Module xtuples
Expand source code
# ---------------------------------------------------------------
import json
import abc
import typing
import dataclasses
import collections
import operator
import itertools
import functools
# ---------------------------------------------------------------
# NOTE: at worst, not worse, than an un-optimised canonical solution
# where I cribbed from the itertools recipes (and other python docs), all credit to the original authors.
# where i didn't, i probably should have.
# ---------------------------------------------------------------
REGISTRY = {}
# ---------------------------------------------------------------
# TODO: some kind of validation placeholder?
# called in init, eg. quarter in [1 .. 4]
class nTuple(abc.ABC):
@abc.abstractmethod
def __abstract__(self):
# NOTE: here to prevent initialise instances of this
# but rather use the decorator and typing.NamedTuple
return
@staticmethod
def pipe(obj, f, *args, **kwargs):
return f(obj, *args, **kwargs)
@staticmethod
def partial(obj, f, *args, **kwargs):
return functools.partial(f, obj, *args, **kwargs)
@classmethod
def is_subclass(cls, t):
"""
>>> nTuple.is_subclass(tuple)
False
>>> nTuple.is_subclass(Example(1, "a"))
False
>>> nTuple.is_subclass(Example)
True
"""
try:
is_sub = issubclass(t, tuple)
except:
is_sub = False
return (
is_sub and
hasattr(t, "cls") and
hasattr(t, "pipe") and
hasattr(t, "partial")
)
@classmethod
def is_instance(cls, obj):
"""
>>> nTuple.is_instance(tuple)
False
>>> nTuple.is_instance(Example)
False
>>> nTuple.is_instance(Example(1, "a"))
True
"""
return (
cls.is_subclass(type(obj)) and
hasattr(obj, '_asdict') and
hasattr(obj, '_fields')
)
@staticmethod
def annotations(obj):
"""
>>> ex = Example(1, "a")
>>> ex.pipe(ex.cls.annotations)
{'x': <class 'int'>, 's': <class 'str'>, 'it': <class 'xtuples.xtuples.iTuple'>}
"""
return fDict(obj.__annotations__)
@classmethod
def as_dict(cls, obj):
"""
>>> ex = Example(1, "a")
>>> ex.pipe(ex.cls.as_dict)
{'x': 1, 's': 'a', 'it': iTuple()}
"""
return fDict(obj._asdict())
@classmethod
def cast_json(cls, obj):
"""
>>> ex = Example(1, "a")
>>> ex.pipe(ex.cls.cast_json)
{'x': 1, 's': 'a', 'it': {'__t__': 'iTuple', 'data': []}, '__t__': 'Example'}
"""
d = {
k: cast_json(v)
for k, v in obj._asdict().items()
#
}
d["__t__"] = type(obj).__name__
return d
@classmethod
def uncast_json(meta, obj):
"""
>>> ex = Example(1, "a")
>>> ex.cls.uncast_json(ex.pipe(ex.cls.cast_json))
Example(x=1, s='a', it=iTuple())
"""
cls = REGISTRY[obj["__t__"]]
return cls(
*(
uncast_json(v)
for k, v in obj.items() if k != "__t__"
)
)
@classmethod
def decorate(meta, cls):
assert cls.__name__ not in REGISTRY
cls.pipe = meta.pipe
cls.partial = meta.partial
cls.cls = meta
REGISTRY[cls.__name__] = cls
return cls
# ---------------------------------------------------------------
class fDict(collections.UserDict):
__slots__ = ()
data: dict
def pipe(self, f, *args, **kwargs):
"""
>>> fDict({0: 1}).pipe(lambda d: d.map_values(
... lambda v: v + 1
... ))
{0: 2}
"""
res = f(self, *args, **kwargs)
if isinstance(res, dict):
return fDict(res)
return res
def partial(self, f, *args, **kwargs):
"""
>>> f = fDict({0: 1}).partial(
... lambda d, n: d.map_values(lambda v: v + n)
... )
>>> f(1)
{0: 2}
>>> f(2)
{0: 3}
"""
return functools.partial(f, self, *args, **kwargs)
def keys_tuple(self):
"""
>>> fDict({0: 1}).keys_tuple()
iTuple(0)
"""
return iTuple.from_keys(self)
def values_tuple(self):
"""
>>> fDict({0: 1}).values_tuple()
iTuple(1)
"""
return iTuple.from_values(self)
def items_tuple(self):
"""
>>> fDict({0: 1}).items_tuple()
iTuple((0, 1))
"""
return iTuple.from_items(self)
# NOTE: we have separate map implementations
# as they are constant size, dict to dict
# other iterator functions should use iTuple (from the above)
def map_keys(self, f, *args, **kwargs):
"""
>>> fDict({0: 1}).map_keys(lambda v: v + 1)
{1: 1}
"""
return fDict(
(f(k, *args, **kwargs), v) for k, v in self.items()
)
def map_values(self, f, *args, **kwargs):
"""
>>> fDict({0: 1}).map_values(lambda v: v + 1)
{0: 2}
"""
return fDict(
(k, f(v, *args, **kwargs)) for k, v in self.items()
)
def map_items(self, f, *args, **kwargs):
"""
>>> fDict({0: 1}).map_items(lambda k, v: (v, k))
{1: 0}
"""
return fDict(
f(k, v, *args, **kwargs) for k, v in self.items()
)
def invert(self):
"""
>>> fDict({0: 1}).invert()
{1: 0}
"""
return fDict((v, k) for k, v in self.items())
# ---------------------------------------------------------------
@dataclasses.dataclass(init = False, repr=True)
class iTuple(collections.UserList, tuple): # type: ignore
__slots__ = ()
data: tuple # type: ignore
# -----
@staticmethod
def __new__(cls, data = None):
# NOTE: we use cls not array
# so sub-classing *does* change identity
if isinstance(data, cls):
return data
return super().__new__(cls, data=data)
@staticmethod
def wrap_tuple(data):
return data if isinstance(data, tuple) else tuple(data)
def __init__(self, data = None):
# TODO: option for lazy init?
self.data = (
tuple() if data is None
else self.wrap_tuple(data)
)
def __repr__(self):
s = super().__repr__()
return "{}({})".format(
type(self).__name__,
s[1:-2 if s[-2] == "," else -1],
)
def __hash__(self):
return hash(self.data)
@classmethod
def decorate(meta, cls):
assert cls.__name__ not in REGISTRY
REGISTRY[cls.__name__] = cls
return cls
# -----
def cast_json(self):
"""
>>> iTuple.range(1).cast_json()
{'__t__': 'iTuple', 'data': [0]}
"""
return dict(
__t__ = type(self).__name__,
data = list(self.map(cast_json)),
)
@classmethod
def uncast_json(cls, obj):
"""
>>> iTuple.uncast_json(iTuple.range(1).cast_json())
iTuple(0)
"""
assert obj["__t__"] == cls.__name__
return cls(data=obj["data"])
# -----
@classmethod
def range(cls, *args, **kwargs):
"""
>>> iTuple.range(3)
iTuple(0, 1, 2)
"""
return cls(range(*args, **kwargs))
@classmethod
def from_keys(cls, d):
"""
>>> iTuple.from_keys({i: i + 1 for i in range(2)})
iTuple(0, 1)
"""
return cls(d.keys())
@classmethod
def from_values(cls, d):
"""
>>> iTuple.from_values({i: i + 1 for i in range(2)})
iTuple(1, 2)
"""
return cls(d.values())
@classmethod
def from_items(cls, d):
"""
>>> iTuple.from_items({i: i + 1 for i in range(2)})
iTuple((0, 1), (1, 2))
"""
return cls(d.items())
# -----
def pipe(self, f, *args, **kwargs):
"""
>>> iTuple.range(2).pipe(lambda it: it)
iTuple(0, 1)
>>> iTuple.range(2).pipe(
... lambda it, v: it.map(lambda x: x * v), 2
... )
iTuple(0, 2)
"""
return f(self, *args, **kwargs)
def partial(self, f, *args, **kwargs):
"""
>>> f = iTuple.range(2).partial(
... lambda it, v: it.map(lambda x: x * v)
... )
>>> f(2)
iTuple(0, 2)
>>> f(3)
iTuple(0, 3)
"""
return functools.partial(f, self, *args, **kwargs)
# -----
def len(self):
"""
>>> iTuple.range(3).len()
3
"""
return len(self)
def append(self, value, *values):
"""
>>> iTuple.range(1).append(1)
iTuple(0, 1)
>>> iTuple.range(1).append(1, 2)
iTuple(0, 1, 2)
>>> iTuple.range(1).append(1, 2, 3)
iTuple(0, 1, 2, 3)
>>> iTuple.range(1).append(1, (2,))
iTuple(0, 1, (2,))
"""
return self + (value, *values)
def prepend(self, value, *values):
"""
>>> iTuple.range(1).prepend(1)
iTuple(1, 0)
>>> iTuple.range(1).prepend(1, 2)
iTuple(1, 2, 0)
>>> iTuple.range(1).prepend(1, 2, 3)
iTuple(1, 2, 3, 0)
>>> iTuple.range(1).prepend(1, (2,))
iTuple(1, (2,), 0)
"""
return (value, *values) + self
def zip(self, *itrs, lazy = False):
"""
>>> iTuple([[1, 1], [2, 2], [3, 3]]).zip()
iTuple((1, 2, 3), (1, 2, 3))
>>> iTuple([iTuple.range(3), iTuple.range(1, 4)]).zip()
iTuple((0, 1), (1, 2), (2, 3))
>>> iTuple.range(3).zip(iTuple.range(1, 4))
iTuple((0, 1), (1, 2), (2, 3))
"""
if len(itrs) == 0:
res = zip(*self)
else:
res = zip(self, *itrs)
return res if lazy else iTuple(data=res)
def flatten(self):
"""
>>> iTuple.range(3).map(lambda x: [x]).flatten()
iTuple(0, 1, 2)
"""
return iTuple(itertools.chain(*self))
def extend(self, value, *values):
"""
>>> iTuple.range(1).extend((1,))
iTuple(0, 1)
>>> iTuple.range(1).extend([1])
iTuple(0, 1)
>>> iTuple.range(1).extend([1], [2])
iTuple(0, 1, 2)
>>> iTuple.range(1).extend([1], [[2]])
iTuple(0, 1, [2])
>>> iTuple.range(1).extend([1], [[2]], [2])
iTuple(0, 1, [2], 2)
"""
return iTuple(itertools.chain.from_iterable(
(self, value, *values)
))
def pretend(self, value, *values):
"""
>>> iTuple.range(1).pretend((1,))
iTuple(1, 0)
>>> iTuple.range(1).pretend([1])
iTuple(1, 0)
>>> iTuple.range(1).pretend([1], [2])
iTuple(1, 2, 0)
>>> iTuple.range(1).pretend([1], [[2]])
iTuple(1, [2], 0)
>>> iTuple.range(1).pretend([1], [[2]], [2])
iTuple(1, [2], 2, 0)
"""
return iTuple(itertools.chain.from_iterable(
(value, *values, self)
))
def filter_eq(self, v, f = None, eq = None, lazy = False):
"""
>>> iTuple.range(3).filter_eq(1)
iTuple(1)
"""
if f is None and eq is None:
res = filter(lambda x: x == v, self)
elif f is not None:
res = filter(lambda x: f(x) == v, self)
elif eq is not None:
res = filter(lambda x: eq(x, v), self)
else:
res = filter(lambda x: eq(f(x), v), self)
return res if lazy else type(self)(data=res)
def filter(self, f, eq = None, lazy = False):
"""
>>> iTuple.range(3).filter(lambda x: x > 1)
iTuple(2)
"""
return self.filter_eq(True, f = f, eq = eq, lazy = lazy)
def map(self, f, *iterables, lazy = False):
"""
>>> iTuple.range(3).map(lambda x: x * 2)
iTuple(0, 2, 4)
"""
res = map(f, self, *iterables)
return res if lazy else iTuple(data=res)
def enumerate(self):
"""
>>> iTuple.range(3).enumerate()
iTuple((0, 0), (1, 1), (2, 2))
"""
# TODO: allow lazy
return iTuple(enumerate(self))
def groupby(
self,
f,
lazy = False,
keys = False,
pipe= None,
):
"""
>>> iTuple.range(3).groupby(lambda x: x < 2)
iTuple((0, 1), (2,))
>>> iTuple.range(3).groupby(
... lambda x: x < 2, keys=True, pipe=fDict
... )
{True: (0, 1), False: (2,)}
"""
# TODO: lazy no keys
res = itertools.groupby(self, key=f)
if lazy and keys and pipe is None:
return res
if pipe is None:
pipe = iTuple
if keys:
return pipe((k, tuple(g),) for k, g in res)
else:
return pipe(tuple(g) for k, g in res)
def first(self):
"""
>>> iTuple.range(3).first()
0
"""
return self[0]
def last(self):
"""
>>> iTuple.range(3).last()
2
"""
return self[-1]
def first_where(self, f):
"""
>>> iTuple.range(3).first_where(lambda v: v > 0)
1
"""
for v in self:
if f(v):
return v
return None
def last_where(self, f):
"""
>>> iTuple.range(3).last_where(lambda v: v < 2)
1
"""
for v in reversed(self):
if f(v):
return v
return None
def take(self, n):
"""
>>> iTuple.range(3).take(2)
iTuple(0, 1)
"""
return self[:n]
def tail(self, n):
"""
>>> iTuple.range(3).tail(2)
iTuple(1, 2)
"""
return self[-n:]
def reverse(self, lazy = False):
"""
>>> iTuple.range(3).reverse()
iTuple(2, 1, 0)
"""
if lazy:
return reversed(self)
return type(self)(data=reversed(self))
def take_while(self, f, n = None, lazy = False):
"""
>>> iTuple.range(3).take_while(lambda v: v < 1)
iTuple(0)
"""
def iter():
i = 0
for v in self:
if f(v) and (n is None or i < n):
yield v
i += 1
else:
return
res = iter()
return res if lazy else type(self)(data=res)
def tail_while(self, f, n = None):
"""
>>> iTuple.range(3).tail_while(lambda v: v > 1)
iTuple(2)
"""
i = 0
for v in reversed(self):
if f(v) and (n is None or i < n):
i += 1
else:
break
return self.tail(i)
# NOTE: from as in, starting from first true
# versus above, which is until first false
def take_after(self, f, n = None, lazy = False):
"""
>>> iTuple.range(3).take_after(lambda v: v < 1)
iTuple(1, 2)
>>> iTuple.range(3).take_after(lambda v: v < 1, n = 1)
iTuple(1)
"""
def iter():
i = 0
for v in self:
if f(v):
pass
elif n is None or i < n:
yield v
i += 1
else:
return
res = iter()
return res if lazy else type(self)(data=res)
def tail_after(self, f, n = None):
"""
>>> iTuple.range(3).tail_after(lambda v: v < 2)
iTuple(0, 1)
>>> iTuple.range(3).tail_after(lambda v: v < 2, 1)
iTuple(1)
"""
l = 0
r = 0
for v in reversed(self):
if not f(v):
l += 1
elif n is None or r < n:
r += 1
else:
break
return self.tail(l + r).take(r)
def islice(self, left = None, right = None):
"""
>>> iTuple.range(5).islice(1, 3)
iTuple(1, 2)
"""
return self[left:right]
def unique(self):
"""
>>> iTuple([1, 1, 3, 2, 4, 2, 3]).unique()
iTuple(1, 3, 2, 4)
"""
def iter():
seen = set()
seen_add = seen.add
seen_contains = seen.__contains__
for v in itertools.filterfalse(seen_contains, self):
seen_add(v)
yield v
return type(self)(data=iter())
def sort(self, f = lambda v: v):
"""
>>> iTuple.range(3).reverse().sort()
iTuple(0, 1, 2)
>>> iTuple.range(3).sort()
iTuple(0, 1, 2)
"""
return type(self)(data=sorted(self, key = f))
def accumulate(self, f, initial = None, lazy = False):
"""
>>> iTuple.range(3).accumulate(lambda acc, v: v)
iTuple(0, 1, 2)
>>> iTuple.range(3).accumulate(lambda acc, v: v, initial=0)
iTuple(0, 0, 1, 2)
>>> iTuple.range(3).accumulate(operator.add)
iTuple(0, 1, 3)
"""
res = itertools.accumulate(self, func=f, initial=initial)
return res if lazy else iTuple(data=res)
def foldcum(self, *args, **kwargs):
"""
>>> iTuple.range(3).foldcum(lambda acc, v: v)
iTuple(0, 1, 2)
>>> iTuple.range(3).foldcum(operator.add)
iTuple(0, 1, 3)
"""
return self.accumulate(*args, **kwargs)
def fold(self, f, initial=None):
"""
>>> iTuple.range(3).fold(lambda acc, v: v)
2
>>> iTuple.range(3).fold(lambda acc, v: v, initial=0)
2
>>> iTuple.range(3).fold(operator.add)
3
"""
if initial is not None:
res = functools.reduce(f, self, initial)
else:
res = functools.reduce(f, self)
return res
# -----
# combinatorics
# -----
# ---------------------------------------------------------------
@nTuple.decorate
class Example(typing.NamedTuple):
"""
>>> ex = Example(1, "a")
>>> ex
Example(x=1, s='a', it=iTuple())
>>> ex.cls
<class 'xtuples.xtuples.nTuple'>
>>> ex.pipe(lambda nt: nt.x)
1
>>> f = ex.partial(lambda nt, v: nt.x * v)
>>> f(2)
2
>>> f(3)
3
"""
# NOTE: cls, pipe, partial are mandatory boilerplate
x: int
s: str
it: iTuple = iTuple([])
@property
def cls(self):
...
def pipe(self, f, *args, **kwargs):
...
def partial(self, f, *args, **kwargs):
...
# ---------------------------------------------------------------
# TODO: context manager to control
# if we add the type information when writing to json or not
# TODO: context mananger to control
# lazy default behaviour (ie. default to lazy or not)
# ---------------------------------------------------------------
class JSONEncoder(json.JSONEncoder):
def iterencode(self, o, *args, **kwargs):
for chunk in super().iterencode(
cast_json(o), *args, **kwargs
):
yield chunk
# def meta_default(self, obj):
# return json.JSONEncoder.default(self, obj)
# def default(self, obj):
# if isinstance(obj, fDict):
# return self.meta_default(obj.data)
# return cast_json(obj, default=self.meta_default)
# -----
class JSONDecoder(json.JSONDecoder):
def __init__(self, *args, **kwargs):
json.JSONDecoder.__init__(
self,
object_hook=self.object_hook,
*args,
**kwargs
#
)
@classmethod
def xtuple_object_hook(cls, d):
return uncast_json(d)
def object_hook(self, d):
return self.xtuple_object_hook(d)
# -----
def cast_json(obj, default = lambda obj: obj):
if nTuple.is_instance(obj):
return nTuple.cast_json(obj)
try:
return obj.cast_json()
except:
return default(obj)
def uncast_json(obj):
if not isinstance(obj, dict):
return obj
__t__ = obj.get("__t__", None)
if __t__ is None:
return obj
cls = iTuple if __t__ == "iTuple" else REGISTRY[__t__]
if hasattr(cls, "uncast_json"):
return cls.uncast_json(obj)
return cls(
*(v for k, v in obj.items() if k != "__t__")
)
# -----
# TODO: fString so can do .pipe ?
def to_json(v, **kwargs):
"""
>>> print(iTuple([Example(1, "a")]).pipe(to_json, indent=2))
{
"__t__": "iTuple",
"data": [
{
"x": 1,
"s": "a",
"it": {
"__t__": "iTuple",
"data": []
},
"__t__": "Example"
}
]
}
>>> print(iTuple([
... iTuple([Example(1, "a")])
... ]).pipe(to_json, indent=2))
{
"__t__": "iTuple",
"data": [
{
"__t__": "iTuple",
"data": [
{
"x": 1,
"s": "a",
"it": {
"__t__": "iTuple",
"data": []
},
"__t__": "Example"
}
]
}
]
}
>>> print(Example(2, "b", iTuple([
... iTuple([Example(1, "a")])
... ])).pipe(to_json, indent=2))
{
"x": 2,
"s": "b",
"it": {
"__t__": "iTuple",
"data": [
{
"__t__": "iTuple",
"data": [
{
"x": 1,
"s": "a",
"it": {
"__t__": "iTuple",
"data": []
},
"__t__": "Example"
}
]
}
]
},
"__t__": "Example"
}
"""
return json.dumps(v, cls=JSONEncoder, **kwargs)
def from_json(v: str, **kwargs):
"""
>>> ex = iTuple([Example(1, "a")])
>>> from_json(ex.pipe(to_json))
iTuple(Example(x=1, s='a', it=iTuple()))
>>> from_json(
... iTuple([iTuple([Example(1, "a")])]).pipe(to_json)
... )
iTuple(iTuple(Example(x=1, s='a', it=iTuple())))
>>> from_json(
... Example(2, "b", iTuple([
... iTuple([Example(1, "a")])
... ])).pipe(to_json)
... )
Example(x=2, s='b', it=iTuple(iTuple(Example(x=1, s='a', it=iTuple()))))
"""
return json.loads(v, cls=JSONDecoder, **kwargs)
def load_json(f):
return json.load(f, cls=JSONDecoder)
def dump_json(f, v):
return json.dump(f, v, cls=JSONEncoder)
# ---------------------------------------------------------------
__all__ = [
"iTuple",
"nTuple",
"fDict",
"JSONDecoder",
"JSONEncoder",
]
# ---------------------------------------------------------------
Classes
class JSONDecoder (*args, **kwargs)
-
Simple JSON http://json.org decoder
Performs the following translations in decoding by default:
+---------------+-------------------+ | JSON | Python | +===============+===================+ | object | dict | +---------------+-------------------+ | array | list | +---------------+-------------------+ | string | str | +---------------+-------------------+ | number (int) | int | +---------------+-------------------+ | number (real) | float | +---------------+-------------------+ | true | True | +---------------+-------------------+ | false | False | +---------------+-------------------+ | null | None | +---------------+-------------------+
It also understands
NaN
,Infinity
, and-Infinity
as their correspondingfloat
values, which is outside the JSON spec.object_hook
, if specified, will be called with the result of every JSON object decoded and its return value will be used in place of the givendict
. This can be used to provide custom deserializations (e.g. to support JSON-RPC class hinting).object_pairs_hook
, if specified will be called with the result of every JSON object decoded with an ordered list of pairs. The return value ofobject_pairs_hook
will be used instead of thedict
. This feature can be used to implement custom decoders. Ifobject_hook
is also defined, theobject_pairs_hook
takes priority.parse_float
, if specified, will be called with the string of every JSON float to be decoded. By default this is equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g. decimal.Decimal).parse_int
, if specified, will be called with the string of every JSON int to be decoded. By default this is equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g. float).parse_constant
, if specified, will be called with one of the following strings: -Infinity, Infinity, NaN. This can be used to raise an exception if invalid JSON numbers are encountered.If
strict
is false (true is the default), then control characters will be allowed inside strings. Control characters in this context are those with character codes in the 0-31 range, including'\t'
(tab),'\n'
,'\r'
and'\0'
.Expand source code
class JSONDecoder(json.JSONDecoder): def __init__(self, *args, **kwargs): json.JSONDecoder.__init__( self, object_hook=self.object_hook, *args, **kwargs # ) @classmethod def xtuple_object_hook(cls, d): return uncast_json(d) def object_hook(self, d): return self.xtuple_object_hook(d)
Ancestors
- json.decoder.JSONDecoder
Static methods
def xtuple_object_hook(d)
-
Expand source code
@classmethod def xtuple_object_hook(cls, d): return uncast_json(d)
Methods
def object_hook(self, d)
-
Expand source code
def object_hook(self, d): return self.xtuple_object_hook(d)
class JSONEncoder (*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)
-
Extensible JSON http://json.org encoder for Python data structures.
Supports the following objects and types by default:
+-------------------+---------------+ | Python | JSON | +===================+===============+ | dict | object | +-------------------+---------------+ | list, tuple | array | +-------------------+---------------+ | str | string | +-------------------+---------------+ | int, float | number | +-------------------+---------------+ | True | true | +-------------------+---------------+ | False | false | +-------------------+---------------+ | None | null | +-------------------+---------------+
To extend this to recognize other objects, subclass and implement a
.default()
method with another method that returns a serializable object foro
if possible, otherwise it should call the superclass implementation (to raiseTypeError
).Constructor for JSONEncoder, with sensible defaults.
If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, float or None. If skipkeys is True, such items are simply skipped.
If ensure_ascii is true, the output is guaranteed to be str objects with all incoming non-ASCII characters escaped. If ensure_ascii is false, the output can contain non-ASCII characters.
If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such check takes place.
If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON specification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a ValueError to encode such floats.
If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to ensure that JSON serializations can be compared on a day-to-day basis.
If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.
If specified, separators should be an (item_separator, key_separator) tuple. The default is (', ', ': ') if indent is
None
and (',', ': ') otherwise. To get the most compact JSON representation, you should specify (',', ':') to eliminate whitespace.If specified, default is a function that gets called for objects that can't otherwise be serialized. It should return a JSON encodable version of the object or raise a
TypeError
.Expand source code
class JSONEncoder(json.JSONEncoder): def iterencode(self, o, *args, **kwargs): for chunk in super().iterencode( cast_json(o), *args, **kwargs ): yield chunk
Ancestors
- json.encoder.JSONEncoder
Methods
def iterencode(self, o, *args, **kwargs)
-
Encode the given object and yield each string representation as available.
For example::
for chunk in JSONEncoder().iterencode(bigobject): mysocket.write(chunk)
Expand source code
def iterencode(self, o, *args, **kwargs): for chunk in super().iterencode( cast_json(o), *args, **kwargs ): yield chunk
class fDict (dict=None, /, **kwargs)
-
Expand source code
class fDict(collections.UserDict): __slots__ = () data: dict def pipe(self, f, *args, **kwargs): """ >>> fDict({0: 1}).pipe(lambda d: d.map_values( ... lambda v: v + 1 ... )) {0: 2} """ res = f(self, *args, **kwargs) if isinstance(res, dict): return fDict(res) return res def partial(self, f, *args, **kwargs): """ >>> f = fDict({0: 1}).partial( ... lambda d, n: d.map_values(lambda v: v + n) ... ) >>> f(1) {0: 2} >>> f(2) {0: 3} """ return functools.partial(f, self, *args, **kwargs) def keys_tuple(self): """ >>> fDict({0: 1}).keys_tuple() iTuple(0) """ return iTuple.from_keys(self) def values_tuple(self): """ >>> fDict({0: 1}).values_tuple() iTuple(1) """ return iTuple.from_values(self) def items_tuple(self): """ >>> fDict({0: 1}).items_tuple() iTuple((0, 1)) """ return iTuple.from_items(self) # NOTE: we have separate map implementations # as they are constant size, dict to dict # other iterator functions should use iTuple (from the above) def map_keys(self, f, *args, **kwargs): """ >>> fDict({0: 1}).map_keys(lambda v: v + 1) {1: 1} """ return fDict( (f(k, *args, **kwargs), v) for k, v in self.items() ) def map_values(self, f, *args, **kwargs): """ >>> fDict({0: 1}).map_values(lambda v: v + 1) {0: 2} """ return fDict( (k, f(v, *args, **kwargs)) for k, v in self.items() ) def map_items(self, f, *args, **kwargs): """ >>> fDict({0: 1}).map_items(lambda k, v: (v, k)) {1: 0} """ return fDict( f(k, v, *args, **kwargs) for k, v in self.items() ) def invert(self): """ >>> fDict({0: 1}).invert() {1: 0} """ return fDict((v, k) for k, v in self.items())
Ancestors
- collections.UserDict
- collections.abc.MutableMapping
- collections.abc.Mapping
- collections.abc.Collection
- collections.abc.Sized
- collections.abc.Iterable
- collections.abc.Container
Class variables
var data : dict
Methods
def invert(self)
-
>>> fDict({0: 1}).invert() {1: 0}
Expand source code
def invert(self): """ >>> fDict({0: 1}).invert() {1: 0} """ return fDict((v, k) for k, v in self.items())
def items_tuple(self)
-
>>> fDict({0: 1}).items_tuple() iTuple((0, 1))
Expand source code
def items_tuple(self): """ >>> fDict({0: 1}).items_tuple() iTuple((0, 1)) """ return iTuple.from_items(self)
def keys_tuple(self)
-
>>> fDict({0: 1}).keys_tuple() iTuple(0)
Expand source code
def keys_tuple(self): """ >>> fDict({0: 1}).keys_tuple() iTuple(0) """ return iTuple.from_keys(self)
def map_items(self, f, *args, **kwargs)
-
>>> fDict({0: 1}).map_items(lambda k, v: (v, k)) {1: 0}
Expand source code
def map_items(self, f, *args, **kwargs): """ >>> fDict({0: 1}).map_items(lambda k, v: (v, k)) {1: 0} """ return fDict( f(k, v, *args, **kwargs) for k, v in self.items() )
def map_keys(self, f, *args, **kwargs)
-
>>> fDict({0: 1}).map_keys(lambda v: v + 1) {1: 1}
Expand source code
def map_keys(self, f, *args, **kwargs): """ >>> fDict({0: 1}).map_keys(lambda v: v + 1) {1: 1} """ return fDict( (f(k, *args, **kwargs), v) for k, v in self.items() )
def map_values(self, f, *args, **kwargs)
-
>>> fDict({0: 1}).map_values(lambda v: v + 1) {0: 2}
Expand source code
def map_values(self, f, *args, **kwargs): """ >>> fDict({0: 1}).map_values(lambda v: v + 1) {0: 2} """ return fDict( (k, f(v, *args, **kwargs)) for k, v in self.items() )
def partial(self, f, *args, **kwargs)
-
>>> f = fDict({0: 1}).partial( ... lambda d, n: d.map_values(lambda v: v + n) ... ) >>> f(1) {0: 2} >>> f(2) {0: 3}
Expand source code
def partial(self, f, *args, **kwargs): """ >>> f = fDict({0: 1}).partial( ... lambda d, n: d.map_values(lambda v: v + n) ... ) >>> f(1) {0: 2} >>> f(2) {0: 3} """ return functools.partial(f, self, *args, **kwargs)
def pipe(self, f, *args, **kwargs)
-
>>> fDict({0: 1}).pipe(lambda d: d.map_values( ... lambda v: v + 1 ... )) {0: 2}
Expand source code
def pipe(self, f, *args, **kwargs): """ >>> fDict({0: 1}).pipe(lambda d: d.map_values( ... lambda v: v + 1 ... )) {0: 2} """ res = f(self, *args, **kwargs) if isinstance(res, dict): return fDict(res) return res
def values_tuple(self)
-
>>> fDict({0: 1}).values_tuple() iTuple(1)
Expand source code
def values_tuple(self): """ >>> fDict({0: 1}).values_tuple() iTuple(1) """ return iTuple.from_values(self)
class iTuple (data=None)
-
iTuple(data=None)
Expand source code
@dataclasses.dataclass(init = False, repr=True) class iTuple(collections.UserList, tuple): # type: ignore __slots__ = () data: tuple # type: ignore # ----- @staticmethod def __new__(cls, data = None): # NOTE: we use cls not array # so sub-classing *does* change identity if isinstance(data, cls): return data return super().__new__(cls, data=data) @staticmethod def wrap_tuple(data): return data if isinstance(data, tuple) else tuple(data) def __init__(self, data = None): # TODO: option for lazy init? self.data = ( tuple() if data is None else self.wrap_tuple(data) ) def __repr__(self): s = super().__repr__() return "{}({})".format( type(self).__name__, s[1:-2 if s[-2] == "," else -1], ) def __hash__(self): return hash(self.data) @classmethod def decorate(meta, cls): assert cls.__name__ not in REGISTRY REGISTRY[cls.__name__] = cls return cls # ----- def cast_json(self): """ >>> iTuple.range(1).cast_json() {'__t__': 'iTuple', 'data': [0]} """ return dict( __t__ = type(self).__name__, data = list(self.map(cast_json)), ) @classmethod def uncast_json(cls, obj): """ >>> iTuple.uncast_json(iTuple.range(1).cast_json()) iTuple(0) """ assert obj["__t__"] == cls.__name__ return cls(data=obj["data"]) # ----- @classmethod def range(cls, *args, **kwargs): """ >>> iTuple.range(3) iTuple(0, 1, 2) """ return cls(range(*args, **kwargs)) @classmethod def from_keys(cls, d): """ >>> iTuple.from_keys({i: i + 1 for i in range(2)}) iTuple(0, 1) """ return cls(d.keys()) @classmethod def from_values(cls, d): """ >>> iTuple.from_values({i: i + 1 for i in range(2)}) iTuple(1, 2) """ return cls(d.values()) @classmethod def from_items(cls, d): """ >>> iTuple.from_items({i: i + 1 for i in range(2)}) iTuple((0, 1), (1, 2)) """ return cls(d.items()) # ----- def pipe(self, f, *args, **kwargs): """ >>> iTuple.range(2).pipe(lambda it: it) iTuple(0, 1) >>> iTuple.range(2).pipe( ... lambda it, v: it.map(lambda x: x * v), 2 ... ) iTuple(0, 2) """ return f(self, *args, **kwargs) def partial(self, f, *args, **kwargs): """ >>> f = iTuple.range(2).partial( ... lambda it, v: it.map(lambda x: x * v) ... ) >>> f(2) iTuple(0, 2) >>> f(3) iTuple(0, 3) """ return functools.partial(f, self, *args, **kwargs) # ----- def len(self): """ >>> iTuple.range(3).len() 3 """ return len(self) def append(self, value, *values): """ >>> iTuple.range(1).append(1) iTuple(0, 1) >>> iTuple.range(1).append(1, 2) iTuple(0, 1, 2) >>> iTuple.range(1).append(1, 2, 3) iTuple(0, 1, 2, 3) >>> iTuple.range(1).append(1, (2,)) iTuple(0, 1, (2,)) """ return self + (value, *values) def prepend(self, value, *values): """ >>> iTuple.range(1).prepend(1) iTuple(1, 0) >>> iTuple.range(1).prepend(1, 2) iTuple(1, 2, 0) >>> iTuple.range(1).prepend(1, 2, 3) iTuple(1, 2, 3, 0) >>> iTuple.range(1).prepend(1, (2,)) iTuple(1, (2,), 0) """ return (value, *values) + self def zip(self, *itrs, lazy = False): """ >>> iTuple([[1, 1], [2, 2], [3, 3]]).zip() iTuple((1, 2, 3), (1, 2, 3)) >>> iTuple([iTuple.range(3), iTuple.range(1, 4)]).zip() iTuple((0, 1), (1, 2), (2, 3)) >>> iTuple.range(3).zip(iTuple.range(1, 4)) iTuple((0, 1), (1, 2), (2, 3)) """ if len(itrs) == 0: res = zip(*self) else: res = zip(self, *itrs) return res if lazy else iTuple(data=res) def flatten(self): """ >>> iTuple.range(3).map(lambda x: [x]).flatten() iTuple(0, 1, 2) """ return iTuple(itertools.chain(*self)) def extend(self, value, *values): """ >>> iTuple.range(1).extend((1,)) iTuple(0, 1) >>> iTuple.range(1).extend([1]) iTuple(0, 1) >>> iTuple.range(1).extend([1], [2]) iTuple(0, 1, 2) >>> iTuple.range(1).extend([1], [[2]]) iTuple(0, 1, [2]) >>> iTuple.range(1).extend([1], [[2]], [2]) iTuple(0, 1, [2], 2) """ return iTuple(itertools.chain.from_iterable( (self, value, *values) )) def pretend(self, value, *values): """ >>> iTuple.range(1).pretend((1,)) iTuple(1, 0) >>> iTuple.range(1).pretend([1]) iTuple(1, 0) >>> iTuple.range(1).pretend([1], [2]) iTuple(1, 2, 0) >>> iTuple.range(1).pretend([1], [[2]]) iTuple(1, [2], 0) >>> iTuple.range(1).pretend([1], [[2]], [2]) iTuple(1, [2], 2, 0) """ return iTuple(itertools.chain.from_iterable( (value, *values, self) )) def filter_eq(self, v, f = None, eq = None, lazy = False): """ >>> iTuple.range(3).filter_eq(1) iTuple(1) """ if f is None and eq is None: res = filter(lambda x: x == v, self) elif f is not None: res = filter(lambda x: f(x) == v, self) elif eq is not None: res = filter(lambda x: eq(x, v), self) else: res = filter(lambda x: eq(f(x), v), self) return res if lazy else type(self)(data=res) def filter(self, f, eq = None, lazy = False): """ >>> iTuple.range(3).filter(lambda x: x > 1) iTuple(2) """ return self.filter_eq(True, f = f, eq = eq, lazy = lazy) def map(self, f, *iterables, lazy = False): """ >>> iTuple.range(3).map(lambda x: x * 2) iTuple(0, 2, 4) """ res = map(f, self, *iterables) return res if lazy else iTuple(data=res) def enumerate(self): """ >>> iTuple.range(3).enumerate() iTuple((0, 0), (1, 1), (2, 2)) """ # TODO: allow lazy return iTuple(enumerate(self)) def groupby( self, f, lazy = False, keys = False, pipe= None, ): """ >>> iTuple.range(3).groupby(lambda x: x < 2) iTuple((0, 1), (2,)) >>> iTuple.range(3).groupby( ... lambda x: x < 2, keys=True, pipe=fDict ... ) {True: (0, 1), False: (2,)} """ # TODO: lazy no keys res = itertools.groupby(self, key=f) if lazy and keys and pipe is None: return res if pipe is None: pipe = iTuple if keys: return pipe((k, tuple(g),) for k, g in res) else: return pipe(tuple(g) for k, g in res) def first(self): """ >>> iTuple.range(3).first() 0 """ return self[0] def last(self): """ >>> iTuple.range(3).last() 2 """ return self[-1] def first_where(self, f): """ >>> iTuple.range(3).first_where(lambda v: v > 0) 1 """ for v in self: if f(v): return v return None def last_where(self, f): """ >>> iTuple.range(3).last_where(lambda v: v < 2) 1 """ for v in reversed(self): if f(v): return v return None def take(self, n): """ >>> iTuple.range(3).take(2) iTuple(0, 1) """ return self[:n] def tail(self, n): """ >>> iTuple.range(3).tail(2) iTuple(1, 2) """ return self[-n:] def reverse(self, lazy = False): """ >>> iTuple.range(3).reverse() iTuple(2, 1, 0) """ if lazy: return reversed(self) return type(self)(data=reversed(self)) def take_while(self, f, n = None, lazy = False): """ >>> iTuple.range(3).take_while(lambda v: v < 1) iTuple(0) """ def iter(): i = 0 for v in self: if f(v) and (n is None or i < n): yield v i += 1 else: return res = iter() return res if lazy else type(self)(data=res) def tail_while(self, f, n = None): """ >>> iTuple.range(3).tail_while(lambda v: v > 1) iTuple(2) """ i = 0 for v in reversed(self): if f(v) and (n is None or i < n): i += 1 else: break return self.tail(i) # NOTE: from as in, starting from first true # versus above, which is until first false def take_after(self, f, n = None, lazy = False): """ >>> iTuple.range(3).take_after(lambda v: v < 1) iTuple(1, 2) >>> iTuple.range(3).take_after(lambda v: v < 1, n = 1) iTuple(1) """ def iter(): i = 0 for v in self: if f(v): pass elif n is None or i < n: yield v i += 1 else: return res = iter() return res if lazy else type(self)(data=res) def tail_after(self, f, n = None): """ >>> iTuple.range(3).tail_after(lambda v: v < 2) iTuple(0, 1) >>> iTuple.range(3).tail_after(lambda v: v < 2, 1) iTuple(1) """ l = 0 r = 0 for v in reversed(self): if not f(v): l += 1 elif n is None or r < n: r += 1 else: break return self.tail(l + r).take(r) def islice(self, left = None, right = None): """ >>> iTuple.range(5).islice(1, 3) iTuple(1, 2) """ return self[left:right] def unique(self): """ >>> iTuple([1, 1, 3, 2, 4, 2, 3]).unique() iTuple(1, 3, 2, 4) """ def iter(): seen = set() seen_add = seen.add seen_contains = seen.__contains__ for v in itertools.filterfalse(seen_contains, self): seen_add(v) yield v return type(self)(data=iter()) def sort(self, f = lambda v: v): """ >>> iTuple.range(3).reverse().sort() iTuple(0, 1, 2) >>> iTuple.range(3).sort() iTuple(0, 1, 2) """ return type(self)(data=sorted(self, key = f)) def accumulate(self, f, initial = None, lazy = False): """ >>> iTuple.range(3).accumulate(lambda acc, v: v) iTuple(0, 1, 2) >>> iTuple.range(3).accumulate(lambda acc, v: v, initial=0) iTuple(0, 0, 1, 2) >>> iTuple.range(3).accumulate(operator.add) iTuple(0, 1, 3) """ res = itertools.accumulate(self, func=f, initial=initial) return res if lazy else iTuple(data=res) def foldcum(self, *args, **kwargs): """ >>> iTuple.range(3).foldcum(lambda acc, v: v) iTuple(0, 1, 2) >>> iTuple.range(3).foldcum(operator.add) iTuple(0, 1, 3) """ return self.accumulate(*args, **kwargs) def fold(self, f, initial=None): """ >>> iTuple.range(3).fold(lambda acc, v: v) 2 >>> iTuple.range(3).fold(lambda acc, v: v, initial=0) 2 >>> iTuple.range(3).fold(operator.add) 3 """ if initial is not None: res = functools.reduce(f, self, initial) else: res = functools.reduce(f, self) return res
Ancestors
- collections.UserList
- collections.abc.MutableSequence
- collections.abc.Sequence
- collections.abc.Reversible
- collections.abc.Collection
- collections.abc.Sized
- collections.abc.Iterable
- collections.abc.Container
- builtins.tuple
Class variables
var data : tuple
Static methods
def decorate(cls)
-
Expand source code
@classmethod def decorate(meta, cls): assert cls.__name__ not in REGISTRY REGISTRY[cls.__name__] = cls return cls
def from_items(d)
-
>>> iTuple.from_items({i: i + 1 for i in range(2)}) iTuple((0, 1), (1, 2))
Expand source code
@classmethod def from_items(cls, d): """ >>> iTuple.from_items({i: i + 1 for i in range(2)}) iTuple((0, 1), (1, 2)) """ return cls(d.items())
def from_keys(d)
-
>>> iTuple.from_keys({i: i + 1 for i in range(2)}) iTuple(0, 1)
Expand source code
@classmethod def from_keys(cls, d): """ >>> iTuple.from_keys({i: i + 1 for i in range(2)}) iTuple(0, 1) """ return cls(d.keys())
def from_values(d)
-
>>> iTuple.from_values({i: i + 1 for i in range(2)}) iTuple(1, 2)
Expand source code
@classmethod def from_values(cls, d): """ >>> iTuple.from_values({i: i + 1 for i in range(2)}) iTuple(1, 2) """ return cls(d.values())
def range(*args, **kwargs)
-
>>> iTuple.range(3) iTuple(0, 1, 2)
Expand source code
@classmethod def range(cls, *args, **kwargs): """ >>> iTuple.range(3) iTuple(0, 1, 2) """ return cls(range(*args, **kwargs))
def uncast_json(obj)
-
>>> iTuple.uncast_json(iTuple.range(1).cast_json()) iTuple(0)
Expand source code
@classmethod def uncast_json(cls, obj): """ >>> iTuple.uncast_json(iTuple.range(1).cast_json()) iTuple(0) """ assert obj["__t__"] == cls.__name__ return cls(data=obj["data"])
def wrap_tuple(data)
-
Expand source code
@staticmethod def wrap_tuple(data): return data if isinstance(data, tuple) else tuple(data)
Methods
def accumulate(self, f, initial=None, lazy=False)
-
>>> iTuple.range(3).accumulate(lambda acc, v: v) iTuple(0, 1, 2) >>> iTuple.range(3).accumulate(lambda acc, v: v, initial=0) iTuple(0, 0, 1, 2) >>> iTuple.range(3).accumulate(operator.add) iTuple(0, 1, 3)
Expand source code
def accumulate(self, f, initial = None, lazy = False): """ >>> iTuple.range(3).accumulate(lambda acc, v: v) iTuple(0, 1, 2) >>> iTuple.range(3).accumulate(lambda acc, v: v, initial=0) iTuple(0, 0, 1, 2) >>> iTuple.range(3).accumulate(operator.add) iTuple(0, 1, 3) """ res = itertools.accumulate(self, func=f, initial=initial) return res if lazy else iTuple(data=res)
def append(self, value, *values)
-
>>> iTuple.range(1).append(1) iTuple(0, 1) >>> iTuple.range(1).append(1, 2) iTuple(0, 1, 2) >>> iTuple.range(1).append(1, 2, 3) iTuple(0, 1, 2, 3) >>> iTuple.range(1).append(1, (2,)) iTuple(0, 1, (2,))
Expand source code
def append(self, value, *values): """ >>> iTuple.range(1).append(1) iTuple(0, 1) >>> iTuple.range(1).append(1, 2) iTuple(0, 1, 2) >>> iTuple.range(1).append(1, 2, 3) iTuple(0, 1, 2, 3) >>> iTuple.range(1).append(1, (2,)) iTuple(0, 1, (2,)) """ return self + (value, *values)
def cast_json(self)
-
>>> iTuple.range(1).cast_json() {'__t__': 'iTuple', 'data': [0]}
Expand source code
def cast_json(self): """ >>> iTuple.range(1).cast_json() {'__t__': 'iTuple', 'data': [0]} """ return dict( __t__ = type(self).__name__, data = list(self.map(cast_json)), )
def enumerate(self)
-
>>> iTuple.range(3).enumerate() iTuple((0, 0), (1, 1), (2, 2))
Expand source code
def enumerate(self): """ >>> iTuple.range(3).enumerate() iTuple((0, 0), (1, 1), (2, 2)) """ # TODO: allow lazy return iTuple(enumerate(self))
def extend(self, value, *values)
-
>>> iTuple.range(1).extend((1,)) iTuple(0, 1) >>> iTuple.range(1).extend([1]) iTuple(0, 1) >>> iTuple.range(1).extend([1], [2]) iTuple(0, 1, 2) >>> iTuple.range(1).extend([1], [[2]]) iTuple(0, 1, [2]) >>> iTuple.range(1).extend([1], [[2]], [2]) iTuple(0, 1, [2], 2)
Expand source code
def extend(self, value, *values): """ >>> iTuple.range(1).extend((1,)) iTuple(0, 1) >>> iTuple.range(1).extend([1]) iTuple(0, 1) >>> iTuple.range(1).extend([1], [2]) iTuple(0, 1, 2) >>> iTuple.range(1).extend([1], [[2]]) iTuple(0, 1, [2]) >>> iTuple.range(1).extend([1], [[2]], [2]) iTuple(0, 1, [2], 2) """ return iTuple(itertools.chain.from_iterable( (self, value, *values) ))
def filter(self, f, eq=None, lazy=False)
-
>>> iTuple.range(3).filter(lambda x: x > 1) iTuple(2)
Expand source code
def filter(self, f, eq = None, lazy = False): """ >>> iTuple.range(3).filter(lambda x: x > 1) iTuple(2) """ return self.filter_eq(True, f = f, eq = eq, lazy = lazy)
def filter_eq(self, v, f=None, eq=None, lazy=False)
-
>>> iTuple.range(3).filter_eq(1) iTuple(1)
Expand source code
def filter_eq(self, v, f = None, eq = None, lazy = False): """ >>> iTuple.range(3).filter_eq(1) iTuple(1) """ if f is None and eq is None: res = filter(lambda x: x == v, self) elif f is not None: res = filter(lambda x: f(x) == v, self) elif eq is not None: res = filter(lambda x: eq(x, v), self) else: res = filter(lambda x: eq(f(x), v), self) return res if lazy else type(self)(data=res)
def first(self)
-
>>> iTuple.range(3).first() 0
Expand source code
def first(self): """ >>> iTuple.range(3).first() 0 """ return self[0]
def first_where(self, f)
-
>>> iTuple.range(3).first_where(lambda v: v > 0) 1
Expand source code
def first_where(self, f): """ >>> iTuple.range(3).first_where(lambda v: v > 0) 1 """ for v in self: if f(v): return v return None
def flatten(self)
-
>>> iTuple.range(3).map(lambda x: [x]).flatten() iTuple(0, 1, 2)
Expand source code
def flatten(self): """ >>> iTuple.range(3).map(lambda x: [x]).flatten() iTuple(0, 1, 2) """ return iTuple(itertools.chain(*self))
def fold(self, f, initial=None)
-
>>> iTuple.range(3).fold(lambda acc, v: v) 2 >>> iTuple.range(3).fold(lambda acc, v: v, initial=0) 2 >>> iTuple.range(3).fold(operator.add) 3
Expand source code
def fold(self, f, initial=None): """ >>> iTuple.range(3).fold(lambda acc, v: v) 2 >>> iTuple.range(3).fold(lambda acc, v: v, initial=0) 2 >>> iTuple.range(3).fold(operator.add) 3 """ if initial is not None: res = functools.reduce(f, self, initial) else: res = functools.reduce(f, self) return res
def foldcum(self, *args, **kwargs)
-
>>> iTuple.range(3).foldcum(lambda acc, v: v) iTuple(0, 1, 2) >>> iTuple.range(3).foldcum(operator.add) iTuple(0, 1, 3)
Expand source code
def foldcum(self, *args, **kwargs): """ >>> iTuple.range(3).foldcum(lambda acc, v: v) iTuple(0, 1, 2) >>> iTuple.range(3).foldcum(operator.add) iTuple(0, 1, 3) """ return self.accumulate(*args, **kwargs)
def groupby(self, f, lazy=False, keys=False, pipe=None)
-
>>> iTuple.range(3).groupby(lambda x: x < 2) iTuple((0, 1), (2,)) >>> iTuple.range(3).groupby( ... lambda x: x < 2, keys=True, pipe=fDict ... ) {True: (0, 1), False: (2,)}
Expand source code
def groupby( self, f, lazy = False, keys = False, pipe= None, ): """ >>> iTuple.range(3).groupby(lambda x: x < 2) iTuple((0, 1), (2,)) >>> iTuple.range(3).groupby( ... lambda x: x < 2, keys=True, pipe=fDict ... ) {True: (0, 1), False: (2,)} """ # TODO: lazy no keys res = itertools.groupby(self, key=f) if lazy and keys and pipe is None: return res if pipe is None: pipe = iTuple if keys: return pipe((k, tuple(g),) for k, g in res) else: return pipe(tuple(g) for k, g in res)
def islice(self, left=None, right=None)
-
>>> iTuple.range(5).islice(1, 3) iTuple(1, 2)
Expand source code
def islice(self, left = None, right = None): """ >>> iTuple.range(5).islice(1, 3) iTuple(1, 2) """ return self[left:right]
def last(self)
-
>>> iTuple.range(3).last() 2
Expand source code
def last(self): """ >>> iTuple.range(3).last() 2 """ return self[-1]
def last_where(self, f)
-
>>> iTuple.range(3).last_where(lambda v: v < 2) 1
Expand source code
def last_where(self, f): """ >>> iTuple.range(3).last_where(lambda v: v < 2) 1 """ for v in reversed(self): if f(v): return v return None
def len(self)
-
>>> iTuple.range(3).len() 3
Expand source code
def len(self): """ >>> iTuple.range(3).len() 3 """ return len(self)
def map(self, f, *iterables, lazy=False)
-
>>> iTuple.range(3).map(lambda x: x * 2) iTuple(0, 2, 4)
Expand source code
def map(self, f, *iterables, lazy = False): """ >>> iTuple.range(3).map(lambda x: x * 2) iTuple(0, 2, 4) """ res = map(f, self, *iterables) return res if lazy else iTuple(data=res)
def partial(self, f, *args, **kwargs)
-
>>> f = iTuple.range(2).partial( ... lambda it, v: it.map(lambda x: x * v) ... ) >>> f(2) iTuple(0, 2) >>> f(3) iTuple(0, 3)
Expand source code
def partial(self, f, *args, **kwargs): """ >>> f = iTuple.range(2).partial( ... lambda it, v: it.map(lambda x: x * v) ... ) >>> f(2) iTuple(0, 2) >>> f(3) iTuple(0, 3) """ return functools.partial(f, self, *args, **kwargs)
def pipe(self, f, *args, **kwargs)
-
>>> iTuple.range(2).pipe(lambda it: it) iTuple(0, 1) >>> iTuple.range(2).pipe( ... lambda it, v: it.map(lambda x: x * v), 2 ... ) iTuple(0, 2)
Expand source code
def pipe(self, f, *args, **kwargs): """ >>> iTuple.range(2).pipe(lambda it: it) iTuple(0, 1) >>> iTuple.range(2).pipe( ... lambda it, v: it.map(lambda x: x * v), 2 ... ) iTuple(0, 2) """ return f(self, *args, **kwargs)
def prepend(self, value, *values)
-
>>> iTuple.range(1).prepend(1) iTuple(1, 0) >>> iTuple.range(1).prepend(1, 2) iTuple(1, 2, 0) >>> iTuple.range(1).prepend(1, 2, 3) iTuple(1, 2, 3, 0) >>> iTuple.range(1).prepend(1, (2,)) iTuple(1, (2,), 0)
Expand source code
def prepend(self, value, *values): """ >>> iTuple.range(1).prepend(1) iTuple(1, 0) >>> iTuple.range(1).prepend(1, 2) iTuple(1, 2, 0) >>> iTuple.range(1).prepend(1, 2, 3) iTuple(1, 2, 3, 0) >>> iTuple.range(1).prepend(1, (2,)) iTuple(1, (2,), 0) """ return (value, *values) + self
def pretend(self, value, *values)
-
>>> iTuple.range(1).pretend((1,)) iTuple(1, 0) >>> iTuple.range(1).pretend([1]) iTuple(1, 0) >>> iTuple.range(1).pretend([1], [2]) iTuple(1, 2, 0) >>> iTuple.range(1).pretend([1], [[2]]) iTuple(1, [2], 0) >>> iTuple.range(1).pretend([1], [[2]], [2]) iTuple(1, [2], 2, 0)
Expand source code
def pretend(self, value, *values): """ >>> iTuple.range(1).pretend((1,)) iTuple(1, 0) >>> iTuple.range(1).pretend([1]) iTuple(1, 0) >>> iTuple.range(1).pretend([1], [2]) iTuple(1, 2, 0) >>> iTuple.range(1).pretend([1], [[2]]) iTuple(1, [2], 0) >>> iTuple.range(1).pretend([1], [[2]], [2]) iTuple(1, [2], 2, 0) """ return iTuple(itertools.chain.from_iterable( (value, *values, self) ))
def reverse(self, lazy=False)
-
>>> iTuple.range(3).reverse() iTuple(2, 1, 0)
Expand source code
def reverse(self, lazy = False): """ >>> iTuple.range(3).reverse() iTuple(2, 1, 0) """ if lazy: return reversed(self) return type(self)(data=reversed(self))
def sort(self, f=<function iTuple.<lambda>>)
-
>>> iTuple.range(3).reverse().sort() iTuple(0, 1, 2) >>> iTuple.range(3).sort() iTuple(0, 1, 2)
Expand source code
def sort(self, f = lambda v: v): """ >>> iTuple.range(3).reverse().sort() iTuple(0, 1, 2) >>> iTuple.range(3).sort() iTuple(0, 1, 2) """ return type(self)(data=sorted(self, key = f))
def tail(self, n)
-
>>> iTuple.range(3).tail(2) iTuple(1, 2)
Expand source code
def tail(self, n): """ >>> iTuple.range(3).tail(2) iTuple(1, 2) """ return self[-n:]
def tail_after(self, f, n=None)
-
>>> iTuple.range(3).tail_after(lambda v: v < 2) iTuple(0, 1) >>> iTuple.range(3).tail_after(lambda v: v < 2, 1) iTuple(1)
Expand source code
def tail_after(self, f, n = None): """ >>> iTuple.range(3).tail_after(lambda v: v < 2) iTuple(0, 1) >>> iTuple.range(3).tail_after(lambda v: v < 2, 1) iTuple(1) """ l = 0 r = 0 for v in reversed(self): if not f(v): l += 1 elif n is None or r < n: r += 1 else: break return self.tail(l + r).take(r)
def tail_while(self, f, n=None)
-
>>> iTuple.range(3).tail_while(lambda v: v > 1) iTuple(2)
Expand source code
def tail_while(self, f, n = None): """ >>> iTuple.range(3).tail_while(lambda v: v > 1) iTuple(2) """ i = 0 for v in reversed(self): if f(v) and (n is None or i < n): i += 1 else: break return self.tail(i)
def take(self, n)
-
>>> iTuple.range(3).take(2) iTuple(0, 1)
Expand source code
def take(self, n): """ >>> iTuple.range(3).take(2) iTuple(0, 1) """ return self[:n]
def take_after(self, f, n=None, lazy=False)
-
>>> iTuple.range(3).take_after(lambda v: v < 1) iTuple(1, 2) >>> iTuple.range(3).take_after(lambda v: v < 1, n = 1) iTuple(1)
Expand source code
def take_after(self, f, n = None, lazy = False): """ >>> iTuple.range(3).take_after(lambda v: v < 1) iTuple(1, 2) >>> iTuple.range(3).take_after(lambda v: v < 1, n = 1) iTuple(1) """ def iter(): i = 0 for v in self: if f(v): pass elif n is None or i < n: yield v i += 1 else: return res = iter() return res if lazy else type(self)(data=res)
def take_while(self, f, n=None, lazy=False)
-
>>> iTuple.range(3).take_while(lambda v: v < 1) iTuple(0)
Expand source code
def take_while(self, f, n = None, lazy = False): """ >>> iTuple.range(3).take_while(lambda v: v < 1) iTuple(0) """ def iter(): i = 0 for v in self: if f(v) and (n is None or i < n): yield v i += 1 else: return res = iter() return res if lazy else type(self)(data=res)
def unique(self)
-
>>> iTuple([1, 1, 3, 2, 4, 2, 3]).unique() iTuple(1, 3, 2, 4)
Expand source code
def unique(self): """ >>> iTuple([1, 1, 3, 2, 4, 2, 3]).unique() iTuple(1, 3, 2, 4) """ def iter(): seen = set() seen_add = seen.add seen_contains = seen.__contains__ for v in itertools.filterfalse(seen_contains, self): seen_add(v) yield v return type(self)(data=iter())
def zip(self, *itrs, lazy=False)
-
>>> iTuple([[1, 1], [2, 2], [3, 3]]).zip() iTuple((1, 2, 3), (1, 2, 3)) >>> iTuple([iTuple.range(3), iTuple.range(1, 4)]).zip() iTuple((0, 1), (1, 2), (2, 3)) >>> iTuple.range(3).zip(iTuple.range(1, 4)) iTuple((0, 1), (1, 2), (2, 3))
Expand source code
def zip(self, *itrs, lazy = False): """ >>> iTuple([[1, 1], [2, 2], [3, 3]]).zip() iTuple((1, 2, 3), (1, 2, 3)) >>> iTuple([iTuple.range(3), iTuple.range(1, 4)]).zip() iTuple((0, 1), (1, 2), (2, 3)) >>> iTuple.range(3).zip(iTuple.range(1, 4)) iTuple((0, 1), (1, 2), (2, 3)) """ if len(itrs) == 0: res = zip(*self) else: res = zip(self, *itrs) return res if lazy else iTuple(data=res)
class nTuple
-
Helper class that provides a standard way to create an ABC using inheritance.
Expand source code
class nTuple(abc.ABC): @abc.abstractmethod def __abstract__(self): # NOTE: here to prevent initialise instances of this # but rather use the decorator and typing.NamedTuple return @staticmethod def pipe(obj, f, *args, **kwargs): return f(obj, *args, **kwargs) @staticmethod def partial(obj, f, *args, **kwargs): return functools.partial(f, obj, *args, **kwargs) @classmethod def is_subclass(cls, t): """ >>> nTuple.is_subclass(tuple) False >>> nTuple.is_subclass(Example(1, "a")) False >>> nTuple.is_subclass(Example) True """ try: is_sub = issubclass(t, tuple) except: is_sub = False return ( is_sub and hasattr(t, "cls") and hasattr(t, "pipe") and hasattr(t, "partial") ) @classmethod def is_instance(cls, obj): """ >>> nTuple.is_instance(tuple) False >>> nTuple.is_instance(Example) False >>> nTuple.is_instance(Example(1, "a")) True """ return ( cls.is_subclass(type(obj)) and hasattr(obj, '_asdict') and hasattr(obj, '_fields') ) @staticmethod def annotations(obj): """ >>> ex = Example(1, "a") >>> ex.pipe(ex.cls.annotations) {'x': <class 'int'>, 's': <class 'str'>, 'it': <class 'xtuples.xtuples.iTuple'>} """ return fDict(obj.__annotations__) @classmethod def as_dict(cls, obj): """ >>> ex = Example(1, "a") >>> ex.pipe(ex.cls.as_dict) {'x': 1, 's': 'a', 'it': iTuple()} """ return fDict(obj._asdict()) @classmethod def cast_json(cls, obj): """ >>> ex = Example(1, "a") >>> ex.pipe(ex.cls.cast_json) {'x': 1, 's': 'a', 'it': {'__t__': 'iTuple', 'data': []}, '__t__': 'Example'} """ d = { k: cast_json(v) for k, v in obj._asdict().items() # } d["__t__"] = type(obj).__name__ return d @classmethod def uncast_json(meta, obj): """ >>> ex = Example(1, "a") >>> ex.cls.uncast_json(ex.pipe(ex.cls.cast_json)) Example(x=1, s='a', it=iTuple()) """ cls = REGISTRY[obj["__t__"]] return cls( *( uncast_json(v) for k, v in obj.items() if k != "__t__" ) ) @classmethod def decorate(meta, cls): assert cls.__name__ not in REGISTRY cls.pipe = meta.pipe cls.partial = meta.partial cls.cls = meta REGISTRY[cls.__name__] = cls return cls
Ancestors
- abc.ABC
Static methods
def annotations(obj)
-
>>> ex = Example(1, "a") >>> ex.pipe(ex.cls.annotations) {'x': <class 'int'>, 's': <class 'str'>, 'it': <class 'xtuples.xtuples.iTuple'>}
Expand source code
@staticmethod def annotations(obj): """ >>> ex = Example(1, "a") >>> ex.pipe(ex.cls.annotations) {'x': <class 'int'>, 's': <class 'str'>, 'it': <class 'xtuples.xtuples.iTuple'>} """ return fDict(obj.__annotations__)
def as_dict(obj)
-
>>> ex = Example(1, "a") >>> ex.pipe(ex.cls.as_dict) {'x': 1, 's': 'a', 'it': iTuple()}
Expand source code
@classmethod def as_dict(cls, obj): """ >>> ex = Example(1, "a") >>> ex.pipe(ex.cls.as_dict) {'x': 1, 's': 'a', 'it': iTuple()} """ return fDict(obj._asdict())
def cast_json(obj)
-
>>> ex = Example(1, "a") >>> ex.pipe(ex.cls.cast_json) {'x': 1, 's': 'a', 'it': {'__t__': 'iTuple', 'data': []}, '__t__': 'Example'}
Expand source code
@classmethod def cast_json(cls, obj): """ >>> ex = Example(1, "a") >>> ex.pipe(ex.cls.cast_json) {'x': 1, 's': 'a', 'it': {'__t__': 'iTuple', 'data': []}, '__t__': 'Example'} """ d = { k: cast_json(v) for k, v in obj._asdict().items() # } d["__t__"] = type(obj).__name__ return d
def decorate(cls)
-
Expand source code
@classmethod def decorate(meta, cls): assert cls.__name__ not in REGISTRY cls.pipe = meta.pipe cls.partial = meta.partial cls.cls = meta REGISTRY[cls.__name__] = cls return cls
def is_instance(obj)
-
>>> nTuple.is_instance(tuple) False >>> nTuple.is_instance(Example) False >>> nTuple.is_instance(Example(1, "a")) True
Expand source code
@classmethod def is_instance(cls, obj): """ >>> nTuple.is_instance(tuple) False >>> nTuple.is_instance(Example) False >>> nTuple.is_instance(Example(1, "a")) True """ return ( cls.is_subclass(type(obj)) and hasattr(obj, '_asdict') and hasattr(obj, '_fields') )
def is_subclass(t)
-
>>> nTuple.is_subclass(tuple) False >>> nTuple.is_subclass(Example(1, "a")) False >>> nTuple.is_subclass(Example) True
Expand source code
@classmethod def is_subclass(cls, t): """ >>> nTuple.is_subclass(tuple) False >>> nTuple.is_subclass(Example(1, "a")) False >>> nTuple.is_subclass(Example) True """ try: is_sub = issubclass(t, tuple) except: is_sub = False return ( is_sub and hasattr(t, "cls") and hasattr(t, "pipe") and hasattr(t, "partial") )
def partial(obj, f, *args, **kwargs)
-
Expand source code
@staticmethod def partial(obj, f, *args, **kwargs): return functools.partial(f, obj, *args, **kwargs)
def pipe(obj, f, *args, **kwargs)
-
Expand source code
@staticmethod def pipe(obj, f, *args, **kwargs): return f(obj, *args, **kwargs)
def uncast_json(obj)
-
>>> ex = Example(1, "a") >>> ex.cls.uncast_json(ex.pipe(ex.cls.cast_json)) Example(x=1, s='a', it=iTuple())
Expand source code
@classmethod def uncast_json(meta, obj): """ >>> ex = Example(1, "a") >>> ex.cls.uncast_json(ex.pipe(ex.cls.cast_json)) Example(x=1, s='a', it=iTuple()) """ cls = REGISTRY[obj["__t__"]] return cls( *( uncast_json(v) for k, v in obj.items() if k != "__t__" ) )