Coverage for pygeodesy/geodesicx/_C4_24.py: 100%

5 statements  

« prev     ^ index     » next       coverage.py v7.2.2, created at 2023-05-20 11:54 -0400

1 

2# -*- coding: utf-8 -*- 

3 

4u'''A Python version of part of I{Karney}'s C++ module U{GeodesicExactC4 

5<https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1GeodesicExactC4.html>}. 

6 

7Copyright (C) U{Charles Karney<mailto:Charles@Karney.com>} (2008-2023) 

8and licensed under the MIT/X11 License. For more information, see the 

9U{GeographicLib<https://GeographicLib.SourceForge.io>} documentation. 

10''' 

11# See C{.geodesicx._C4_30.py} for a copy of comments from Karney's C{GeodesicExactC4.cpp}: 

12 

13from pygeodesy.geodesicx.gxbases import _f, _f2 

14 

15__all__ = () 

16__version__ = '23.05.15' 

17 

18_coeffs_24 = ( # GEOGRAPHICLIB_GEODESICEXACT_ORDER == 24 

19 # Generated by Maxima on 2017-05-27 10:17:57-04:00 

20 # C4[0], coeff of eps^23, polynomial in n of order 0 

21 2113, _f(34165005), 

22 # C4[0], coeff of eps^22, polynomial in n of order 1 

23 5189536, 1279278, _f(54629842995), 

24 # C4[0], coeff of eps^21, polynomial in n of order 2 

25 _f(19420000), -9609488, 7145551, _f(87882790905), 

26 # C4[0], coeff of eps^20, polynomial in n of order 3 

27 _f(223285780800), -_f(146003016320), _f(72167144896), 

28 _f(17737080900), _f(0x205dc0bcbd6d7), 

29 # C4[0], coeff of eps^19, polynomial in n of order 4 

30 _f(0x4114538e4c0), -_f(0x2f55bac3db0), _f(0x1ee26e63c60), 

31 -_f(0xf3f108c690), _f(777582423783), _f(0x19244124e56e27), 

32 # C4[0], coeff of eps^18, polynomial in n of order 5 

33 _f(0x303f35e1bc93a0), -_f(0x24e1f056b1d580), 

34 _f(0x1ab9fe0d1d4d60), -_f(0x1164c583e996c0), 

35 _f(0x892da1e80cb20), _f(0x2194519fdb596), 

36 _f2(3071, 0xfdd7cc41833d5), 

37 # C4[0], coeff of eps^17, polynomial in n of order 6 

38 _f(0x4aad22c875ed20), -_f(0x3a4801a1c6bad0), 

39 _f(0x2c487fb318d4c0), -_f(0x1ff24d7cfd75b0), 

40 _f(0x14ba39245f1460), -_f(0xa32e190328e90), 

41 _f(0x78c93074dfcff), _f2(3071, 0xfdd7cc41833d5), 

42 # C4[0], coeff of eps^16, polynomial in n of order 7 

43 _f(0x33d84b92096e100), -_f(0x286d35d824ffe00), 

44 _f(0x1f3d33e2e951300), -_f(0x178f58435181400), 

45 _f(0x10e7992a3756500), -_f(0xaed7fa8609aa00), 

46 _f(0x55d8ac87b09700), _f(0x14e51e43945a10), 

47 _f2(21503, 0xf0e695ca96ad3), 

48 # C4[0], coeff of eps^15, polynomial in n of order 8 

49 _f(0x577cdb6aaee0d80), -_f(0x4283c1e96325470), 

50 _f(0x32feef20b794020), -_f(0x26ea2e388de1a50), 

51 _f(0x1d13f6131e5d6c0), -_f(0x14b9aa66e270230), 

52 _f(0xd5657196ac0560), -_f(0x6880b0118a9810), 

53 _f(0x4d0f1755168ee7), _f2(21503, 0xf0e695ca96ad3), 

54 # C4[0], coeff of eps^14, polynomial in n of order 9 

55 _f(0xa82410caed14920), -_f(0x774e0539d2de300), 

56 _f(0x57ddc01c62bc8e0), -_f(0x41de50dfff43e40), 

57 _f(0x31742450a1bdca0), -_f(0x248524531975180), 

58 _f(0x19d013c6e35ec60), -_f(0x1084c003a0434c0), 

59 _f(0x8103758ad86020), _f(0x1f2409edf5e286), 

60 _f2(21503, 0xf0e695ca96ad3), 

61 # C4[0], coeff of eps^13, polynomial in n of order 10 

62 _f(0x1c6d2d6120015ca0), -_f(0x104cedef383403b0), 

63 _f(0xab9dd58c3e3d880), -_f(0x78a4e83e5604750), 

64 _f(0x57aa7cf5406e460), -_f(0x4067a93ceeb2cf0), 

65 _f(0x2ed62190d975c40), -_f(0x20c076adcb21890), 

66 _f(0x14cfa9cb9e01c20), -_f(0xa1e25734956e30), 

67 _f(0x76afbfe4ae6c4d), _f2(21503, 0xf0e695ca96ad3), 

68 # C4[0], coeff of eps^12, polynomial in n of order 11 

69 _f(0x500e39e18e75c40), -_f(0xb866fe4aaa63680), 

70 _f(0x4337db32e526ac0), -_f(0x264cce8c21af200), 

71 _f(0x18fb7ba247a4140), -_f(0x115709558576d80), 

72 _f(0xc5be96cd3dcfc0), -_f(0x8cdca1395db900), 

73 _f(0x611fe1a7e00640), -_f(0x3d26e46827e480), 

74 _f(0x1d93970a8fd4c0), _f(0x70bf87cc17354), 

75 _f2(3071, 0xfdd7cc41833d5), 

76 # C4[0], coeff of eps^11, polynomial in n of order 12 

77 -_f(0x158a522ca96a9f40), _f(0x14d4e49882e048f0), 

78 _f(0x51a6258bc6026a0), -_f(0xc07af3677bdc6b0), 

79 _f(0x45ac09bc3b66080), -_f(0x275e4ef59a8b450), 

80 _f(0x195f928e5402a60), -_f(0x114aa7eeb31a3f0), 

81 _f(0xbf706c784da040), -_f(0x817ec7d97ab990), 

82 _f(0x508b8ca80cde20), -_f(0x26b120ea091930), 

83 _f(0x1c1ab3faf18ecd), _f2(3071, 0xfdd7cc41833d5), 

84 # C4[0], coeff of eps^10, polynomial in n of order 13 

85 _f(0x85cd94c7a43620), _f(0x41534458719f180), 

86 -_f(0x1688b497e3eabf20), _f(0x15fa3ad6bcd8bd40), 

87 _f(0x531c27984875fa0), -_f(0xc9b33381ee39f00), 

88 _f(0x485a2b8a7ad1a60), -_f(0x286be979df41b40), 

89 _f(0x199b6e19072f920), -_f(0x10f769bc7a1af80), 

90 _f(0xb2b30e0b2b83e0), -_f(0x6d4c30bc0953c0), 

91 _f(0x3405b9397b42a0), _f(0xc1ffd0ada51be), 

92 _f2(3071, 0xfdd7cc41833d5), 

93 # C4[0], coeff of eps^9, polynomial in n of order 14 

94 _f(0x77c3b2fb788360), _f(0x12370e8b6ebba50), 

95 _f(0x3ce89570a2d35c0), _f(0x1ddd463aa5801f30), 

96 -_f2(2652, 0xb61760f09fe0), _f2(2613, 0x24df88b461210), 

97 _f(0x24dea39341926e80), -_f(0x5ce704fae2f44110), 

98 _f(0x20ecef343dc3cce0), -_f(0x121947a4ab4bae30), 

99 _f(0xb2a76f84c78e740), -_f(0x70dd3a5c9a20950), 

100 _f(0x43604f2667d29a0), -_f(0x1fa7f2abdd82670), 

101 _f(0x169d55eb03244c1), _f2(21503, 0xf0e695ca96ad3), 

102 # C4[0], coeff of eps^8, polynomial in n of order 15 

103 _f(0x21331eec152c80), _f(0x3c94fa87392d00), 

104 _f(0x7bff534019c580), _f(0x12eee208e5fe200), 

105 _f(0x3f965ae4945ee80), _f(0x1f56cb06e4e85700), 

106 -_f2(2802, 0x46e8e19f880), _f2(2796, 0xadb20bd4ec00), 

107 _f(0x251d0efe774e7080), -_f(0x625b74d58e27ff00), 

108 _f(0x224674d7e8ab8980), -_f(0x1260f3bdc69c0a00), 

109 _f(0xad7256a98d1b280), -_f(0x63bd65ce944d500), 

110 _f(0x2df89c0cd0d4b80), _f(0xa46618fc50ff08), 

111 _f2(21503, 0xf0e695ca96ad3), 

112 # C4[0], coeff of eps^7, polynomial in n of order 16 

113 _f(0xcb641c2517300), _f(0x1435342f6c1790), 

114 _f(0x2223c168d902a0), _f(0x3e90a70fac72b0), 

115 _f(0x80a310c4f84640), _f(0x13bcb7c20d40bd0), 

116 _f(0x42a5540b0e391e0), _f(0x210e40977bd376f0), 

117 -_f2(2980, 0x94d9def1cc680), _f2(3022, 0x503caf61c4810), 

118 _f(0x24d397da2b859120), -_f(0x68d822cc2f04ecd0), 

119 _f(0x23a043b28810ecc0), -_f(0x125159fafe6e93b0), 

120 _f(0x9e1bc8a31f5a060), -_f(0x46aed7b45d01890), 

121 _f(0x30c71f0f146542f), _f2(21503, 0xf0e695ca96ad3), 

122 # C4[0], coeff of eps^6, polynomial in n of order 17 

123 _f(0x5c9c64c833ea0), _f(0x87cba49bc6200), _f(0xcee016a8ff560), 

124 _f(0x14a860e941a1c0), _f(0x231567934bf020), 

125 _f(0x40a648fc642980), _f(0x85b2123b2c36e0), 

126 _f(0x14a4159e5b98140), _f(0x462d226dee7d1a0), 

127 _f(0x2316888f6f2f3100), -_f2(3198, 0x3491a799c37a0), 

128 _f2(3311, 0xbf8f265e6c0c0), _f(0x2372de10575f2320), 

129 -_f(0x70af5543c56e4780), _f(0x24bbd6e6395ee9e0), 

130 -_f(0x116009bab4325fc0), _f(0x75b7dfa9c5a24a0), 

131 _f(0x17de90e4beab49e), _f2(21503, 0xf0e695ca96ad3), 

132 # C4[0], coeff of eps^5, polynomial in n of order 18 

133 _f(0x6a525328e6e0), _f(0x93f17033fb30), _f(0xd36a04706f00), 

134 _f(0x137db4aaadad0), _f(0x1de17febed720), _f(0x300ece09a4c70), 

135 _f(0x5230537724340), _f(0x98911a7bab410), _f(0x13df6f0042d760), 

136 _f(0x317f809c6f75b0), _f(0xa9d28ba9acb780), 

137 _f(0x55d121ad9d8f550), -_f(0x1efee1555125f860), 

138 _f(0x21073529064696f0), _f(0x486394f46ccebc0), 

139 -_f(0x11777145e6374170), _f(0x54159fc268987e0), 

140 -_f(0x1fa4dd5835d2fd0), _f(0x13d87fc86cca643), 

141 _f2(3071, 0xfdd7cc41833d5), 

142 # C4[0], coeff of eps^4, polynomial in n of order 19 

143 _f(0x3804d31f10c0), _f(0x4b2ec20ad280), _f(0x66f0ea418040), 

144 _f(0x903f2204b400), _f(0xcfad72d447c0), _f(0x134cb9fa41580), 

145 _f(0x1dd70e331b740), _f(0x306dd8a084700), _f(0x53a0a0b201ec0), 

146 _f(0x9cd7c33c89880), _f(0x14a7b599a9ce40), 

147 _f(0x340e256f2c5a00), _f(0xb4e7d2cf7515c0), 

148 _f(0x5cc8e678862db80), -_f(0x22304c48df63bac0), 

149 _f(0x25f7d3a888bb6d00), _f(0x3210c8a6905acc0), 

150 -_f(0x131873ea3222a180), _f(0x4a33217f63b9c40), 

151 _f(0xaa39109cb79b1c), _f2(3071, 0xfdd7cc41833d5), 

152 # C4[0], coeff of eps^3, polynomial in n of order 20 

153 _f(0x1d8a60744340), _f(0x26a12f47d0f0), _f(0x3353c9ffe420), 

154 _f(0x4570fd193850), _f(0x5fe8194aa900), _f(0x87a7057de1b0), 

155 _f(0xc54ab4558de0), _f(0x12897a64b8910), _f(0x1d013b7f18ec0), 

156 _f(0x2fb033b96ea70), _f(0x5384f3e45a7a0), _f(0x9f10eb531c1d0), 

157 _f(0x154d17c994d480), _f(0x36ab828088cb30), 

158 _f(0xc1d47f99841160), _f(0x65b5717bb21c290), 

159 -_f(0x269fd1ef6edfa5c0), _f(0x2dc2d3f3f9f963f0), 

160 -_f(0xf46c321c1b54e0), -_f(0x14642b52c5fe94b0), 

161 _f(0x6b46a122c3b5c05), _f2(3071, 0xfdd7cc41833d5), 

162 # C4[0], coeff of eps^2, polynomial in n of order 21 

163 _f(0x65e46db33460), _f(0x82b39a7b3380), _f(0xa9e8c6cf36a0), 

164 _f(0xe0317d0fa0c0), _f(0x12cd0399df4e0), _f(0x19b576ed17600), 

165 _f(0x23ecb07d1c720), _f(0x33785d3e48b40), _f(0x4bedad56b0560), 

166 _f(0x73f4d1eccb880), _f(0xb8a5a1bdc07a0), _f(0x1359aad161d5c0), 

167 _f(0x22a518d96d25e0), _f(0x43a50f3643bb00), 

168 _f(0x95133a4d60b820), _f(0x18b02de0f4e4040), 

169 _f(0x5ac287501571660), _f(0x31a5fa2db58d3d80), 

170 -_f2(5087, 0xbd2e8f8d6760), _f2(6752, 0x2ce8487308ac0), 

171 -_f2(2184, 0x86ffdb3446920), -_f(0x199994ff919cd3b6), 

172 _f2(21503, 0xf0e695ca96ad3), 

173 # C4[0], coeff of eps^1, polynomial in n of order 22 

174 _f(0xd0da1980ba0), _f(0x10803fb20d70), _f(0x151a70ced0c0), 

175 _f(0x1b569dc61a10), _f(0x23ecd2ce6de0), _f(0x2ff80cba60b0), 

176 _f(0x413672596700), _f(0x5a7b8b75a550), _f(0x8082f2984020), 

177 _f(0xbb859b75abf0), _f(0x11a6bf1637d40), _f(0x1b9a143813890), 

178 _f(0x2d2aacb8da260), _f(0x4e2c5253a0f30), _f(0x914a9e2ed3380), 

179 _f(0x128a302f4ef3d0), _f(0x2b2226f5e6b4a0), 

180 _f(0x7a36190e0daa70), _f(0x1e8d8643836a9c0), 

181 _f(0x129e3dd12414f710), -_f2(2184, 0x86ffdb3446920), 

182 _f2(3276, 0xca7fc8ce69db0), -_f(0x5999897e7da4e4fd), 

183 _f2(7167, 0xfaf78743878f1), 

184 # C4[0], coeff of eps^0, polynomial in n of order 23 

185 _f(0x71a68037fdf14), _f(0x81ebac5d53b48), _f(0x957440e8ac5fc), 

186 _f(0xad1ce56088670), _f(0xca0c260c189e4), _f(0xedd10e292f598), 

187 _f(0x11a912af9e18cc), _f(0x1534f4af92bec0), 

188 _f(0x19c5b078ed00b4), _f(0x1fc05a701dd7e8), 

189 _f(0x27bd1031afaf9c), _f(0x32a7dc61183710), 

190 _f(0x41fc58560eb384), _f(0x583759590a1238), 

191 _f(0x79bd058a3bfa6c), _f(0xaecdc650561f60), 

192 _f(0x108312ea2251254), _f(0x1abbd57b12fd488), 

193 _f(0x2fbd21c97d5693c), _f(0x634bf45b6b1a7b0), 

194 _f(0x11110dffb6688d24), _f(0x666653fe46734ed8), 

195 -_f2(5734, 0x625f9f69393f4), _f2(14335, 0xf5ef0e870f1e2), 

196 _f2(21503, 0xf0e695ca96ad3), 

197 # C4[1], coeff of eps^23, polynomial in n of order 0 

198 3401, _f(512475075), 

199 # C4[1], coeff of eps^22, polynomial in n of order 1 

200 -5479232, 3837834, _f(163889528985), 

201 # C4[1], coeff of eps^21, polynomial in n of order 2 

202 -_f(1286021216), _f(571443856), _f(142575393), _f(0xef8343fb2e1), 

203 # C4[1], coeff of eps^20, polynomial in n of order 3 

204 -_f(237999188352), _f(138477414656), -_f(77042430080), 

205 _f(53211242700), _f(0x6119423638485), 

206 # C4[1], coeff of eps^19, polynomial in n of order 4 

207 -_f(0x2066cb6031fc0), _f(0x14c85e7394470), -_f(0xf6b8f35571e0), 

208 _f(0x6ad3f08040d0), _f(0x1aa3b2832565), _f(0x230f8ed873f29c63), 

209 # C4[1], coeff of eps^18, polynomial in n of order 5 

210 -_f(0x33e9644cad5b40), _f(0x22b6849ca6a500), 

211 -_f(0x1ce364ad2a4ec0), _f(0x104aaed8cf4680), 

212 -_f(0x949f0f8a89e40), _f(0x64bcf4df920c2), 

213 _f2(9215, 0xf98764c489b7f), 

214 # C4[1], coeff of eps^17, polynomial in n of order 6 

215 -_f(0x50a85b2e2e4060), _f(0x36bb9aa442c6f0), 

216 -_f(0x3029aafbbe0440), _f(0x1dc29c0bd6ce90), 

217 -_f(0x16a422844d9020), _f(0x9763b8d8ca030), 

218 _f(0x25b8d7edff7eb), _f2(9215, 0xf98764c489b7f), 

219 # C4[1], coeff of eps^16, polynomial in n of order 7 

220 -_f(0x3822c174e5c7e00), _f(0x25fbaf973d78c00), 

221 -_f(0x222a860fbdb7a00), _f(0x15dabd7a0984800), 

222 -_f(0x129f00215535600), _f(0xa0e9e0ae9b8400), 

223 -_f(0x5ee97a6d2d5200), _f(0x3eaf5acabd0e30), 

224 _f2(64511, 0xd2b3c15fc4079), 

225 # C4[1], coeff of eps^15, polynomial in n of order 8 

226 -_f(0x5ec1dcd7666b480), _f(0x3ed4935a3fd8cd0), 

227 -_f(0x38014f5e5d79960), _f(0x240af6a53256570), 

228 -_f(0x2049d0fb0404a40), _f(0x12efbc065d3f410), 

229 -_f(0xee9d804d5d8320), _f(0x5ed209adebbcb0), 

230 _f(0x1798ea7fdd6773), _f2(64511, 0xd2b3c15fc4079), 

231 # C4[1], coeff of eps^14, polynomial in n of order 9 

232 -_f(0x19f69929deb8bc0), _f(0x1054723730b1600), 

233 -_f(0xdce6aeb616e040), _f(0x8c0069813d6480), 

234 -_f(0x7e59f70027c8c0), _f(0x4bea01551feb00), 

235 -_f(0x42bb28790cad40), _f(0x21dd61f97d4180), 

236 -_f(0x14f93d4343f5c0), _f(0xd58968a8df35e), 

237 _f2(9215, 0xf98764c489b7f), 

238 # C4[1], coeff of eps^13, polynomial in n of order 10 

239 -_f(0x1ecd4a3794400de0), _f(0x101df33ec1bb0110), 

240 -_f(0xbc64ec7794b2980), _f(0x71d5f4e2a637ff0), 

241 -_f(0x625888ecafc7520), _f(0x3aa6879742ff4d0), 

242 -_f(0x3585f7f60d164c0), _f(0x1d18174ef21abb0), 

243 -_f(0x18117eb39416c60), _f(0x8df7a42ab2f090), 

244 _f(0x23413de9276581), _f2(64511, 0xd2b3c15fc4079), 

245 # C4[1], coeff of eps^12, polynomial in n of order 11 

246 -_f(0x113775cb09582880), _f(0x5790112bb17c4700), 

247 -_f(0x204e01ed2b929d80), _f(0x1063af9e8d99cc00), 

248 -_f(0xc3ef805036ada80), _f(0x701a56aa2d31100), 

249 -_f(0x63910631abdcf80), _f(0x368e0c562512600), 

250 -_f(0x31ed34307286c80), _f(0x170e89cb9dd1b00), 

251 -_f(0xf5f0efdd07a180), _f(0x93fb623bde75e4), 

252 _f2(64511, 0xd2b3c15fc4079), 

253 # C4[1], coeff of eps^11, polynomial in n of order 12 

254 _f(0x13635f7860ae69c0), -_f(0x169d904d9d4691d0), 

255 -_f(0x2254277308cd9e0), _f(0xd20446e8d8a9710), 

256 -_f(0x4df2aedeefd1980), _f(0x25e2aff2baec9f0), 

257 -_f(0x1d3856fa2b08920), _f(0xf7cadc640f92d0), 

258 -_f(0xe3d2f6c9ad5cc0), _f(0x6e412eaf297db0), 

259 -_f(0x62000ef613c860), _f(0x201266fb021690), 

260 _f(0x7ee4c480c21e1), _f2(9215, 0xf98764c489b7f), 

261 # C4[1], coeff of eps^10, polynomial in n of order 13 

262 -_f(0x5fe482817c4c40), -_f(0x3373730b4b79d00), 

263 _f(0x140f919171472640), -_f(0x17f10e5417ef9980), 

264 -_f(0x1b454cf244cf340), _f(0xdd42319af5c0200), 

265 -_f(0x530205145e450c0), _f(0x25eec00584a7d80), 

266 -_f(0x1e9e562555aaa40), _f(0xe85806d73b2100), 

267 -_f(0xde44387c5bb7c0), _f(0x581f06023d3480), 

268 -_f(0x421ccd71c33140), _f(0x245ff7208ef53a), 

269 _f2(9215, 0xf98764c489b7f), 

270 # C4[1], coeff of eps^9, polynomial in n of order 14 

271 -_f(0x47f3709eaa4320), -_f(0xbb640bc2e1ae70), 

272 -_f(0x2a7854a3ead7b40), -_f(0x1701de8d91314210), 

273 _f2(2329, 0x5f8472b9624a0), -_f2(2855, 0xe7c1182872fb0), 

274 -_f(0x785bf95be998780), _f(0x66690260b30024b0), 

275 -_f(0x272595745774a3a0), _f(0x104f772bee315710), 

276 -_f(0xe11ad02f34b53c0), _f(0x5a192e055800370), 

277 -_f(0x58d8bfb781fbbe0), _f(0x17a156426e4c5d0), 

278 _f(0x5c88907e67c575), _f2(64511, 0xd2b3c15fc4079), 

279 # C4[1], coeff of eps^8, polynomial in n of order 15 

280 -_f(0x1138d3e7324700), -_f(0x210a1008a4f200), 

281 -_f(0x47b7d2285e8500), -_f(0xbbe3dba17a1400), 

282 -_f(0x2aeb63e9e4cb300), -_f(0x1781d8a9c80b7600), 

283 _f2(2419, 0xe4212c9be8f00), -_f2(3063, 0xd7c230ad9b800), 

284 -_f(0x116171a56015f00), _f(0x6cc31b4079da8600), 

285 -_f(0x2af22cc657d11d00), _f(0xf75e4ec12d0a400), 

286 -_f(0xeb60cc0dd754b00), _f(0x472a49a74880200), 

287 -_f(0x4174f343c328900), _f(0x1ed324af4f2fd18), 

288 _f2(64511, 0xd2b3c15fc4079), 

289 # C4[1], coeff of eps^7, polynomial in n of order 16 

290 -_f(0xd56426d4f700), -_f(0x15fa65017d450), 

291 -_f(0x26ba18ad11e20), -_f(0x4a9605f1a58f0), 

292 -_f(0xa2b494aee2940), -_f(0x1ad07f38fd2390), 

293 -_f(0x62deb836d71c60), -_f(0x36d68c47bf27830), 

294 _f(0x167d3fa4abc50480), -_f(0x1d9b2fd161b99ad0), 

295 _f(0x13a59aea9293560), _f(0x10886ca52ccf3090), 

296 -_f(0x6e8a4c27dbf8dc0), _f(0x1f02cd8f1f8a5f0), 

297 -_f(0x2216230a1ac48e0), _f(0x5f13c815b08150), 

298 _f(0x1666b06ca8f56d), _f2(9215, 0xf98764c489b7f), 

299 # C4[1], coeff of eps^6, polynomial in n of order 17 

300 -_f(0x2678d0ed9f140), -_f(0x39d0dbe263c00), 

301 -_f(0x5aa623a5216c0), -_f(0x95d2f30c44880), 

302 -_f(0x108ea4db631840), -_f(0x2005d27e0acd00), 

303 -_f(0x463ad5e0e22dc0), -_f(0xba80ab02c40180), 

304 -_f(0x2b67c47d5d48f40), -_f(0x186d6a49f7da1e00), 

305 _f2(2625, 0x9832921f08b40), -_f2(3627, 0xa72ee4675a80), 

306 _f(0x17be252bac67e9c0), _f(0x7a8f5366d9ba1100), 

307 -_f(0x38a15d77b043abc0), _f(0x9cd4e0bf35fec80), 

308 -_f(0xceae5004f176d40), _f(0x479bb2ae3c01dda), 

309 _f2(64511, 0xd2b3c15fc4079), 

310 # C4[1], coeff of eps^5, polynomial in n of order 18 

311 -_f(0x11dc9e54dea60), -_f(0x193ec5647cdf0), 

312 -_f(0x24bda460ceb00), -_f(0x3760182d9a010), 

313 -_f(0x5717ea0e54ba0), -_f(0x907095ecddc30), 

314 -_f(0x10063188dee040), -_f(0x1f228e862f9650), 

315 -_f(0x44adcde9a37ce0), -_f(0xb7cbf8f2d0e270), 

316 -_f(0x2b3f803c770f580), -_f(0x18c05d008644d490), 

317 _f2(2737, 0x3ce4b1d74e1e0), -_f2(4017, 0xdf79eceb980b0), 

318 _f(0x30ac41edd5123540), _f(0x7e3ade121a8e0530), 

319 -_f(0x45ec5d28a0fecf60), _f(0x3577aaf625fa910), 

320 _f(0x7292b77d2ccfc9), _f2(64511, 0xd2b3c15fc4079), 

321 # C4[1], coeff of eps^4, polynomial in n of order 19 

322 -_f(0x14469ef39280), -_f(0x1b74a6d65900), -_f(0x25fc6724f380), 

323 -_f(0x35e25bf6c800), -_f(0x4eb76c6a3c80), -_f(0x771a92ddb700), 

324 -_f(0xbc1644489d80), -_f(0x13946cde25600), 

325 -_f(0x22eaf36054680), -_f(0x44349dbbbd500), 

326 -_f(0x976a625a56780), -_f(0x1989ef99e16400), 

327 -_f(0x6150e2c16e3080), -_f(0x38c68feccea3300), 

328 _f(0x1963a1a8e71b2e80), -_f(0x2849f713f5ed7200), 

329 _f(0xd30bac57bb18580), _f(0x105e1a36741daf00), 

330 -_f(0xc8c696e03b05b80), _f(0x1feab31d626d154), 

331 _f2(9215, 0xf98764c489b7f), 

332 # C4[1], coeff of eps^3, polynomial in n of order 20 

333 -_f(0xa4172dfa1c0), -_f(0xd77fb109ed0), -_f(0x11fc3eda7860), 

334 -_f(0x1879b9235cf0), -_f(0x2209eb95db00), -_f(0x308bcfa5f110), 

335 -_f(0x47510fa29da0), -_f(0x6c88ffcf6f30), -_f(0xac6dd3019440), 

336 -_f(0x120fcca63eb50), -_f(0x206b8121592e0), 

337 -_f(0x3fc3a9ace7970), -_f(0x8ea4f3b556d80), 

338 -_f(0x18488ccc5b2d90), -_f(0x5db9d9787df820), 

339 -_f(0x37d6c7544511bb0), _f(0x1a02f9f8abfbf940), 

340 -_f(0x2d9fe91163ac57d0), _f(0x18b01234447992a0), 

341 _f(0x46ed1c414c80a10), -_f(0x57c56c90ceabfa7), 

342 _f2(9215, 0xf98764c489b7f), 

343 # C4[1], coeff of eps^2, polynomial in n of order 21 

344 -_f(0x2271f7278cc0), -_f(0x2c3f5c6ec900), -_f(0x399dc5a18140), 

345 -_f(0x4c2bebb96280), -_f(0x6670101499c0), -_f(0x8c75450f5400), 

346 -_f(0xc4e9f8733e40), -_f(0x11b3ff75a0580), 

347 -_f(0x1a3e7cf3fd6c0), -_f(0x2853a9e02df00), 

348 -_f(0x40b8bca6ccb40), -_f(0x6da2a9d234880), 

349 -_f(0xc6fc7477c83c0), -_f(0x18bdddb834aa00), 

350 -_f(0x37ff6cf7616840), -_f(0x9a5f4811c06b80), 

351 -_f(0x25bde21729de0c0), -_f(0x16ea24b2a28ff500), 

352 _f2(2841, 0x69c686bdbaac0), -_f2(5560, 0x9d73ff6dcae80), 

353 _f2(4369, 0xdffb6688d240), -_f(0x4cccbefeb4d67b22), 

354 _f2(64511, 0xd2b3c15fc4079), 

355 # C4[1], coeff of eps^1, polynomial in n of order 22 

356 -_f(0xd0da1980ba0), -_f(0x10803fb20d70), -_f(0x151a70ced0c0), 

357 -_f(0x1b569dc61a10), -_f(0x23ecd2ce6de0), -_f(0x2ff80cba60b0), 

358 -_f(0x413672596700), -_f(0x5a7b8b75a550), -_f(0x8082f2984020), 

359 -_f(0xbb859b75abf0), -_f(0x11a6bf1637d40), 

360 -_f(0x1b9a143813890), -_f(0x2d2aacb8da260), 

361 -_f(0x4e2c5253a0f30), -_f(0x914a9e2ed3380), 

362 -_f(0x128a302f4ef3d0), -_f(0x2b2226f5e6b4a0), 

363 -_f(0x7a36190e0daa70), -_f(0x1e8d8643836a9c0), 

364 -_f(0x129e3dd12414f710), _f2(2184, 0x86ffdb3446920), 

365 -_f2(3276, 0xca7fc8ce69db0), _f(0x5999897e7da4e4fd), 

366 _f2(64511, 0xd2b3c15fc4079), 

367 # C4[2], coeff of eps^23, polynomial in n of order 0 

368 10384, _f(854125125), 

369 # C4[2], coeff of eps^22, polynomial in n of order 1 

370 _f(61416608), 15713412, _f(0x35f1be97217), 

371 # C4[2], coeff of eps^21, polynomial in n of order 2 

372 _f(1053643008), -_f(709188480), _f(436906360), _f(0x18f301bf7f77), 

373 # C4[2], coeff of eps^20, polynomial in n of order 3 

374 _f(0x45823cb069c0), -_f(0x3dc56cd10180), _f(0x15b4532d4340), 

375 _f(0x5946b207ad8), _f(0xf72bf6e15a9abe5), 

376 # C4[2], coeff of eps^19, polynomial in n of order 4 

377 _f(0x1b1b08a8c6e00), -_f(0x1a1dea5249180), _f(0xc1b857255700), 

378 -_f(0x8a94db95d080), _f(0x5209b9749ec8), 

379 _f(0x3a6f4368c13f04a5), 

380 # C4[2], coeff of eps^18, polynomial in n of order 5 

381 _f(0x13c972f90d64d60), -_f(0x12d8369dbbbb080), 

382 _f(0xa013fa80d7c1a0), -_f(0x95d1a2bb4de840), 

383 _f(0x30a495fb9aa5e0), _f(0xc95efc891d64c), 

384 _f2(107519, 0xb480ecf4f161f), 

385 # C4[2], coeff of eps^17, polynomial in n of order 6 

386 _f(0x4b31e4eff4bc00), -_f(0x4190c8b5d5de00), 

387 _f(0x27770ac0842800), -_f(0x270a0d33995200), 

388 _f(0x10c9f01b859400), -_f(0xd056352974600), 

389 _f(0x74f9dc1f6f260), _f2(15359, 0xf536fd4790329), 

390 # C4[2], coeff of eps^16, polynomial in n of order 7 

391 _f(0x39908ef33285d00), -_f(0x2a7d467835cbe00), 

392 _f(0x1e0505551ade700), -_f(0x1bf3204cf26d400), 

393 _f(0xe195527d96f100), -_f(0xe0af5ccd52ea00), 

394 _f(0x41681113e87b00), _f(0x1112b429bab2a0), 

395 _f2(107519, 0xb480ecf4f161f), 

396 # C4[2], coeff of eps^15, polynomial in n of order 8 

397 _f(0xf8fa0142055000), -_f(0x8f8aa7832e8a00), 

398 _f(0x7d6f3ddfb47c00), -_f(0x62d1e182b7be00), 

399 _f(0x3bb149eddea800), -_f(0x3be3b3e26a7200), 

400 _f(0x175d0d17dad400), -_f(0x14371cfc4fa600), 

401 _f(0xa8f8f5855a060), _f2(15359, 0xf536fd4790329), 

402 # C4[2], coeff of eps^14, polynomial in n of order 9 

403 _f(0x21490cd145715e0), -_f(0xe087822f191900), 

404 _f(0xf91f2bb3d29820), -_f(0x949428c90dc2c0), 

405 _f(0x7371ad50b34a60), -_f(0x63c52e9a850c80), 

406 _f(0x301579a22c8ca0), -_f(0x33552a69ca1640), 

407 _f(0xcc2c8c733bee0), _f(0x35f5f30acfbec), 

408 _f2(15359, 0xf536fd4790329), 

409 # C4[2], coeff of eps^13, polynomial in n of order 10 

410 _f(0x29bb6acaa073ef00), -_f(0xc930d526d728e80), 

411 _f(0xf55c2b3103d0c00), -_f(0x63b9281a5449980), 

412 _f(0x6acdfd5dbb92900), -_f(0x441c8fce3be0480), 

413 _f(0x2be797a45cb8600), -_f(0x2aec3395f438f80), 

414 _f(0xec70ff5d376300), -_f(0xedc27143c9fa80), 

415 _f(0x7039bcd0124e68), _f2(107519, 0xb480ecf4f161f), 

416 # C4[2], coeff of eps^12, polynomial in n of order 11 

417 -_f(0x17ce935fc610ad40), -_f(0x5d5bbde81a902580), 

418 _f(0x2dcc12fb45c89240), -_f(0xc1c61e98a479e00), 

419 _f(0x10183633a5ddf1c0), -_f(0x672de318faa1680), 

420 _f(0x64ee85310393140), -_f(0x481cf983db0cf00), 

421 _f(0x2299f24f52810c0), -_f(0x271fc56086d0780), 

422 _f(0x79dac155045040), _f(0x20c44d35dada38), 

423 _f2(107519, 0xb480ecf4f161f), 

424 # C4[2], coeff of eps^11, polynomial in n of order 12 

425 -_f(0x6b8bdbaa2666e600), _f2(2706, 0x6d4e4332c7e80), 

426 -_f(0x201eb2939ffc7500), -_f(0x605f6d97c740b880), 

427 _f(0x32fb1ca66ccebc00), -_f(0xb85f2dd585e0f80), 

428 _f(0x10b7dbe9dec0ed00), -_f(0x6e454f6a0fd4680), 

429 _f(0x594f6f139205e00), -_f(0x4c204810d601d80), 

430 _f(0x16a875347934f00), -_f(0x1be72589c185480), 

431 _f(0xb5a396e2ccd788), _f2(107519, 0xb480ecf4f161f), 

432 # C4[2], coeff of eps^10, polynomial in n of order 13 

433 _f(0x332d666e095e20), _f(0x205e97ebfb32780), 

434 -_f(0xf80bf36cd359f20), _f(0x19615ff8d71e0640), 

435 -_f(0x61aef235a414c60), -_f(0xe1fda0393083b00), 

436 _f(0x83e2ad192fc7660), -_f(0x18ece140ef0fc40), 

437 _f(0x26bbb213037c920), -_f(0x11a4c9418dd9d80), 

438 _f(0x9ec708de66cbe0), -_f(0xaee5994e9b7ec0), 

439 _f(0x1626e135e59ea0), _f(0x610ef2b6b35c4), 

440 _f2(15359, 0xf536fd4790329), 

441 # C4[2], coeff of eps^9, polynomial in n of order 14 

442 _f(0x1b709db1871200), _f(0x51a2a024c26b00), 

443 _f(0x157c554050bb400), _f(0xddb41f944653d00), 

444 -_f(0x6d182f563006aa00), _f2(2991, 0xf7eb0ae304f00), 

445 -_f(0x387b65599c618800), -_f(0x64242336a83ddf00), 

446 _f(0x4282c6eaa3899a00), -_f(0xa8fc3afb1e6cd00), 

447 _f(0x1040dddbf0493c00), -_f(0x9184bc07b2bfb00), 

448 _f(0x281ea22622bde00), -_f(0x3dc59bc648ee900), 

449 _f(0x13fb78815b4ca90), _f2(107519, 0xb480ecf4f161f), 

450 # C4[2], coeff of eps^8, polynomial in n of order 15 

451 _f(0xacc0646b5180), _f(0x1753663f74b00), _f(0x3994d0061e480), 

452 _f(0xadc1fbdd72e00), _f(0x2e87a44adab780), 

453 _f(0x1eaeb3451821100), -_f(0xf937e414930b580), 

454 _f(0x1c27d8b21df37400), -_f(0xaa5908f76fee280), 

455 -_f(0xe1c8d327ee92900), _f(0xb2675f22d49b080), 

456 -_f(0x19e66cd66684600), _f(0x1f3a47aa5ea8380), 

457 -_f(0x18da246c74e6300), _f(0x10dd3b80dd1680), 

458 _f(0x3f21f272d2a30), _f2(15359, 0xf536fd4790329), 

459 # C4[2], coeff of eps^7, polynomial in n of order 16 

460 _f(0x2957d7da1000), _f(0x4c28ba8a3700), _f(0x9714a6610e00), 

461 _f(0x14a5ff52a4500), _f(0x33af2f78d8c00), _f(0x9e87298409300), 

462 _f(0x2b4e15dbd10a00), _f(0x1d4c6da210ea100), 

463 -_f(0xf6c4a6847e2f800), _f(0x1da98c51a6b5ef00), 

464 -_f(0xe1270d810dcfa00), -_f(0xd23a021f3080300), 

465 _f(0xd3b280b26948400), -_f(0x22fd890d309b500), 

466 _f(0x119ef453c630200), -_f(0x1959af9980da700), 

467 _f(0x5959078fa70870), _f2(15359, 0xf536fd4790329), 

468 # C4[2], coeff of eps^6, polynomial in n of order 17 

469 _f(0x511612baa2a0), _f(0x87a79de92a00), _f(0xee2dd20af160), 

470 _f(0x1bbcfaf32f4c0), _f(0x37ba524fb5020), _f(0x7b9b8f2a45f80), 

471 _f(0x13a76fcf6fdee0), _f(0x3d717a0fbe0a40), 

472 _f(0x112dc752f02bda0), _f(0xbfa002cc4689500), 

473 -_f(0x694405622017f3a0), _f2(3484, 0x979f3cbb89fc0), 

474 -_f2(2088, 0x4fe2045ae14e0), -_f(0x49f87439584d3580), 

475 _f(0x6c3e90c1455479e0), -_f(0x1afff07538f04ac0), 

476 -_f(0x1a0f4cdf3b62760), -_f(0x112f9b85f9ebf7c), 

477 _f2(107519, 0xb480ecf4f161f), 

478 # C4[2], coeff of eps^5, polynomial in n of order 18 

479 _f(0x181437e05500), _f(0x25c7b1fe6a80), _f(0x3d5ebd606800), 

480 _f(0x67dd27f0e580), _f(0xb8ac7d2a7b00), _f(0x15ce71e5cc080), 

481 _f(0x2c7c6a3654e00), _f(0x6460c05d0bb80), _f(0x1046637cd7a100), 

482 _f(0x340d46956b9680), _f(0xef5f1bde883400), 

483 _f(0xacec6aed73c1180), -_f(0x63ea680d7ea23900), 

484 _f2(3605, 0xecc3861a0ec80), -_f2(2759, 0xc804a6c40e600), 

485 -_f(0x212a787bd0571880), _f(0x70c6a0884332ed00), 

486 -_f(0x31a5fa2db58d3d80), _f(0x5033807138f7d98), 

487 _f2(107519, 0xb480ecf4f161f), 

488 # C4[2], coeff of eps^4, polynomial in n of order 19 

489 _f(0x6f3f0983c40), _f(0xa6cf9192980), _f(0x100e50e166c0), 

490 _f(0x197f658cec00), _f(0x29f706a6f140), _f(0x480b7a0eae80), 

491 _f(0x821ecd9c1bc0), _f(0xfa1d1da0b100), _f(0x2081a78802640), 

492 _f(0x4aefd4add3380), _f(0xc730805b650c0), _f(0x28f491e04e7600), 

493 _f(0xc2d07512dddb40), _f(0x92e539684c6b880), 

494 -_f(0x5a2096cfc695fa40), _f2(3598, 0x9cd1e91b83b00), 

495 -_f2(3553, 0x1d49601c5efc0), _f(0x31a5fa2db58d3d80), 

496 _f(0x3760835a5e313ac0), -_f(0x1bed5cb9b61f7298), 

497 _f2(107519, 0xb480ecf4f161f), 

498 # C4[2], coeff of eps^3, polynomial in n of order 20 

499 _f(273006835200), _f(395945493120), _f(586817304320), 

500 _f(891220401024), _f(0x1440886f800), _f(0x20a73015480), 

501 _f(0x36a4a027900), _f(0x5f8b4acad80), _f(0xb01798c3a00), 

502 _f(0x15a2eb8a6680), _f(0x2e235b147b00), _f(0x6d6a30f2bf80), 

503 _f(0x12c54474b7c00), _f(0x40129870df880), _f(0x13e41ecc817d00), 

504 _f(0xfcf67c8cf45180), -_f(0xa65f288fe794200), 

505 _f(0x1cea83a477ce0a80), -_f(0x240239aaff748100), 

506 _f(0x1547221396f36380), -_f(0x4e04d247d427178), 

507 _f2(15359, 0xf536fd4790329), 

508 # C4[2], coeff of eps^2, polynomial in n of order 21 

509 _f(317370445920), _f(448806691200), _f(646426411680), 

510 _f(950282020800), _f(0x14ccaecc4e0), _f(0x201acdf4e00), 

511 _f(0x33093819720), _f(0x53ed06eb440), _f(0x8f8eb441960), 

512 _f(0x1013bf0bfa80), _f(0x1e750d7baba0), _f(0x3dc4346800c0), 

513 _f(0x88729901ade0), _f(0x150e863aba700), _f(0x3c89c1e8d8020), 

514 _f(0xd9efed463cd40), _f(0x47e39644808260), 

515 _f(0x3d1b0c8706d5380), -_f(0x2af704cef0cdeb60), 

516 _f(0x7c1ef17245e119c0), -_f2(2184, 0x86ffdb3446920), 

517 _f(0x333329ff2339a76c), _f2(107519, 0xb480ecf4f161f), 

518 # C4[3], coeff of eps^23, polynomial in n of order 0 

519 70576, _f(29211079275), 

520 # C4[3], coeff of eps^22, polynomial in n of order 1 

521 -_f(31178752), _f(16812224), _f(0x192c8c2464f), 

522 # C4[3], coeff of eps^21, polynomial in n of order 2 

523 -_f(135977211392), _f(37023086848), _f(9903771944), 

524 _f(0xb98f5d0044051), 

525 # C4[3], coeff of eps^20, polynomial in n of order 3 

526 -_f(0x30f8b0f5c00), _f(0x12d79f66800), -_f(0x115c7023400), 

527 _f(606224480400), _f(0xa7c6f527b4f7c7), 

528 # C4[3], coeff of eps^19, polynomial in n of order 4 

529 -_f(0x3317d68847dc00), _f(0x19fc69dd236700), 

530 -_f(0x1c6d14df7ace00), _f(0x6cfe4fac52d00), 

531 _f(0x1d99f24357808), _f2(30105, 0x847604e86c8c1), 

532 # C4[3], coeff of eps^18, polynomial in n of order 5 

533 -_f(0x15b0eba45ef8000), _f(0xf79bdd24a10000), 

534 -_f(0xf32a8559288000), _f(0x563281b24a8000), 

535 -_f(0x5920796c2f8000), _f(0x29f7b73471c480), 

536 _f2(150527, 0x964e188a1ebc5), 

537 # C4[3], coeff of eps^17, polynomial in n of order 6 

538 -_f(0x1c02d0336ef1800), _f(0x1d91ba24525dc00), 

539 -_f(0x163d203e4811000), _f(0xb8e8b252aa8400), 

540 -_f(0xd2485de6110800), _f(0x2a40e341b4ac00), 

541 _f(0xbb70f2cbcf360), _f2(150527, 0x964e188a1ebc5), 

542 # C4[3], coeff of eps^16, polynomial in n of order 7 

543 -_f(0x58b4aa16ae3000), _f(0x7fa0a14380e000), 

544 -_f(0x429ab6e3829000), _f(0x383428ed0d4000), 

545 -_f(0x32e93ebd99f000), _f(0x108fe88bbda000), 

546 -_f(0x13ba86ffa65000), _f(0x868b4ab8e3340), 

547 _f2(21503, 0xf0e695ca96ad3), 

548 # C4[3], coeff of eps^15, polynomial in n of order 8 

549 -_f(0xaedfc7febee000), _f(0xe403ca9386ec00), 

550 -_f(0x5568aa53f7a800), _f(0x76f3d9af940400), 

551 -_f(0x475f28b7bb7000), _f(0x29018461d69c00), 

552 -_f(0x2ed89591f13800), _f(0x74380445fb400), 

553 _f(0x21274712bcba0), _f2(21503, 0xf0e695ca96ad3), 

554 # C4[3], coeff of eps^14, polynomial in n of order 9 

555 -_f(0x231ca125e5c8000), _f(753027184687 << 17), 

556 -_f(0x97f88531f38000), _f(0xee839ade908000), 

557 -_f(0x572a9cdd748000), _f(0x65a05d4f5f0000), 

558 -_f(0x4ce11756538000), _f(0x177f524c958000), 

559 -_f(0x20e57338048000), _f(0xc4518e260f380), 

560 _f2(21503, 0xf0e695ca96ad3), 

561 # C4[3], coeff of eps^13, polynomial in n of order 10 

562 -_f(0x44ebd4477ad4f200), _f(0x9a6a6024b320f00), 

563 -_f(0xe915ce102d6a800), _f(0xb28d5273bcee100), 

564 -_f(0x37fa968ec235e00), _f(0x68974b850671300), 

565 -_f(0x2a735b9bf505400), _f(0x20513dd7a7f6500), 

566 -_f(0x220360a9be2ca00), _f(0x36d1c1a3f49700), 

567 _f(0x10369a2227fd98), _f2(150527, 0x964e188a1ebc5), 

568 # C4[3], coeff of eps^12, polynomial in n of order 11 

569 _f(0x52462bb828351400), _f(0x4a4d1c14e6172800), 

570 -_f(0x4ced32c430d22400), _f(0xb52b1b0c2492000), 

571 -_f(0xd058359466b1c00), _f(0xd07709dd3bd1800), 

572 -_f(0x30072e56aae5400), _f(0x605c027d5629000), 

573 -_f(0x32e58b8ebb44c00), _f(0x108221f23a90800), 

574 -_f(0x1a7ac7295958400), _f(0x836be4086f28d0), 

575 _f2(150527, 0x964e188a1ebc5), 

576 # C4[3], coeff of eps^11, polynomial in n of order 12 

577 _f(0x48f7bc8748dd3400), -_f2(2561, 0x7f9f9673a4700), 

578 _f(0x601d0ed1c7f2b600), _f(0x449204e4f86d4300), 

579 -_f(0x56194f80f81a8800), _f(0xea108cfa6f6ed00), 

580 -_f(0xa7ad46bd016c600), _f(0xef32c344e507700), 

581 -_f(0x30a1762ff0e4400), _f(0x4a78ea25c4fa100), 

582 -_f(0x3c3cca9d1bd4200), _f(0x22cbd76a022b00), 

583 _f(0x9df3abb037278), _f2(150527, 0x964e188a1ebc5), 

584 # C4[3], coeff of eps^10, polynomial in n of order 13 

585 -_f(0x9607df2a17c000), -_f(0x739371b7f3d8000), 

586 _f(0x4688c366039fc000), -_f2(2611, 0x8a66cbfc04000), 

587 _f(0x7056fbc7b1c24000), _f(0x3af7506941670000), 

588 -_f(0x601cadbaecf24000), _f(0x14affbea17164000), 

589 -_f(0x6daccbfd0bfc000), _f(0x1036680bb42b8000), 

590 -_f(0x42f04a7d6e84000), _f(0x246d9b6ab84c000), 

591 -_f(0x37cce3b53adc000), _f(0xd43660c7def0c0), 

592 _f2(150527, 0x964e188a1ebc5), 

593 # C4[3], coeff of eps^9, polynomial in n of order 14 

594 -_f(0x115a7e31ff400), -_f(0x3c90c47c29600), 

595 -_f(0x1311ab10640800), -_f(0xf2246746703a00), 

596 _f(0x99b5e8c5c68e400), -_f(0x179a6d9c8ead9e00), 

597 _f(0x12bd250608495000), _f(0x63777cc9563be00), 

598 -_f(0xf1ef7972c204400), _f(0x47367775d725a00), 

599 -_f(0x63378c7bb15800), _f(0x22d63078c5cb600), 

600 -_f(0xf8707c83e76c00), -_f(0xb0e06786eae00), 

601 -_f(0x5e4438ea922f0), _f2(21503, 0xf0e695ca96ad3), 

602 # C4[3], coeff of eps^8, polynomial in n of order 15 

603 -_f(0x1fe011d85800), -_f(0x4f422fb05000), -_f(0xe40060fc8800), 

604 -_f(0x32e664e9c2000), -_f(0x1078ec0ef63800), 

605 -_f(0xd864902b71f000), _f(0x8fab71292d19800), 

606 -_f(0x179bbec0170ac000), _f(0x15c925f1e4f1e800), 

607 _f(0x2c36e0d96c07000), -_f(0x100d07856dfe4800), 

608 _f(0x6d9c3efea16a000), -_f(0x13ac4a3567f800), 

609 _f(0x15b22a4de1ed000), -_f(0x1452d18e2b42800), 

610 _f(0x32eab893d697a0), _f2(21503, 0xf0e695ca96ad3), 

611 # C4[3], coeff of eps^7, polynomial in n of order 16 

612 -_f(0x5003ad66000), -_f(0xa79ae296200), -_f(0x17d9e9f5d400), 

613 -_f(0x3c8762ad2600), -_f(0xb232a56ac800), -_f(0x28dbf6ee52a00), 

614 -_f(0xda6199e36bc00), -_f(0xba74c6aa46ee00), 

615 _f(0x825959cb764d000), -_f(0x17232e4c4e57f200), 

616 _f(0x190bf0598fc65c00), -_f(0x27c51cb844db600), 

617 -_f(0xf8735fc98339800), _f(0xa28217eef524600), 

618 -_f(0xfc87c9cb4a8c00), -_f(0x3228ffc0ed7e00), 

619 -_f(0x387bf611406670), _f2(21503, 0xf0e695ca96ad3), 

620 # C4[3], coeff of eps^6, polynomial in n of order 17 

621 -_f(0x62d694dc000), -_f(97716157 << 17), -_f(0x173b38f24000), 

622 -_f(0x319b0ca1c000), -_f(0x7361a893c000), -_f(0x12be5bef38000), 

623 -_f(0x38b3402cc4000), -_f(0xd6a4403694000), 

624 -_f(0x4a69cc1535c000), -_f(0x42816c266fd0000), 

625 _f(0x315cb6a39d95c000), -_f2(2449, 0xcf91c36a8c000), 

626 _f2(3143, 0x2391393fc4000), -_f(0x466890d45f668000), 

627 -_f(0x50368754849c4000), _f(0x594b313771cfc000), 

628 -_f(0x1cc16f4e99cdc000), _f(0x1e8d8643836a9c0), 

629 _f2(150527, 0x964e188a1ebc5), 

630 # C4[3], coeff of eps^5, polynomial in n of order 18 

631 -_f(0x1136c8f5600), -_f(0x1e3b013df00), -_f(0x37550c23000), 

632 -_f(0x6a508e10100), -_f(0xd872daf0a00), -_f(0x1d8dd6618300), 

633 -_f(0x468422b6a400), -_f(0xbc9d06f02500), -_f(0x24d784d09be00), 

634 -_f(0x90d122dffa700), -_f(0x347ca809f91800), 

635 -_f(0x31861ec3b2ac900), _f(0x276d051382ba8e00), 

636 -_f2(2163, 0x55347fa444b00), _f2(3319, 0x8d7da907400), 

637 -_f2(2191, 0xdbae56666ed00), -_f(0x47e396448082600), 

638 _f(0x3577aaf625fa9100), -_f(0x1449fb28d544cb98), 

639 _f2(150527, 0x964e188a1ebc5), 

640 # C4[3], coeff of eps^4, polynomial in n of order 19 

641 -_f(58538142720), -_f(97662466048), -_f(168340530176), 

642 -_f(301206585344), -_f(562729180160), -_f(0x1017e988800), 

643 -_f(0x21987b95400), -_f(0x4b78a99d000), -_f(0xb9ccd9f8c00), 

644 -_f(0x202de3701800), -_f(0x68b6655d0400), -_f(0x1af3df037e000), 

645 -_f(0xa515b5f563c00), -_f(0xa65924698da800), 

646 _f(0x8fc72c890104c00), -_f(0x226e597c6e0df000), 

647 _f(0x3ee7237bf0721400), -_f(0x3d1b0c8706d53800), 

648 _f(0x1e8d8643836a9c00), -_f(0x634bf45b6b1a7b0), 

649 _f2(50175, 0xdcc4b2d8b4e97), 

650 # C4[3], coeff of eps^3, polynomial in n of order 20 

651 -_f(16545868800), -_f(26558972160), -_f(43799006720), 

652 -_f(74458311424), -_f(131016159232), -_f(239806362880), 

653 -_f(459418505728), -_f(928488660736), -_f(0x1d19ea9f400), 

654 -_f(0x43b761f2900), -_f(0xad7cf6b5600), -_f(0x1f71d9841300), 

655 -_f(0x6bcf7c0df800), -_f(0x1d7abbebd1d00), 

656 -_f(0xc1b8d2e919a00), -_f(0xd3e226aef40700), 

657 _f(0xc94a0b2634a0400), -_f(0x3577aaf625fa9100), 

658 _f(0x6aef55ec4bf52200), -_f(0x634bf45b6b1a7b00), 

659 _f(0x22221bff6cd11a48), _f2(150527, 0x964e188a1ebc5), 

660 # C4[4], coeff of eps^23, polynomial in n of order 0 

661 567424, _f(87633237825), 

662 # C4[4], coeff of eps^22, polynomial in n of order 1 

663 _f(2135226368), _f(598833664), _f(0x1358168b64fd9), 

664 # C4[4], coeff of eps^21, polynomial in n of order 2 

665 _f(23101878272), -_f(26986989568), _f(11760203136), 

666 _f(0x4f869592664b5), 

667 # C4[4], coeff of eps^20, polynomial in n of order 3 

668 _f(0xa4d4b674a00), -_f(0xbdc38ed8400), _f(0x20274dfee00), 

669 _f(635330794560), _f(0x436914c918b5d6d), 

670 # C4[4], coeff of eps^19, polynomial in n of order 4 

671 _f(0x481bf9079c000), -_f(0x3c015f7917000), _f(0x133447522e000), 

672 -_f(0x195b19983d000), _f(0xa0f15f7a8700), 

673 _f2(3518, 0xd3a367a37a66d), 

674 # C4[4], coeff of eps^18, polynomial in n of order 5 

675 _f(0x1e9f26efa689000), -_f(0x100c94382c2c000), 

676 _f(0xabead3c2e1f000), -_f(0xc04c79a6f96000), 

677 _f(0x18fb8548735000), _f(0x76d40a3ef6c00), 

678 _f2(193535, 0x781b441f4c16b), 

679 # C4[4], coeff of eps^17, polynomial in n of order 6 

680 _f(0x780536a0606000), -_f(0x28779739e97000), 

681 _f(0x3a9fdf130c4000), -_f(0x2860390cb81000), 

682 _f(0xcce73d3902000), -_f(0x1322aa5844b000), 

683 _f(0x6bd0a3ad69900), _f2(27647, 0xec962e4d9d27d), 

684 # C4[4], coeff of eps^16, polynomial in n of order 7 

685 _f(0x45af61c2ad1f800), -_f(0x1b140a5252fd000), 

686 _f(0x348e789bd7f6800), -_f(0x137ac7aed3be000), 

687 _f(0x11da35dc2ded800), -_f(0x12097ef153ff000), 

688 _f(0x186b19645c4800), _f(0x7935fe20ccb00), 

689 _f2(193535, 0x781b441f4c16b), 

690 # C4[4], coeff of eps^15, polynomial in n of order 8 

691 _f(0x788485be348000), -_f(0xbf417480965000), 

692 _f(0xbdad05e3bd6000), -_f(0x306dcc448df000), 

693 _f(0x6c08266aea4000), -_f(0x364dbd52879000), 

694 _f(0x13468d692f2000), -_f(0x1f6575294f3000), 

695 _f(0x97982d7211100), _f2(27647, 0xec962e4d9d27d), 

696 # C4[4], coeff of eps^14, polynomial in n of order 9 

697 _f(0x99754be5293000), -_f(0x273b2ae73028000), 

698 _f(0xa610233e31d000), -_f(0x8ee7336f99e000), 

699 _f(0xd7a1a110827000), -_f(0x2f0d74b9c14000), 

700 _f(0x4f375451ab1000), -_f(0x4002b6db48a000), 

701 _f(0x20d804cbbb000), _f(0xa41d3b221400), 

702 _f2(27647, 0xec962e4d9d27d), 

703 # C4[4], coeff of eps^13, polynomial in n of order 10 

704 _f(0x6016f6408271a000), -_f(0x1e7546e7a0d1b000), 

705 _f(0x18e4e98f72c8000), -_f(0x113f96068e695000), 

706 _f(0x6af41cd57176000), -_f(0x2590480c1d6f000), 

707 _f(0x61253410a664000), -_f(0x1c92661c6269000), 

708 _f(0xfa686d5b4d2000), -_f(0x188238347643000), 

709 _f(0x60544135abb900), _f2(193535, 0x781b441f4c16b), 

710 # C4[4], coeff of eps^12, polynomial in n of order 11 

711 -_f2(2096, 0xf9dac0e4d8600), -_f(0xa96847f4d191400), 

712 _f(0x644f115411ee9e00), -_f(0x2912ee32dfa61000), 

713 -_f(0x81eeabcb01be00), -_f(0xfba8345c9670c00), 

714 _f(0x9bbda8340726600), -_f(0x11537009b3f0800), 

715 _f(0x51c2ea8aa8c0a00), -_f(0x2bb89caf7310400), 

716 -_f(0x162bd9b163d200), -_f(0xac0895744a3c0), 

717 _f2(193535, 0x781b441f4c16b), 

718 # C4[4], coeff of eps^11, polynomial in n of order 12 

719 -_f(0x296aa6e320b86000), _f(0x7d9f9f72af514800), 

720 -_f2(2284, 0xfefdd7e855000), _f(0x8d22edc50949800), 

721 _f(0x6581767b41ffc000), -_f(0x371ad32683bb1800), 

722 -_f(0x915b5d6cd33000), -_f(0xbce7db3a027c800), 

723 _f(0xd0ebaf65b57e000), -_f(0x1274db255bb7800), 

724 _f(0x2970a5137d6f000), -_f(0x30b8535f9002800), 

725 _f(0x8fa21d365c3780), _f2(193535, 0x781b441f4c16b), 

726 # C4[4], coeff of eps^10, polynomial in n of order 13 

727 _f(0x73aaee373e800), _f(0x6d942f05126000), 

728 -_f(0x55d059f7fa72800), _f(0x114ee97e0f335000), 

729 -_f(0x16053fa9ce763800), _f(0x4d23952dbcc4000), 

730 _f(0xdda0de6f17eb800), -_f(0xa56bf33e63ad000), 

731 _f(0x90dadc83efa800), -_f(0xbf52dd8df9e000), 

732 _f(0x2172ab2d7549800), -_f(0x85ae20f708f000), 

733 -_f(0x10c904999a7800), -_f(0xae78582fbfa00), 

734 _f2(27647, 0xec962e4d9d27d), 

735 # C4[4], coeff of eps^9, polynomial in n of order 14 

736 _f(0x19fde85a2f000), _f(0x6b4aa2bef4800), _f(0x28c46a7eab6000), 

737 _f(0x2827ed076a87800), -_f(0x210a7394d5283000), 

738 _f(0x72396f4bbfb2a800), -_f2(2620, 0x4dc0771ddc000), 

739 _f(0x40dce91ee367d800), _f(0x52592d2deb84b000), 

740 -_f(0x5a9bf1fdd05df800), _f(0x10e48562d1f92000), 

741 _f(0x1d4b91258bb3800), _f(0xaa81c5529799000), 

742 -_f(0x6eadf18b1729800), _f(0xd0db43634fa080), 

743 _f2(193535, 0x781b441f4c16b), 

744 # C4[4], coeff of eps^8, polynomial in n of order 15 

745 _f(0x45bda664400), _f(0xc8c97088800), _f(0x2a5a46b84c00), 

746 _f(0xb467fe915000), _f(0x471c8a3c15400), _f(0x49361b74ae1800), 

747 -_f(0x3fb304ab7e4a400), _f(0xedcc81cc3d0e000), 

748 -_f(0x1834aac92fbf9c00), _f(0xe864613c6aba800), 

749 _f(0x759492ec34a6c00), -_f(0xea1e49c1b0f9000), 

750 _f(0x5db63d617b37400), _f(0x31083890113800), 

751 -_f(0xa60c227ea8400), -_f(0x3b3da9a3dab180), 

752 _f2(27647, 0xec962e4d9d27d), 

753 # C4[4], coeff of eps^7, polynomial in n of order 16 

754 _f(469241266176), _f(0x10545cac800), _f(0x2adf04bd000), 

755 _f(0x7eec6985800), _f(0x1ba16d402000), _f(0x7a072d7ae800), 

756 _f(0x322ca20e07000), _f(0x3657aa17207800), 

757 -_f(0x3263434d5c54000), _f(0xcd0703e8db70800), 

758 -_f(0x17ea571d4aa2f000), _f(0x141161dbf7ec9800), 

759 -_f(0x57d62fedaaa000), -_f(0xce7cd449810d800), 

760 _f(0x99132fccc31b000), -_f(0x27598ad75934800), 

761 _f(0x18a5cd1eccf980), _f2(27647, 0xec962e4d9d27d), 

762 # C4[4], coeff of eps^6, polynomial in n of order 17 

763 _f(341540329472), _f(727668064256), _f(0x180da872800), 

764 _f(0x3b0b3acd000), _f(0x9f94c3e7800), _f(0x1e8177ec2000), 

765 _f(0x6e3ee471c800), _f(0x1fbe99a5b7000), _f(0xdb641b5c91800), 

766 _f(0xfc08a38932c000), -_f(0xfb6a7929bd39800), 

767 _f(0x466e762d282a1000), -_f2(2430, 0x8d7c552bc4800), 

768 _f2(2721, 0xe81cb8f96000), -_f(0x4dc0eea70f08f800), 

769 -_f(0x1b9eda123c275000), _f(0x2eba54dfb9ee5800), 

770 -_f(0xf46c321c1b54e00), _f2(193535, 0x781b441f4c16b), 

771 # C4[4], coeff of eps^5, polynomial in n of order 18 

772 _f(31160807424), _f(61322082304), _f(3864763 << 15), 

773 _f(276675840000), _f(646157094912), _f(0x17cd936d800), 

774 _f(0x429614e2000), _f(0xd3b41886800), _f(0x31f7c0917000), 

775 _f(0xf21fb6ecf800), _f(0x6ee892beec000), _f(0x889688d5b28800), 

776 -_f(0x944ac482b6bf000), _f(0x2e4469f00aa71800), 

777 -_f(0x73c7760d5050a000), _f2(2642, 0x7d1cf3a18a800), 

778 -_f2(2185, 0x6d0b55a915000), _f(0x3d1b0c8706d53800), 

779 -_f(0xb7512595147fa80), _f2(193535, 0x781b441f4c16b), 

780 # C4[4], coeff of eps^4, polynomial in n of order 19 

781 _f(1806732800), _f(3354817536), _f(6474635776), 

782 _f(13058088960), _f(27705484800), _f(62364503040), 

783 _f(150565728768), _f(395569133568), _f(0x10ca075be00), 

784 _f(0x37f6c332400), _f(0xdf0e61c4a00), _f(0x47dfa8095000), 

785 _f(0x236014b495600), _f(0x2f60ae04237c00), 

786 -_f(0x38c125ca4a81e00), _f(0x13dd33a066e0a800), 

787 -_f(0x389cd322becd1200), _f(0x5ba892ca8a3fd400), 

788 -_f(0x4c61cfa8c88a8600), _f(0x18d2fd16dac69ec0), 

789 _f2(193535, 0x781b441f4c16b), 

790 # C4[5], coeff of eps^23, polynomial in n of order 0 

791 14777984, _f(0xd190230980f), 

792 # C4[5], coeff of eps^22, polynomial in n of order 1 

793 -_f(104833024), _f(39440128), _f(0x62c2748ec71), 

794 # C4[5], coeff of eps^21, polynomial in n of order 2 

795 -_f(45133008896), _f(5079242752), _f(1557031040), 

796 _f(0x4f869592664b5), 

797 # C4[5], coeff of eps^20, polynomial in n of order 3 

798 -_f(0xecd417f0000), _f(40869997 << 17), -_f(0x78cb3050000), 

799 _f(0x28d58610800), _f(0x5263fcf5c8de3f7), 

800 # C4[5], coeff of eps^19, polynomial in n of order 4 

801 -_f(0xf4977948ac000), _f(0xfebd5b2ac3000), 

802 -_f(0xf90c852576000), _f(0x1257a8b1e1000), _f(0x5e1a6b95fb00), 

803 _f2(21503, 0xf0e695ca96ad3), 

804 # C4[5], coeff of eps^18, polynomial in n of order 5 

805 -_f(0x25dd48c154000), _f(0x596953f850000), 

806 -_f(0x2b40cdd44c000), _f(8741106765 << 15), -_f(0x1ab27f0a04000), 

807 _f(0x7e701f145600), _f2(3071, 0xfdd7cc41833d5), 

808 # C4[5], coeff of eps^17, polynomial in n of order 6 

809 -_f(0x4776cd8c606000), _f(0x6d8a47bfe9f000), 

810 -_f(0x187da0ea944000), _f(0x2b758d37739000), 

811 -_f(0x22fd5e6d302000), _f(0x107133def3000), _f(0x56ef801cd100), 

812 _f2(33791, 0xe845c6d0a3a27), 

813 # C4[5], coeff of eps^16, polynomial in n of order 7 

814 -_f(0x6b41dfbb0208000), _f(0x3281e67a9bd0000), 

815 -_f(0x11e76a3ab618000), _f(0x2fa8791e0ae0000), 

816 -_f(0xef00faafea8000), _f(0x82642584ff0000), 

817 -_f(0xce6c8b206b8000), _f(0x33a2c6e1f0cc00), 

818 _f2(236543, 0x59e86fb479711), 

819 # C4[5], coeff of eps^15, polynomial in n of order 8 

820 -_f(0xd8a9f7e5e7f8000), _f(0x75ff062faeb000), 

821 -_f(0x57d41a79bb5a000), _f(0x470a22b15ed1000), 

822 -_f(0x941305430fc000), _f(0x2571b5b524d7000), 

823 -_f(0x15ee8622281e000), -_f(0x810fd11a43000), 

824 -_f(0x3b143f8fcc100), _f2(236543, 0x59e86fb479711), 

825 # C4[5], coeff of eps^14, polynomial in n of order 9 

826 -_f(0x11e2c065bec000), _f(597104820847 << 17), 

827 -_f(0x2505ead2add4000), _f(0x375d7cf9da8000), 

828 -_f(0x7d85d31b2fc000), _f(0xc6e2597bcf0000), 

829 -_f(0x1c3d1fca5e4000), _f(0x26eff911138000), 

830 -_f(0x32d040ac10c000), _f(0xa3358a5620200), 

831 _f2(33791, 0xe845c6d0a3a27), 

832 # C4[5], coeff of eps^13, polynomial in n of order 10 

833 -_f(0x4e0fa2600780a000), _f(0x4e911c6aabd6b000), 

834 -_f(0x693532675088000), _f(0x218ccc46e845000), 

835 -_f(0x117da33185e06000), _f(0x4517905378bf000), 

836 -_f(0x10ba1c1d3344000), _f(0x5399b73b0419000), 

837 -_f(0x1d57ddd62302000), -_f(0x2b67cba006d000), 

838 -_f(0x17851f6bed3f00), _f2(236543, 0x59e86fb479711), 

839 # C4[5], coeff of eps^12, polynomial in n of order 11 

840 _f2(2256, 0x5da9961330000), -_f(0x4ad304d1312a0000), 

841 -_f(0x4061e93f2b8f0000), _f(0xb6157e3bfe7 << 19), 

842 -_f(0x11e106d1afa10000), -_f(0x36aeeaeb6e60000), 

843 -_f(0xfcdce3949630000), _f(0x8af39fd661c0000), 

844 _f(0x3d8b99e8cb0000), _f(0x2f252d98fde0000), 

845 -_f(0x29a890537770000), _f(0x62af9738c95800), 

846 _f2(236543, 0x59e86fb479711), 

847 # C4[5], coeff of eps^11, polynomial in n of order 12 

848 _f(0x2c14f5cef5da000), -_f(0xb44f7f3a7637800), 

849 _f(0x144dd8529649b000), -_f(0xdf6b3f6a9dda800), 

850 -_f(0x611b67a2b3c4000), _f(0xe4e2f0fafbb2800), 

851 -_f(0x51c03e2adea3000), -_f(0xd7c7b9cb0f0800), 

852 -_f(0x16096a592762000), _f(0x1c9393e7a4dc800), 

853 -_f(0x381de14f961000), -_f(0xdc6f16ca46800), 

854 -_f(0xd4311572ebf80), _f2(33791, 0xe845c6d0a3a27), 

855 # C4[5], coeff of eps^10, polynomial in n of order 13 

856 -_f(0x1f7df788da000), -_f(0x249f1260a08000), 

857 _f(0x2485dbf6336a000), -_f(0x9fd55d1961bc000), 

858 _f(0x13ee6db114d4e000), -_f(0x114ab28a688b0000), 

859 -_f(0x1759d6f434ee000), _f(0xe5435dae775c000), 

860 -_f(0x883ae4654d0a000), _f(0x6d085594a8000), 

861 -_f(0x3b594ff4c6000), _f(0x18b250a1c574000), 

862 -_f(0xc2af3f725e2000), _f(0x11b5d0e5824b00), 

863 _f2(33791, 0xe845c6d0a3a27), 

864 # C4[5], coeff of eps^9, polynomial in n of order 14 

865 -_f(0x45be4df1f000), -_f(0x154928d5d8800), 

866 -_f(0x9c093f54d6000), -_f(0xbe1dac855c3800), 

867 _f(0xc8c35d9371b3000), -_f(0x3b27b3be7f71e800), 

868 _f2(2105, 0xa27ce5e51c000), -_f2(2266, 0x2251e75549800), 

869 _f(0x215c4ca42d605000), _f(0x52b0fbc40a45b800), 

870 -_f(0x52abb6acf6af2000), _f(0x14cab8bdb5a70800), 

871 _f(0x422bb90412d7000), _f(0xaa8f3f42195800), 

872 -_f(0x18c864fb5207380), _f2(236543, 0x59e86fb479711), 

873 # C4[5], coeff of eps^8, polynomial in n of order 15 

874 -_f(0x323b5354000), -_f(0xa77c1e58000), -_f(0x297150a3c000), 

875 -_f(0xd25b36ef0000), -_f(0x64c6f9d464000), 

876 -_f(0x816d981c288000), _f(0x91bbe6aceeb4000), 

877 -_f(0x2ea0d03ef98a0000), _f(0x748c356a9df8c000), 

878 -_f2(2463, 0x44f7c770b8000), _f(0x55038197b9ea4000), 

879 _f(0x24c2f502435b0000), -_f(0x557a28e333384000), 

880 _f(0x319d6c472db18000), -_f(0xa981b88bf66c000), 

881 _f(0x2452a78bb4ce00), _f2(236543, 0x59e86fb479711), 

882 # C4[5], coeff of eps^7, polynomial in n of order 16 

883 -_f(864347 << 15), -_f(77318326272), -_f(233990443008), 

884 -_f(807704598528), -_f(0x306255a2000), -_f(0x100b9fcf2800), 

885 -_f(0x8171cf3d7000), -_f(0xb08a440213800), 

886 _f(0xd5be3a4ba94000), -_f(0x4af12ff99ea4800), 

887 _f(0xd4237986197f000), -_f(0x15530c89262c5800), 

888 _f(0x12c48ba350cca000), -_f(0x590f07b7ee96800), 

889 -_f(0x53e376c2a7ab000), _f(0x5b3d559eedc8800), 

890 -_f(0x1b37127cacfe280), _f2(33791, 0xe845c6d0a3a27), 

891 # C4[5], coeff of eps^6, polynomial in n of order 17 

892 -_f(10859667456), -_f(199353 << 17), -_f(67565166592), 

893 -_f(190510645248), -_f(597656199168), -_f(65543051 << 15), 

894 -_f(0x869fe272000), -_f(0x2f027b014000), -_f(0x19275e39a6000), 

895 -_f(0x24c57351390000), _f(0x305c8c1f55c6000), 

896 -_f(0x12c56d86cea0c000), _f(0x3c958c9a69892000), 

897 -_f(0x75427b7d716c8000), _f2(2264, 0x2021045b7e000), 

898 -_f(0x686da1b1a7d04000), _f(0x2b2226f5e6b4a000), 

899 -_f(0x7a36190e0daa700), _f2(236543, 0x59e86fb479711), 

900 # C4[5], coeff of eps^5, polynomial in n of order 18 

901 -_f(392933376), -_f(865908736), -_f(61523 << 15), -_f(5002905600), 

902 -_f(13385551872), -_f(39200544768), -_f(128292691968), 

903 -_f(483473385472), -_f(0x1ffab8af000), -_f(0xbdf5200f800), 

904 -_f(0x6d0cb854c000), -_f(0xacf22c5668800), 

905 _f(0xfa276dd8697000), -_f(0x6c92e41ed151800), 

906 _f(0x18f8d3300c4da000), -_f(0x382fdb2c1baea800), 

907 _f(0x4f13f21826f5d000), -_f(0x3d1b0c8706d53800), 

908 _f(0x131873ea3222a180), _f2(236543, 0x59e86fb479711), 

909 # C4[6], coeff of eps^23, polynomial in n of order 0 

910 _f(20016128), _f(0x45dab658805), 

911 # C4[6], coeff of eps^22, polynomial in n of order 1 

912 _f(12387831808), _f(4069857792), _f(0x1b45118f2c973b), 

913 # C4[6], coeff of eps^21, polynomial in n of order 2 

914 _f(828267 << 17), -_f(2724645 << 16), _f(52104335360), 

915 _f(0x22cae1700cc0f3), 

916 # C4[6], coeff of eps^20, polynomial in n of order 3 

917 _f(0x94a2566a8000), -_f(0x7736ce990000), _f(0x345f5a38000), 

918 _f(0x11f45dc9000), _f(0x36c560e36413be89), 

919 # C4[6], coeff of eps^19, polynomial in n of order 4 

920 _f(6043548407 << 18), -_f(7867012491 << 16), _f(0xfe56696e0000), 

921 -_f(6798211929 << 16), _f(0x66855efe5000), 

922 _f2(3630, 0x89164e7bf8313), 

923 # C4[6], coeff of eps^18, polynomial in n of order 5 

924 _f(0x588efe4c176000), -_f(0xcc317e9b08000), 

925 _f(0x2e65271667a000), -_f(0x1cb46908f84000), 

926 -_f(0x7bc8d2682000), -_f(0x36524dd3a400), 

927 _f2(39935, 0xe3f55f53aa1d1), 

928 # C4[6], coeff of eps^17, polynomial in n of order 6 

929 _f(0x2dbd6ef2050000), -_f(0x356ee7ee5e8000), 

930 _f(0x65e2c9482e0000), -_f(0x1247a684858000), 

931 _f(84899613015 << 16), -_f(0x1b548eba6c8000), 

932 _f(0x5c900466be800), _f2(39935, 0xe3f55f53aa1d1), 

933 # C4[6], coeff of eps^16, polynomial in n of order 7 

934 -_f(0x3fff5b5aa54000), -_f(0x6a2cbaeaf348000), 

935 _f(0x2b55e8782dc4000), -_f(0x69f22faba30000), 

936 _f(0x26e11f54b9dc000), -_f(0x105d41b83118000), 

937 -_f(0x12eb1ab4e0c000), -_f(0x9530f9646a800), 

938 _f2(279551, 0x3bb59b49a6cb7), 

939 # C4[6], coeff of eps^15, polynomial in n of order 8 

940 _f(0xf488f4012440000), -_f(0xb16a4f02dfc8000), 

941 -_f(0x103bba4a90d0000), -_f(0x4da08c72a3d8000), 

942 _f(0x45a11acaf220000), -_f(0x25f21bc63e8000), 

943 _f(0x12fccd9d4510000), -_f(0x13e0eb3687f8000), 

944 _f(0x356c2e9517d800), _f2(279551, 0x3bb59b49a6cb7), 

945 # C4[6], coeff of eps^14, polynomial in n of order 9 

946 _f(0x28c5c3199aad2000), _f(0x80d5fb17a810000), 

947 _f(0x9c623a70694e000), -_f(0xf23c0600f3f4000), 

948 _f(0x6928769f1ca000), -_f(0x1e8f96869bf8000), 

949 _f(0x4f9253e0b846000), -_f(0x11e4e806cbfc000), 

950 -_f(0x2dad19c0f3e000), -_f(0x1f2fac1e88dc00), 

951 _f2(279551, 0x3bb59b49a6cb7), 

952 # C4[6], coeff of eps^13, polynomial in n of order 10 

953 -_f(0xdb139b99ca0000), -_f(0x5dbaf74a92790000), 

954 _f(0x76a096067df << 19), _f(0x39f346109690000), 

955 _f(964470918621 << 17), -_f(0x10aa5a9917350000), 

956 _f(0x49bc5039b7c0000), _f(0x92ae304aad0000), 

957 _f(0x32f3e8ddd3e0000), -_f(0x233311e51f10000), 

958 _f(0x4483a6a16dd000), _f2(279551, 0x3bb59b49a6cb7), 

959 # C4[6], coeff of eps^12, polynomial in n of order 11 

960 -_f(0xfbf5c5edd078000), _f(0x1202fde81d5f0000), 

961 -_f(0x454a07e84fa8000), -_f(0xbd470dafdb40000), 

962 _f(0xb3ba7d182928000), -_f(0x155dacd6cc70000), 

963 -_f(0xdc21a82d608000), -_f(0xe96f98256d << 17), 

964 _f(0x167a9a9742c8000), -_f(0x7d81f52ed0000), 

965 -_f(0x7ffde3fc68000), -_f(0xe287c62fa3000), 

966 _f2(39935, 0xe3f55f53aa1d1), 

967 # C4[6], coeff of eps^11, polynomial in n of order 12 

968 -_f(283480971297 << 18), _f(0x5885fb25bf70000), 

969 -_f(0xe5dec7019ee0000), _f(0x13305b31e4ed0000), 

970 -_f(0x9278e6008580000), -_f(0x855a0cffe9d0000), 

971 _f(0xd3d848f453e0000), -_f(0x4a9f485fda70000), 

972 -_f(0xfb7b0fc02c0000), -_f(0x691c2e87310000), 

973 _f(806997945397 << 17), -_f(0x9585db4a3b0000), 

974 _f(0xa77dc54c8f000), _f2(39935, 0xe3f55f53aa1d1), 

975 # C4[6], coeff of eps^10, polynomial in n of order 13 

976 _f(0x6d0001099000), _f(0x9a74d7ec5c000), -_f(0xc18676170e1000), 

977 _f(0x45ad31c7f8a2000), -_f(0xc7369375e55b000), 

978 _f(0x1364b97f822e8000), -_f(0xe19539447ad5000), 

979 -_f(0x26bf9b041ad2000), _f(0xce71cc8200b1000), 

980 -_f(0x8c822446468c000), _f(0x12e554ec5f37000), 

981 _f(0xa6c4f3e59ba000), _f(0x30bb36a52bd000), 

982 -_f(0x34440d2d335600), _f2(39935, 0xe3f55f53aa1d1), 

983 # C4[6], coeff of eps^9, polynomial in n of order 14 

984 _f(0x8fcb3bf8000), _f(0x33bb5d994000), _f(7630295323 << 16), 

985 _f(0x2a77da91fcc000), -_f(0x38ac5a4a0098000), 

986 _f(0x160f7571fbc04000), -_f(0x45e92df7f7ee0000), 

987 _f(0x7f01d3c372a3c000), -_f(0x7edcf27daed28000), 

988 _f(0x27dfe4585e674000), _f(0x38a548f303090000), 

989 -_f(0x4b87231069354000), _f(0x24d2adef05648000), 

990 -_f(0x6a5625dbc71c000), -_f(0x18371a5d233400), 

991 _f2(279551, 0x3bb59b49a6cb7), 

992 # C4[6], coeff of eps^8, polynomial in n of order 15 

993 _f(257397153792), _f(991547604992), _f(0x42cbc6ea000), 

994 _f(843451707 << 15), _f(0xe8a206ec6000), _f(0x170dd449e34000), 

995 -_f(0x2102346c3b5e000), _f(0xe0052eca6690000), 

996 -_f(0x318a0eacb0b82000), _f(0x690a1407d3eec000), 

997 -_f2(2182, 0xb601e615a6000), _f(0x61bf435eea348000), 

998 -_f(0xe133a8622dca000), -_f(0x2748b26bf705c000), 

999 _f(0x220d7d12f9812000), -_f(0x98dbd66bee38400), 

1000 _f2(279551, 0x3bb59b49a6cb7), 

1001 # C4[6], coeff of eps^7, polynomial in n of order 16 

1002 _f(9867 << 18), _f(8045019136), _f(854413 << 15), 

1003 _f(6856031 << 14), _f(8304289 << 16), _f(0x3232f0a4000), 

1004 _f(0x1ec960fb8000), _f(0x3439f07dcc000), -_f(0x50f0148aea0000), 

1005 _f(0x25bf6de530f4000), -_f(0x9635a567bcf8000), 

1006 _f(0x1735ee17e1e1c000), -_f(0x25a38fef60750000), 

1007 _f(0x2834884b55944000), -_f(0x1b3dfda8c79a8000), 

1008 _f(0xa981b88bf66c000), -_f(0x1cc16f4e99cdc00), 

1009 _f2(93183, 0xbe91de6de243d), 

1010 # C4[6], coeff of eps^6, polynomial in n of order 17 

1011 _f(169275392), _f(7007 << 16), _f(1348931584), _f(4358086656), 

1012 _f(15819288576), _f(66522136576), _f(339738054656), 

1013 _f(0x214230b6000), _f(0x15d36ff77000), _f(0x2803a29af8000), 

1014 -_f(0x43d629aab87000), _f(0x232131018d3a000), 

1015 -_f(0x9e155c86fb85000), _f(0x1c3aabf38857c000), 

1016 -_f(0x361b1ee81aa83000), _f(0x44dcb2f8dc1be000), 

1017 -_f(0x325282c98d281000), _f(0xf46c321c1b54e00), 

1018 _f2(279551, 0x3bb59b49a6cb7), 

1019 # C4[7], coeff of eps^23, polynomial in n of order 0 

1020 _f(383798272), _f(0x7ee24536c1115), 

1021 # C4[7], coeff of eps^22, polynomial in n of order 1 

1022 -_f(127523 << 20), _f(34096398336), _f(0x1f771442bd4c09), 

1023 # C4[7], coeff of eps^21, polynomial in n of order 2 

1024 -_f(197998999 << 19), -_f(4877411 << 18), -_f(541336621056), 

1025 _f(0x3b1ebd1165abdce9), 

1026 # C4[7], coeff of eps^20, polynomial in n of order 3 

1027 -_f(72076029 << 20), _f(33625235 << 21), -_f(96370351 << 20), 

1028 _f(0x142b356fa000), _f(0x3f32837c872a7963), 

1029 # C4[7], coeff of eps^19, polynomial in n of order 4 

1030 -_f(2249063181 << 20), _f(51883720989 << 18), -_f(12233087197 << 19), 

1031 -_f(1430728833 << 18), -_f(0x9e5c3c48b000), 

1032 _f2(46079, 0xdfa4f7d6b097b), 

1033 # C4[7], coeff of eps^18, polynomial in n of order 5 

1034 -_f(19747083035 << 20), _f(5938781185 << 22), -_f(1899464157 << 20), 

1035 _f(2895955713 << 21), -_f(6730130079 << 20), _f(0x490d94cd2c000), 

1036 _f2(46079, 0xdfa4f7d6b097b), 

1037 # C4[7], coeff of eps^17, polynomial in n of order 6 

1038 -_f(0xf7ed31ddbc0000), _f(90436020675 << 17), 

1039 -_f(11671406741 << 19), _f(0x58222c9a6a0000), 

1040 -_f(28407954085 << 18), -_f(6936211449 << 17), 

1041 -_f(0x1e088e877c800), _f2(46079, 0xdfa4f7d6b097b), 

1042 # C4[7], coeff of eps^16, polynomial in n of order 7 

1043 -_f(688523975841 << 19), -_f(83606333811 << 20), 

1044 -_f(805224840035 << 19), _f(106897379463 << 21), 

1045 _f(22163836107 << 19), _f(88997602799 << 20), 

1046 -_f(151227539575 << 19), _f(0x28435aa5d4b000), 

1047 _f2(322559, 0x1d82c6ded425d), 

1048 # C4[7], coeff of eps^15, polynomial in n of order 8 

1049 _f(557482450381 << 20), _f(0xfbb72a664ee0000), 

1050 -_f(0xa9b81eb4ea40000), -_f(914196917515 << 17), 

1051 -_f(409568792563 << 19), _f(0x4780d431da60000), 

1052 -_f(0x94b9eca98c0000), -_f(82946761135 << 17), 

1053 -_f(0x238b221440f800), _f2(322559, 0x1d82c6ded425d), 

1054 # C4[7], coeff of eps^14, polynomial in n of order 9 

1055 -_f(0x59ec90b7ba5 << 20), _f(233491821731 << 23), 

1056 _f(762388756437 << 20), _f(284558585577 << 21), 

1057 -_f(0xf0573a4eb1 << 20), _f(25275836579 << 22), 

1058 _f(22761999561 << 20), _f(112734627747 << 21), 

1059 -_f(126941809085 << 20), _f(0x2fd680f7c84000), 

1060 _f2(322559, 0x1d82c6ded425d), 

1061 # C4[7], coeff of eps^13, polynomial in n of order 10 

1062 _f(0xaca84931355 << 19), _f(0x66fb36095ad << 18), 

1063 -_f(0x2e7424117bf << 21), _f(0xcac2488dd23 << 18), 

1064 _f(762738574899 << 19), -_f(579380269895 << 18), 

1065 -_f(968587667327 << 20), _f(0x73cbed27abc0000), 

1066 _f(75006191505 << 19), -_f(0xdb0f0aaec0000), 

1067 -_f(0x63c3eeba719000), _f2(322559, 0x1d82c6ded425d), 

1068 # C4[7], coeff of eps^12, polynomial in n of order 11 

1069 _f(626455667783 << 20), -_f(567623567285 << 21), 

1070 _f(0xf5d2e8872d << 20), -_f(13896712169 << 23), 

1071 -_f(798923144989 << 20), _f(364556664237 << 21), 

1072 -_f(129034049335 << 20), -_f(20826366601 << 22), 

1073 -_f(51607570881 << 20), _f(46156477135 << 21), 

1074 -_f(30888509275 << 20), _f(0x6042659ec2000), 

1075 _f2(46079, 0xdfa4f7d6b097b), 

1076 # C4[7], coeff of eps^11, polynomial in n of order 12 

1077 _f(20777559885 << 20), -_f(569775860071 << 18), 

1078 _f(0xe9ac41f6db << 19), -_f(0xef8ba34c8740000), 

1079 _f(598911876783 << 21), -_f(0x7cf99a74ecc0000), 

1080 -_f(957375911139 << 19), _f(0xc30e342965c0000), 

1081 -_f(423483761553 << 20), _f(35714168193 << 18), 

1082 _f(79169625311 << 19), _f(68905136075 << 18), 

1083 -_f(0x2f872ef9963000), _f2(46079, 0xdfa4f7d6b097b), 

1084 # C4[7], coeff of eps^10, polynomial in n of order 13 

1085 -_f(18988489 << 20), -_f(129894471 << 22), _f(12886996881 << 20), 

1086 -_f(47548938145 << 21), _f(367560238059 << 20), 

1087 -_f(106884143981 << 23), _f(0x11c056e4d45 << 20), 

1088 -_f(470740881351 << 21), _f(64061082015 << 20), 

1089 _f(158992278163 << 22), -_f(634972709127 << 20), 

1090 _f(135054066707 << 21), -_f(41343081645 << 20), 

1091 -_f(0x7382e0581c000), _f2(46079, 0xdfa4f7d6b097b), 

1092 # C4[7], coeff of eps^9, polynomial in n of order 14 

1093 -_f(7074089 << 17), -_f(95481295 << 16), -_f(249804765 << 18), 

1094 -_f(0x6befb7d790000), _f(0xb301172bea0000), 

1095 -_f(0x5978c2137030000), _f(0x2fbc3e73e21 << 19), 

1096 -_f(0x3f35c80b0f2d0000), _f(0x6ce3ff0d91260000), 

1097 -_f(0x7761d1ce42b70000), _f(0x468057c8ed840000), 

1098 _f(0x1bcb7dfb99f0000), -_f(0x26d98474089e0000), 

1099 _f(0x1d375a3e49150000), -_f(0x7d9dd8c3269dc00), 

1100 _f2(322559, 0x1d82c6ded425d), 

1101 # C4[7], coeff of eps^8, polynomial in n of order 15 

1102 -_f(47805 << 18), -_f(105987 << 19), -_f(1141959 << 18), 

1103 -_f(2026311 << 20), -_f(89791009 << 18), -_f(1389164665 << 19), 

1104 _f(79467759189 << 18), -_f(86766818957 << 21), 

1105 _f(0xbfc5c91f6ec0000), -_f(0x487b27f822f << 19), 

1106 _f(0x4a699e0854c40000), -_f(0x69d85e75b6d << 20), 

1107 _f(0x66f7a9fb575c0000), -_f(0x828d4038ea5 << 19), 

1108 _f(0x60dc69748cd << 18), -_f(0x3f90a5347c68800), 

1109 _f2(322559, 0x1d82c6ded425d), 

1110 # C4[7], coeff of eps^7, polynomial in n of order 16 

1111 -_f(143 << 20), -_f(8085 << 16), -_f(16121 << 17), -_f(9810411520), 

1112 -_f(212205 << 18), -_f(6380297 << 16), -_f(37701755 << 17), 

1113 -_f(0x95a9db330000), _f(9764754545 << 19), -_f(0xaf0fe765fd0000), 

1114 _f(0x3a2548493060000), -_f(0xc8bdaa520270000), 

1115 _f(0x7871cc979b1 << 18), -_f(0x3353672f26710000), 

1116 _f(0x3c89c1e8d8020000), -_f(0x2a606e22fd9b0000), 

1117 _f(0xc94a0b2634a0400), _f2(322559, 0x1d82c6ded425d), 

1118 # C4[8], coeff of eps^23, polynomial in n of order 0 

1119 _f(7579 << 15), _f(0x4f56c0c24f87), 

1120 # C4[8], coeff of eps^22, polynomial in n of order 1 

1121 -_f(1660549 << 21), -_f(23648625 << 16), _f(0x38232f25bccb5275), 

1122 # C4[8], coeff of eps^21, polynomial in n of order 2 

1123 _f(9646043 << 20), -_f(24019457 << 19), _f(74048359 << 15), 

1124 _f(0x99262e0aeeff091), 

1125 # C4[8], coeff of eps^20, polynomial in n of order 3 

1126 _f(183351957435 << 19), -_f(32827160863 << 20), 

1127 -_f(6509093591 << 19), -_f(0x6677b4e9b0000), 

1128 _f2(365566, 0xff4ff27401803), 

1129 # C4[8], coeff of eps^19, polynomial in n of order 4 

1130 _f(67207908275 << 21), -_f(201042891 << 19), _f(44011096899 << 20), 

1131 -_f(85786308153 << 19), _f(0x195ba7c1ef8000), 

1132 _f2(365566, 0xff4ff27401803), 

1133 # C4[8], coeff of eps^18, polynomial in n of order 5 

1134 -_f(13677739 << 21), -_f(1155605701 << 23), _f(11263093395 << 21), 

1135 -_f(1170886701 << 22), -_f(422863935 << 21), -_f(9609473031 << 16), 

1136 _f2(52223, 0xdb549059b7125), 

1137 # C4[8], coeff of eps^17, polynomial in n of order 6 

1138 -_f(105328611 << 20), -_f(0xe3d4e1d7080000), _f(9484526351 << 21), 

1139 _f(4879307961 << 19), _f(13462873311 << 20), -_f(19014362253 << 19), 

1140 _f(0x45bace6718000), _f2(52223, 0xdb549059b7125), 

1141 # C4[8], coeff of eps^16, polynomial in n of order 7 

1142 _f(0x4802f7e045b << 18), -_f(787109524929 << 19), 

1143 -_f(616781829503 << 18), -_f(267630157067 << 20), 

1144 _f(0xf57f439a67 << 18), -_f(26811748075 << 19), 

1145 -_f(29646920051 << 18), -_f(0x25c0cef2988000), 

1146 _f2(365566, 0xff4ff27401803), 

1147 # C4[8], coeff of eps^15, polynomial in n of order 8 

1148 _f(61397460605 << 22), _f(0x9d011c37ef80000), 

1149 _f(907553463943 << 20), -_f(0xc0a473ee4980000), 

1150 -_f(21778698179 << 21), -_f(22179652453 << 19), 

1151 _f(224024408237 << 20), -_f(212571195095 << 19), 

1152 _f(0x216a7bfadc8000), _f2(365566, 0xff4ff27401803), 

1153 # C4[8], coeff of eps^14, polynomial in n of order 9 

1154 _f(304663697949 << 21), -_f(51558232553 << 24), 

1155 _f(126037118963 << 21), _f(28559389965 << 22), _f(12939195833 << 21), 

1156 -_f(17167224841 << 23), _f(24466781775 << 21), _f(2302458607 << 22), 

1157 _f(456812693 << 21), -_f(0xde9c5a4230000), 

1158 _f2(52223, 0xdb549059b7125), 

1159 # C4[8], coeff of eps^13, polynomial in n of order 10 

1160 -_f(0x71eca5b57e5 << 20), _f(0x8d98ab5c54b << 19), 

1161 _f(497026592783 << 22), -_f(0xacc7c9e1d9b << 19), 

1162 _f(0x35a7c7b51dd << 20), -_f(81233361377 << 19), 

1163 -_f(253988603057 << 21), -_f(954606696519 << 19), 

1164 _f(577751554079 << 20), -_f(333997527437 << 19), 

1165 _f(0x1689b847558000), _f2(365566, 0xff4ff27401803), 

1166 # C4[8], coeff of eps^12, polynomial in n of order 11 

1167 -_f(0x367f7beda59 << 19), _f(0x45996b8ba21 << 20), 

1168 -_f(0xdceb5493fc3 << 19), _f(0x18843cb160d << 22), 

1169 -_f(0x21789a51fed << 19), -_f(0x41cde5aa8b9 << 20), 

1170 _f(0x95638f58ea9 << 19), -_f(984566251123 << 21), 

1171 -_f(435207598721 << 19), _f(219309948781 << 20), 

1172 _f(274765170197 << 19), -_f(0x12cf88fa6ff0000), 

1173 _f2(365566, 0xff4ff27401803), 

1174 # C4[8], coeff of eps^11, polynomial in n of order 12 

1175 -_f(2296713447 << 21), _f(78660216877 << 19), 

1176 -_f(180155131441 << 20), _f(0xeee01825bf << 19), 

1177 -_f(237440161933 << 22), _f(0x2042cbdcd31 << 19), 

1178 -_f(652079196855 << 20), -_f(325903664957 << 19), 

1179 _f(324695717299 << 21), -_f(0xf97e21ed4b << 19), 

1180 _f(203483994947 << 20), -_f(52367903417 << 19), 

1181 -_f(0x8a9d0d3688000), _f2(52223, 0xdb549059b7125), 

1182 # C4[8], coeff of eps^10, polynomial in n of order 13 

1183 _f(1140139 << 21), _f(9315711 << 23), -_f(1126319139 << 21), 

1184 _f(5199009105 << 22), -_f(52132384161 << 21), _f(20770352565 << 24), 

1185 -_f(357583911087 << 21), _f(262213551639 << 22), 

1186 -_f(498523677485 << 21), _f(60302341333 << 23), 

1187 _f(57310064901 << 21), -_f(90954779619 << 22), 

1188 _f(124029244935 << 21), -_f(0xf0a5fe0ce50000), 

1189 _f2(52223, 0xdb549059b7125), 

1190 # C4[8], coeff of eps^9, polynomial in n of order 14 

1191 _f(54009 << 20), _f(849303 << 19), _f(2623117 << 21), 

1192 _f(364892913 << 19), -_f(5919882885 << 20), _f(0xdd0128d3580000), 

1193 -_f(81910832913 << 22), _f(0x2229f5f9745 << 19), 

1194 -_f(0x2a9587ee883 << 20), _f(0x982f47b44bf << 19), 

1195 -_f(0x30e1739ffd1 << 21), _f(0xb09887dee19 << 19), 

1196 -_f(0x35101f0ee01 << 20), _f(0x25e6f19ce93 << 19), 

1197 -_f(0x306e34ba4668000), _f2(365566, 0xff4ff27401803), 

1198 # C4[8], coeff of eps^8, polynomial in n of order 15 

1199 _f(2295 << 17), _f(5831 << 18), _f(72709 << 17), _f(151011 << 19), 

1200 _f(7936467 << 17), _f(147906885 << 18), -_f(0x4d5c1f23e0000), 

1201 _f(14228642337 << 20), -_f(697203474513 << 17), 

1202 _f(0x51fe4e56b0c0000), -_f(0xeb59f3d2e860000), 

1203 _f(0x3e0c14100a1 << 19), -_f(0x305340db42ea0000), 

1204 _f(0xd6c75923d41 << 18), -_f(0x2452a78bb4ce0000), 

1205 _f(0xa981b88bf66c000), _f2(365566, 0xff4ff27401803), 

1206 # C4[9], coeff of eps^23, polynomial in n of order 0 

1207 -_f(45613 << 15), _f(0xa0b835899f381), 

1208 # C4[9], coeff of eps^22, polynomial in n of order 1 

1209 -_f(4663637 << 21), _f(25498473 << 16), _f(0x8f68f0ea15ed989), 

1210 # C4[9], coeff of eps^21, polynomial in n of order 2 

1211 -_f(313787291 << 20), -_f(89546863 << 19), -_f(880826107 << 15), 

1212 _f2(5306, 0x2ad1d52b570cd), 

1213 # C4[9], coeff of eps^20, polynomial in n of order 3 

1214 _f(1691751267 << 22), _f(5868457511 << 23), -_f(9710518895 << 22), 

1215 _f(43389881073 << 17), _f2(408574, 0xe11d1e092eda9), 

1216 # C4[9], coeff of eps^19, polynomial in n of order 4 

1217 -_f(45668361181 << 21), _f(290185772373 << 19), 

1218 -_f(19310638221 << 20), -_f(10267037529 << 19), 

1219 -_f(0x11435a10568000), _f2(408574, 0xe11d1e092eda9), 

1220 # C4[9], coeff of eps^18, polynomial in n of order 5 

1221 -_f(206915608111 << 21), _f(8005795847 << 23), _f(6676372983 << 21), 

1222 _f(24266221119 << 22), -_f(29173391667 << 21), _f(99595856143 << 16), 

1223 _f2(408574, 0xe11d1e092eda9), 

1224 # C4[9], coeff of eps^17, polynomial in n of order 6 

1225 -_f(15515879355 << 20), -_f(36184750873 << 19), 

1226 -_f(22177807609 << 21), _f(62194714929 << 19), _f(693176727 << 20), 

1227 -_f(1189966821 << 19), -_f(0x5829503048000), 

1228 _f2(58367, 0xd70428dcbd8cf), 

1229 # C4[9], coeff of eps^16, polynomial in n of order 7 

1230 _f(38512528273 << 23), _f(67772681235 << 24), -_f(74410968653 << 23), 

1231 -_f(3984568679 << 25), -_f(6152374683 << 23), _f(13551170801 << 24), 

1232 -_f(11115057401 << 23), _f(24916219839 << 18), 

1233 _f2(408574, 0xe11d1e092eda9), 

1234 # C4[9], coeff of eps^15, polynomial in n of order 8 

1235 -_f(162298412813 << 22), _f(0xff4317f5080000), 

1236 _f(119179074953 << 20), _f(0xf6d36e74980000), 

1237 -_f(63634032589 << 21), _f(61952932453 << 19), _f(10785104899 << 20), 

1238 _f(4191026519 << 19), -_f(0xd59ae9d0e8000), 

1239 _f2(58367, 0xd70428dcbd8cf), 

1240 # C4[9], coeff of eps^14, polynomial in n of order 9 

1241 _f(162971496591 << 21), _f(33816350309 << 24), 

1242 -_f(394783736543 << 21), _f(85862751303 << 22), 

1243 _f(32462900611 << 21), -_f(6369607931 << 23), -_f(39152071083 << 21), 

1244 _f(18189729581 << 22), -_f(9249690569 << 21), _f(6171570141 << 16), 

1245 _f2(58367, 0xd70428dcbd8cf), 

1246 # C4[9], coeff of eps^13, polynomial in n of order 10 

1247 _f(0x52d38896f8b << 20), -_f(0xd3acdf03195 << 19), 

1248 _f(0x1195b2a1cff << 22), _f(0xca9586e4a280000), 

1249 -_f(0x486f0b6e413 << 20), _f(0x7ca2ce8a83f << 19), 

1250 -_f(610236546241 << 21), -_f(717677267559 << 19), 

1251 _f(159176229583 << 20), _f(291633515411 << 19), 

1252 -_f(0x110150274e88000), _f2(408574, 0xe11d1e092eda9), 

1253 # C4[9], coeff of eps^12, polynomial in n of order 11 

1254 _f(143956869023 << 22), -_f(243108013001 << 23), 

1255 _f(0x101d5eb1615 << 22), -_f(213537904349 << 25), 

1256 _f(0x183f300cffb << 22), -_f(350529456991 << 23), 

1257 -_f(545724783247 << 22), _f(274121340227 << 24), 

1258 -_f(785966166377 << 22), _f(135225754699 << 23), 

1259 -_f(28607511667 << 22), -_f(0x3ee3b308260000), 

1260 _f2(408574, 0xe11d1e092eda9), 

1261 # C4[9], coeff of eps^11, polynomial in n of order 12 

1262 _f(2520290511 << 21), -_f(0xc4ddd05ba80000), 

1263 _f(304931349961 << 20), -_f(0x21230116cd7 << 19), 

1264 _f(735928623493 << 22), -_f(0x9d254a11d99 << 19), 

1265 _f(0x6510e717cdf << 20), -_f(0xa95d67804fb << 19), 

1266 _f(0x1055dd17e45 << 21), _f(0x239bcd685c3 << 19), 

1267 -_f(0x22ba072788b << 20), _f(0x2c142a0db61 << 19), 

1268 -_f(0x59b3a2379f58000), _f2(408574, 0xe11d1e092eda9), 

1269 # C4[9], coeff of eps^10, polynomial in n of order 13 

1270 -_f(29393 << 21), -_f(283917 << 23), _f(41246777 << 21), 

1271 -_f(233407875 << 22), _f(2943398547 << 21), -_f(1525553871 << 24), 

1272 _f(35837133917 << 21), -_f(38620600629 << 22), 

1273 _f(123783976375 << 21), -_f(36640057007 << 23), 

1274 _f(124599494337 << 21), -_f(35830670759 << 22), 

1275 _f(24805848987 << 21), -_f(0x1ce0b816070000), 

1276 _f2(19455, 0xf256b84994845), 

1277 # C4[9], coeff of eps^9, polynomial in n of order 14 

1278 -_f(1615 << 20), -_f(29393 << 19), -_f(106267 << 21), 

1279 -_f(17534055 << 19), _f(342711075 << 20), -_f(8430692445 << 19), 

1280 _f(7306600119 << 22), -_f(270344204403 << 19), 

1281 _f(450573674005 << 20), -_f(0x20c896b3e69 << 19), 

1282 _f(0xfa29e850f7 << 21), -_f(0x5aaf3103bff << 19), 

1283 _f(0x3002653e387 << 20), -_f(0x3f2b92b02f5 << 19), 

1284 _f(0x914a9e2ed338000), _f2(408574, 0xe11d1e092eda9), 

1285 # C4[10], coeff of eps^23, polynomial in n of order 0 

1286 _f(137 << 21), _f(0x8757c14b789b), 

1287 # C4[10], coeff of eps^22, polynomial in n of order 1 

1288 -_f(1152691 << 20), -_f(6743919 << 17), _f(0x9e817610332f06f), 

1289 # C4[10], coeff of eps^21, polynomial in n of order 2 

1290 _f(79722199 << 23), -_f(113766289 << 22), _f(225212673 << 18), 

1291 _f2(5864, 0xb6105765cc00b), 

1292 # C4[10], coeff of eps^20, polynomial in n of order 3 

1293 _f(64857768639 << 21), -_f(2220489243 << 22), -_f(2012833515 << 21), 

1294 -_f(19551629405 << 18), _f2(451582, 0xc2ea499e5c34f), 

1295 # C4[10], coeff of eps^19, polynomial in n of order 4 

1296 _f(656353407 << 24), _f(1031809317 << 22), _f(12215335391 << 23), 

1297 -_f(12759999497 << 22), _f(18944346729 << 18), 

1298 _f2(451582, 0xc2ea499e5c34f), 

1299 # C4[10], coeff of eps^18, polynomial in n of order 5 

1300 -_f(62867132873 << 20), -_f(83127481829 << 22), 

1301 _f(173460262689 << 20), _f(8415873627 << 21), -_f(1024568181 << 20), 

1302 -_f(82657907689 << 17), _f2(451582, 0xc2ea499e5c34f), 

1303 # C4[10], coeff of eps^17, polynomial in n of order 6 

1304 _f(69839518785 << 24), -_f(46975322289 << 23), -_f(5175253237 << 25), 

1305 -_f(10608265143 << 23), _f(12870275691 << 24), -_f(9303053053 << 23), 

1306 _f(8528136981 << 19), _f2(451582, 0xc2ea499e5c34f), 

1307 # C4[10], coeff of eps^16, polynomial in n of order 7 

1308 -_f(12671764325 << 22), _f(11821938135 << 23), _f(23903917953 << 22), 

1309 -_f(7023725731 << 24), _f(4254825447 << 22), _f(1372261021 << 23), 

1310 _f(755775181 << 22), -_f(6809268397 << 19), 

1311 _f2(64511, 0xd2b3c15fc4079), 

1312 # C4[10], coeff of eps^15, polynomial in n of order 8 

1313 _f(10583074157 << 26), -_f(84530118029 << 23), _f(12150058407 << 24), 

1314 _f(12380362825 << 23), -_f(838454291 << 25), -_f(10410407457 << 23), 

1315 _f(3974759309 << 24), -_f(1799658059 << 23), _f(156358707 << 19), 

1316 _f2(64511, 0xd2b3c15fc4079), 

1317 # C4[10], coeff of eps^14, polynomial in n of order 9 

1318 -_f(922119298407 << 20), _f(52944024001 << 23), 

1319 _f(329638564983 << 20), -_f(354979062141 << 21), 

1320 _f(493120994773 << 20), -_f(24099541823 << 22), 

1321 -_f(59503561293 << 20), _f(7459230081 << 21), _f(21243323153 << 20), 

1322 -_f(75576440907 << 17), _f2(64511, 0xd2b3c15fc4079), 

1323 # C4[10], coeff of eps^13, polynomial in n of order 10 

1324 -_f(328595996641 << 23), _f(0x1245cb281e3 << 22), 

1325 -_f(207527442829 << 25), _f(0x13d84cf39cd << 22), 

1326 -_f(169653271431 << 23), -_f(705690429577 << 22), 

1327 _f(256163704307 << 24), -_f(657414782367 << 22), 

1328 _f(103463476179 << 23), -_f(17233182197 << 22), 

1329 -_f(65863805931 << 18), _f2(451582, 0xc2ea499e5c34f), 

1330 # C4[10], coeff of eps^12, polynomial in n of order 11 

1331 -_f(60530460661 << 21), _f(129708905557 << 22), 

1332 -_f(783916037751 << 21), _f(215690023633 << 24), 

1333 -_f(0x287cc397f79 << 21), _f(0x174d319d033 << 22), 

1334 -_f(0x22bf2de15fb << 21), _f(172524970961 << 23), 

1335 _f(736992166659 << 21), -_f(554058611183 << 22), 

1336 _f(665956259969 << 21), -_f(0x4d7d212a0a40000), 

1337 _f2(451582, 0xc2ea499e5c34f), 

1338 # C4[10], coeff of eps^11, polynomial in n of order 12 

1339 -_f(31220211 << 24), _f(1576100141 << 22), -_f(5588687797 << 23), 

1340 _f(52675808031 << 22), -_f(22267080913 << 25), 

1341 _f(449824279121 << 22), -_f(432213499347 << 23), 

1342 _f(0x1275ac4a843 << 22), -_f(351080482641 << 24), 

1343 _f(0x10853170e75 << 22), -_f(314682628337 << 23), 

1344 _f(212227819111 << 22), -_f(520922828727 << 18), 

1345 _f2(451582, 0xc2ea499e5c34f), 

1346 # C4[10], coeff of eps^10, polynomial in n of order 13 

1347 _f(46189 << 20), _f(522291 << 22), -_f(90008149 << 20), 

1348 _f(613691925 << 21), -_f(9499950999 << 20), _f(6182507793 << 23), 

1349 -_f(187536069721 << 20), _f(270344204403 << 21), 

1350 -_f(0x11a7161219b << 20), _f(533756506129 << 22), 

1351 -_f(0x2a7db4d305d << 20), _f(0x159e458acd1 << 21), 

1352 -_f(0x1bcb7dfb99f << 20), _f(0x7e5725605ea0000), 

1353 _f2(451582, 0xc2ea499e5c34f), 

1354 # C4[11], coeff of eps^23, polynomial in n of order 0 

1355 -_f(7309 << 21), _f(0x2c95e8ad321065), 

1356 # C4[11], coeff of eps^22, polynomial in n of order 1 

1357 -_f(118877 << 30), _f(1675947 << 23), _f(0x7759dcb5574d50a7), 

1358 # C4[11], coeff of eps^21, polynomial in n of order 2 

1359 -_f(9105745 << 24), -_f(49846181 << 23), -_f(2866583251 << 18), 

1360 _f2(70655, 0xce6359e2ca823), 

1361 # C4[11], coeff of eps^20, polynomial in n of order 3 

1362 -_f(239228553 << 25), _f(1509768547 << 26), -_f(1393694995 << 25), 

1363 _f(7195205325 << 19), _f2(494590, 0xa4b77533898f5), 

1364 # C4[11], coeff of eps^19, polynomial in n of order 4 

1365 -_f(10520646403 << 25), _f(16651704531 << 23), _f(1510969677 << 24), 

1366 _f(227849937 << 23), -_f(40629886913 << 18), 

1367 _f2(494590, 0xa4b77533898f5), 

1368 # C4[11], coeff of eps^18, polynomial in n of order 5 

1369 -_f(737236949 << 28), -_f(83959015 << 31), -_f(449296547 << 28), 

1370 _f(188420603 << 30), -_f(243597193 << 28), _f(1420486123 << 21), 

1371 _f2(494590, 0xa4b77533898f5), 

1372 # C4[11], coeff of eps^17, polynomial in n of order 6 

1373 _f(1797306345 << 25), _f(7110272827 << 24), -_f(1494242189 << 26), 

1374 _f(407981949 << 24), _f(324085539 << 25), _f(232922271 << 24), 

1375 -_f(6431919403 << 19), _f2(70655, 0xce6359e2ca823), 

1376 # C4[11], coeff of eps^16, polynomial in n of order 7 

1377 -_f(59422002475 << 26), _f(4462082415 << 27), _f(11958968063 << 26), 

1378 -_f(116564371 << 28), -_f(9243946887 << 26), _f(3024840805 << 27), 

1379 -_f(1229077213 << 26), -_f(836978961 << 20), 

1380 _f2(494590, 0xa4b77533898f5), 

1381 # C4[11], coeff of eps^15, polynomial in n of order 8 

1382 _f(1450234755 << 27), _f(28955596425 << 24), -_f(20916501415 << 25), 

1383 _f(24148276875 << 24), -_f(639979965 << 26), -_f(3796939603 << 24), 

1384 _f(257117683 << 25), _f(1321384367 << 24), -_f(17153469915 << 19), 

1385 _f2(70655, 0xce6359e2ca823), 

1386 # C4[11], coeff of eps^14, polynomial in n of order 9 

1387 _f(2991071409 << 28), -_f(215656441 << 32), _f(2375561279 << 28), 

1388 -_f(29715609 << 30), -_f(1772722171 << 28), _f(262089343 << 31), 

1389 -_f(1227751437 << 28), _f(88909853 << 30), -_f(21460999 << 28), 

1390 -_f(1112906091 << 21), _f2(70655, 0xce6359e2ca823), 

1391 # C4[11], coeff of eps^13, polynomial in n of order 10 

1392 _f(48251719021 << 24), -_f(247802667483 << 23), 

1393 _f(59903451769 << 26), -_f(693923403733 << 23), 

1394 _f(362458490331 << 24), -_f(482970502063 << 23), 

1395 _f(22585671353 << 25), _f(201583163607 << 23), 

1396 -_f(128100703031 << 24), _f(147544368125 << 23), 

1397 -_f(0x43bae67ca340000), _f2(494590, 0xa4b77533898f5), 

1398 # C4[11], coeff of eps^12, polynomial in n of order 11 

1399 _f(488107587 << 25), -_f(1288790349 << 26), _f(9866997217 << 25), 

1400 -_f(3570890001 << 28), _f(64004720367 << 25), -_f(56017267579 << 26), 

1401 _f(152843494797 << 25), -_f(39981841137 << 27), 

1402 _f(123894347227 << 25), -_f(33286009449 << 26), 

1403 _f(21954601977 << 25), -_f(212227819111 << 19), 

1404 _f2(494590, 0xa4b77533898f5), 

1405 # C4[11], coeff of eps^11, polynomial in n of order 12 

1406 _f(735471 << 25), -_f(44046541 << 23), _f(188198857 << 24), 

1407 -_f(2177729631 << 23), _f(1156078693 << 26), -_f(30163144081 << 23), 

1408 _f(38781185247 << 24), -_f(159433761571 << 23), 

1409 _f(65649195941 << 25), -_f(342066863061 << 23), 

1410 _f(168318615157 << 24), -_f(212227819111 << 23), 

1411 _f(0x6f2df7ee67c0000), _f2(494590, 0xa4b77533898f5), 

1412 # C4[12], coeff of eps^23, polynomial in n of order 0 

1413 _f(173 << 24), _f(0x88d5e64011771), 

1414 # C4[12], coeff of eps^22, polynomial in n of order 1 

1415 -_f(163369 << 28), -_f(266903 << 29), _f2(14529, 0xb09bccfe817bf), 

1416 # C4[12], coeff of eps^21, polynomial in n of order 2 

1417 _f(26283479 << 29), -_f(21738605 << 28), _f(24285135 << 24), 

1418 _f2(76799, 0xca12f265d0fcd), 

1419 # C4[12], coeff of eps^20, polynomial in n of order 3 

1420 _f(6122492151 << 24), _f(880448149 << 25), _f(269123645 << 24), 

1421 -_f(4943792525 << 21), _f2(537598, 0x8684a0c8b6e9b), 

1422 # C4[12], coeff of eps^19, polynomial in n of order 4 

1423 -_f(616982441 << 28), -_f(2168310039 << 26), _f(1398586567 << 27), 

1424 -_f(817632445 << 26), _f(450511215 << 22), 

1425 _f2(537598, 0x8684a0c8b6e9b), 

1426 # C4[12], coeff of eps^18, polynomial in n of order 5 

1427 _f(1912616275 << 26), -_f(308159801 << 28), -_f(17594779 << 26), 

1428 _f(72918855 << 27), _f(66311031 << 26), -_f(47313631 << 26), 

1429 _f2(76799, 0xca12f265d0fcd), 

1430 # C4[12], coeff of eps^17, polynomial in n of order 6 

1431 _f(9134109 << 27), _f(1642561735 << 26), _f(58767343 << 28), 

1432 -_f(1299624495 << 26), _f(374812639 << 27), -_f(137300677 << 26), 

1433 -_f(61400001 << 22), _f2(76799, 0xca12f265d0fcd), 

1434 # C4[12], coeff of eps^16, polynomial in n of order 7 

1435 _f(118127909265 << 25), -_f(66457563795 << 26), 

1436 _f(64469127555 << 25), -_f(134108625 << 27), -_f(12700511691 << 25), 

1437 _f(295233743 << 26), _f(4531750951 << 25), -_f(13670656363 << 22), 

1438 _f2(537598, 0x8684a0c8b6e9b), 

1439 # C4[12], coeff of eps^15, polynomial in n of order 8 

1440 -_f(10859744975 << 29), _f(49132517315 << 26), _f(5188275715 << 27), 

1441 -_f(52074703975 << 26), _f(13295845745 << 28), 

1442 -_f(28808201009 << 26), _f(3853119361 << 27), -_f(278992987 << 26), 

1443 -_f(3626908831 << 22), _f2(537598, 0x8684a0c8b6e9b), 

1444 # C4[12], coeff of eps^14, polynomial in n of order 9 

1445 -_f(5262740745 << 26), _f(1142543055 << 29), -_f(12070462215 << 26), 

1446 _f(5779723245 << 27), -_f(6878321925 << 26), _f(125534415 << 28), 

1447 _f(3745400061 << 26), -_f(2112375473 << 27), _f(2351512319 << 26), 

1448 -_f(573315259 << 26), _f2(76799, 0xca12f265d0fcd), 

1449 # C4[12], coeff of eps^13, polynomial in n of order 10 

1450 -_f(345262775 << 27), _f(2254590065 << 26), -_f(721021595 << 29), 

1451 _f(11719656095 << 26), -_f(9489736865 << 27), _f(24346633325 << 26), 

1452 -_f(6069982555 << 28), _f(18134544155 << 26), -_f(4742880779 << 27), 

1453 _f(3068922857 << 26), -_f(7318200659 << 22), 

1454 _f2(179199, 0x822c35983cf89), 

1455 # C4[12], coeff of eps^12, polynomial in n of order 11 

1456 -_f(58429085 << 24), _f(185910725 << 25), -_f(1747560815 << 24), 

1457 _f(794345825 << 27), -_f(18392161025 << 24), _f(21545102915 << 25), 

1458 -_f(82378334675 << 24), _f(32084193505 << 26), 

1459 -_f(160420967525 << 24), _f(76723071425 << 25), 

1460 -_f(95136608567 << 24), _f(212227819111 << 21), 

1461 _f2(537598, 0x8684a0c8b6e9b), 

1462 # C4[13], coeff of eps^23, polynomial in n of order 0 

1463 -_f(34717 << 24), _f(0x4013d857859e5ad), 

1464 # C4[13], coeff of eps^22, polynomial in n of order 1 

1465 -_f(52837 << 30), _f(101283 << 25), _f(0x39b1009e5dec691d), 

1466 # C4[13], coeff of eps^21, polynomial in n of order 2 

1467 _f(58223275 << 29), _f(25058159 << 28), -_f(597584743 << 24), 

1468 _f2(580606, 0x6851cc5de4441), 

1469 # C4[13], coeff of eps^20, polynomial in n of order 3 

1470 -_f(38160201 << 32), _f(20133099 << 33), -_f(10736915 << 32), 

1471 _f(8118075 << 27), _f2(580606, 0x6851cc5de4441), 

1472 # C4[13], coeff of eps^19, polynomial in n of order 4 

1473 -_f(246943573 << 28), -_f(102114339 << 26), _f(63266747 << 27), 

1474 _f(72037887 << 26), -_f(711672919 << 22), 

1475 _f2(82943, 0xc5c28ae8d7777), 

1476 # C4[13], coeff of eps^18, polynomial in n of order 5 

1477 _f(362438863 << 28), _f(29917105 << 30), -_f(313139991 << 28), 

1478 _f(81176473 << 29), -_f(26857069 << 28), -_f(40519029 << 23), 

1479 _f2(82943, 0xc5c28ae8d7777), 

1480 # C4[13], coeff of eps^17, polynomial in n of order 6 

1481 -_f(4194208665 << 27), _f(3411193933 << 26), _f(92059229 << 28), 

1482 -_f(832792389 << 26), -_f(13821619 << 27), _f(313960329 << 26), 

1483 -_f(1784908801 << 22), _f2(82943, 0xc5c28ae8d7777), 

1484 # C4[13], coeff of eps^16, polynomial in n of order 7 

1485 _f(4206195495 << 29), _f(1286394165 << 30), -_f(6553065099 << 29), 

1486 _f(1494451903 << 31), -_f(3024727629 << 29), _f(374117415 << 30), 

1487 -_f(7540351 << 29), -_f(836978961 << 24), 

1488 _f2(580606, 0x6851cc5de4441), 

1489 # C4[13], coeff of eps^15, polynomial in n of order 8 

1490 _f(8293864515 << 29), -_f(80835230175 << 26), _f(35736027705 << 27), 

1491 -_f(37780361325 << 26), -_f(587595645 << 28), _f(26485772901 << 26), 

1492 -_f(13655575661 << 27), _f(14786628311 << 26), 

1493 -_f(57193562335 << 22), _f2(580606, 0x6851cc5de4441), 

1494 # C4[13], coeff of eps^14, polynomial in n of order 9 

1495 _f(2173316805 << 28), -_f(627936225 << 31), _f(9404910795 << 28), 

1496 -_f(7129362555 << 29), _f(17350941825 << 28), -_f(4150093185 << 30), 

1497 _f(12011779143 << 28), -_f(3068922857 << 29), _f(1952950909 << 28), 

1498 -_f(9206768571 << 23), _f2(580606, 0x6851cc5de4441), 

1499 # C4[13], coeff of eps^13, polynomial in n of order 10 

1500 _f(79676025 << 27), -_f(638856855 << 26), _f(256634805 << 29), 

1501 -_f(5389330905 << 26), _f(5842215855 << 27), -_f(21011478075 << 26), 

1502 _f(7804263285 << 28), -_f(37664053245 << 26), _f(17576558181 << 27), 

1503 -_f(21482459999 << 26), _f(95136608567 << 22), 

1504 _f2(580606, 0x6851cc5de4441), 

1505 # C4[14], coeff of eps^23, polynomial in n of order 0 

1506 _f(433 << 27), _f(0x16f0fb486be35c9), 

1507 # C4[14], coeff of eps^22, polynomial in n of order 1 

1508 _f(938669 << 29), -_f(8460179 << 26), _f2(36683, 0x318959e11f277), 

1509 # C4[14], coeff of eps^21, polynomial in n of order 2 

1510 _f(1085551 << 33), -_f(531601 << 32), _f(109557 << 28), 

1511 _f2(36683, 0x318959e11f277), 

1512 # C4[14], coeff of eps^20, polynomial in n of order 3 

1513 -_f(34899909 << 31), _f(11630633 << 32), _f(16602985 << 31), 

1514 -_f(73138345 << 28), _f2(623614, 0x4a1ef7f3119e7), 

1515 # C4[14], coeff of eps^19, polynomial in n of order 4 

1516 _f(2603869 << 34), -_f(18588201 << 32), _f(4394077 << 33), 

1517 -_f(1312099 << 32), -_f(1449057 << 28), _f2(89087, 0xc172236bddf21), 

1518 # C4[14], coeff of eps^18, polynomial in n of order 5 

1519 _f(1218191717 << 27), _f(79106081 << 29), -_f(371875421 << 27), 

1520 -_f(20795103 << 28), _f(151229409 << 27), -_f(409250479 << 24), 

1521 _f2(89087, 0xc172236bddf21), 

1522 # C4[14], coeff of eps^17, polynomial in n of order 6 

1523 _f(249532965 << 30), -_f(917899213 << 29), _f(191097911 << 31), 

1524 -_f(363925371 << 29), _f(41606327 << 30), _f(1574359 << 29), 

1525 -_f(54936843 << 25), _f2(89087, 0xc172236bddf21), 

1526 # C4[14], coeff of eps^16, polynomial in n of order 7 

1527 -_f(19067218845 << 28), _f(7820446095 << 29), -_f(7262714151 << 28), 

1528 -_f(421931643 << 30), _f(6566089551 << 28), -_f(3155926907 << 29), 

1529 _f(3340375493 << 28), -_f(6416838701 << 25), 

1530 _f2(623614, 0x4a1ef7f3119e7), 

1531 # C4[14], coeff of eps^15, polynomial in n of order 8 

1532 -_f(353006415 << 32), _f(4931374455 << 29), -_f(3531935085 << 30), 

1533 _f(8211223125 << 29), -_f(1894184271 << 31), _f(5332188211 << 29), 

1534 -_f(1334642127 << 30), _f(836978961 << 29), -_f(1952950909 << 25), 

1535 _f2(623614, 0x4a1ef7f3119e7), 

1536 # C4[14], coeff of eps^14, polynomial in n of order 9 

1537 -_f(436268025 << 27), _f(158349135 << 30), -_f(3064521495 << 27), 

1538 _f(3110604525 << 28), -_f(10615555125 << 27), _f(3784676175 << 29), 

1539 -_f(17712284499 << 27), _f(8090796623 << 28), -_f(9764754545 << 27), 

1540 _f(21482459999 << 24), _f2(623614, 0x4a1ef7f3119e7), 

1541 # C4[15], coeff of eps^23, polynomial in n of order 0 

1542 -_f(11003 << 27), _f(0x6a44bb11ad2310d), 

1543 # C4[15], coeff of eps^22, polynomial in n of order 1 

1544 -_f(28003 << 36), _f(3549 << 30), _f2(39213, 0x11a47a8f8b3bd), 

1545 # C4[15], coeff of eps^21, polynomial in n of order 2 

1546 _f(1243 << 38), _f(2249 << 37), -_f(577583 << 28), 

1547 _f2(5601, 0xddf2ecefef51b), 

1548 # C4[15], coeff of eps^20, polynomial in n of order 3 

1549 -_f(28101 << 40), _f(24493 << 39), -_f(1645 << 40), 

1550 -_f(318801 << 29), _f2(39213, 0x11a47a8f8b3bd), 

1551 # C4[15], coeff of eps^19, polynomial in n of order 4 

1552 _f(1359187 << 38), -_f(4447191 << 36), -_f(433293 << 37), 

1553 _f(1982883 << 36), -_f(164770109 << 28), 

1554 _f2(666622, 0x2bec23883ef8d), 

1555 # C4[15], coeff of eps^18, polynomial in n of order 5 

1556 -_f(6907451 << 36), _f(1332757 << 38), -_f(2401277 << 36), 

1557 _f(253189 << 37), _f(26273 << 36), -_f(1574359 << 30), 

1558 _f2(95231, 0xbd21bbeee46cb), 

1559 # C4[15], coeff of eps^17, polynomial in n of order 6 

1560 _f(60642045 << 33), -_f(48519929 << 32), -_f(5596337 << 34), 

1561 _f(57431697 << 32), -_f(26089089 << 33), _f(27095547 << 32), 

1562 -_f(828361417 << 25), _f2(95231, 0xbd21bbeee46cb), 

1563 # C4[15], coeff of eps^16, polynomial in n of order 7 

1564 _f(53036505 << 34), -_f(36153285 << 35), _f(80745483 << 34), 

1565 -_f(18042031 << 36), _f(49556941 << 34), -_f(12180567 << 35), 

1566 _f(7540351 << 34), -_f(278992987 << 26), 

1567 _f2(222207, 0x63f9612d6a52f), 

1568 # C4[15], coeff of eps^15, polynomial in n of order 8 

1569 _f(5892945 << 35), -_f(106383165 << 32), _f(102040995 << 33), 

1570 -_f(332742375 << 32), _f(114463377 << 34), -_f(521444273 << 32), 

1571 _f(233750881 << 33), -_f(278992987 << 32), _f(9764754545 << 25), 

1572 _f2(666622, 0x2bec23883ef8d), 

1573 # C4[16], coeff of eps^23, polynomial in n of order 0 

1574 -_f(1 << 31), _f(0x5f43434b6401e1), 

1575 # C4[16], coeff of eps^22, polynomial in n of order 1 

1576 _f(4571 << 36), -_f(33945 << 32), _f2(5963, 0x471b5f51fec25), 

1577 # C4[16], coeff of eps^21, polynomial in n of order 2 

1578 _f(24269 << 36), -_f(5831 << 35), -_f(11703 << 31), 

1579 _f2(5963, 0x471b5f51fec25), 

1580 # C4[16], coeff of eps^20, polynomial in n of order 3 

1581 -_f(224895 << 36), -_f(32277 << 37), _f(111531 << 36), 

1582 -_f(139825 << 34), _f2(41742, 0xf1bf9b3df7503), 

1583 # C4[16], coeff of eps^19, polynomial in n of order 4 

1584 _f(978405 << 37), -_f(1674813 << 35), _f(162197 << 36), 

1585 _f(29281 << 35), -_f(297087 << 31), _f2(41742, 0xf1bf9b3df7503), 

1586 # C4[16], coeff of eps^18, polynomial in n of order 5 

1587 -_f(15263501 << 36), -_f(3038189 << 38), _f(24413445 << 36), 

1588 -_f(10587549 << 37), _f(10822455 << 36), -_f(41181917 << 32), 

1589 _f2(709630, 0xdb94f1d6c533), 

1590 # C4[16], coeff of eps^17, polynomial in n of order 6 

1591 -_f(7565085 << 36), _f(16306961 << 35), -_f(3541967 << 37), 

1592 _f(9518487 << 35), -_f(2301919 << 36), _f(1408637 << 35), 

1593 -_f(3231579 << 31), _f2(101375, 0xb8d15471eae75), 

1594 # C4[16], coeff of eps^16, polynomial in n of order 7 

1595 -_f(57998985 << 33), _f(52955595 << 34), -_f(165927531 << 33), 

1596 _f(55309177 << 35), -_f(246030477 << 33), _f(108465049 << 34), 

1597 -_f(128185967 << 33), _f(278992987 << 30), 

1598 _f2(709630, 0xdb94f1d6c533), 

1599 # C4[17], coeff of eps^23, polynomial in n of order 0 

1600 -_f(1121 << 31), _f(0x6ef59e61feaaea7), 

1601 # C4[17], coeff of eps^22, polynomial in n of order 1 

1602 -_f(59 << 37), -_f(309 << 32), _f(0x14ce0db25fc00bf5), 

1603 # C4[17], coeff of eps^21, polynomial in n of order 2 

1604 -_f(10703 << 36), _f(30413 << 35), -_f(148003 << 31), 

1605 _f2(6324, 0xb043d1b40e32f), 

1606 # C4[17], coeff of eps^20, polynomial in n of order 3 

1607 -_f(177777 << 38), _f(15715 << 39), _f(4277 << 38), 

1608 -_f(68103 << 33), _f2(44272, 0xd1dabbec63649), 

1609 # C4[17], coeff of eps^19, polynomial in n of order 4 

1610 -_f(407783 << 37), _f(2775087 << 35), -_f(1157751 << 36), 

1611 _f(1167621 << 35), -_f(4428011 << 31), _f2(44272, 0xd1dabbec63649), 

1612 # C4[17], coeff of eps^18, polynomial in n of order 5 

1613 _f(1580535 << 37), -_f(334719 << 39), _f(882049 << 37), 

1614 -_f(210231 << 38), _f(127323 << 37), -_f(580027 << 32), 

1615 _f2(44272, 0xd1dabbec63649), 

1616 # C4[17], coeff of eps^17, polynomial in n of order 6 

1617 _f(801009 << 36), -_f(2422805 << 35), _f(785323 << 37), 

1618 -_f(3419955 << 35), _f(1485435 << 36), -_f(1740081 << 35), 

1619 _f(7540351 << 31), _f2(44272, 0xd1dabbec63649), 

1620 # C4[18], coeff of eps^23, polynomial in n of order 0 

1621 -_f(89 << 35), _f(0x3351994085c8a607), 

1622 # C4[18], coeff of eps^22, polynomial in n of order 1 

1623 _f(763 << 36), -_f(1809 << 33), _f(0x15fe66403955fe03), 

1624 # C4[18], coeff of eps^21, polynomial in n of order 2 

1625 _f(91 << 39), _f(35 << 38), -_f(235 << 34), 

1626 _f(0x15fe66403955fe03), 

1627 # C4[18], coeff of eps^20, polynomial in n of order 3 

1628 _f(667755 << 37), -_f(269591 << 38), _f(268793 << 37), 

1629 -_f(508305 << 34), _f2(46802, 0xb1f5dc9acf78f), 

1630 # C4[18], coeff of eps^19, polynomial in n of order 4 

1631 -_f(51319 << 40), _f(132867 << 38), -_f(31255 << 39), 

1632 _f(18753 << 38), -_f(42441 << 34), _f2(15600, 0xe5fc9ede45285), 

1633 # C4[18], coeff of eps^18, polynomial in n of order 5 

1634 -_f(1198615 << 36), _f(378917 << 38), -_f(1619009 << 36), 

1635 _f(693861 << 37), -_f(806379 << 36), _f(1740081 << 33), 

1636 _f2(46802, 0xb1f5dc9acf78f), 

1637 # C4[19], coeff of eps^23, polynomial in n of order 0 

1638 -_f(983 << 35), _f(0x3617bd362c26857d), 

1639 # C4[19], coeff of eps^22, polynomial in n of order 1 

1640 _f(1 << 46), -_f(189 << 37), _f2(2596, 0x737a284739077), 

1641 # C4[19], coeff of eps^21, polynomial in n of order 2 

1642 -_f(473 << 40), _f(467 << 39), -_f(3525 << 34), 

1643 _f(0x172ebece12ebf011), 

1644 # C4[19], coeff of eps^20, polynomial in n of order 3 

1645 _f(2379 << 41), -_f(553 << 42), _f(329 << 41), -_f(2961 << 35), 

1646 _f2(2596, 0x737a284739077), 

1647 # C4[19], coeff of eps^19, polynomial in n of order 4 

1648 _f(2405 << 41), -_f(10101 << 39), _f(4277 << 40), -_f(4935 << 39), 

1649 _f(42441 << 34), _f2(2596, 0x737a284739077), 

1650 # C4[20], coeff of eps^23, polynomial in n of order 0 

1651 -_f(1 << 38), _f(0x1f5feefdb1f0c4f), 

1652 # C4[20], coeff of eps^22, polynomial in n of order 1 

1653 _f(379 << 42), -_f(357 << 40), _f2(2729, 0x9a383778d2ed9), 

1654 # C4[20], coeff of eps^21, polynomial in n of order 2 

1655 -_f(249 << 43), _f(147 << 42), -_f(329 << 38), 

1656 _f2(2729, 0x9a383778d2ed9), 

1657 # C4[20], coeff of eps^20, polynomial in n of order 3 

1658 -_f(4797 << 40), _f(2009 << 41), -_f(2303 << 40), _f(4935 << 37), 

1659 _f2(2729, 0x9a383778d2ed9), 

1660 # C4[21], coeff of eps^23, polynomial in n of order 0 

1661 -_f(1327 << 38), _f2(2862, 0xc0f646aa6cd3b), 

1662 # C4[21], coeff of eps^22, polynomial in n of order 1 

1663 _f(11 << 44), -_f(49 << 39), _f(0x3ba4052178e24469), 

1664 # C4[21], coeff of eps^21, polynomial in n of order 2 

1665 _f(473 << 43), -_f(539 << 42), _f(2303 << 38), 

1666 _f2(2862, 0xc0f646aa6cd3b), 

1667 # C4[22], coeff of eps^23, polynomial in n of order 0 

1668 -_f(1 << 41), _f(0x5ac8f5f3162ebfd), 

1669 # C4[22], coeff of eps^22, polynomial in n of order 1 

1670 -_f(23 << 43), _f(49 << 40), _f(0x1105ae1d9428c3f7), 

1671 # C4[23], coeff of eps^23, polynomial in n of order 0 

1672 _f(1 << 41), _f(0xc5e28ed2c935ab), # PYCHOK exported 

1673) # 2900 

1674 

1675# **) MIT License 

1676# 

1677# Copyright (C) 2016-2023 -- mrJean1 at Gmail -- All Rights Reserved. 

1678# 

1679# Permission is hereby granted, free of charge, to any person obtaining a 

1680# copy of this software and associated documentation files (the "Software"), 

1681# to deal in the Software without restriction, including without limitation 

1682# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

1683# and/or sell copies of the Software, and to permit persons to whom the 

1684# Software is furnished to do so, subject to the following conditions: 

1685# 

1686# The above copyright notice and this permission notice shall be included 

1687# in all copies or substantial portions of the Software. 

1688# 

1689# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

1690# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

1691# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

1692# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

1693# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

1694# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

1695# OTHER DEALINGS IN THE SOFTWARE.