employ the sentence-transformer variant
‘multi-qa-MiniLM-L6-cos-v1’ to obtain passage embed-
dings as it has been trained on 215M (question, answer)
pairs from diverse sources. Then we select the top-15 pas-
sages according to the embedding similarity and the top-
15 passages according to the fuzzy matching8.

• MDR: We use beam search with the inner product as the
scoring function to rank passages. We limit the search
depth to 2 as answering questions in HotpotQA requires
at most 2-hop reasoning steps (Xiong et al. 2020). We set
the number of passages to be 15 in the first-hop retrieval
and for each of these passages, we further retrieve 3 more
passages in the second round, which in total generates 45
passage pairs. Then we rank these 45 passage pairs by the
product of the scores between the first-hop and the second-
hop retrieval and select the top 30 ones as the final context.

• IRCoT: Instead of directly employing the original IR-
CoT code (Trivedi et al. 2022a), we modify it based
on our problem setting. The first reason is that passages
to be retrieved in IRCoT (Trivedi et al. 2022a) are the
pre-processed Wikipedia Corpus and do not cover the
whole contents of Wikipedia documents, which thereby
is not aligned with our MD-QA setting. The second rea-
son is that the question-answering reader employed in
IRCoT requires running on A100-80G GPU, which is
not affordable on our side. Therefore, we modify the
IRCoT by replacing the question reader with the Chat-
GPT and using our pre-processed Wikipedia document
collections as introduced in Section 8.1. For the prompt
used in the reasoning step, we select 2 examples from
‘gold with 2 distractors context’ for the demonstration
purpose. We iteratively select top-5 passages based on the
generated reason from LLM along with their document ti-
tles and add them to the retrieved context until hitting the
prefix budget. For the prompt used in the reading step, we
use exactly the same prompt as other baselines as we find
it empirically leads to better performance than the original
one used in IRCoT (Trivedi et al. 2022a).

• KGP-T5/LLaMA/MDR/ChatGPT: We use T5-
large/LLaMA-7B/MDR/ChatGPT as the LLM to guide
the graph traversal respectively. For content-based ques-
tions, similar to MDR, we perform a 2-hop retrieval but
for each hop, we only search the node to visit next from
neighbor candidates. In the 1st-hop retrieval, we select
10 passages and in 2nd-hop retrieval, we select 3 pas-
sages, which totally forms 30 reasoning paths. Note that
passages in the 1st-hop retrieval are allowed to overlap

8We use Levenshtein-distance to measure the lexical distance
between two passages.

with the ones in the 2nd-hop retrieval. For structural-based
questions, we first use ChatGPT to extract page/table
structures and then fetch relevant contents in those
structures. Future work could explore how to pre-train a
structural extraction model to obtain document structures.

• KGP-TF-IDF: We remove the LLM-guided graph traver-
sal but select passage nodes based on their TF-IDF simi-
larity to the given question.
Note that we put the prompt template for running all the

above baselines in Section 8.9.

8.3 Complexity Analysis for KGP

Algorithm 2: LLM-based KG Traversal Algorithm to Re-
trieve Relevant Context for Content-based Question.

Input: A question q over a set of documents D, the
constructed KG G = {V, E ,X} over D, the
fine-tuned LLM-guided graph traversal fGT, the
preset context budget K, the TF-IDF search
function g.

1 Initialize seed passages Vs = g(V,X , q)
2 Initialize the retrieved passage queue P = [{vi}|vi ∈ Vs]
3 Initialize the candidate neighbor queue C = [Ni|vi ∈ Vs]
4 Initialize the retrieved passage counter k =

∑
Pi∈P |Pi|

5 while queue P and queue C are not empty do
6 Pi ← P.dequeue(), Ci ← C.dequeue()
7 V ′

i = Graph Traversal({q} ∪ Pi, Ci, k) by Eq (1)
8 for v ∈ V ′

i do
9 P.enqueue(Pi ∪ {v}), C.enqueue(Nv)

10 k ← k + 1
11 if k > K then
12 Terminate
13 return Retrieved Passage Queue P

Since our algorithm can be essentially deemed as the com-
bination of the neighborhood ranking by Eq. (1) and the
breadth-first-search. The time complexity would be the mul-
tiplication between the time of bread-first-search O(|V| +
|E|) and the time of neighborhood ranking O(|N |γ) =

O(d̂γ) where γ is the time for computing the embedding
similarity between a specific neighbor passage and the re-
trieved reasoning path and d̂ is the average degree of the
KG. Therefore the final time complexity would be O((|V|+
|E|)d̂γ), which is in-between the linear and quadratic to the
size of the graph. As users typically maintain 10-100 doc-
uments, correspondingly the number of nodes in the con-
structed KG would be around 1,000-10,000 (according to
Table 3, a collection of 12 documents have roughly 200-
1000 passage nodes), which is affordable even with the
quadratic time complexity. Moreover, we can apply ad-
vanced techniques to further reduce the time complexity for
neighborhood ranking, such as LSH (Gionis et al. 1999) and
KD-tree (Qu et al. 2020).

In addition, whenever there are some changes over the
document set (e.g., the user adds a new document into
the folder or removes an existing document), we can re-
move/add all sentence nodes from/to the graph. To guarantee
the linear time complexity for removing sentences from one



document, we need to maintain a pointer from the document
to its sentence nodes. For adding sentence nodes of one doc-
ument, we need to first apply the KG construction method to
compute the lexical/semantic similarity between each of the
newly added sentence nodes and the existing nodes in KG,
and then add corresponding edges connecting them, which
is also linear to the size of the current graph.

For space complexity, it takes O(|V|(α+ β)) to maintain
the constructed KG on the fly where α is the average space
for saving the passage embedding vector while β is the av-
erage space for saving the textual information of that pas-
sage. Although our constructed KG treats passages as nodes,
which cannot scale very well when the graph is extremely
large, the total number of documents a user maintains in a
folder is typically around 10-100, which is still affordable.

8.4 Markdown-Formatted Table
Figure 8 demonstrates that by sending Tables in the mark-
down format, ChatGPT can successfully understand their
content and perform information retrieval based on the given
questions. However, we do observe that such a markdown-
formatted solution is not feasible for the long table due to
the input token limitation of ChatGPT, we plan to explore
the solution using SQL as the prompt content or modeling
the Table as the grid graph to solve the issue in the future.

Figure 8: An example demonstrating that ChatGPT can un-
derstand table in the markdown format.

8.5 Knowledge Graph Construction Comparison
Table 5 compares different knowledge graph construction
methods and their pros and cons.
• TAGME: TAGME (Ferragina and Scaiella 2010) is very

effective in extracting Wikipedia Entities from a passage
despite the low efficiency. In our graph construction, it
usually takes more than 8 hours to extract entities of all
passages for even just 12 Wikipedia documents. Even af-
ter we apply parallel processing, it still takes more than 2

hours. In addition, it can only handle entities mentioned
in the existing Wikipedia system and hence cannot gen-
eralize to documents from other domains.

• TF-IDF and KNN-ST: Although there is no domain lim-
itation, it is hard to guarantee the extracted keywords or
the embedding semantic similarity can precisely encode
the relationships that are desired for answering the given
question between any two passages. We empirically find
TF-IDF is more likely to extract meaningless keywords
even after removing supporting verbs and articles.

• KNN-MDR: Since KNN-MDR pre-trains the sentence
encoder by predicting the next supporting passage given
already-retrieved passages, the embedding similarity be-
tween two passages is more likely to encode necessary
logical associations required for MD-QA. However, the
main bottleneck here is how to obtain the logically or-
dered supporting facts that can progressively reach the
answer. Obtaining these sequential data is non-trivial and
usually requires a large number of human resources for
well-curated annotation.

• Existing Knowledge Base: One common approach in
the literature is to use existing knowledge bases or ex-
tract subgraphs from them for specific tasks (Yasunaga
et al. 2022; Dong et al. 2023; Yasunaga et al. 2021). Be-
cause the factual information is characterized as a triplet
consisting of two entity nodes and their relationship, it
is very powerful in encoding factual information/com-
monsense knowledge and also avoids the scalability is-
sue (since two different passages might share the same
entity). Despite its potency and ease of use, construct-
ing this type of KGs demands meticulously designed
relation extractors, which is still deemed a challenging
task in the literature. Recent research has explored using
LLMs for relation extraction. However, with increasing
document numbers, using non-open-sourced LLMs can
become prohibitively expensive. A potential solution is
fine-tuning an open-sourced LLM specifically for rela-
tion extraction. Detailed discussion on this is beyond the
scope of this study and is thus omitted.

To put it in a nutshell, there’s no one-size-fits-all method
for KG construction. Our paper offers an in-depth analysis of
the proposed KG construction methods alongside other ex-
isting ones. The best approach often depends on the specific
use case. For broad domains containing general factual in-
formation, tools like ’TAGME’ or ’Knowledge Base’ might
be apt. However, for more niche or sensitive areas, meth-
ods like TF-IDF/KNN-ST are more appropriate. In certain
situations, gathering domain-specific data and pre-training
encoders is the most effective way to build the KG.



Table 5: Systematically Comparison among existing and our proposed Knowledge Graphs.
KG Node Edge Domain Constructor Scalability Hyperparameters Advantage Disadvantage

TAGME Passage
Common

Wikipedia Entity
Wikipedia / No Prior Threshold

Effectively Identify
Wikipedia Entities

Low efficiency for Entity Identification
Narrow Domain Application

TF-IDF Passage Common Keyword General / No # Keywords No Domain Limitation Common keywords irrelevant to question

KNN-ST Passage Semantic Similarity General
Sentence

Transformer
No # Neighbors No Domain Limitation Semantic Similarity irrelevant to question

KNN-MDR Passage Semantic Similarity General MDR No # Neighbors
Encoding the logical
association for QA

Require logically ordered
supporting facts to pre-train the model

Knowledge
Base

Entity Relationship Specific Human Yes /
Powerful in encoding
factual information

Relation Extraction is non-trivial
Domain Specific

8.6 Additional Results and Discussions
Quality of KG on MuSiQue Similar to the setting used
for Figure 5, we change the hyperparameters to construct
KGs for each question in MuSiQue with varying levels
of sparsity and measure how much percentage of the sup-
porting facts are covered by neighbors of the seeding pas-
sages that are initially retrieved by TF-IDF. The general
trend is similar to the one in Figure 5, i.e., as the graph
becomes denser, the precision decreases while the SF-EM
increases. However, on MuSiQue, KNN-MDR achieves the
worst trade-off between Precision and SF-EM compared
with KNN-ST and TF-IDF. This is because our KNN-MDR
is pre-trained on HotpotQA and due to the distribution shift
from HotpotQA to MuSiQue, it is expected for the graph
constructed with KNN-MDR to have less quality. Note that
although here KNN-ST leads to a better KG than KNN-
MDR, it does not mean the KNN baseline in Table 1 should
perform better than MDR because the baseline name only
refers to the retrieval method while the name in this figure
refers to the KG construction method.

Figure 9: Quality of constructed KGs with different meth-
ods on MuSiQue. TF-IDF: lexical similarity based on com-
mon keywords extracted by TF-IDF. KNN-ST: KNN graph
constructed based semantic similarity of embeddings from
sentence-transformer; KNN-MDR: KNN graph constructed
based on semantic similarity of embeddings from the pre-
trained MDR (Xiong et al. 2020); TAGME: graph con-
structed based on whether two passages share common
Wikipedia entity mentions

Figure 10: The performance/latency increases as the KG
density increases. The results are averaged across 100 ran-
domly sampled questions on MuSiQue.

The impact of KG on MuSiQue Similar to the setting
used for Figure 6, we compare the MD-QA performance for
KGP-T5 using TAGME-based KG with different levels of
density. Similar to Figure 6, here we also observe that as
the KG becomes denser, the MD-QA performance increases
while the time for the next node search increases. How-
ever, on MuSiQue, in most cases, KNN-ST achieves bet-
ter F1/EM than KNN-MDR, which exactly aligns with the
constructed KG quality observed in Figure 9, i.e., KNN-ST
achieves better Precision/SF-EM trade-off than KNN-MDR
on MuSiQue.

8.7 Case study on Structural/Content Questions
In this section, we conduct six MD-QA case studies us-
ing our self-designed user interface coupled with the pro-
posed method on the backend. Examples include two table-
based QA (Figure 11-12), one page-based QA (Figure 13),
one single-document content-based QA (Figure 14) and two
multi-document content-based QA (Figure 15-18). In our
designed interface, we can upload documents we are inter-
ested in reading and the model on the backend will split
each of them into multiple passages. In addition, on the left
side, we can ask questions related to the currently uploaded
documents. By clicking the button ‘SUBMIT’, the question
would be sent to the model on the backend and it retrieves
relevant context and arranges them as the prompt to get the
answer from ChatGPT. In the figures below, we can see our
system can understand the Table/Page questions and also
questions requiring knowledge across multiple documents.



Figure 11: Table QA asking for the number of people belonging to the membership grade ‘Fellow’. It is shown that ChatGPT
can understand table structure in the format of markdown and successfully fetch the number of people belonging to membership
‘Fellow’.

Figure 12: Table QA asking for the place where the event on Date 5-18-07 will occur.



Figure 13: Page QA asking the main content on Page 2. The answer provides a high-level summarization of Page 2, covering
the title of each section.

Figure 14: Single Document Content QA asking Sedentariness. The 2nd retrieved sentence includes the answer and corresponds
to the first sentence in the abstract of the paper.



Figure 15: Multi-document Bridging Question asking the information about Lebron James and State Ohio. It requires to first
retrieve the sentence stating the state where Lebron James grew up playing basketball.

Figure 16: Multi-document Bridging Question asking the information about Lebron James and State Ohio. Then it requires to
judge whether the State Ohio ranks the 34th-largest by area in the US.



Figure 17: Multi-document Comparing Question comparing Lebron James and Michael Jordan. It requires the birthday infor-
mation of Lebron and Jordan.

Figure 18: Multi-document Comparing Question comparing Lebron James and Michael Jordan. It requires the birthday infor-
mation of Lebron and Jordan.



8.8 Visualizing the Reasoning-and-Retrieving Process of LM-guided Graph Traverser

Figure 19: Visualizing the graph traversal over MD-QA-Example 1.

Figure 20: Visualizing the graph traversal over MD-QA-Example 2.



8.9 Prompt template used throughout this work

Listing 1: Examples of the Instruction Data for Fine-tuning LLaMA.
Question: Which magazine was started first Arthur’s Magazine or First for Women?
Answer: Arthur’s Magazine
Supporting Facts:
(1) Arthur’s Magazine (1844−1846) was an American literary periodical published in Philadelphia in the 19th century.
(2) First for Women is a woman’s magazine published by Bauer Media Group in the USA. The magazine was started in 1989.

Instruction: What evidence do we need to answer the question given the current evidence?
Input: Which magazine was started first Arthur’s Magazine or First for Women? Arthur’s Magazine (1844−1846) was an American literary

periodical published in Philadelphia in the 19th century.
Output: First for Women is a woman’s magazine published by Bauer Media Group in the USA. The magazine was started in 1989.
===================================================================================================
Question: In what year was the creator of the current arrangement of Simpson’s Theme born?
Answer: March 28, 1941
Supporting Facts:
(1) The theme was re−arranged during season 2, and the current arrangement by Alf Clausen was introduced at the beginning of season 3.
(2) Alf Heiberg Clausen (born March 28, 1941) is an American film and television composer.

Instruction: What evidence do we need to answer the question given the current evidence?
Input: In what year was the creator of the current arrangement of Simpson’s Theme born? The theme was re−arranged during season 2, and

the current arrangement by Alf Clausen was introduced at beginning of season 3.
Output: Alf Heiberg Clausen (born March 28, 1941) is an American film and television composer.

Listing 2: Example of the Prompt for QA without Retrieved Contexts.
Given the following question, create a final answer to the question.
=========
QUESTION: What is the birthday of this Anglo−Irish actress, courtesan, and mistress, who was the mother to the illegitimate daughter of

King William IV?
=========
ANSWER: Please answer in less than 6 words.

Listing 3: Example of the Prompt for QA with Retrieved Contexts.
Given the following question and contexts, create a final answer to the question.
=========
QUESTION: During which years was the model of car, featured on the cover of Earth’s ”Pentastar: In the Style of Demons” manufactured?
=========
CONTEXT:
1: Pentastar: In the Style of Demons is the third full−length studio album by the drone doom band Earth.
2: In 1957, he published The Interpersonal Diagnosis of Personality, which the Annual Review of Psychology called the ”most important

book on psychotherapy of the year”.
3: During the evanescent heyday of the cyberdelic counterculture, he served as a consultant to Billy Idol in the production of the 1993 album

Cyberpunk.
4: During the development of the Barracuda, one of the worst−kept secrets was Ford’s plan to introduce a new sporty compact car based on

the inexpensive Falcon chassis and running gear (which was eventually released as the Mustang in mid−model year 1964); the extent
of the other changes was not known.

5: ”Peace in Mississippi” is a cover of the Jimi Hendrix song. The original vinyl release of the album has an alternative take of ”Peace in
Mississippi”.

6: A 1975 Barracuda had been planned before the end of the 1970−74 model cycle.
7: In the spring of 2021, when the third wave of the coronavirus epidemic arrived, Varadi called their airline one of the ”rare rays of hope”

for investors.
8: During this time the first U.S. Federal auto safety standards were phased in, and Chrysler’s response a requirement for side−marker lights

distinguishes each model year of the second−generation Barracuda:As the pony−car class became established and competition
increased, Plymouth began to revise the Barracuda’s engine options.

9: The Barracuda sold for a base price of US$2,512 ($24,000 today).The 1964 model year was the first for the Barracuda and also the last
year for push−button control of the optional Torqueflite automatic transmission.

10: In the words of symbolist poet Stephane Mallarme:Languages are imperfect because multiple; the supreme language is missing...no one
can utter words which would bear the miraculous stamp of Truth Herself Incarnate...how impossible it is for language to express
things...in the Poet’s hands...by the consistent virtue and necessity of an art which lives on fiction, it achieves its full efficacy.

11: In France, the heart of the Decadent movement was during the 1880s and 1890s, the time of fin de siecle, or end−of−the−century gloom.
12: Pentastar: In the Style of Demons is the third full−length studio album by the drone doom band Earth, released in 1996. It has a more

rock−oriented sound than their earlier drone doom work, although in a very minimalist style.



13: The game was a rematch of the previous year’s Russell Athletic Bowl, which Clemson won 406.The two participants for the game were
two of the semifinalists which were the Clemson Tigers and Oklahoma Sooners.

14: The effect of the war on Ernst was devastating; in his autobiography, he wrote of his time in the army thus: ”On the first of August 1914
M[ax].E[rnst]. died. He was resurrected on the eleventh of November 1918”.

15: Plymouth’s executives had wanted to name the new model Panda, an idea unpopular with its designers. In the end, John Samsen’s
suggestion of Barracuda prevailed. Based on Chrysler’s A−body, the Barracuda debuted in fastback form on April 1, 1964.

16: The Scapigliati (literally meaning ”unkempt” or ”disheveled”) were a group of writers and poets who shared a sentiment of intolerance
for the suffocating intellectual atmosphere between the late Risorgimento (1860s) and the early years of unified Italy (1870s).

17: Recurrent themes in his literary works include the supremacy of the individual, the cult of beauty, exaggerated sophistication, the
glorification of machines, the fusion of man with nature, and the exalted vitality coexisting with the triumph of death.

18: Disc brakes and factory−installed air conditioning became available after the start of the 1965 model year. For the 1966 model year, the
Barracuda received new taillamps, new front sheet metal, and a new instrument panel.

19: ”Perhaps the worst failing of the book is the omission of any kind of proof for the validity and reliability of the diagnostic system,”
Eysenck wrote.

20: Based on stretched underpinnings of the rear−drive Alfa Romeo Giulia, it was rumored to be powered by a turbocharged V6 and arrive
within the 2019 model year.

21: Their investments are in fleet development and the construction of airports, the first of which will be opened in Brasov.
22: He broke the hill record and this innovation was widely copied in the years to come.[citation needed]Mays made his mark on the track

in such events as the 1935 German Grand Prix (scene of a famous victory of Tazio Nuvolari), sharing his ERA with Ernst von Delius.
23: There is still a question about the truth of the disclosure. In the 1968 Dragnet episode ”The Big Prophet”, Liam Sullivan played Brother

William Bentley, leader of the Temple of the Expanded Mind, a thinly fictionalized Leary.
24: The Belgian Felicien Rops was instrumental in the development of this early stage of the Decadent movement. A friend of Baudelaire,

he was a frequent illustrator of Baudelaire’s writing, at the request of the author himself.
25: After taking responsibility for the controlled substance, Leary was convicted of possession under the Marihuana Tax Act of 1937 on

March 11, 1966, sentenced to 30 years in prison, fined $30,000, and ordered to undergo psychiatric treatment.
26: The general court delegation from Sullivan County is made up of all of the members of the New Hampshire House of Representatives

from the county. In total, there are 13 members from 11 different districts.
27: Both teams then exchanged field goals, which brought the score to 16−10 in favor of Clemson. With 2:17 remaining, Oklahoma drove

down the length of the field to score a touchdown, which gave the Sooners a one−point lead.
28: The average household size was 2.41 and the average family size was 2.88.23.90% of the population were under the age of 18, 6.40%

from 18 to 24, 28.00% from 25 to 44, 25.90% from 45 to 64, and 15.80% who were 65 years of age or older.
29: The band announced the release of a deluxe version of the album ”How It Feels To Be Lost”, which came out on August 21, 2020. On

June 2, 2021, the band released the single ”Bloody Knuckles” from their upcoming album.
30: The 82nd Orange Bowl was a College Football Playoff semifinal with the winner of the game competing against the winner of the 2015

Cotton Bowl: Alabama Crimson Tide football in the 2016 College Football Playoff National Championship, which took place at the
University of Phoenix Stadium in Glendale, Arizona.

=========
QUESTION: During which years was the model of car, featured on the cover of Earth’s ”Pentastar: In the Style of Demons” manufactured?
=========
ANSWER: Please answer in less than 6 words.



Listing 4: Example of the Prompt for QA with Retrieved Contexts for MDR, KGP-T5, KGP-LLaMA and KGP-MDR.
Given the following question and contexts, create a final answer to the question.
=========
QUESTION: Anthony Avent played basketball for a High School that is located in a city approximately 8 mi west of where?
=========
CONTEXT:
1: Newark is the second largest city in the New York metropolitan area, located approximately 8 mi west of lower Manhattan.\n Prior to

Seton Hall, Avent played at Malcolm X Shabazz High School in Newark, New Jersey.

2: Newark is the second largest city in the New York metropolitan area, located approximately 8 mi west of lower Manhattan.\n The United
States District Court for the District of New Jersey is also located in the city.

3: Newark is the second largest city in the New York metropolitan area, located approximately 8 mi west of lower Manhattan.\n Near
Market Street and includes a dormitory for boarding students; and Saint Vincent Academy which is an all−girls Roman Catholic high
school founded and sponsored by the Sisters of Charity of Saint Elizabeth and operated continuously since 1869.Link Community
School is a non−denominational coeducational day school that serves approximately 128 students in seventh and eighth grades.

4: Prior to Seton Hall, Avent played at Malcolm X Shabazz High School in Newark, New Jersey.\n Newark is the second largest city in the
New York metropolitan area, located approximately 8 mi west of lower Manhattan.

5: Prior to Seton Hall, Avent played at Malcolm X Shabazz High School in Newark, New Jersey.\n The United States District Court for the
District of New Jersey is also located in the city.

6: Prior to Seton Hall, Avent played at Malcolm X Shabazz High School in Newark, New Jersey.\n On Newark Bay, it is run by the Port
Authority of New York and New Jersey and serves as the principal container ship facility for goods entering and leaving the New York
metropolitan area and the northeastern quadrant of North America.

7: He played collegiately at Seton Hall University where he played in the 1989 NCAA championship game. Prior to Seton Hall, Avent
played at Malcolm X Shabazz High School in Newark, New Jersey.\n Prior to Seton Hall, Avent played at Malcolm X Shabazz High
School in Newark, New Jersey.

8: He played collegiately at Seton Hall University where he played in the 1989 NCAA championship game. Prior to Seton Hall, Avent
played at Malcolm X Shabazz High School in Newark, New Jersey.\n The United States District Court for the District of New Jersey
is also located in the city.

9: He played collegiately at Seton Hall University where he played in the 1989 NCAA championship game. Prior to Seton Hall, Avent
played at Malcolm X Shabazz High School in Newark, New Jersey.\n As of the 202021 school year, the district, comprises 65 schools
, had an enrollment of 40,423 students and 2,886.5 classroom teachers (on an FTE basis), for a studentteacher ratio of 14.0:1.Science
Park High School, which was the 69th−ranked public high school in New Jersey out of 322 schools statewide, in New Jersey Monthly
magazine’s September 2010 cover story on the state’s ”Top Public High Schools”, after being ranked 50th in 2008 out of 316 schools.

10: Anthony Avent (born October 18, 1969) is an American former professional basketball player who was selected by the Atlanta Hawks
in the first round (15th pick overall) of the 1991 NBA draft.\n Newark is the second largest city in the New York metropolitan area,
located approximately 8 mi west of lower Manhattan.

11: Anthony Avent (born October 18, 1969) is an American former professional basketball player who was selected by the Atlanta Hawks
in the first round (15th pick overall) of the 1991 NBA draft.\n The United States District Court for the District of New Jersey is also
located in the city.

12: Anthony Avent (born October 18, 1969) is an American former professional basketball player who was selected by the Atlanta Hawks
in the first round (15th pick overall) of the 1991 NBA draft.\n Atlanta United 1, New York Red Bulls 2 The first game in Atlanta
United history was played before a sellout crowd of 55,297.

13: Anthony Avent (born October 18, 1969) is a retired American professional basketball player who was selected by the Atlanta Hawks in
the first round (15th pick overall) of the 1991 NBA Draft.\n The total school enrollment in Newark was 77,097 in the 20132017 ACS,
with nursery and preschool enrollment of 7,432, elementary/high school (K12) enrollment of 49,532, and total college/graduate school
enrollment of 20,133. The Newark Public Schools, a state−operated school district, is the largest school system in New Jersey.

14: Anthony Avent (born October 18, 1969) is a retired American professional basketball player who was selected by the Atlanta Hawks in
the first round (15th pick overall) of the 1991 NBA Draft.\n As of the 202021 school year, the district, comprises 65 schools, had an
enrollment of 40,423 students and 2,886.5 classroom teachers (on an FTE basis), for a studentteacher ratio of 14.0:1.Science Park
High School, which was the 69th−ranked public high school in New Jersey out of 322 schools statewide, in New Jersey Monthly
magazine’s September 2010 cover story on the state’s ”Top Public High Schools”, after being ranked 50th in 2008 out of 316 schools.



15: Anthony Avent (born October 18, 1969) is a retired American professional basketball player who was selected by the Atlanta Hawks in
the first round (15th pick overall) of the 1991 NBA Draft.\n In the 2013−−2017 American Community Survey, 13.6% of Newark
residents ages 25 and over had never attended high school and 12.5% didn’t graduate from high school, while 74.1% had graduated
from high school, including the 14.4% who had earned a bachelor’s degree or higher.

=========
QUESTION: Anthony Avent played basketball for a High School that is located in a city approximately 8 mi west of where?
=========
ANSWER: Please answer in less than 6 words.

Listing 5: Example of the Prompt for Grading QA.
You are an expert professor specialized in grading whether the prediction to the question is correct or not according to the real answer.
==================
For example:
==================
Question: What company owns the property of Marvel Comics?
Answer: The Walt Disney Company
Prediction: The Walt Disney Company
Return: 1
==================
Question: Which constituent college of the University of Oxford endows four professorial fellowships for sciences including chemistry and

pure mathematics?
Answer: Magdalen College
Prediction: Magdalen College.
Return: 1
==================
Question: Which year was Marvel started?
Answer: 1939
Prediction: 1200
Return: 0
==================
You are grading the following question:
Question: Anthony Avent played basketball for a High School that is located in a city approximately 8 mi west of where?
Answer: lower Manhattan
Prediction: Newark
If the prediction is correct according to the answer, return 1. Otherwise, return 0.
Return: your reply can only be one number ’0’ or ’1’


