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Abstract. Nowadays, micro-mobility sharing systems have become extremely popular. Such systems consist in fleets of dockless
electric vehicles which are deployed in cities, and used by citizens to move in a more ecological and flexible way. Unfortunately,
one of the issues related to such technologies is its intrinsic load imbalance, since users can pick up and drop off the electric
vehicles where they prefer.

In this paper we present ESB-DQN, a multi-agent system for E-Scooter Balancing (ESB) based on Deep Reinforcement
Learning where agents are implemented as Deep Q-Networks (DQN). ESB-DQN offers suggestions to pick or return e-scooters
in order to make the fleet usage and sharing as balanced as possible, still ensuring that the original plans of the user undergo only
minor changes.

The main contributions of this paper include a careful analysis of the state of the art, an innovative customer-oriented rebal-
ancing strategy, the integration of state-of-the-art libraries for deep Reinforcement Learning into the existing ODySSEUS sim-
ulator of mobility sharing systems, and preliminary but promising experiments that suggest that our approach is worth further
exploration.
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1. Introduction

The adoption of Electric Vehicles (EV) has been
constantly growing in the last few years and this trend
is expected to accelerate exponentially. From the anal-
ysis of the electric vehicle market growth across U.S.
cities published in September 2021, it turns out that

The electric vehicle market in the United States

has grown from a few thousand vehicles in 2010

to more than 315 thousand vehicles sold annually

from 2018 to 2020. In 2020, the electric share of

new vehicle sales was approximately 2.4%, an in-

crease from about 2% in 2019 [4].

Similar figures, at a global scale, are reported in
Global EV Outlook issued in April 2021 by the Inter-
national Energy Agency, IEA1.

While these reports deal with any kind of electric ve-
hicles including cars and public transportation means,
lightweight two-wheels vehicles play a very important
role in boosting the green trend by changing the way
we conceive mobility in our cities.

As reported in the SLOCAT Transport and Climate
Change Global Status Report 2nd Edition published in
June 20212,

1
https://www.iea.org/reports/

global-ev-outlook-2021, accessed on January 10th, 2022.
2
https://tcc-gsr.com/, accessed on January 10th, 2022.
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Fig. 5. Example of sentences that can be used inside DialogFlow to train the chatbot to answer questions related with the boundaries of the
e-scooter operational zone, and with possibility to lend the rented e-scooter.
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Appendix: Configuration of the simulator
parameters and short user’s guide

ESB-DQN repository on GitHub

https://github.com/DiTo97/odysseus-

escooter-dqn

Input parameters

Input parameters take into account both simulation
parameters of the ODySSEUS environment and pa-
rameters for the training/test of the Rainbow agents.

Simulation parameters

Simulation parameters can be found in the folder
esbdqn\configs\escooter_mobility under
the name sim_conf_<City>.py with identical
structure. Each file comprises two Python objects,
named General and Multiple_runs.

General object

– city, name of the city, either Louisville or
Austin;

– relocation_workers_working_hours,
shift hours for relocation workers;

– bin_side_length, side length of the square
zones each operative area is split into;

– year, year of the trip requests to consider;
– month_start, month_end, start and end of

the month of the trip requests to consider;
– day_start, day_end, start and end of the day

of the trip requests to consider;
– save_history, whether to save the results

CSV after each iteration.

Multiple_runs object

– n_vehicles, number of vehicles to spawn in
the environment;

– incentive_willingness, acceptance prob-
ability for each incentive proposal;

– beta, battery capacity;
– alpha, threshold on the battery level to mark ve-

hicles as out-of-charge in percentage between 0
and beta;

– battery_swap, toggle for battery swap events
in the environment, either True or False;

– n_workers, number of battery swap workers;
– battery_swap_capacity, maximum num-

ber of vehicles each battery swap worker can pro-
cess hourly;

– scooter_relocation, toggle for relocation
events in the environment, either True or False;

– n_relocation_workers, number of reloca-
tion workers;

– relocation_capacity, maximum number
of vehicles each relocation worker can move
hourly;

All the parameters that have not been modified or are
unused with respect to the original ODySSEUS simu-
lator have been omitted here.



G. Losapio et al. / Smart Balancing of E-scooter Sharing Systems via Deep RL:A Preliminary Study 19

Agents parameters

Agents parameters can be found in the file esbdqn\-
train.py. Also, they can be submitted at runtime
when launching esbdqn\train.py via CLI.

– learning_rate, learning rate of the Adam
optimizer;

– learn_period, learning period of the Rain-
bow agents;

– batch_size, batch size of the networks with-
ing the agents;

– n_steps, how many steps to look in the past
when agents take decisions;

– max_global_grad_norm, global gradient
norm clipping of the networks weights;

– importance_sampling_exponent_be-

gin_value (and similar parameter with end-

_value), range of the importance sampling ex-
ponent;

– replay_capacity, experience replay buffer
capacity. Should amount to about 30 repetitions
of any given day;

– priority_exponent, priority of the timesteps
stored in the experience replay buffer;

– target_network_update_period, update
period from the online network to the offline net-
work within each agent;

– num_iterations, number of training itera-
tions;

– max_steps_per_episode, number of trips
per episode;

– num_eval_frames, total number of validation
trips per iteration;

– num_train_frames, total number of training
trips per iteration (should be at least double the
validation trips);

– n_lives, total number of lives per iteration; de-
faults is 50.

Experiment parameters

Each call of esbdqn\train.py can be named as
a different experiment with its own checkpoints.

– exp_name, name of the experiment directory;
– checkpoint, toggle on whether to store a

checkpoint, either True or False;
– checkpoint_period, period of storage of a

new training checkpoint.
Output

Run esbdqn\train.py to train a new ESB-
DQN model from scratch. Otherwise, to train starting
from a checkpoint, set the checkpoint toggle to True,
and ensure that there is a checkpoint within the exper-
iment directory in the form: <Experiment_dir>
\models\ODySSEUS-<City>.

Results of each run will be stored as CSV files
within the automatically generated directory <Expe-
riment_dir> \results.

To reproduce the experiments in the paper:

1. Set incentive_willingness to 0 to obtain
all the No incentives data.

2. Set incentive_willingness to 1 and track
the columns eval_avg_pct_satisfied_de-
mand and train_avg_pct_satisfied_de-
mand from the CSV files for the Validation and
Training data, respectively.

All our experiments have been run on Ubuntu 18.04.


