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Chapter 1

Introduction

Bayesian methods have become increasingly popular in many disciplines of biology[16]. Advance-
ment of computing power, accumulation of complex and noisy data together with the advantages
of Bayesian methods compared to more conventional approaches foster their rapid adoption.

Canonical Markov-chain Monte Carlo (MCMC) algorithms, developed for sampling from the
posterior distribution, have been extensively studied and improved[9, 8, 1, 3, 10]. A comprehensive
review of the development of Bayesian computation was published in Green et al. 2015[7]. However,
many algorithms still suffer from the choice of initial conditions, getting stuck at local minima and
ineffective mixing of the chains.

Approximate Bayesian computation (ABC), specifically the methods propelled with sequential
Monte Carlo (SMC)[14], offers a powerful alternative. Such algorithms are designed to deal with
cases of unknown — or intractable — likelihoods. With the availability of specialised computa-
tional tools[11] they have become increasingly popular in the inference of dynamical models in
epidemiology, biochemistry and systems biology[2, 17, 12]. However, despite the improvements in
their efficiency[4, 6], numerical considerations still limit the size of systems such methods can deal
with[12].

hoppMCMC circumvents the curse of dimensionality by quickly identifying the high-probability re-
gions of the posterior and sampling locally for as long as it is permitted by computational resources.
The algorithm improves mixing by adapting to the proposal distribution at certain intervals. It
performs optimisation not only by varying the annealing temperature but also by applying an evo-
lutionary concept and selecting for the optimum parameter set at regular intervals. This method
can be used with a likelihood function, if available, or with an approximate Bayesian distance
function.

1.1 Implementation

In a complex posterior distribution, there exist regions of high probability surrounded by regions of
low probability. In essence, such low-probability regions prevent a Markov-chain from trespassing,
and, thus, prevent sampling from the rest of the distribution. It is, therefore, important to identify
these regions before attempting to sample blindly from the entire distribution.

hoppMCMC aims to identify and sample from the high-probability regions of a posterior with a
combination of three strategies: (i) parallel MCMC[3], (ii) adaptive Gibbs sampling[10] and (iii)
simulated annealing[5]. Overall, hoppMCMC resembles the basin-hopping algorithm of Wales and
Doye, 1997[15], but is developed for a wide range of modelling approaches including stochastic
models with or without time-delay.

Basin-hopping algorithm transforms the energy surface into its distinct basins of attraction
to be able to jump from one basin to another and find the optimum[15]. hoppMCMC transforms
the proximity of posterior modes the same way rendering each posterior mode achievable from
another one with one or more hopp-steps, i.e. equivalent to basin-hopping steps. According to the
Markov property, identity of the subsequent posterior mode depends only on the current, but not
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Figure 1.1: Summary of the hoppMCMC algorithm.

the previous ones.
A hopp-step is composed of a number of adaptation steps each with a specific annealing temper-

ature, Ti = {T0, . . . , Tf}. The following algorithm describes an adaptation step, which comprises a
single round of parallel iteration of N independent MCMC chains, ζ, with fixed annealing temper-
ature. The essence of the hoppMCMC algorithm is also given in Figure 1.1.

1. Initiate N independent MCMC chains, {ζ0, . . . , ζN}, with the following configuration:

• Initial value (ζ· 0): x

• Proposal variance: σ2Σ where σ2 = 1

• Annealing temperature: T = Th

2. Iterate each chain for n iterations maintaining an acceptance rate of 1/2 by updating

σ2 in set intervals:

• Acceptance probability: Pr(x, x′, T )

3. Update the proposal distribution according to the following:

• x = min{ζ·n}
• Σ = var{ζ·n}
• T = Th+1

The acceptance probability is defined as

Pr(x, x′, T ) = min

(
1, exp

{
f(x)− f(x′)

T

})
, (1.1)

where x′ is the proposed value and f is the objective function. In a Bayesian context, f is defined
as

f(x) = − ln Pr(x), (1.2)
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where Pr(x) is the posterior probability of parameter x. Please note that when Pr(x) is Gaussian,
T acts as a scaling factor for standard deviation.

By default, hoppMCMC adopts an adaptive Gibbs sampling strategy where each chain is iterated
sequentially along each parameter axis. Iterative Gibbs sampling could be numerically more stable
than Metropolis-Hastings sampling especially for large number of parameters. Accordingly, a one-
dimensional Gaussian distribution with variance σ2i Σii is used for each parameter axis i, and σ2i
is varied to regulate acceptance rate along each axis. When all the chains are iterated n steps,
Σ is updated based on the variability across the final states of the chains. In essence, a two-step
adaptation process is employed where σ2 is updated within an adaptation step and Σ at the end
of it.

At the end of an adaptation step, annealing temperature is also updated and all chains are
reset to begin with the parameter value minimising posterior probability in the last iteration. We
observed that selecting for the single best parameter value aids in mixing of the chains in subsequent
iterations. However, different evolutionary sampling strategies can also be employed.

hoppMCMC employs a sigmoidal cooling schedule where annealing temperature is updated ac-
cording to the rule

Tlow + (Thi − Tlow)

(
1− 1

1 + e−
12.5
n

(x−0.5n)

)
. (1.3)

In this equation, Tlow and Thi are the lower and higher bounds of annealing temperature, respec-
tively, and x is the chain length. This provides two important plateaus in temperature, one at the
beginning and one at the end of each adaptation step. It allows sufficient time for adaptation of
proposal distribution before and after cooling takes place.

The algorithm is iterated for an arbitrary number of hopp-steps to allow jumping from one
posterior mode to another. At the end of each hopp-step, all chains relocate to a different mode or
stay in place.

The probability that the current mode is accepted compared to the previous one is

α =
Pr(µ2|D)

Pr(µ1|D)
,

where D represents observation, and µi represents model M with parameters sampled around the
ith posterior mode. If accepted, all chains retain their current configuration; otherwise, they are
reversed to the previous state for the next hopp-step.

Although hopp-steps are likely to settle on posterior modes, they will not generate proper
posterior samples. The following approximation is used to estimate the probability of retaining the
current state or reversing back to the previous posterior mode.

Pr(µi|D) = Pr(Mθi |D) ≈ 1

n

n∑
j=1

Pr(Mθij |D, TM)

Pr(Mθij )
, (1.4)

where n is the number of chains, and Mθij represents model M with parameter θij from the

ith hopp-step of the jth chain. Pr(Mθij |D, TM) refers to the posterior probability calculated at
temperature TM. This allows introducing an arbitrary tolerance for sampling posterior modes with
low probabilities. In coherence with Eqn. 1.1, this probability is defined as

Pr(Mθij |D, TM) = exp

{
−
f(Mθij |D)

TM

}
= exp

{
ln Pr(Mθij |D)

TM

}
.

In Equation 1.4, Pr(Mθij ) is the probability of the jth model-parameter combination with respect
to the other chains. Gaussian kernel density estimator is used, from the scipy package, to arrive at
an estimate for Pr(Mθij ).
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Chapter 2

Examples

To demonstrate the hoppMCMC algorithm we selected the Langermann’s function and the drop wave
function from the exhaustive list presented in Molga et al. 2005[13]. Despite having only two
dimensions, x and y, these functions provide multiple modes and different topological features.

We used the following Langermann’s function,

f(x, y) = 4

(
6 +

m∑
i=1

ci exp

{
− 1

π
(x− αi)2 −

1

π
(y − βi)2

}
cos
{
π(x− αi)2 + π(y − βi)2

})
,

where m = 5, c = [1, 2, 5, 3, 5], α = [3, 5, 2, 1, 7], and β = [5, 2, 1, 4, 9], and the following drop wave
function,

f(x, y) = 10

(
1−

1 + cos (12
√

(x2 + y2))

0.5 (x2 + y2) + 2

)
.

We assumed that these are proportional to the negative logarithm of posterior probability
(Eqn. 1.2). We performed inference for x and y within the domain of [0, 10] for the Langermann’s
function and [−5.12, 5.12] for the drop wave function. We iterated 12 parallel chains for 10 hopp-
steps, while each hopp-step comprised 50 adaptation steps. During each adaptation step we allowed
annealing temperature to drop from 10 to 1 (Eqn 1.3), and set TM = 10. In each adaptation step,
we iterated the chains for 50 steps allowing σ2 adaptation at every 10th step. This procedure sums
up to a total of 3× 105 steps. It is important to note, however, that each step of a chain comprises
of 2 model simulations in accordance with the Gibbs sampling procedure. Therefore, at the end of
all hopp-steps, a total of 6× 105 function calls were performed.

As a result, the hoppMCMC algorithm successfully sampled from different local minima and iden-
tified the global minimum in both cases (Fig. 2.1). In Figure 2.1(a), we see that the two major
modes of equal probability of the Langermann’s equation were sampled, however, the remaining
three with lesser probabilities were skipped. The reason for not sampling from these low-probability
modes were their proximity to one of the high-probability modes and their relatively weak bound-
aries. During the annealing process, chains moved quickly to one of the major modes before further
mode switches were prohibited by low annealing temperatures.

In Figure 2.1(b), we see that the algorithm performs equally well with circular posterior modes.
As a result, the global minimum of the drop wave function and the circular local minimum imme-
diately surrounding it were successfully identified.

Code is available in the examples directory to demonstrate the use of the package and to run
the hoppMCMC algorithm with the selected objective functions.
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Figure 2.1: Testing the algorithm on multimodal score functions. In (a) the Langermann’s
function and in (b) the drop wave function are given where the intensity of grey indicates low
values, i.e. high probabilities. Points with numbers, i, indicate values of inferred parameters, x
and y, at the end of the ith hopp-step (see text).
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Chapter 3

Conclusion

hoppMCMC is an algorithm for global optimisation, which is applicable for various modelling ap-
proaches frequently used in systems biology. With this algorithm, it is possible to effectively
identify the maximum a posteriori estimate and avoid getting stuck at posterior modes with lower
probabilities. The algorithm aims to sample from multiple high-probability posterior modes, but
not to sample from the entire posterior distribution. This strategy, and the hoppMCMC algorithm, is
effective in discovering the high-probability regions of the posterior to aid in subsequent analyses.
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[7] P Green, K  Latuszyński, M Pereyra, and C Robert. Bayesian computation: a summary of the
current state, and samples backwards and forwards. Stat Comput, Jan 2015.

[8] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. Dram: efficient adaptive
mcmc. Stat Comput, 16(4):339–354, 2006.

[9] Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive metropolis algorithm.
Bernoulli, pages 223–242, 2001.

[10] Krzysztof Latuszynski and Jeffrey S Rosenthal. Adaptive gibbs samplers. arXiv, stat.CO, Jan
2010.

[11] Juliane Liepe, Chris Barnes, Erika Cule, Kamil Erguler, Paul Kirk, Tina Toni, and Michael
Stumpf. Abc-sysbio–approximate bayesian computation in python with gpu support. Bioin-
formatics, 26(14):1797, Jul 2010.

[12] Juliane Liepe, Paul Kirk, Sarah Filippi, Tina Toni, Chris P Barnes, and Michael P H Stumpf.
A framework for parameter estimation and model selection from experimental data in systems
biology using approximate bayesian computation. Nature Protocols, 9(2):439–56, Feb 2014.

[13] Marcin Molga and Czes law Smutnicki. Test functions for optimization needs. Test functions
for optimization needs, 2005.

[14] Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael PH Stumpf. Approx-
imate bayesian computation scheme for parameter inference and model selection in dynamical
systems. Journal of Royal Society Interface, 6(31):187–202, Dec 2008.

7



[15] David J Wales and Jonathan P K Doye. Global optimization by basin-hopping and the lowest
energy structures of lennard-jones clusters containing up to 110 atoms. Journal of Physical
Chemistry A, 101:5111–5116, 1997.

[16] Darren J Wilkinson. Bayesian methods in bioinformatics and computational systems biology.
Brief Bioinformatics, 8(2):109–16, Mar 2007.

[17] Richard D Wilkinson. Approximate bayesian computation (abc) gives exact results under the
assumption of model error. arXiv, stat.CO, Nov 2013.

8


	Introduction
	Implementation

	Examples
	Conclusion
	Acknowledgements


