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Aim of this paper. This paper describes the theory of DNET (Distribution
Network Evaluation Tool) in detail. We aim to provide several analytical meth-
ods in DNET but the current version just support power loss minimization, and
so this paper also describes the theory of loss minimization only. Since this pa-
per describes assumptions, algorithms, and implementation issues in detail, it
is a bit long as you see; the readers will find the shorter paper that summarizes
our basic idea [12]. This paper does not address the usage of DNET at all; the
readers will find the usage in the README file of the DNET package.

DNET was implemented by Takeru Inoue, but its theory was developed with
many people, as seen in [12]. I would like to list their names to appreciate the
contributions: Keiji Takano, Takayuki Watanabe, Jun Kawahara, Ryo Yoshi-
naka, Akihiro Kishimoto, Koji Tsuda, Shin-ichi Minato, and Yasuhiro Hayashi.

Abstract

Network operation requires a fast and reliable reconfiguration method to
reduce resistive line losses in coordination with smart metering systems.
The loss minimization is, unfortunately, quite a complex optimization
problem, and so the research community has failed to develop any re-
configuration method that works in large-scale networks with guaranteed
optimality. This paper proposes a novel method that yields tight bounds
on the minimum loss without losing the scalability. We first derive relaxed
problems to bound the minimum loss with a feasible configuration, and
then devise several algorithms that find the bounds efficiently. These al-
gorithms rely on zero-suppressed binary decision diagrams (ZDDs), which
can handle a huge number of feasible configurations in a compressed man-
ner. We finally conduct thorough tests with promising results. A brief
discussion on distributed generators is also provided.

1 Introduction

Distribution networks, which consist of several feeders with a number of switches,
are generally operated in a radial structure under the operational constraints
such as line capacity and voltage profiles. The network structure can be recon-
figured by changing the open/closed status of the switches to reduce resistive
line losses. In a more constrained energy environment coming in the near future,
operators would be more interested in the loss minimization and consequently
in the network reconfiguration process enhancement.
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Table 1: Comparison between existing methods and our method

Optimization method Quality of solutions Scalability (# of switches)
Heuristics and metaheuristics “Good” solution without bound Thousands
Our method Relaxed solution with tight bounds Hundreds
Brute-force method Optimal solution Tens

The “smart grid” is now gathering much attention to overcome the energy
problem; distribution automation and advanced metering infrastructure are be-
ing installed in distribution management systems [29], and more switches will
be introduced for the fine grain operation. However, efficient loss minimiza-
tion methods, which are required to reconfigure the grid with many switches in
coordination with the smart metering systems, are still an imperative piece.

The loss minimization is a highly complex combinatorial, non-differentiable,
and non-linear optimization problem, due to the large number of variables
(switches in a network), and due to the non-linear characteristics of the con-
straints used to model the electrical behavior of the system [28, 6]. Moreover, the
astronomical number of solutions (feasible configurations) involved in the prob-
lem makes it very hard to solve. In recent years, several optimization methods
have been studied for this problem. Most of them rely on approximate tech-
niques like heuristics [19, 8, 4, 17, 28, 16] or metaheuristics [7, 23, 13, 11, 10, 6],
in order to reduce the computational complexity. These methods can scale
well with a large distribution network, but do not guarantee the optimality nor
give any bound on the optimal value. The brute force method proposed in
[22] guarantees the optimality, while it does not scale in a network of practical
size, which includes several hundred switches [28, 18, 13]. Optimization meth-
ods should guarantee the optimality or provide tight bounds without losing the
scalability.

This paper proposes a novel optimization method to establish tight bounds
on the minimum loss value at given load demands under the constraints of
radiality, line capacity, and voltage profiles. Our contributions are summarized
as follows.

• We relax the loss minimization problem under appropriate modeling as-
sumptions. The relaxed problems give a lower bound as well as an upper
bound with a feasible configuration. (Section 3)

• We also propose a solution method for the relaxed problems. The method
scales well by introducing zero-suppressed binary decision diagrams (ZDDs)
[20, 15], which are used to efficiently handle the huge number of configu-
rations. (Section 5)

• Our method is tested with practical distribution networks, and we show
that it provides tight bounds with acceptable scalability. (Section 6)
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Table 2: Symbols for distribution networks

D = (C, S) A distribution network
Mi = (Ci, Si) An independent component of the network
M = {M1, . . .} A set of independent components
C = {c1, . . .} A set of sections
C0 A set of root sections
Ci A set of sections in component Mi (i ≥ 1)
Cex A set of sections including extended sections
Cup
i , Cdown

i Sets of up/down-stream sections for section ci
S = {s1, . . .} A set of switches
Si A set of switches in component Mi

X ⊂ S A configuration (a set of closed switches)

Table 3: Symbols for power flows

Ii Load current of section ci
Zi = Ri + jXi Impedance (resistance and reactance) of section ci
Ji Line current of section ci
Jmax
i Line capacity of section ci
Vi Voltage magnitude at the sending end of section ci
V0 Sending voltage at the transformer
V min Lower limit of voltage magnitude
Pi Power loss on section ci
P Total power loss in the network

The features of the proposed method are compared with those of the existing
methods in Table 1.

The rest of this paper is organized as follows. Section 2 describes the loss
minimization problem, and Section 3 introduces our relaxed problems. After
briefly reviewing ZDDs in Section 4, Section 5 proposes the solution method
for the relaxed problems. Section 6 tests our method and shows the results.
Section 7 summarizes related work, and finally Section 8 concludes this paper
with discussion about distributed generators in our method.

2 Loss Minimization Problem

This section formulates the loss minimization problem. Symbols used for dis-
tribution networks and those for power flows are presented in Tables 2 and 3,
respectively.

We first describe our network model. We consider three-phase alternating
current systems, but distribution networks are represented on a per-phase basis
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Figure 1: An example of a distribution network.

Open switch

Closed switch

cI cII

c3 c4 c5

c6 c9

c7 c8

s1 s2 s2

s3 s4 s5 s5

X={s1, s3, s4}

Figure 2: An example of a configuration in the network of Fig. 1.

in this paper for simplicity. Sectionalizing and tie switches are not distinguished,
and they are just called switches. Each part of a distribution feeder with load
separated by switches or junctions is called a section. Sections that are directly
connected to a substation are called root sections; root sections are energized
in any configuration, because no switch intervenes between a root section and
a transformer in a substation. Given a status of all switches, a network con-
figuration is uniquely determined. A configuration following a radial structure
consists of tree-like feeders, and each feeder is rooted at a root section. For
a section on a feeder, sections on the same feeder is separated into upstream
sections and downstream sections.

Figure 1 shows an example of a distribution network, D = (C, S), which has
nine sections, C = {cI, cII, c3, . . . , c9}, and five switches, S = {s1, . . . , s5}. The
set of root sections, C0, includes sections cI and cII (we identify root sections by
Roman numerals). Figure 2 shows a configuration of this network. In this paper,
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we represent a configuration by a set of closed switches; the configuration in Fig.
2 is given byX = {s1, s3, s4}. This configuration has two radial feeders rooted at
the root sections; one feeder consists of sections cI, c3, c4, c6, c7, and c8, and the
other includes sections cII, c5, and c9. Sections on a same feeder are grouped into
upstream and downstream; e.g., for section cI on the feeder rooted at cI, sections
are grouped into upstream cup

I = {} and downstream cdown
I = {c3, c4, c6, c7, c8}

(cI is included in neither upstream nor downstream), and for section c7 on the
same feeder, sections are grouped into upstream Cup

7 = {cI, c6} and downstream
Cdown

7 = {c8} (sections on another branch, c3 and c4, are included in neither
upstream nor downstream sets).

We next discuss power flow. We assume that section load is represented as
constant current [11] and it is uniformly distributed on the section. If the load
is given in power, not current, load current is estimated by dividing the load
power by the sending line voltage. Line current of section ci is given by sweeping
backward to sum up downstream section loads [23], as follows,

Ji =
∑

cj∈Cdown
i

Ij + Ii. (1)

Voltage magnitude at the sending end of ci is given by,

Vi = V0 −
∑

cj∈Cup
i ∪ci

Zj

[ ∑

ck∈Cdown
j

Ik +
Ij
2

]
. (2)

Active power loss on ci is given by,

Pi = Ri|Ji|2. (3)

Finally, the loss minimization problem is formulated as follows.

minimize P =
∑

ci∈C
Pi, (4)

subject to X is a spanning rooted forest, (5)

Ji ≤ Jmax
i and Vi ≥ V min, ∀ci ∈ C. (6)

We explain the variable, objective function, and constraints below.
The variable in this problem is the open/closed status of switches. We denote

the status by a set of closed switches, X , as noted above. Given a status of all
switches, the network configuration is uniquely determined, and then we are
allowed to evaluate the objective function (4) and the constraints (5) and (6).

The objective of this problem is to minimize the total loss in the network,
which is given by (4).

The first constraint given by (5) is topological constraints, which include the
network radiality and the load connectivity. The radiality is satisfied if the
network includes no loop; this implies the network forms a forest, that is a set
of disjoint trees. The load connectivity is satisfied if the forest is spanning all
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Table 4: Accents

x? Optimal value or optimal solution in the original problem
x Upper bound, or relaxed solution for upper bound
x Lower bound, or relaxed solution for lower bound

sections and every tree is rooted at a root section (i.e., all loads are energized
from a substation). We call such a forest a spanning rooted forest in this paper.
The network configuration must be a spanning rooted forest to satisfy the topo-
logical constraints. The configuration in Fig. 2 is an example of the spanning
rooted forest. Since every load is energized through a root section for the load
connectivity, we have the following identity,

∑

ci∈C0

Ji =
∑

cj∈C
Ij . (7)

The second constraints given by (6) are electrical constraints, which include
line capacity and voltage profiles. For all sections in the network, the line current
must not exceed the capacity and the voltage magnitude must be equal to or
greater than the lower limit.

We solve this problem, given a distribution network D = (C, S), and given
load profile Ii and impedance Zi for all sections ci ∈ C.

3 Relaxed Problems

This section introduces the relaxed problems to derive upper and lower bounds
on the minimum loss. Section 3.1 discusses our assumptions under which the
relaxed problems will be discussed. Sections 3.2 and 3.3 describe the relaxed
problems for the upper bound and the lower bound, respectively. Accents used
in this paper are presented in Table 4.

3.1 Assumptions

Section load as constant current. As shown in (1), we assume section
loads are given as constant current. This assumption plays a key role in our
optimization method; we will divide objective function (4) into several term
groups called independent components, as discussed in Section 3.2. We also
assume that load current must not be negative (we will briefly discuss negative
loads to represent distributed generators).
No root switch. We assume that every switch above a root junction is closed
in the minimum loss configuration; a root junction is a junction that comes ear-
lier than any other junction from a transformer. In other words, such switches
are ignored in the loss minimization process. We then redefine a root section
as a section between a root junction and a transformer, since such a section is

6



Root junction {Junction

{

ci si

cj sj

Figure 3: An example of root junctions.

energized in any configuration under this assumption, same as the original def-
inition (it is worth noting that the neighbors of root sections are also energized
and so we will extend root sections in Section 5.1).

In Fig. 3, switches si and sj , which are above the root junctions, are assumed
to be closed. Sections ci and cj , which include these closed switches, are root
sections in the new definition. In Fig. 1, the two junctions are all root junctions.

This assumption is reasonable in the loss minimization problem as follows.
First, a section in the upstream has larger line current than another section in
the downstream, as shown in (1). In addition, since power loss is proportional
to the square of line current as in (3), the total loss in the network strongly
depends on the line current of upstream sections. Not in order to increase the
line current of any upstream sections, the loads have to be assigned to each
feeder fairly. For such fair load balancing, upstream switches are unlikely to be
open; if an upstream switch is open, neighbor feeders have to energize larger
areas, which increases the total loss.
Independent component. Following this assumption, we partition a distri-
bution network into small independent components; given a configuration of an
independent component, the power loss in the component can be determined
independently with other components. These components are obtained by di-
viding a network at root junctions. Since all components are disjoint, we have
Ci ∩ Cj = ∅ and Si ∩ Sj = ∅, for Mi,Mj ∈ M and i 6= j. Every section other
than root sections is included in a component, that is

⋂
Mi∈MCi = C \ C0.

Every switch is also included in a component, and we have
⋂
Mi∈M Si = S (we

ignore switches on root sections as noted above).
Figure 4 shows an example of independent components. The network has

two independent components; one includes sections c3, c4, and c5, and switches
s1 and s2; the other includes sections c6, c7, c8, and c9, and switches s3, s4, and
s5. Root sections, cI and cII, are not included in any component.

We are now allowed to determine the power loss in a component indepen-
dently. Since a component is connected to its outside just at root junctions,
the power comes into the component just from the root sections. The power
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Component 1

Component 2

Root sections

Power flow

cI cII

c3 c4 c5

c6

c7 c8

c9

s1 s2

s3 s4 s5

C0={cI , cII}

M1={C1 , S1}

C1={c3 , c4 , c5}

S1={s1 , s2}

M2={C2 , S2}

C2={c6 , c7 , c8 , c9}

S2={s3 , s4 , s5}

Figure 4: An example of independent components in the network of Fig. 1.

never goes out to other components so as not to create a loop (we will briefly
discuss big distributed generators that provide the power beyond the border of
components in Section 8). Therefore, given a configuration in a component, the
line current in the component is calculated by (1), and the power loss is also
determined by (3). Since a component has much fewer configurations than the
whole network does (at least we assume so), it is easier to examine all of them.

3.2 Upper Bound

The objective function given by (4) can be divided into losses in root sections
and those in components,

P =
∑

ci∈C0

Pi +
∑

Mj∈M

∑

ck∈Cj
Pk.

We ignore the terms of root sections, and relax the original problem as follows,

minimize
∑

Mj∈M

∑

ck∈Cj
Pk, (8)

subject to all constraints, (5) and (6).

We will solve this relaxed problem by utilizing the component independency in
Section 5 (i.e., losses in component Mj , that is

∑
ck∈Cj Pk, can be determined

independently).
We call the optimal solution of this relaxed problem the relaxed solution, and

denote it by X. The relaxed solution is feasible in the original problem as well,
because the both problems have the same constraints. The relaxed solution,
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therefore, gives the upper bound on the minimum loss of the whole network, as
follows,

P =
∑

ci∈C
Pi(X) ≥ P ?. (9)

It is worth noting that operators can implement this feasible configuration, X,
in their networks.

This relaxation, which ignores losses on root sections, may seem too radical,
because root sections yield large losses as discussed in Section 3.1. We, however,
believe that the relaxed problem gives a tight upper bound, because the line
current of a root section is determined by the neighbor sections whose losses are
minimized in the relaxed problem. This issue will be discussed with the tests in
Section 6.3.

3.3 Lower Bound

We modify the original objective function (4) just to include the root terms,
and replace the constraints with the identity (7). The relaxed problem is then
given by,

minimize
∑

ci∈C0

Pi, (10)

subject to identity (7).

This relaxed problem gives the lower bound of root sections. We analytically
solve this problem for Ji of ci ∈ C0, and find the relaxed solution,

J i =

∑
cj∈C Ij

Ri
∑
cj∈c0 1/Rj

.

This relaxed solution is just used to calculate the lower bound, and cannot
realized by any actual configuration in general.

The relaxed solution of this subsection gives the lower bound for root sec-
tions, while the relaxed solution of the previous problem (8) minimizes the losses
of all components. Therefore, the sum of objective values in the both relaxed
problems gives the lower bound of the whole network,

P =
∑

ci∈C0

Pi(J i) +
∑

Mj∈M

∑

ck∈Cj
Pk(X) ≤ P ?. (11)

4 Zero-suppressed Binary Decision Diagrams

This subsection reviews zero-suppressed binary decision diagrams, or ZDDs in
short. Symbols used for them are presented in Table 5.

A ZDD is a data structure that efficiently represents a family of sets; a
family means a set of sets in this paper, and it is denoted by a calligraphic
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Table 5: Symbols for ZDDs

Z = {X1, . . .} A ZDD representing a family of configurations
N = {n0, . . .} A set of ZDD nodes, which is equivalent to a ZDD
n0 The root node in a ZDD

1-arc
0-arc

n0

∩ =

s1 s1
s1

s2 s2
s2

s3 s3 s3 s3 s3

s4 s4 s4 s4 s4 s4

s5 s5 s5

n1

n2

n3 n4

n5

(a) Ztopol={{s1 , s3 , s4}, {s1 , s3 , s5}, {s1 , s4 , s5},

                     {s2 , s3 , s4}, {s2 , s3 , s5}, {s2 , s4 , s5}}

(b) Zelec={{}, {s3}, ...} (c) Zall={{s1 , s3 , s4}, {s1 , s3 , s5}, {s2 , s3 , s4}}

Figure 5: An example of ZDDs and the intersection-operation over (a) and (b).

symbol like Z . A ZDD represents a family of closed-switch sets in this paper,
since a configuration is denoted by a set of corresponding closed switches as
noted in Section 2.

A ZDD is defined as a labeled directed acyclic graph that satisfies the fol-
lowing properties. There is only one node with indegree 0, which is called the
root node of ZDD. Each node has just 2 outgoing arcs, which are labeled by 0
and 1; a node pointed by the i-arc of node n is called i-child of n. Each node is
labeled by an item of a universal set, S = {s1, . . .}, which is totally ordered as
si ≤ sj if i ≤ j. Nodes are arranged in the ascending order of the labeled items
from the root node. There are just two terminals ⊥ and >, and a path from
the root node to >-terminal represents a feasible set of items; each set includes
items at which the 1-arc is taken.

Figure 5 (a) shows a ZDD, Z topol, that represents a family of topologically
feasible configurations in the network of Fig. 1. The ZDD requires six nodes,
N = {n0, . . . , n5}, to represent the family, and these nodes are labeled by the
switches. The ZDD represents six feasible configurations, as shown in the figure;
e.g., a path of n0, n2, n4, n5, and >, represents a configuration of {s1, s3, s5}.
We see some parent-child relations in the figure; e.g., n1 is 0-child of n0. In the
rest of this paper, we omit ⊥-terminal and the corresponding arcs.

A ZDD is said to be reduced if the following two properties are satisfied;
there is no distinct nodes that have the same label, 0-child, and 1-child; there
is no node whose 1-child is ⊥-terminal. A reduced ZDD can represent a family
of sets in a compressed manner, since a part of ZDD is shared among some sets
in the family. The size of reduced ZDD, |N |, can be logarithmically smaller
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s1

s2 s2

s3 s3 s3 s3

s4 s4 s4 s4 s4 s4 s4 s4

s5 s5 s5 s5 s5 s5 s5 s5 s5 s5 s5 s5 s5 s5 s5 s5

Figure 6: An example of an unreduced ZDD of Fig. 5 (a).

than the number of sets in it. Figure 5 (a) shows a reduced ZDD whose size is
|N | = 6, while Figure 6 is an unreduced ZDD that represents the same family
with Fig. 5 (a).

Several algorithms are defined on ZDDs mainly for performing set operations.
Since the complexities depend on the size of the ZDDs other than the number
of sets in them, the operations can run very efficiently. We will use the following
algorithms in this paper.

• Intersection. Given two ZDDs that represent families Z0 and Z1, the
intersection is defined by Z0 ∩ Z1 = {X |X ∈ Z0 and X ∈ Z1} [15, p.141,
exercise 203].

• Union. Given two ZDDs that represent families Z0 and Z1, the union is
defined by Z0 ∪ Z1 = {X |X ∈ Z0 or X ∈ Z1} [15, p.141, exercise 203].

• Random sampling. Given a ZDD that represents a family of sets, Z , we
can uniformly randomly choose a set from the family [15, p.76].

• Count. Given a ZDD that represents a family of sets, Z , we can count
the number of sets in the family, [15, p.75, algorithm C].

• Reduce. Given a ZDD, it is reduced [15, pp.84–85, algorithm R].

Binary decision diagrams including ZDDs have been used to find an optimal
solution in a linear combinatorial problem [5]. A binary decision diagram is
built for each constraint separately, and then Intersection is applied to the
diagrams to get solutions satisfying all the constraints. In this paper, we also
build a ZDD separately and then use Intersection in the same manner. Figure
5 shows an example; two ZDDs, Z topol and Zelec, are built for the topological
and electrical constraints, and the intersection over them yields a ZDD of all
the constraints, that is denoted by Zall. However, the loss minimization is
non-linear combinatorial problem, and so we need to develop another solution
method that can be applied to this problem.
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cI
ex cII

ex

c4

s1 s2

c7 c8

s3 s4 s5

Cex={cI
ex, cII

ex, c4 , c7 , c8}

Cex
0 ={cI

ex, cII
ex}

Figure 7: An example of extended sections (thick lines) in the network of Fig.
1.

5 Solution Method for Relaxed Problems

This section describes a solution method that finds the relaxed solution for the
upper bound, X, which is also required to determine the lower bound. Section
5.1 offers preliminaries. Section 5.2 builds a ZDD representing topologically
feasible configurations, and Section 5.3 builds another ZDD for the electric con-
straints. Section 5.4 calculates the intersection of these ZDDs, and Section 5.5
reconstructs it to search for the relaxed solution.

5.1 Preliminaries

We define a total order between switches, which is required to build ZDDs.
Since we will calculate power loss for each component in Section 5.5, switches
in the same component must be ordered in a sequence. In addition, switches
should be ordered based on the proximity in the network, since it is well known
that the ZDD size is likely to be small if correlated items (switches) are put
closely on the ZDD. To meet these requirements, components are numbered in
the breadth-first order, and then switches in each component are also numbered
in the breadth-first order. Figure 4 gives an example of this ordering.

We next define a set of sections connected through no switch as an extended
section. Figure 7 shows an example of extended sections, cex

I and cex
II ; e.g.,

extended section cex
I consists of sections cI, c3, and c6. The set of sections

including extended ones, Cex, is also shown in the figure. Extended sections will
be used for the topological constraints, because we do not need to distinguish
sections in a same extended section when considering network topologies. We
assume that Roman and Arabic numerals are comparable, and also assume that
root extended sections have smaller numbers (subscripts) than others; i.e., i < j
for ci ∈ Cex

0 and cj ∈ Cex \ Cex
0 .
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mate[i] I

Section i I II 4 7 8

II 4 7 8

I II 4 7 8

Frontier

Reduced

I II 4 7 8

Topological constraint violated Shared Topological constraint violated

LoopNot spanning

Close s1Open s1

Open s2Close s2

I II 4 7 8

I II I 7 8

I II 4 7 8

I II 4 7 8

I II II 7 8

I II 4 7 8

I II I 7 8

I II 4 7 8

I I I 7 8

I II 4 7 8

s1

s2 s2

s3 s3 s3
s3

n0

n1

n2 n2

cI
ex cII

ex

c4

s1 s2

c7 c8

s3 s4 s5

Figure 8: An example of algorithm BuildT that builds ZDD Z topol for the
network in Fig. 1; sections represented by thick lines indicate they are energized.

5.2 ZDD for Topological Constraints

This subsection builds a ZDD, Ztopol, that represents a family of configurations
satisfying the topological constraints. Each of these configurations must be a
spanning rooted forest, as discussed in Section 2. In order to find all such
forests efficiently, we extend the algorithm proposed in [15, p.143, exercise 225];
the algorithm finds all paths between a given pair of vertices on a graph, and
builds a ZDD to represent the paths.

We describe an outline of the extended algorithm named BuildT in Fig. 8.
This figure shows a process of building the ZDD of Fig. 5 (a). In this algorithm,
a ZDD is built in a top-down manner. First, only the root node, n0, is given;
no switch has fixed its status here. Given a status of the first switch, s1, open
or closed, two nodes are created at the level of s2. Similarly, s2 chooses its
status, which yields four nodes at the level of s3. The leftmost node and the
rightmost node in this level are removed, because they violate the topological
constraints. The two center nodes in the same level are shared, since their state
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are equivalent in the following building process. In this way, BuildT will build
Ztopol, as shown in Fig. 5 (a).

In order to efficiently validate the constraints and to quickly check the node
equivalency, we introduce an array named mate1 for each node, and we define
a set of sections called frontier for each level.

• Mate of node n, n.mate[i], indicates the status of a section, ci ∈ Cex, in
the configuration represented by node n. The section status is defined as
follows.

– If n.mate[i] is an Arabic numeral, section ci is not included in any
rooted tree (ci is not energized).

– If n.mate[i] is a Roman numeral, section ci is included in the tree
rooted at section of n.mate[i] (ci is energized).

– If n.mate[i] = n.mate[j], sections ci and cj are included in a same
tree (are electrically connected), whether the tree is rooted or not
(they are energized or not).

• Frontier, F , is a set of sections on the border between fixed switches
and not-yet-fixed ones. We are allowed to focus on sections just in the
frontier when evaluating the constraints and the equivalency. This is be-
cause sections that had left the frontier have already determined their
status, and because sections that have not come to the frontier cannot
determine their status yet. The equivalency between nodes ni and nj
is denoted by ni.mate ≡ nj .mate, and it is actually checked like this;
ni.mate[k] = nj .mate[k], ∀ck ∈ F ′, where F ′ is frontier sections in the
next level. Similarly, the constraint validation is also done based on the
frontier, as will be discussed later.

Figure 8 offers the mates and the frontiers; e.g., for the root node, n0, it has
the mate of mate[i] = i for i ∈ {I, II, 4, 7, 8}, and its next level frontier is
F ′ = {cex

I , c4} as presented at node n1.
We present the complete algorithm of BuildT in Algorithm 1. BuildT first

initializes ZDD nodes in Lines 1–3. The algorithm then creates nodes for each
level in Lines 4–17 2. Finally, Algorithm Reduce is called to reduce the ZDD
at the end. We describe the node creation process in detail with the associated
algorithms.

Algorithm CloseS, which is called at Line 8 in BuildT, is given in Algo-
rithm 2. When closing switch s, the algorithm validates the topological con-
straints for given node n, and updates the mate. The validation is executed as
follows; if s’s both ends are connected electrically (the mates are equal), or they
are energized (the mates are Roman numerals), a loop is created by closing s.

1The array name, mate, comes from that the array is originally used to maintain path ends
in [15]. We did not change the name in this paper, though we focus on forests, not paths.

2We assume that a child is ⊥-terminal until any node will be assigned at Line 10. We also
assume that in the statement, if A or B, at Line 8, B is never evaluated when A is true, like
C language.
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Algorithm 1 BuildT

1: n0.mate[i]← i for each ci ∈ Cex

2: Ztopol ← {n0}
3: N ← {n0}, N ′ ← ∅ // ZDD nodes at current/next levels
4: for each sl ∈ S do // level of sl
5: for each ni ∈ N do // ni is node at current level
6: for each x ∈ {0, 1} do // ni’s 0/1-child
7: // nj is new node at next level

nj .label← sl+1, nj .mate← ni.mate
8: // If valid topology

if (x = 0 or CloseS(nj , sl)) and LeaveF(nj) then
9: // Find equiv node from N ′ to share, or use new nj

nk ← (∃n ∈ N ′ s.t. n.mate ≡ nj .mate) ? n : nj
10: ni.x child← nk // Set n’s x-child
11: N ′ ← N ′ ∪ {nk}
12: end if
13: end for
14: end for
15: Ztopol ← Ztopol ∪ {N ′}
16: N ← N ′, N ′ ← ∅
17: end for
18: Reduce(Ztopol)

For example, at the right node in the second level of Fig. 8, if s2 were closed,
a loop would be created since the both ends had been energized. If these tests
have been passed, we update the mates of frontier sections by the smaller value.

Algorithm LeaveF is called with node n to check the constraints for sections
leaving the frontier. If the section is not energized (the section’s mate is Arabic)
and the section is not connected to the frontier (no section has the same mate
value), then the constraints are violated; e.g., at the left bottom node in Fig. 8,
section c4 is no longer energized.

At Line 9 in Algorithm 1, BuildT searches for an existing node equivalent
to new node nj from the node set of next level, N ′. If the equivalent node is
found, it is set to n’s child to be shared, same as the center nodes in Fig. 8.
Otherwise, the new node, nj , is set.

Algorithm BuildT and the associated algorithms are fast and space-efficient,
because they process each switch just once and they rely on the small mate array
in the constraint validation.

5.3 ZDD for Electrical Constraints

This subsection describes several algorithms that build a ZDD, Zelec; the ZDD
represents a family of configurations satisfying the electrical constraints. Figure
9 shows an outline of the algorithm called BuildE. This algorithm first builds a
ZDD of feasible feeders for each root section by using another algorithm named
EnumF; a feasible feeder is a partial network configuration that forms a single

15



Algorithm 2 CloseS(n, s)

1: ci, cj ← s.both ends // s’s both end sections
2: if n.mate[i] = n.mate[j] or

n.mate[i] and n.mate[j] are Romans then
3: return false // Constraints violated
4: end if
5: for each ck ∈ F ′ do // Update mate just on frontier
6: n.mate[k]← Min(n.mate[i], n.mate[j])

if n.mate[k] = Max(n.mate[i], n.mate[j])
7: end for
8: return true // Constraints not violated

Algorithm 3 LeaveF(n)

1: for each ci ∈ F \ F ′ do
2: if n.mate[i] is Arabic and

∀cj ∈ F ′ s.t. n.mate[i] 6= n.mate[j] then
3: return false // Constraints violated
4: end if
5: end for
6: return true // Constraints not violated

tree satisfying the electrical constraints. BuildE, then, gives Z elec by calculat-
ing the intersection of these feeder sets for all root sections. We present details
of this algorithm in Algorithm 4.

We next describe an outline of algorithm EnumF to build a ZDD of feasible
feeders for a given root section. Figure 10 shows the algorithm running with root
section cex

2 . This algorithm enumerates feasible feeders by determining switch
status one by one. It begins with the smallest feeder, as shown at Fig. 10 (a).
A new feeder is created by closing a neighbor switch of the feeder (Fig. 10 (c)),
while the same feeder remains by opening the switch (Fig. 10 (b)). If the new
feeder is feasible, a ZDD is built for it and another neighbor switch is processed
recursively. If not feasible, the enumeration process stops. Finally, the union of
these ZDDs are calculated, as seen at the second term of Fig. 9, because Z elec

must include one of the enumerated feeders.
We discuss details of EnumF. Since EnumF is called with algorithm Bor-

der as shown in Algorithm 4, we begin with this algorithm.

Border(c0) = {s ∈ S : IsNeighbor(s, ci), ci ∈ Cex
0 \ c0}.

The argument, c0, is a root section at which feeders to be enumerated are
rooted. This algorithm finds neighbor switches of root sections other than c0.
These switches comprise the border of feasible feeders rooted at c0; the feeders
cannot beyond the border so as not to create a loop. In Fig. 10, since Border
is called with cex

2 , the border consists of s1 and s3, which are neighbor switches
of cex

1 .
We present the complete algorithm of EnumF in Algorithm 5. EnumF
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Figure 9: An example of algorithm BuildE to build ZDD Zelec for the network
of Fig. 1.

Algorithm 4 BuildE

1: Zelec ← U // U is the universal set
2: for each c ∈ Cex

0 do
3: Zelec ← Zelec∩ EnumF(∅, Border(c))
4: end for

maintains a feeder configuration, X , which is represented by a set of closed
switches. It also maintains a set of switches, S ′, that will not to be processed.
If a neighbor switch of the current feeder, s, is found at Line 2, we go on the
following process. First, s is added to switch set S ′. EnumF is then recursively
called by opening s (called with the same feeder configuration, X). We also
obtain the new feeder configuration, that is X ∪ s, by closing s. If the feeder
has a tree structure and it satisfies the electrical constraints, we build a ZDD
for the new feeder and call EnumF with the feeder recursively. We present the
feeder configuration, X , and the switch set, S ′, in Fig. 10.

Algorithm SatisfiesE ensures whether all sections in a given feeder, X ,
satisfy the electrical constraints of (6).

SatisfiesE(X) = ¬∃ci ∈ X.sections s.t. Ji(X) > Jmax
i , Vi(X) < V min

As shown in (1) and (2), line current and voltage magnitude are monotonic with
respect to section adding; i.e., the electrical constraints cannot be re-satisfied by
adding another section to the feeder, once the constraints have been unsatisfied.
This is the reason why the enumeration process can stop when the constraints
are violated.

BuildF, which is given in Algorithm 6, builds a ZDD representing a single
feeder, X . The ZDD is built in a top-down manner. If a switch, sk, is not
found in feeder configuration X , the switch can be open and 0-child is set. If
the switch is not a neighbor of feeder X , the switch can be closed and 1-child is
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Figure 10: An example of algorithm EnumF for feeders rooted at cex
2 in the

network of Fig. 1; sections represented by thick lines are energized and consti-
tute a feeder, and switches of double square indicate their statuses have been
determined.

set. We illustrate this algorithm using Fig. 10 (c). Since s1 is not found in X ,
0-child is set. Since s2 is found in X but not a neighbor, 1-child is set. Since s3

is not found in X and not a neighbor, both 0-child and 1-child are set.
Configurations included in Zelec are radial (a set of trees), but do not care

the load connectivity. This omission is rectified by calculating the intersection
with Ztopol in Section 5.4.

BuildE and its associated algorithms are quite efficient, since EnumF enu-
merates feasible configurations without duplication. Moreover, BuildE can be
easily parallelized for each root section, because it runs independently with other
root sections.
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Algorithm 5 EnumF(X,S′)
1: Z ← ∅ // ZDD for feeders
2: if s ∈ X.neighbor switches \ S′ then
3: S′ ← S′ ∪ {s} // s is not needed to be processed more
4: Z ← Z∪ EnumF(X,S′) // Open s and call recursively
5: X ← X ∪ {s} // Close s
6: if IsTree(X) and SatisfiesE(X) then
7: Z ← Z∪ BuildF(X)∪ EnumF(X,S′)
8: end if
9: end if

10: return Z

Algorithm 6 BuildF(X)

1: N ← ∅ // Set of nodes, namely, ZDD for feeder X
2: ni ← n0

3: for each sk ∈ S do
4: nj .label← sk+1 // nj is new node
5: ni.0 child← nj if sk 6∈ X
6: ni.1 child← nj if sk 6∈ X.neighbor switches
7: N ← N ∪ {ni}, ni ← nj
8: end for
9: return N

5.4 Intersection over ZDDs

This subsection builds Zall, which represents configurations satisfying all the
constraints. Since this ZDD is given as the intersection over ZDDs for each
constraint, as shown in Fig. 5, we have,

Zall = Ztopol ∩ Zelec.

5.5 Search for Relaxed Solution on ZDD

This subsection searches for the relaxed solution, X , in Zall. Figure 11 describes
an algorithm named Rebuild, which finds the relaxed solution. We introduce
weighted arcs, and add them to the ZDD as shown in Fig. 11 (b). A weighted
arc traverses a component over the ZDD, and the arc’s weight represents power
loss in the component (power loss can be determined without considering other
components, as discussed in Section 3.1). For example, the arc between nodes
n0 and n2 indicates a single configuration of component 1, that is {s2}, and
so the weight is power loss of the component with that configuration, namely,
P1({s2}). Similarly, the arc between node n3 and >-terminal is given by two
configurations {s3, s4} and {s3, s5}, and the weight is the minimum of the corre-
sponding power losses, Min(P2({s3, s4}), P2({s3, s5}). Each path from the root
node to >-terminal represents total power loss along all the components, which
is equivalent to the objective function (8). We, finally, find the relaxed solution
just by searching for the shortest path of the weighted arcs.
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Figure 11: An example of algorithm Rebuild for the network of Fig. 1.

Algorithm 7 Rebuild

1: N ← {n0} // Entry nodes of each component M
2: for each M ∈M do
3: N ← RebuildM(N,M) // Update N for next component
4: end for

We present the complete algorithm of Rebuild in Algorithm 7. This algo-
rithm just calls RebuildM for each component with entry nodes of the com-
ponent. Entry nodes are nodes that have incoming arcs from the previous
component; e.g., nodes n2 and n3 are entry nodes of component 2 (exception-
ally, the root node, n0, is the entry in component 1, though it has no incoming
arc).

RebuildM in Algorithm 8 sets the weighted arcs in a given component,
Ml. First, algorithm FindX finds all configurations in the component, and also
returns associated entry nodes of the next component; each configuration X is
found between an entry node of the current component, ni, and that of the next
component, nj . For each configuration, the power loss (weight) is calculated,
and an arc is set between the nodes with the weight if the weight is smaller
than that of the existing arc. Finally, the entry nodes of the next component
are returned. The power loss in a component, Pl in Algorithm 8, can be cached
for future use, because Zall may include several common partial configurations.
Assuming that RebuildM is called with N = {n0} and M1 in Fig. 11, the
algorithm sets weighted arcs n0–n2 with P1({s2}) and n0–n3 with P1({s1}),
and returns the entry nodes of the next component, n2 and n3.

FindX in Algorithm 9 returns all configurations that begin from a given
ZDD node, n, in component Mi. This algorithm follows n’s 0- and 1-children
recursively, and gets a configuration when getting to the next component. For
example, when this algorithm is called with n0 and M1 in Fig. 11, it returns
({s2}, n2) and ({s1}, n3).

Since the number of configurations in a component is logarithmically smaller
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Algorithm 8 RebuildM(N,Ml)

1: N ′ ← ∅ // Entry nodes of next component
2: for each ni ∈ N do
3: X ← FindX(ni,Ml, ∅) // Config’s beginning at ni in Ml

4: for each (X,nj) ∈ X do // Config and next entry node
5: N ′ ← N ′ ∪ {nj}
6: Pl ←

P
ck∈Cl Pk(X) // Power loss in Ml by X

7: // Find arc between ni and nj from Zall, or create new arc
a = FindArc(ni, nj)

8: // Set a with weight Pl in Zall

a.weight← Pl, SetArc(a) if Pl < a.weight
9: end for

10: end for
11: return N ′

Algorithm 9 FindX(n,Mi, X)

1: X ← ∅ // Configurations in Mi

2: if n.label 6∈Mi // If getting to next component
3: X ← X ∪ {(X,n.n)}
4: else
5: X ← X∪ FindX(n.0 child,Mi, X) if n.0 child 6= ⊥
6: X ← X∪ FindX(n.1 child,Mi, X ∪ {n.label})
7: end if
8: return X

than that of the whole network, all the configurations can be investigated in each
component. Moreover, we set just a single arc between a node pair, though there
can be many configurations; this greatly reduces the search space and makes
the shortest path search faster. Power loss calculation in a component can be
cached to avoid duplicated calculation.

6 Tests and Results

In this section, the proposed method is tested with hypothetical distribution
networks. Section 6.1 describes the hypothetical networks and Section 6.2 shows
our implementation. Section 6.3 discusses the quality of solutions to evaluate the
relaxed problems introduced in Section 3. Section 6.4 examines the scalability
of our solution method proposed in Section 5.

The test criteria are the quality and scalability, as presented in Table 1.
For the quality, the proposed method is compared with a brute force method,
which guarantees the optimality, while it is not compared with heuristics and
metaheuristics because they have no guarantee on the quality. In terms of the
scalability, computation time and memory usage are examined with networks of
various sizes. We discuss the scalability of the proposed method as well as the
brute force method, but do not evaluate that of heuristics and metaheuristics
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Table 6: Specification of test network used

# of distribution substations 4
# of feeders 72
# of switches 468
# of sections 648
Total load,

∑
C I 287 MW at 2 p.m., and 113 MW at 4 a.m.

Line capacity, Jmax 300 A
Sending line voltage, V0 6.6 kV
Minimum voltage, V min 6.3 kV

since they are confirmed scalable enough.

6.1 Test Networks

The hypothetical network used in the tests has been developed based on actual
distribution systems and load profiles provided by a large utility in Japan3; we
call this data the Fukui-TEPCO network and it is publicly available online [3].
The network has four distribution substations, 72 feeders, and 468 switches. The
network is divided into 63 independent components. The number of switches in
a component is 7.43 on average, while the minimum and maximum are 3 and 20,
respectively. We have hourly load profiles on a summer day, and the peak load
(2 p.m.) and the bottom load (4 a.m.) were used in the tests. The specification
of the network is summarized in Table 6.

To evaluate the scalability, we scaled down the test network while honoring
its structure by selecting successive feeders; networks with 20, 39, 59, 78, 99,
118, 235, 352, and 468 switches were used in the tests.

6.2 Implementation

We developed software that implements our method described in Section 5. The
topological constraints described in Section 5.2 and the intersection in Section
5.4 are written in C++, and others are written in Python; the Python code is the
DNET, while the C++ code is fukashigi combinatorial problem solver (fukashigi
will be available publicly online, but currently it is shipped with DNET).

We also implemented a brute force method for the comparison, but the
implementation does not follow [22] since it supports direct current only.

The tests were conducted on a single computer with Intel Xeon CPU E31290
(3.60 GHz ×4).

3There are some benchmark networks provided online, but they could not used for our
tests. IEEE power and energy society [1] and North Dakota State University [2] offer many
benchmark networks, but their networks have too few switches to evaluate the scalability.
Other benchmark networks used in [31] are unavailable due to linkrot.
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Figure 12: Relative power loss.

6.3 Quality of Solutions

This subsection evaluates the quality of solutions. The proposed method yields
the upper bound, P , and the lower bound, P , on the minimum loss, while the
brute force method found truly minimum loss, P ?.

We evaluate these bounds with the true minimum in Fig. 12. The figure
plots ratios between upper and lower bounds, P/P , in the left, as well as ratios
between an upper bound and a true minimum, P/P ?, in the right. The gap
between the lower and upper bounds is less than 1.56 %, and so we can say that
the minimum loss is tightly bounded from above and below by the proposed
method. Moreover, the upper bounds are consistent with the true minima in
six of eight plots, and the gap is only 0.0225 % at most. The true minima could
be found just in networks with up to 78 switches, due to the lack of scalability
of the brute force method as will be discussed in Section 6.4. It is worth noting
that the gap between the lower and upper bounds is often larger at 4 a.m. than
at 2 p.m.. This is because the load is less uniformly distributed among feeders
at 4 a.m., and the lower bounds are derived ignoring this un-uniformity while
the upper bounds are affected by it.

Figure 13 shows the loss in root sections over the total loss, namely,
∑
ci∈C0

P i/P .
We see that the root loss accounts for a large part of the total, that is nearly 30
%. We removed the root loss from the objective function in the relaxed problem
for the upper bound, but the upper bounds show good consistency with the true
minima in Fig. 12. This result implies that the loss in root sections is strongly
correlated with that in component sections as we discussed in Section 3.2. The
root loss at 2 p.m. covers a larger part compared to 4 a.m., because the load is
mainly placed near substations at 2 p.m. in our load profiles.

We estimate cumulative distribution functions of power loss in the network
with 468 switches, and present it in Fig. 14. These distributions are drawn
by randomly choosing 1,000 configurations from Zall using algorithm Random
sampling. The figure also shows the upper and lower bounds, P and P , pro-
vided by the proposed method. We see that both bounds are much better than
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other configurations and the bounds are very close to each other.
We conclude that the relaxed problems introduced in Sections 3.2 and 3.3

yield bounds of good quality. Operators are allowed to reduce the power loss by
implementing the relaxed solution, X, in their network, since the upper bound
is expected to be very close to the true minimum.

6.4 Scalability

This subsection evaluates the scalability. We first examine the computation
time, and then discuss the memory usage4.

Figure 15 shows the computation time of the proposed method and that of
the brute force method. The proposed method finishes the optimization less
than an hour even in the network with 468 switches, while the brute force
method takes several hours in much smaller network (it takes 1013 years for 468

4Since this experiments were conducted with the former version of DNET written in Perl,
the results are slightly different with the Python DNET.
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switches estimated by simple extrapolation). The result shows that our method
scales well in the network of practical size.

Figure 16 shows the computation time required by each process described
in Sections 5.2–5.5. Since the network at 4 a.m. has more electrically feasible
configurations because of the smaller load, the total computation time is gov-
erned by the enumeration of these configurations. In the network at 2 p.m.,
since the ZDD structure is more complicated as discussed later, the final search
process becomes significant. We then examine these processes in more detail.
The computation time for the electrical constraints is mainly covered by algo-
rithm EnumF in the both load profiles. The search process is split roughly in
half between algorithm Rebuild and shortest path search. The cache hit ratio
in RebuildM is given in Fig. 17; e.g., 99.9 % (5,704,593 in 5,715,906) of loss
calculation is skipped in the network with 468 switches at 2 p.m. thanks to the
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cache.
The poor scalability of the brute force method, shown in Fig. 15, is caused by

the exponential explosion of configurations. Figure 18 shows the number of con-
figurations that satisfy all the constraints or the topological constraints; these
numbers are determined by algorithm Count. Since there are an astronomical
number of feasible configurations, it is impossible to find the optimum value
among them in a brute force manner. The network at 4 a.m. has more feasible
configurations than that at 2 p.m., because it is less constrained electrically as
mentioned above.

We next discuss the memory usage of proposed method. Figure 19 shows
the size of Zall, which is defined as the number of nodes in it as noted in Section
4. The size is significantly smaller than the number of configurations due to the
reduction operation described in Section 4. As mentioned above, configurations
are less constrained electrically at 4 a.m., and so the ZDD structure is quite
similar to Ztopol. On the contrary, the network has strong electrical constraints
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at 2 p.m., and so the ZDD requires more complicated structure. Nonetheless,
the memory usage is quite moderate even at 2 p.m. Since a single ZDD node
requires about 32 bytes in the C++ implementation, the ZDD for the network
of 468 switches can be stored in memory of about 100 MB and 100 KB for 2
p.m. and 4 a.m., respectively. The Python implementation requires more bytes
due to the weighted arcs as well as Python interpreter, but it is still acceptable.
Since we set just a single weighted arc between a pair of nodes as mentioned in
Section 5.5, the search space is reduced by 91.9 % (5,252,892 of 5,715,906 arcs
are eliminated) in the network with 468 switches at 2 p.m. The reduction ratio
is shown in Fig. 20.

7 Related Work

7.1 Heuristics

Distribution network reconfiguration for the loss reduction was first studied
in [19]. The method used is called the sequential switch opening, and it was
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followed by [28, 16]. In this method, all switches are closed in the initial state,
and then they are opened sequentially to restore to the radial configuration.
The branch exchange is another heuristic method [8, 4, 17]; the opening of any
switch is required to correspond to the closure of another switch, ensuring that
the radial structure would be preserved. The branch exchange heuristic was also
used in conjunction with another method to improve the efficiency [26]. These
heuristics have great scalability, but they do not guarantee the optimality of
solutions nor give any bound.

7.2 Metaheuristics

Several metaheuristics are applied to the loss minimization problem. Simulated
annealing has been applied in [7, 13]. Genetic algorithms and tabu search were
used in [23, 10, 6] and in [11], respectively. As is the case in the heuristic
methods, they scale well without proving the optimality.

7.3 Methods with Guaranteed Optimality

A brute force method [22] evaluates all feasible configurations and finds the
minimum loss configuration. This method guarantees the optimal solution, but
it compromises the scalability; the method cannot be used in a network of prac-
tical size, due to the exponential growth of the number of feasible configurations
as shown in Section 6.4.

There are some papers that address the optimality or bounds. In [27], the
loss minimization problem is relaxed to the linear programming, which guaran-
tees the optimality, but the solution obtained is compromised without bound
by the relaxation. Reference [18], which introduced a greedy search with back-
tracking, mentions that it provides the lower bound, but we cannot evaluate the
bound since it shows no derivation and no test result.

7.4 Others

In addition to the reconfiguration, capacitor control is also used for the loss
minimization [14, 32]. It is, however, not economically justified often [25].

The loss minimization problem can be extended by introducing other objec-
tives. Multiple objectives including loss minimization are evaluated at a time
by using the fuzzy set theory [9]. Reference [30] minimizes energy loss for a
given period, instead of minimizing power loss at a given moment. The impact
of distributed generators on the reconfiguration was studied in [11, 24, 21, 29].
We believe that our proposal gives a solid basis to these extensions.

8 Conclusions

This paper proposed a scalable network reconfiguration method that yields tight
bounds on the minimum loss. We first derived the relaxed problems for the
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bounds under the appropriate modeling assumptions. We then devised several
algorithms that search for the bounds without losing the scalability. These al-
gorithms take advantage of the ZDD’s great efficiency to handle a huge number
of configurations. The method was tested with the practical distribution net-
works. The minimum loss was tightly bounded by a gap of about 1 % with a
computation time of a few tens of minutes for the network with 468 switches.

We briefly discuss the impact of distributed generators on our method. Dis-
tributed generators are often regarded as negative loads in distribution systems
[21]. In our method, small distributed generators can be treated in a same
manner, but big generators, which provide large power enough to feed neighbor
components, cannot be handled in the same way as discussed in Section 3.1.
Instead of introducing negative loads, such a big generator should be treated
as a substation transformer, and the network would be divided into smaller
components according to it. The refinement of this issue is our future work.

Future work also includes tests with actual distribution systems operated by
a utility, as well as comparison with heuristics and metaheuristics.
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