refractivity

All data and methods for estimating a chemical’s refractivity.

thermosteam.properties.refractivity.refractive_index(CASRN, T=None, AvailableMethods=False, Method=None, full_info=True)[source]

This function handles the retrieval of a chemical’s refractive index. Lookup is based on CASRNs. Will automatically select a data source to use if no Method is provided; returns None if the data is not available.

Function has data for approximately 4500 chemicals.

Parameters

CASRN (string) – CASRN [-]

Returns

  • RI (float) – Refractive Index on the Na D line, [-]

  • T (float, only returned if full_info == True) – Temperature at which refractive index reading was made

  • methods (list, only returned if AvailableMethods == True) – List of methods which can be used to obtain RI with the given inputs

Other Parameters
  • Method (string, optional) – A string for the method name to use, as defined by constants in RI_methods

  • AvailableMethods (bool, optional) – If True, function will determine which methods can be used to obtain RI for the desired chemical, and will return methods instead of RI

  • full_info (bool, optional) – If True, function will return the temperature at which the refractive index reading was made

Notes

Only one source is available in this function. It is:

  • ‘CRC’, a compillation of Organic RI data in [1]_.

Examples

>>> refractive_index(CASRN='64-17-5')
(1.3611, 293.15)

References

1

Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014.

thermosteam.properties.refractivity.polarizability_from_RI(RI, Vm)[source]

Returns the polarizability of a fluid given its molar volume and refractive index.

\[\alpha = \left(\frac{3}{4\pi N_A}\right) \left(\frac{n^2-1}{n^2+2}\right)V_m\]
Parameters
  • RI (float) – Refractive Index on Na D line, [-]

  • Vm (float) – Molar volume of fluid, [m^3/mol]

Returns

alpha – Polarizability [m^3]

Return type

float

Notes

This Lorentz-Lorentz-expression is most correct when van der Waals interactions dominate. Alternate conversions have been suggested. This is often expressed in units of cm^3 or Angstrom^3. To convert to these units, multiply by 1E9 or 1E30 respectively.

Examples

>>> polarizability_from_RI(1.3611, 5.8676E-5)
5.147658123614415e-30

References

1

Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M. Vargas. “A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons.” International Journal of Thermophysics 37, no. 7 (June 6, 2016): 1-24. doi:10.1007/s10765-016-2075-8.

thermosteam.properties.refractivity.molar_refractivity_from_RI(RI, Vm)[source]

Returns the molar refractivity of a fluid given its molar volume and refractive index.

\[R_m = \left(\frac{n^2-1}{n^2+2}\right)V_m\]
Parameters
  • RI (float) – Refractive Index on Na D line, [-]

  • Vm (float) – Molar volume of fluid, [m^3/mol]

Returns

Rm – Molar refractivity [m^3/mol]

Return type

float

Notes

Examples

>>> molar_refractivity_from_RI(1.3611, 5.8676E-5)
1.2985217089649597e-05

References

1

Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M. Vargas. “A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons.” International Journal of Thermophysics 37, no. 7 (June 6, 2016): 1-24. doi:10.1007/s10765-016-2075-8.

thermosteam.properties.refractivity.RI_from_molar_refractivity(Rm, Vm)[source]

Returns the refractive index of a fluid given its molar volume and molar refractivity.

\[RI = \sqrt{\frac{-2R_m - V_m}{R_m-V_m}}\]
Parameters
  • Rm (float) – Molar refractivity [m^3/mol]

  • Vm (float) – Molar volume of fluid, [m^3/mol]

Returns

RI – Refractive Index on Na D line, [-]

Return type

float

Notes

Examples

>>> RI_from_molar_refractivity(1.2985e-5, 5.8676E-5)
1.3610932757685672

References

1

Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M. Vargas. “A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons.” International Journal of Thermophysics 37, no. 7 (June 6, 2016): 1-24. doi:10.1007/s10765-016-2075-8.