
8/22/18, 1'39 PMfortran extensions on OSX, issue with defining LDFLAGS · Issue #7427 · numpy/numpy

Page 1 of 3https://github.com/numpy/numpy/issues/7427

numpy / numpy

Assignees

No one assigned

Labels

Projects

None yet

Milestone

1.16.0 release

5 participants

fortran extensions on OSX, issue with defining LDFLAGS
#7427

 Closed ddale opened this issue on Mar 17, 2016 · 8 comments

New issue

01 - Enhancement

Proposal

component: numpy.distutils

Notifications

ddale commented on Mar 17, 2016

I ran into a problem while trying to build a conda package (https://github.com/praxes/hedm-conda-
recipes/tree/master/imaged11) for a project with fortran extensions. python	setup.py	build works fine,
but if`conda build`` simply invokes that same command, I get a string of errors about f2py not finding
python symbols:

[...]
compiling	Fortran	sources
Fortran	f77	compiler:	/Users/darren/.conda/envs/_build/bin/gfortran	-Wall	-g	-ffixed-form	-fno-
second-underscore	-arch	x86_64	-fPIC	-O3	-funroll-loops
Fortran	f90	compiler:	/Users/darren/.conda/envs/_build/bin/gfortran	-fopenmp	-O2	-arch	x86_64	-
fPIC	-O3	-funroll-loops
Fortran	fix	compiler:	/Users/darren/.conda/envs/_build/bin/gfortran	-Wall	-g	-ffixed-form	-fno-
second-underscore	-fopenmp	-O2	-arch	x86_64	-fPIC	-O3	-funroll-loops
creating	build/temp.macosx-10.5-x86_64-2.7/fsrc
compile	options:	'-Ibuild/src.macosx-10.5-x86_64-2.7	-
I/Users/darren/.conda/envs/_build/lib/python2.7/site-packages/numpy/core/include	-
I/Users/darren/.conda/envs/_build/include/python2.7	-c'
gfortran:f90:	fsrc/fImageD11.f90
/Users/darren/.conda/envs/_build/bin/gfortran	-Wall	-g	-Wl,-
rpath,/Users/darren/.conda/envs/_build/lib	-arch	x86_64	build/temp.macosx-10.5-x86_64-
2.7/build/src.macosx-10.5-x86_64-2.7/fImageD11module.o	build/temp.macosx-10.5-x86_64-
2.7/build/src.macosx-10.5-x86_64-2.7/fortranobject.o	build/temp.macosx-10.5-x86_64-
2.7/fsrc/fImageD11.o	-L/Users/darren/.conda/envs/_build/lib/gcc/x86_64-apple-darwin11.4.2/4.8.5	
-L/Users/darren/.conda/envs/_build/lib	-lgomp	-lpthread	-lgfortran	-o	build/lib.macosx-10.5-
x86_64-2.7/ImageD11/fImageD11.so
Undefined	symbols	for	architecture	x86_64:
		"_PyArg_ParseTupleAndKeywords",	referenced	from:
						_f2py_rout_fImageD11_compute_xlylzl	in	fImageD11module.o
						_f2py_rout_fImageD11_assign	in	fImageD11module.o
						_f2py_rout_fImageD11_compute_gv	in	fImageD11module.o
		"_PyCObject_AsVoidPtr",	referenced	from:
						_initfImageD11	in	fImageD11module.o
						_F2PyCapsule_AsVoidPtr	in	fortranobject.o
		"_PyCObject_FromVoidPtr",	referenced	from:
						_fortran_getattr	in	fortranobject.o
						_F2PyCapsule_FromVoidPtr	in	fortranobject.o
[...]

What I found was that conda	build defines LDFLAGS=	-Wl,-rpath,/Users/darren/.conda/envs/_build/lib
-arch	x86_64 , and if I unset	LDFLAGS in my conda recipe's build script, the package will compile. I asked
about it on the conda mailing list, and someone replied that it appears f2py does not extend user-
defined LDFLAGS, but instead let's user-defined LDFLAGS overwrite its own
(https://lists.macosforge.org/pipermail/macports-users/2010-November/022574.html), which on osx
include "-undefined dynamic_lookup -bundle". As it stands, it appears that anyone who needs to build a
conda package on osx that includes fortran extensions will have to add the following to their build
scripts:

Contributor

https://github.com/numpy
https://github.com/numpy/numpy
https://github.com/ddale
https://github.com/rgommers
https://github.com/isuruf
https://github.com/pv
https://github.com/charris
https://github.com/numpy/numpy/milestone/58
https://github.com/ddale
https://github.com/numpy/numpy/issues/new
https://github.com/numpy/numpy/labels/01%20-%20Enhancement
https://github.com/numpy/numpy/labels/Proposal
https://github.com/numpy/numpy/labels/component%3A%20numpy.distutils
https://github.com/ddale
https://github.com/ddale
https://github.com/praxes/hedm-conda-recipes/tree/master/imaged11
https://lists.macosforge.org/pipermail/macports-users/2010-November/022574.html

8/22/18, 1'39 PMfortran extensions on OSX, issue with defining LDFLAGS · Issue #7427 · numpy/numpy

Page 2 of 3https://github.com/numpy/numpy/issues/7427

LDFLAGS="$LDFLAGS	-undefined	dynamic_lookup	-bundle"

Could f2py or numpy distutils extend user's LDFLAGS with these required settings?

!

 1

 charris added 01 - Enhancement component: numpy.fft Proposal labels on Mar 17, 2016

rgommers commented on Mar 17, 2016

This is known numpy.distutils behavior for as long as I can remember.

Some digging would be needed to figure out why it was chosen to implement things this way. I can
imagine there are usecases where one needs to get rid of something that numpy.distutils or
distutils adds by default.

Member

ddale commented on Mar 17, 2016

Maybe a warning would be in order then, advising that if one is going to define their own LDFLAGS, it is
highly advisable to include x, y, and z.

Contributor

 rgommers added component: numpy.distutils and removed component: numpy.fft labels
on Jul 5, 2016

 Closed

 wlattner referenced this issue on Jul 19, 2016

ENH: add conda recipe #4

 Closed

 isuruf referenced this issue on Nov 15, 2017

Scipy build failures with PREFIX on include / library path #76

isuruf commented on Jul 7

This is a really annoying behaviour, we see in conda-forge. Would you accept a patch to fix this?

I can imagine there are usecases where one needs to get rid of something that numpy.distutils or
distutils adds by default.

Appending is the normal behaviour for C extensions, so why not Fortran?

Contributor

isuruf commented on Jul 7

Also flags for linker_so and linker_exe are both overriden by the same flag LDFLAGS , which makes it
impossible to have extra LDFLAGS since they need different sets of flags.

Contributor

 Merged

 isuruf referenced this issue on Jul 7

Fix numpy distutils ldflags overriding behaviour #89
3 of 4 tasks complete

https://github.com/charris
https://github.com/numpy/numpy/labels/01%20-%20Enhancement
https://github.com/numpy/numpy/labels/component%3A%20numpy.fft
https://github.com/numpy/numpy/labels/Proposal
https://github.com/charris
https://github.com/rgommers
https://github.com/rgommers
https://github.com/ddale
https://github.com/ddale
https://github.com/rgommers
https://github.com/numpy/numpy/labels/component%3A%20numpy.distutils
https://github.com/numpy/numpy/labels/component%3A%20numpy.fft
https://github.com/rgommers
https://github.com/wlattner
https://github.com/wlattner
https://github.com/civisanalytics/python-glmnet/pull/4
https://github.com/isuruf
https://github.com/isuruf
https://github.com/matthew-brett/multibuild/issues/76
https://github.com/isuruf
https://github.com/isuruf
https://github.com/isuruf
https://github.com/isuruf
https://github.com/isuruf
https://github.com/isuruf
https://github.com/conda-forge/numpy-feedstock/pull/89

8/22/18, 1'39 PMfortran extensions on OSX, issue with defining LDFLAGS · Issue #7427 · numpy/numpy

Page 3 of 3https://github.com/numpy/numpy/issues/7427

rgommers commented on Jul 7

This is a really annoying behaviour, we see in conda-forge. Would you accept a patch to fix this?

I'm a little hesitant here, because it will break existing build automation for people who use LDFLAGS
now. So this will need discussion on the mailing list.

Question: is it just annoying, or does it actually prevent some things you want to do?

Also flags for linker_so and linker_exe are both overriden by the same flag LDFLAGS, which makes
it impossible to have extra LDFLAGS since they need different sets of flags.

This seems possible to change without backwards compatibility issues, by introducing some new
envvars.

Member

pv commented on Jul 7

As a workaround, NPY_DISTUTILS_APPEND_FLAGS=1 env var could be a
backward-compatible option (or at least would offer time for
deprecation)...

Member

isuruf commented on Jul 7

Question: is it just annoying, or does it actually prevent some things you want to do?

At conda-forge, we set some LDFLAGS for external libraries to be found (-L$PREFIX/lib) and flags like
-headerpad_max_install_names . This is done for all packages using compilers, not just python packages.

Flags in LDFLAGS env var is meant to be appended in every other build system including python's
distutils, so that's why conda-forge sets it.

Contributor

!

 1

rgommers commented on Jul 7

As a workaround, NPY_DISTUTILS_APPEND_FLAGS=1 env var could be a backward-compatible
option (or at least would offer time for deprecation)...

That makes sense to me. Then we could add some noisy warnings if it's not set, and we'd be in no
hurry to finally flip the switch, maybe leave that for 2.0 or 4-5 releases.

Member

 Merged

 isuruf referenced this issue on Jul 7

Append *FLAGS instead of overriding #11525

 rgommers closed this in #11525 on Jul 14

 rgommers added this to the 1.16.0 release milestone on Jul 14

https://github.com/rgommers
https://github.com/rgommers
https://github.com/pv
https://github.com/pv
https://github.com/isuruf
https://github.com/isuruf
https://github.com/rgommers
https://github.com/rgommers
https://github.com/isuruf
https://github.com/isuruf
https://github.com/numpy/numpy/pull/11525
https://github.com/rgommers
https://github.com/rgommers
https://github.com/numpy/numpy/pull/11525
https://github.com/rgommers
https://github.com/rgommers
https://github.com/numpy/numpy/milestone/58

