Source code for pytesmo.metrics

'''
Created on Apr 17, 2013

@author: Christoph Paulik christoph.paulik@geo.tuwien.ac.at
@author: Sebastian Hahn sebastian.hahn@geo.tuwien.ac.at
@author: Alexander Gruber alexander.gruber@geo.tuwien.ac.at
'''
import numpy as np
import scipy.stats as sc_stats

[docs]def bias(x, y): """Bias """ return np.mean(x) - np.mean(y)
[docs]def rmsd(x, y): """Root-mean-square deviation """ return np.sqrt(RSS(x,y) / len(x))
[docs]def nrmsd(x, y): """Normalized root-mean-square deviation """ return rmsd(x, y) / (np.max([x, y]) - np.min([x, y]))
[docs]def ubrmsd(x, y): """Unbiased root-mean-square deviation """ return np.sqrt(np.sum(((x - np.mean(x)) - (y - np.mean(y))) ** 2) / len(x))
[docs]def mse(x, y): """Mean square error (MSE) as a decomposition of the RMSD into individual error components """ MSEcorr = 2 * np.std(y) * np.std(x) * (1-sc_stats.pearsonr(x,y)[0]) MSEbias = bias(x, y)**2 MSEvar = (np.std(x) - np.std(y))**2 MSE = MSEcorr + MSEbias + MSEvar return MSE, MSEcorr, MSEbias, MSEvar
[docs]def tcol_error(x,y,z): """Triple collocation error estimate Parameters ---------- x : numpy.array 1D numpy array to calculate the errors y : numpy.array 1D numpy array to calculate the errors z : numpy.array 1D numpy array to calculate the errors Returns ------- triple collocation error for x : float triple collocation error for y : float triple collocation error for z : float """ e_x = np.sqrt(np.abs(np.mean((x-y)*(x-z)))) e_y = np.sqrt(np.abs(np.mean((y-x)*(y-z)))) e_z = np.sqrt(np.abs(np.mean((z-x)*(z-y)))) return e_x, e_y, e_z
[docs]def nash_sutcliffe(x,y): """Nash Sutcliffe model efficiency coefficient Parameters ---------- x : numpy.array 1D numpy array to calculate the metric y : numpy.array 1D numpy array to calculate the metric Returns ------- Nash Sutcliffe coefficient : float Nash Sutcliffe model efficiency coefficient """ return 1-(np.sum((x-y)**2))/(np.sum((x-np.mean(x))**2))
[docs]def RSS(x,y): """Redidual sum of squares Parameters ---------- x : numpy.array 1D numpy array to calculate the metric y : numpy.array 1D numpy array to calculate the metric Returns ------- Residual sum of squares """ return np.sum((x - y) ** 2)
[docs]def pearsonr(x,y): """ Wrapper for scipy.stats.pearsonr Parameters ---------- x : numpy.array 1D numpy array to calculate the metric y : numpy.array 1D numpy array to calculate the metric Returns ------- Pearson's r : float Pearson's correlation coefficent p-value : float 2 tailed p-value See Also -------- scipy.stats.pearsonr """ return sc_stats.pearsonr(x, y)
[docs]def spearmanr(x,y): """ Wrapper for scipy.stats.spearmanr Parameters ---------- x : numpy.array 1D numpy array to calculate the metric y : numpy.array 1D numpy array to calculate the metric Returns ------- rho : float Spearman correlation coefficient p-value : float The two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated See Also -------- scipy.stats.spearmenr """ return sc_stats.spearmanr(x, y)
[docs]def kendalltau(x,y): """ Wrapper for scipy.stats.kendalltau Parameters ---------- x : numpy.array 1D numpy array to calculate the metric y : numpy.array 1D numpy array to calculate the metric Returns ------- Kendall's tau : float The tau statistic p-value : float The two-sided p-value for a hypothesis test whose null hypothesis is an absence of association, tau = 0. See Also -------- scipy.stats.kendalltau """ return sc_stats.kendalltau(x.tolist(), y.tolist())