Quant DSL Language Guide

Appropriate Software Foundation

June 24, 2011

Contents
1 Synthesis

2 Syntax
2.1 Expressions e
2.2 Marketsand Dates,
2.3 Constants e

3 Semantics
3.1 Functions of Time

4 Simulation
4.1 Proof by Induction oL

4.1.1 Market
4.1.2 Fixing
4.1.3 Settlement
414 Wait
4.1.5 Choice
4.1.6 Max

4.1.7 Addition
4.1.8 Subtraction L.
4.1.9 Multiplication oL
4.1.10 Division

5 Software
5.1 Quant Python Package

6 Future Development

Abstract

This article describes Quant DSL, a domain specific language for
quantitative analytics. Language elements are combined according to
the language syntax to form a statement of value which is evaluated

according to the language semantics. The syntax of the language is de-
fined with Backus—Naur Form. The semantics are defined with mathe-
matical expressions commonly used within quantitative analytics. The
validity of Monte Carlo simulation for all possible expressions in the
language is proven by induction. Quant DSL has been implemented in
Python as a part of the Quant software application.

1 Synthesis

Quant DSL is a domain specific language for quantitative analytics. The
value of any domain specific language consists in obtaining a declarative
syntax by which domain functionality can be invoked with potentially infi-
nite variation, so that a complex domain can be supported with relatively
simple software. Once underlying functionality has been abstracted to the
level of a domain specific language, support for a new case can be established
in a relatively short time. Because new code does not need to be written for
a new case, proliferation of code that is hard to test (and therefore expensive
to maintain) can be avoided.

Quant DSL is used to record and evaluate statements of value. It is
hoped that the elements of the Quant DSL (for example "Market", "Fixing",
"Settlement") are recognised as common terms within quantitative analyt-
ics; whilst the elements are defined fully in this article, each element may
be familiar to people who are familiar with the domain. Consequently, it
is hoped that statements of value that are written in Quant DSL will be
readable (as well as writable).

Given the infinite variation of expression in the language, it is necessary
to obtain an inductive proof of the integrity of the language for any possible
expression. Although alternative proofs may be obtained, an inductive proof
has been devised.

Quant DSL was invented during the development of the Quant Python
package. Quant is an open source application of both the SciPy Python
package (a library for scientific computation) and the Domain Model Python
package (a toolkit for enterprise applications). Recent advances in software
engineering practice (for example Martin Fowler’s patterns of enterprise ap-
plication architecture, the agile approach, or open source software) have
suggested new ways to obtain appropriate functionality. In particular, the
recent maturation of dynamic languages such as Python means the focus
of development can remain on the supported domain. Quant has benefited
from these tendencies.

Quant DSL is based on professional experience in financial institutions in
London, academic training in mathematics and mathematical engineering,
and professional experience in the architecture and development of enterprise
applications. It is hoped that Quant DSL constitutes a fresh approach to a
€comMmon concern.

2 Syntax

In Quant DSL, a statement of value is an expression in the following form.

2.1 Expressions

An expression is either a constant value, or an expected market price, or
fixes an expression to a date, or settles an expression on a date, or waits
until a date for an expression, or chooses between the two expressions, or is
the maximum (or addition or subtraction or multiplication or division) of
two expressions, or negates an expression.

<Expression> ::= <Constant>
"Market(" <MarketId> ")"
"Fixing(" <Date> "," <Expression> ")"
"Settlement(" <Date> "," <Expression> ")"
"Wait(" <Date> "," <Expression> ")"

|

|

|

|

| "Choice(" <Expression> "," <Expression> ")"
| "Max(" <Expression> "," <Expression> ")"

| <Expression> "+" <Expression>
| <Expression> "-" <Expression>
| <Expression> <Expression>
|

|

<Expression> "/" <Expression>

non

sk

<Expression>

2.2 Markets and Dates

Market identifiers are constrained in practice by the object model of the
market exchange. Dates start with a four digit year and have dashes.

<Marketld> 1= "#"<Integer>
<Date> ::= <Year>"-"<Month>"-"<Day>
<Year> 1= <Digit><Digit><Digit><Digit>
<Month> = <Digit><Digit>
<Day> ::= <Digit><Digit>

2.3 Constants

A constant is either an integer or a floating point number. A digit is a digit
in base 10.

<Constant> = <Float> | <Integer>
<Float> ::= <Integer>"."<Integer>
<Integer> ::= <Integer><Digit> | <Digit>
<Digit> — |l0" | ||1|| | "2" | |l3|| ’ l|4" | Il5|l | "6" ‘ l|7" | "8" | "9"

3 Semantics

A statement of value is evaluated at present time tg.

3.1 Functions of Time

Expression v defines a function [v](¢) from present time ¢ to a random
variable in a probability space.

[Market(i)](t) = Sie7s*(—to)=307(—t0)
[Fizing(d,)](t) = [«](d)
[Settlement(d,z)](t) = e *=D[z](t)
[Wait(d, z)](t) = [Settlement(d, Fizing(d, z))](t)
[Choice(x, y)|(t) = maz(E[[«](t)[F®)], E[[y](6)|F©)])
[Mazx(x,y)I(t) = mazx([z](2), [y](2))
[z+9](t) = [=](®) + [yl ()
[z —9l(t) = [=](®) — [yl ()
[z+9l() = [z] (O[] ()
[z/y](t) = [=](8)/Ty](?)
[-=](t) = —[=](?)
For market 4, the last price S; and volatility o; are determined using only
market price data generated before t.

Brownian motion z is used in diffusion. Constant interest rate r is used
in discounting. Expectation F is conditioned on filtration F'.

4 Simulation

A random variable is simulated with a number N of samples from its dis-
tribution. The language semantics are simulated such that for any valid
expression v, the simulated value [v],,,(t) converges in mean square and in
probability to the true value of [v](t) as the number N of paths in the
simulation goes to infinity.

4.1 Proof by Induction

The inductive hypothesis I(v) is defined to be true if and only if, for any time
t, the simulated value [v],(t) converges in mean square and in probability
to the true value [v](¢) as the number N of paths in the simulation goes to
infinity.

Below, I(v) is shown to be true for all v.

4.1.1 Market

Let ¢ reference a market price history. Let z,, be a simulatation of Brownian
motion z. Suppose I(z).

The true value [Market(i)](t) is simulated as S;evizm(i=to) =507 (t=to)

Since Brownian motion, exponentiation and multiplication by a con-
stant are continuous, the simulated value Sz-e"iz"b(t_to)_%”? (t—to) converges
in mean square and in probability to the true value Sie”iz(t_to)_%”f (t=t0) a5
the number N of paths in the simulation goes to infinity.

Thus, [Market(i)],(t) converges in mean square and in probability to
[Market(i)](t) as the number N of paths in the simulation goes to infinity.

Hence I(Market(i)).

4.1.2 Fixing

Let d be a date. Suppose I(z).

The true value [Fizing(x,d)](t) is simulated as [z],(d).

Since d is also a time, the simulated value [z],,(d) converges in mean
square and in probability to the true value [x](d) as the number N of paths
in the simulation goes to infinity.

Thus, [Fizing(x,d)]m(t) converges in mean square and in probability
to [Fixzing(z,d)](t) as the number N of paths in the simulation goes to
infinity.

Hence I(Fizing(z,d)).

4.1.3 Settlement

Let = be an expression, and d a date. Suppose I(z).

The true value [Settlement(z, d)](t) is simulated as et~ [x],,(¢).

Since e"t=9) is constant, and multiplication by a constant is continu-
ous, the simulated value ¢"*~®[z],,(d) converges in mean square and in
probability to the true value e”*~#[z](d) as the number N of paths in the
simulation goes to infinity.

Thus, [Settlement(x,d)]m(t) converges in mean square and in probabil-
ity to [Settlement(z,d)](t) as the number N of paths in the simulation goes
to infinity.

Hence I(Settlement(x,d)).

4.1.4 Wait

Let x be an expression, and d a date. Suppose I (Fizing(d,z)) and I(Settlement(d, x
The true value [Wait(x, d)](t) is simulated as [Settlement(d, Fizing(d, z))]m(t).
Since Fizing(d,z) is an expression, the simulated value converges in

mean square and in probability to [Settlement(d, Fizing(d,x))](t) as the

number N of paths in the simulation goes to infinity.

Thus, [Wait(x,d)]m(t) converges in mean square and in probability to

[Wait(z,d)](t) as the number N of paths in the simulation goes to infinity.

Hence I(Wait(z,d)).

))-

4.1.5 Choice

Let x and y be expressions. Let R = {x,y} be the alternatives for a decision
to be made at time t. Let P(r) = 0 be the immediate payoff associated
with alternative r. Let V(r) be the true continuation value associated with
alternative r, where V(z) = [z], and V(y) = [y]. Suppose I(z) and I(y).

The true value [Choice(z,y)](t) is simulated as LSM (P, V;,), where
LSM is a function which computes a single step of the Longstaff and
Schwartz least-squares monte carlo algorithm [1], where P, (z) = 0 and
P, (y) = 0, and where V,,(z) = [z]m(t) and Vi, (v) = [y]m(t).

According to Longstaff and Schwartz, the simulated value LSM (P, Vi)
converges in mean square and in probability to the true value of the maxmi-
mum over R of E[P(r) + V(r)|F(t)] as the number N of paths in the simu-
lation goes to infinity.

By substituting for R, P and V, the maxmimum over R of E[P(r) +
V() [F(t)] becomes maz(E{[z](01F (1), Elly)() F(1))).

Thus, [Choice(x,y)]m(t) converges in mean square and in probability to
the true value [Choice(x,y)](t) as the number N of paths in the simulation
goes to infinity.

Hence I(Choice(x,y)).

4.1.6 Max

Let z and y be expressions. Suppose I(z) and I(y).
The true value [Max(z,y)](t) is simulated as maz([z]m (t), [y]m (1))

Since maximisation is continuous, the simulated value max ([x] ., (t), [y]m(t))
converges in mean square and in probability to the true value max([z](t), [y] (¢)).
Thus, [Max(x,y)]m(t) converges in mean square and in probability to
[Maz(x,y)](t) as the number N of paths in the simulation goes to infinity.

Hence I(Max(x,y)).

4.1.7 Addition

Let x and y be expressions. Suppose I(z) and I(y).

The true value [z + y](¢) is simulated as [2]m(¢) + [y]m(t).

Since addition is continuous, the simulated value [z], () + [y]m(t) con-
verges in mean square and in probability to the true value [z](¢) + [y](¢).

Thus, [z4+y]m(t) converges in mean square and in probability to [x+y](t)
as the number N of paths in the simulation goes to infinity.

Hence I(z + y).

4.1.8 Subtraction

Let x and y be expressions. Suppose I(z) and I(y).

The true value [z — y](¢) is simulated as [z],,(¢t) — [y]m(t).

Since subtraction is continuous, the simulated value [x],(t) — [y]m(t)
converges in mean square and in probability to the true value [z](¢) — [y](¢).

Thus, [z—y]m(t) converges in mean square and in probability to [x—y](¢)
as the number N of paths in the simulation goes to infinity.

Hence I(x — y).

4.1.9 Multiplication

Let z and y be expressions. Suppose I(x) and I(y).

The true value [z * y](¢) is simulated as [x]m, (¢)[y]m(t).

Since multiplication is continuous, [x]m,(¢)[y]m(t) converges in mean
square and in probability to the true value [z](¢)[y](¢).

Thus, [z*y]m(t) converges in mean square and in probability to [zxy](t)
as the number N of paths in the simulation goes to infinity.

Hence I(z *y).

4.1.10 Division

Let z and y be expressions. Suppose I(z) and I(y).
Todo: Show that I(z/y).
Hence I(z/y).

5 Software

5.1 Quant Python Package

Quant DSL has been implemented within a module (quant/dsl.py) of the
Python package called Quant [2].

Quant is an application of SciPy [3] and Domain Model [4]. Quant
provides a Web user interface that allows books of trades to be defined and
evaluated with real market data. Quant can be installed on Linux platforms.

6 Future Development

Various enhancements are anticipated.
Elements to simplify common expressions, such as Option or European,
will be added soon.

[Option(d, k,z,y)|(t) = [Wait(d, Choice(x — k,y))](t)
[European(d, k,z)](t) = [Option(d,k,z,0)](t)
Many users will want to express optionality over a period of time.

[American(d, k,x)](t) = [Option(t, k, x, Option(t + 6t, k, x, Option(
t +26t,k,x,...Option(d — ot, k, z, Option(d, k, z,0))))))](¢)

Some users may wish to define new elements of the language, and so an
extension mechanism would be desirable.

Others may benefit from evaluating statements by using analytic so-
lutions instead of a Monte Carlo solution, where that would be a valid
evaluation of the statement.

Others may wish to be warned about common usage errors, for example
it should be possible to detect if a Max expression operates on expressions
which depend on the underlyings at a different present time.

Others may wish to customise the random processes applied to market
prices. Others may wish to evaluate statements with variable interest rates.
Others may wish to derive expected cash flows from the statement of value.

References

[1] Francis A. Longstaff and Eduardo S. Schwartz. Valuing american options
by simulation: A simple least-squares approach. Review of Financial
Studies, pages 113-147, 2001.

[2] Appropriate Software Foundation. Quant. Python Package Index,
(http://pypi.python.org/pypi/quant), 2011.

[3] The SciPy Community. Scipy. SciPy Website, (http://www.scipy.org),
2011.

[4] Appropriate Software Foundation. Domain model. Python Package In-
dex, (http://pypi.python.org/pypi/domainmodel), 2011.

