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Abstract
Motivation: Somatic mosaicism, in which a mutation occurs post-zygotically, has been implicated in 
several developmental disorders, cancers, and other diseases. Short tandem repeats (STRs) consist 
of repeated sequences of 1-6bp and comprise more than 1 million loci in the human genome. Somatic 
mosaicism at STRs is known to play a key role in the pathogenicity of loci implicated in repeat expansion 
disorders, and is highly prevalent in cancers exhibiting microsatellite instability. While a variety of tools 
have been developed to genotype germline variation at STRs, a method for systematically identifying 
mosaic STRs (mSTRs) is lacking.
Results: We introduce prancSTR, a novel method for detecting mSTRs from individual high-throughput 
sequencing datasets. Unlike many existing mosaicism detection methods for other variant types, 
prancSTR does not require a matched control sample as input. We show that prancSTR accurately 
identifies m STRs i n s imulated d ata a nd d emonstrate i ts f easibility b y i dentifying c andidate m STRs in 
whole genome sequencing (WGS) data derived from lymphoblastoid cell lines for individuals sequenced 
by the 1000 Genomes Project.
Our analysis identified an average of 76 and 577 non-homopolymer and homopolymer mSTRs per cell 
line as well as multiple cell lines with outlier mSTR counts more than 6 times the the population average, 
suggesting a subset of cell lines have particularly high STR instability rates. Availability: prancSTR is 
freely available at https://github.com/gymreklab/trtools.
Documentation: Detailed documentation is available at https://trtools.readthedocs.io/
Contact: mgymrek@ucsd.edu

Introduction
Population-level heterogeneity generally arises due to germline mutations
that occur before the formation of the zygote and are inherited by all
cells in the offspring. However, heterogeneity within an individual may
also exist due to somatic mutations that occur post-zygotically in only
a sub-population of cells (reviewed in (Youssoufian and Pyeritz, 2002)).
Somatic mosaicism has long been known to play a key role in cancer
(reviewed in (Stratton et al., 2009)), and has also been implicated in a
range of non-neoplastic disorders (e.g., Proteus Syndrome (Cohen, 1993),
Neurofibromatosis Type 1 (Ruggieri and Huson, 2001) and CLOVES
syndrome (Kurek et al., 2012)). Somatic mosaicism is also a hallmark
of conditions resulting in DNA repair deficiencies, such as Xeroderma
Pigmentosum (Cleaver, 1969). Beyond its role in disease, accumulation of
somatic mutations is likely a widespread phenomenon occurring in healthy
individuals across the course of their lifetime Fernández et al. (2016).

High-throughput sequencing offers the potential to perform genome-
wide detection of somatic mosaicism, but also presents important technical
challenges (Dou et al., 2018). To distinguish somatic mutations from
germline variants or technical artifacts, a matched control sample is often

required to serve as a baseline. Further, in cases where the somatic mutation
is present in a small fraction of cells, ultra high coverage data is needed
to detect the event (Breuss et al., 2022). A variety of methods have been
developed to address these challenges (e.g. MrMosaic (King et al., 2017),
MosaicForecast (Dou et al., 2020), and DeepMosaic (Yang et al., 2023)).
These methods leverage allele fractions, read-based phasing, other read-
level features to accurately distinguish true mosaic variants. However,
existing methods in some cases still require matched control samples and
focus largely on detecting mosaic single nucleotide polymorphisms (SNPs)
or in some cases mosaic copy number variants (e.g. Montage (Glessner
et al., 2021)).

Short tandem repeats (STRs), consisting of 1-6bp sequences repeated
in tandem, occur at more than 1.5 million loci in the human genome
(Lander et al., 2001) and exhibit rapid germline mutation rates (Sun
et al., 2012). Somatic instability of STRs, also known as microsatellite
instability (MSI), is a hallmark of certain cancers such as Lynch Syndrome
(reviewed in (Lynch et al., 2009)). Recent work suggests mutation rates of
approximately 10−4-10−3 mutations per STR in non-MSI cancers, with
rates more than 0.03 in the case of MSI (Fujimoto et al., 2020) Additionally,
somatic mutation of STRs in the brain has been implicated as a key driver of
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pathogenicity in some repeat expansion disorders including Huntington’s
Disease (Swami et al., 2009).

Detection of somatic mosaicism at STRs from sequencing data is
particularly challenging, as these regions may exhibit high error rates due
to PCR artifacts (Raz et al., 2019) making it difficult to distinguish true
somatic mutations from errors. STR-specific genotyping methods have
been developed for germline genotyping that address this challenge (e.g.
HipSTR (Willems et al., 2017) and ExpansionHunter (Dolzhenko et al.,
2017)), but these are not designed to detect somatic events. Previous
studies performed genome-wide analysis of somatic STR instability in
the context of cancer (Hause et al., 2016; Kim et al., 2013; Fujimoto et al.,
2020), but relied on comparing sequencing from tumors with matched
normal samples. Further, somatic events were detected either using custom
analysis pipelines not packaged as a separate tool (Kim et al., 2013) or were
based on heuristics rather than hypothesis testing frameworks (Salipante
et al., 2014).

Here, we introduce prancSTR, a novel method for detecting mosaic
STRs (mSTRs) from next-generation sequencing data without the need
for a matched control sample. prancSTR models observed reads as a
mixture distribution and infers the maximum likelihood mosaic fraction
and the copy number of the mosaic vs. germline alleles. We show that
prancSTR accurately identifies mSTRs in simulated data and validate
mSTRs inferred from short reads with orthogonal long read data. Finally,
we apply prancSTR to 460 whole genome sequencing (WGS) datasets from
the 1000 Genomes Project derived from lymphoblastoid cell lines (LCLs)
to characterize genome-wide mSTR mutations in different populations.
Overall, prancSTR provides a robust method to identify mSTRs from
existing high throughput sequencing datasets.

Methods

prancSTR overview

Baseline model
prancSTR is designed to identify mSTRs at one locus at a time. It takes as
input STR genotypes and metadata computed by an existing genotyper and
outputs candidate mSTRs (Fig 1A). While designed to work downstream of
HipSTR (Willems et al., 2017), prancSTR can theoretically process output
from any STR genotyping tool as long as it returns estimated diploid repeat
lengths and the observed distribution of copy numbers across all reads
aligning to a locus.

At each STR locus, prancSTR takes as input a vector of the observed
repeat copy number in each read, R⃗ = {r1, r2, . . . , rn}, where ri is the
number of copies of the repeat observed in the ith read. For each locus,
let ⟨A,B⟩ denote the diploid germline genotype, where A and B give the
copy number of the repeat unit on each allele. Let f denote the fraction
of chromosome copies harboring an additional allele C resulting from a
mosaic mutation, and Θ represent additional error parameters described
below. If the somatic mutation occurred on the haplotype containing allele
B, we would expect 1

2
of chromosome copies to contain allele A, 1

2
− f

to contain allele B, and f to contain allele C. Assuming each observed
read is independent, we can then write the following likelihood equation:

LB(C, f |R⃗; ⟨A,B⟩,Θ) =
∏
r∈R⃗

1

2
S(r|A; Θ)+

(
1

2
− f)S(r|B; Θ) + fS(r|C; Θ)

(1)

where LB denotes the likelihood of C and f in the case that the
mosaic allele occurred on the haplotype with allele B. S(r|G; Θ) gives
the probability to observe r copies of the repeat in a read given it originated
from an allele with G copies assuming stutter error model Θ. This term

is computed based on the error model used in HipSTR (Willems et al.,
2017):

S(r|G; Θ = {u, d, ρ}) =


1− u− d r == G

uρ(1− ρ)r−G−1 r > G

dρ(1− ρ)G−r−1 r < G

(2)

where u and d give the probability for a read to contain a stutter error
resulting in a repeat expansion or contraction, respectively, and error step
sizes are assumed to follow a geometric distribution with parameter ρ. We
assume here that u, d, and ρ are known for each locus as these can be
estimated from existing data using other methods (Willems et al., 2017;
Kristmundsdottir et al., 2020).

In practice with short reads we are unable to determine the haplotype
of origin (either A or B) of the mosaic allele. Therefore below we aim to
identify C and f that maximize the log likelihood over two possible cases:

logL(C, f |R⃗) = max{logLA(C, f |R⃗), logLB(C, f |R⃗)} (3)

Likelihood maximization and hypothesis testing
The goal of prancSTR is to find values for C and f that maximize
Equation 3. We assume the underlying stutter model Θ and diploid
genotype ⟨A,B⟩ are known and can be obtained from HipSTR’s output.
We then use an iterative algorithm to estimate C and f :

1. Initialize the value of f to 0.01.
2. Compute the log-likelihood for each possible value ofC, given f from

step 1. We restrict our search forC to (min R⃗−3,max R⃗+3). Return
the value of C that maximizes the likelihood.

3. Find the value of f that maximizes the log-likelihood given C

from step 2. This step is performed using Sequential Least Squares
Programming (SLSQP) (Kraft, 1988) restricting f to be between 0
and 0.5.

4. Repeat until convergence.

In practice, the read vector R⃗ is obtained from the MALLREADS
format field from HipSTR VCF files. We exclude STR calls from analysis
if: they have coverage of 0, have missing genotypes, have 0 read support in
MALLREADS for the called diploid genotype, or if there is only evidence
in MALLREADS of reads from a single allele.

After obtaining the maximum likelihood estimates f̂ and Ĉ, prancSTR
tests the null hypothesis H0 : f = 0 (no mosaicism) at each STR
genotyped in each sample. We compute the likelihood ratio test statistic
λLR:

λLR = −2 ln
L(Ĉ, f = 0|R⃗; ⟨A,B⟩,Θ)

L(Ĉ, f̂ |R⃗; ⟨A,B⟩,Θ)
(4)

Finally, we use the fact that λLR ∼ χ2(2) to obtain a P-value testing
H0 : f = 0 at each STR in each sample.

Simulating vectors observed repeat counts

In our first simulation strategy, we simulated vectors of observed repeat
counts for a single locus according to the baseline model described above
under various parameter settings. The resulting read count vectors, as well
as the known values of A, B, and Θ were used as input to prancSTR’s
likelihood estimation procedure. In all cases, the mosaic allele fraction f

was set to one of [0.001, 0.01, 0.1, 0.2], the total number of readsN was set
to one of [10, 25, 50, 75, 100, 1000], and stutter parameters were fixed at
ρ = 0.9, u = 0.02, d = 0.02. We tested settings in which the true diploid
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genotype was set either to ⟨4, 4⟩ (homozygous) or ⟨4, 6⟩ (heterozygous).
The value of the mosaic allele C ranged from 6-10 repeats.

For each tested setting, we performed 200 simulations. Power was
estimated as the percentage of simulation rounds for which prancSTR
returned a significant P-value (P<0.05). Notably this captures relative
power differences across settings but is not reflective of the absolute power
in genome-wide analyses, in which a more stringent P-value threshold
is required to account for multiple hypothesis testing. To evaluate false
positive rates, we performed simulations with f set to 0 and similarly
returned the percentage of simulation rounds with significant P-values.

A method for simulating error-prone next-generation
sequencing reads at STRs

For our second simulation strategy, we developed a novel simulation
framework, simTR, which simulates raw sequencing reads according to a
specified coverage level and error model using user-defined repeat alleles.
simTR is a wrapper built around ART (Huang et al., 2012), an existing open
source next generation sequencing read simulator. ART creates simulated
reads that account for generic insertion and deletion mutations. However,
stutter errors (additions or deletions of one or more repeat units introduced
during PCR) characteristic of STRs are not specifically modeled. simTR
adds to ART by incorporating stutter errors into the simulated reads, in
addition to existing indel mutations. Stutter errors are incorporated based
on the HipSTR error model described in Equation 2.

simTR takes as input a genome file (fasta format), the genomic
coordinates of the target STR, and stutter parameters (u, d, and ρ).
Users may also specify optional parameters to set the desired coverage,
whether to generate paired-end vs. single-end reads, the mean and standard
deviation of the sequencing fragment lengths, and the window size around
the STR from which to simulate reads. It creates intermediate fasta
files with separate entries to represent the different possible observed
repeat lengths that could result from PCR stutter. It then invokes ART
to simulate reads from the different fasta entries at rates proportional the
expected proportion of each allele based on the input stutter parameters.
Finally, it outputs simulated reads in fastq format which can be used for
benchmarking downstream tools.

To evaluate the entire prancSTR pipeline starting from raw reads, we
applied simTR to simulate reads at a target set of mSTRs under a range of
settings. Simulated reads were aligned to a reference genome (hg38) using
BWA MEM (Li, 2013) version 0.7.12-r1039. The resulting reads were used
as input to HipSTR v0.6.1 for genotyping the target STRs using non-default
options min-reads 5 and stutter-in to provide a file with simulated stutter
error parameters. The VCF output by HipSTR was then used as input to
prancSTR to estimate C and f .

We tested this pipeline on two example STR loci: (1) CSF1PO,
a tetranucleotide (ATCT)n CODIS marker annotated by the National
Institute of Standards and Technology (NIST) (https://strbase-a
rchive.nist.gov/str_CSF1PO.htm); (hg38 chr5:150071324-
150081375), and (2) a (CGG)n repeat in CBL (hg38 chr11:119206289-
119206322). For CSF1PO the true diploid genotype was set to either
⟨13, 11⟩ (heterozygous) or ⟨13, 13⟩ (homozygous), and the mosaic allele
was set to 15. For the CBL repeat the true diploid genotype was set to either
⟨11, 14⟩ or ⟨11, 11⟩, and the mosaic allele was set to either 9 or 10. We
tested a range of values for N (10, 25, 50, 75, 100, 1000) and f (0, 0.01,
0.1, 0.2) and set stutter parameters ρ = 0.9, u = d = 0.02 to simulate
150bp paired-end reads. Example IGV (ttir et al., 2013) screenshots for
simulated reads at mSTRs are shown in Supplementary Fig. 1.

Obtaining estimated stutter parameters from real WGS
datasets

We previously performed genome-wide STR genotyping using HipSTR
on high-coverage PCR-free WGS for 3,202 individuals from the
1000 Genomes Project and 348 PCR+ samples from the H3Africa
cohort (Jam et al., 2023). Per-locus stutter parameters estimated by
HipSTR were extracted from VCF files (INFO fields INFRAME_UP,
INFRAME_DOWN, and INFRAME_PGEOM) for individuals from the
Yoruban population (1000Genomes) and H3Africa cohorts separately
using bcftools (Danecek et al., 2021) v1.10.2.

Implementation

prancSTR and simTR are implemented in Python as an open source
command line tool and are available as part of the TRTools (Mousavi
et al., 2021) package.

Validating mSTRs from NA12878 using PacBio HiFi long
reads

HipSTR genotypes for NA12878 obtained previously (Jam et al., 2023)
were used as input to prancSTR to identify candidate mSTR sites.
prancSTR output was initially filtered to include candidate mSTRs with:
at least two reads supporting the identified mosaic allele C and read depth
at least 10. To adjust for multiple hypothesis correction (one test per
locus), we applied the Benjamini-Hochberg (Benjamini and Hochberg,
1995) method to identify mSTRs at a false discovery rate of 5%. In a
second round of filtering we additionally removed mSTRs with f > 0.3

(indicating likely heterozygous sites), HipSTR quality score < 0.8, and
mosaic support < 3 reads.

Aligned reads (BAM) for NA12878 based on PacBio HiFi long
reads were obtained from Genome In A Bottle (GIAB dataset). We
used the haplotag (HP) field to partition the BAM into separate files
containing reads for each haplotype. We used a modified version of
HipSTR (https://github.com/gymrek-lab/LongSTR) to perform targeted
genotyping of candidate mSTRs identified in NA12878 using short read
data. This version of HipSTR was modified to support long reads and
run with non-default parameters min-reads 10, output-filters, max-str-
len 10000, min-sum-qual -1e18, and skip-assembly. We extracted the
MALLREADS field from the HipSTR VCF file to examine support for
each allele in PacBio reads for each haplotype.

Characterizing mSTRs in the 1000 Genomes Project

We applied prancSTR to identify candidate mSTRs in 1000 Genomes
Project samples based on previously obtained HipSTR calls (Jam et al.,
2023) and using the identical procedure and filtering as was applied to
NA12878 above. These calls had already been filtered to exclude loci with
call rate less than 75%, loci with genotypes not matching Hardy-Weinberg
expectation (p<1e-06), and loci overlapping segmental duplications in the
human genome.

Samples with outlier numbers of mSTRs were identified as those with
mSTR counts more than two standard deviations above the mean across
all individuals in each population. WGS sequencing coverage and EBV
coverage for each sample was obtained from the 1000 Genomes Project
website: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp
/data_collections/1000G_2504_high_coverage/1000G

_2504_high_coverage.sequence.index and ftp://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/technical/working

/20130606_sample_info/20130606_sample_info.txt.
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Results

Benchmarking prancSTR using simulated data

To evaluate prancSTR, we performed simulations using two strategies
(Methods). First, to evaluate our likelihood maximization procedure, we
simulated vectors of observed repeat counts in each read aligned to a locus
(R⃗) according to the baseline model described in Methods. In this case,
we assumed the germline (diploid) genotype ⟨A,B⟩ is known, and use
the ground truth values of A and B as well as the simulated read vectors
as input to the maximum likelihood estimation of mosaic allele (C) and
mosaic fraction (f ). Second, to evaluate our end to end pipeline starting
from raw reads, we used simTR to simulate reads for mSTRs under a range
of conditions, which were used as input to HipSTR to infer the germline
genotype and compute read vectors. HipSTR results were used as input
for mosaicism detection.

We first evaluated prancSTR under the null setting of f = 0 to
determine how often we falsely detect a significant mSTR. P-values
returned by prancSTR are well-calibrated, following the expected uniform
distribution in this case (Supplementary Fig. 2A-B). As expected, at a P-
value threshold of 0.05, prancSTR falsely identifies approximately 5% of
null simulation rounds as significant mSTRs (Supplementary Fig. 2C-D).

Next, we simulated mSTRs under a range of values for coverage and
mosaic allele fraction and for cases in which the germline genotype is
either homozygous or heterozygous. Using both simulation strategies,
estimated values of the mosaic allele fraction f̂ are highly consistent with
simulated values (Fig. 1B-C, Supplementary Figs. 3-4). In cases that
are underpowered (f < 0.02 and/or coverage 10×), prancSTRtends to
slightly but consistently overestimate the mosaic allele fraction. In practice,
these cases are unlikely to reach genome-wide significance.

As expected, power to detect mSTRs increases as a function of
f and sequencing coverage in all simulation settings (Fig. 1D-E,
Supplementary Figs. 3-4) with near perfect power at P<0.05 to detect
mSTRs with f > 0.1 at loci with at least 50× coverage. In both simulation
strategies, power is higher when the germline genotype is heterozygous
vs. homozygous. This difference is more pronounced in results based
on simTR simulations. In that case, this bias is partially explained by
genotyping errors. We observed that cases where the simulated germline
genotype is homozygous but the mosaic fraction is high are consistently
misidentified by HipSTR as heterozygous sites, and therefore cannot be
identified by prancSTR as mSTRs. We additionally evaluated the impact of
the mosaic allele size on power. We observed that power increases with the
absolute difference in length of the mosaic allele compared to the nearest
germline allele (Supplementary Fig. 6). This is expected, since larger
differences in size make it easier to distinguish true mosaic alleles from
errors.

Finally, we evaluated the impact of sequencing errors at STRs on the
ability to detect mSTRs from simulated read vectors under varying stutter
model parameters meant to capture typical error rates in PCR+ (∼10%
of reads) vs. PCR-free (∼1% of reads) data (Supplementary Figs. 6-8).
As expected, with high stutter error rate, power is reduced in cases of low
coverage and low mosaic fraction, and estimates of C and f show greater
variability. This suggests mSTR detection will perform poorly on PCR+
short read data, where stutter error rates may often exceed expected mosaic
fractions.

Detecting mSTRs in a deeply sequenced human sample

We applied prancSTRto detect genome-wide mSTRs from high-coverage
PCR-free short read whole genome sequencing (WGS) from the highly
characterized NA12878 sample. WGS was derived from a lymphoblastoid
cell line (LCL), and therefore identified mSTRs likely consist of a
combination of true somatic mutations that existed before sample

collection as well as mutations that have accumulated during cell line
passages. After applying prancSTRand performing minimal filtering
to remove low quality calls (Methods), we identified 1,219 candidate
autosomal mSTRs (adjusted P<0.05). Of candidate mSTRs identified
above, 1,130 (92%) occurred at homopolymer loci.

To evaluate these mSTRs, we compared to an orthogonal dataset of
haplotagged Pacbio HiFi long reads (mean coverage ∼30×) available for
the same sample (Methods). Notably, although Pacbio HiFi shows high
accuracy at most regions, they have elevated error rates at homopolymers
(Wenger et al., 2019), suggesting repeat counts obtained from Pacbio
reads at those loci may not serve as an accurate ground truth dataset.
Additionally, we noticed that inferred stutter error rates are highest at
homopolymer STRs (Supplementary Fig. 7). Therefore, results below
are reported separately for non-homopolymer vs. homopolymer STRs.

We reasoned that true mosaic alleles with sufficiently high variant
allele fractions should be observed in both datasets, and that the mosaic
allele should typically only occur on long reads from one of the two
haplotypes at a locus (Fig. 2A). On the other hand, inferred mosaic
alleles that are actually due to stutter or other error sources might be
found on both haplotypes. Of the mSTRs identified above, we deemed
40 (273) corresponding to 45% (24%) of candidate non-homopolymer
(homopolymer) mSTRs to have sufficient Pacbio HiFi coverage (at least
10 reads per haplotype) to attempt validation.

For each candidate mSTR, we examined the percentage of long reads
from each haplotype supporting the inferred mosaic allele (C) (Fig. 2B-
C) and classified calls into three categories. Category I, corresponding
to 67% (31%) of non-homopolymers (homopolymers), consists of calls
for which C is only identified in HiFi reads from a single haplotype,
representing likely true positives. For these mSTRs, variant allele fractions
estimated from short reads are strongly correlated with those observed in
the HiFi reads (Pearson r=0.76, two-sided P=0.001 for non-homopolymers
and r=0.55, P=5.11e-6 for homopolymers; Fig. 2D-E). Category II,
corresponding to 7% (59%) of non-homopolymers (homopolymers),
consists of calls for which C is supported by at least one HiFi read
from each haplotype, representing likely false positive calls. Category
III, corresponding to 26% (10%) of non-homopolymers (homopolymers),
consists of calls for which C is not supported by long reads on either
haplotype. This could indicate an incorrect mSTR call, but could also
originate from insufficient coverage at mSTRs with low variant allele
fractions. Upon further inspection of mSTRs in Categories II and III,
we determined the majority had either low mosaic read support in the
short read data, occurred at loci with low genotype quality, or had very
high mosaic allele support suggesting miscalled heterozygous sites. After
applying an additional round of filtering based on these metrics (Methods),
18 (117) non-homopolymer (homopolymer) mSTRs remained of which
83% (49%) were classified as Category I.

We further examined read support on each haplotype at remaining
candidate mSTRs (Supplementary Fig. 9). This revealed that the majority
of homopolymer mSTRs identified as likely false positives occurred at
loci for which the germline genotype was called as homozygous and long
reads from both haplotypes supported multiple different alleles, suggesting
reads at these loci are error prone. We additionally observed across all
loci that the majority of validated high-confidence mSTRs occur at STRs
for which the germline genotype is heterozygous. This is consistent with
our simulation results, in which true mosaic alleles with high mosaic
allele fraction occurring at homozygous sites are incorrectly genotyped as
heterozygous and therefore systematically missing from our mSTR callset.
On the other hand, those with low allele fraction are unlikely to be detected
at genome-wide significance.
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Fig. 1. prancSTR overview and validation. (A) Overview of the prancSTR method. The copy numbers observed in each read aligned to a target STR are extracted to a vector R⃗, from
which prancSTR obtains maximum likelihood estimates for the mosaic allele (C) and mosaic allele fraction (f ), and a P-value testing H0 : f = 0. (B-C) Simulated vs. estimated values
of f . We simulated mSTRs under a range of coverage levels and values for f for cases in which the germline genotype is heterozygous (B) or homozygous (C). Dots represent the mean
estimated f value from 200 simulations. The black line denotes the x=y diagonal. (D-E) Power to detect mSTRs. Power is computed as the percent of simulations for which P < 0.05.
For B-E, lines denote different coverage levels, where coverage gives the total number of reads spanning the STR of interest. Simulated values for A, B, and C are denoted at the top of
each panel. Panels here are based on simulated read vectors R⃗. Similar results for simulations based on raw reads are shown in Supplementary Figs. 3-4.
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Fig. 2. Validating candidate mSTRs identified in NA12878 (HG001) with Pacbio HiFi reads. (A) Schematic representation of mosaicism validation with long reads. Pacbio HiFi reads
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Fig. 3. mSTR trends across populations. (A-B) Distribution of the number of mSTRs across different populations. The x-axis gives the number of mSTRs for a given population and the
y-axis gives the count. Data is shown for non-homopolymers (A) and homopolymers (B). Dashed colored lines (CEU=blue, YRI=orange, CHB=green) give population-specific means and
the black line denotes the overall mean. (C-D) Distribution of mSTR mutation sizes. The x-axis represents the mutation size, computed as the difference between the mosaic allele length and
the closest germline allele. Positive mutation sizes indicate insertions and negative sizes indicate deletions. Data is shown for non-homopolymers (C) and homopolymers (D) and is for CEU
only. Other populations showed similar trends. Blue represents homozygous loci and orange represents the heterozygous loci. (E-F) Distribution of mosaic allele fraction (f ) across mSTRs.
Data is shown for non-homopolymers (E) and homopolymers (F) and is for CEU only. Bars are colored to denote the number of mSTRs occurring at homozygous (blue) vs. heterozygous
(orange) sites.

Population-wide characterization of mSTRs

We next applied prancSTR to characterize population-wide trends
of STR mosaicism. We focused on WGS derived from LCLs for
individuals from the CEU (Northern Europeans from Utah; n=179),
YRI (Yorubans from Nigeria; n=178), and CHB (Han Chinese; n=103)
populations. After filtering (Methods), we identified an average of 76
(577) non-homopolymer (homopolymer) mSTRs per cell line (Fig. 3A-
B). As observed for NA12878, homopolymer mSTRs far outnumber
non-homopolymers, and the majority of non-homopolymer mSTRs
identified occur at loci for which the germline genotype is heterozygous
(Supplementary Fig. 10). This trend is consistent across all populations
analyzed.

We noticed substantial variation in mSTR counts across cell lines. The
number of homopolymer and non-homopolymer mSTRs per cell line are
highly correlated (Supplementary Fig. 11), with the correlation strongest
when considering mSTR calls at germline heterozygous sites (Pearson
r=0.97, two-sided P=9.6e-110 in CEU). We also identified 13, 8, and 4 cell
lines from CEU, YRI, and CHB with outlier mSTR counts (Methods) for
both homopolymer and non-homopolymer mSTRs. Overall, these results
suggest certain cell lines have higher rates of STR instability, either due
to genetic or environmental factors. Variation in mSTR counts across cell
lines is not significantly correlated with the number of sites considered or
EBV virus count (two-sided P≥ 0.05), and is only modestly correlated
with sequencing coverage (Pearson r=0.21, two-sided P=0.039 for non-
homopolymers and r=0.17, P=0.10) (Supplementary Fig. 12). Passage
numbers for these cell lines was not available at the time of writing, and so
the impact of cell culture history, which is likely to play a role in mutation
counts, could not be assessed.

We next investigated the distribution of the sizes of mosaic
STR mutations. The majority of events (60.2% and 68.7% for non-
homopolymer and homopolymer mSTRs) result in insertions or deletions
of a single repeat unit (Fig. 3C-D), although larger step sizes were
observed. Mutation sizes are larger on average for mutations at STRs
with homozygous vs. heterozygous germline genotypes and show an
overall bias toward deletions vs. contractions. A similar deletion bias has
been observed for somatic mutations at STRs in cancer (Fujimoto et al.,
2020). However, both bias described above are far more pronounced at
homopolymer loci, suggesting these biases my arise in part from erroneous
mSTR calls (Supplementary Fig. 13). Indeed, inferred stutter error rates
suggest deletion errors are more common than insertions (Supplementary
Figs. 7-8), and large mutation step sizes at homozygous sites may reflect
true heterozygous sites that were incorrectly genotyped.

Finally, we examined the distribution of variant allele fractions (f )
for detected mSTRs (Fig. 3E-F, Supplementary Fig. 14). In all cases, f
distributions show peaks around 0.15-0.20, consistent with the range where
we expect to have sufficient power (Fig. 1D-E), whereas true mosaic sites
with higher f values are likely to be indistinguishable from heterozygous
sites. Further, homopolymer mSTRs with high f values nearly all occur
at homozygous sites, and the observed deletion bias is strongest overall
for sites with high f values, indicating mSTRs with f > 0.2 may be
enriched for false positive calls. Overall, in combination with long read
validation analysis performed above, our results suggest mSTRs identified
at heterozygous sites at moderate f values are robust, whereas accurate
identification of mosaicism at homopolymers or for sites with high mosaic
allele fractions is challenging with short read data.
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Discussion
Here we presented prancSTR, a method for genome-wide detection of
somatic mosaicism at STRs from high throughput sequencing datasets.
prancSTR can accurately identify mSTRs without the need for a matched
control sample. It has highest power to detect mSTRs with mosaic allele
fractions of approximately 10-20% in PCR-free datasets with 30-50×
coverage, but could detect reproducible mSTR sites with mosaic allele
fractions as low as 7%. We applied prancSTR to identify mSTRs using
PCR-free short read data for NA12878. Validation with orthogonal long
read (Pacbio Hifi) data supported 83% and 49% of high-confidence mSTR
calls at non-homopolymers and homopolymers, respectively, at sites with
sufficient long read coverage. Application of prancSTR to population-scale
short read WGS for the 1000 Genomes derived from lymphoblastoid cell
lines identified hundreds of mSTRs per cell line with broadly consistent
mSTR patterns across populations.

prancSTR is a versatile tool that can be used to detect mosaicism in a
variety of settings, including PCR-free or PCR+ short read sequencing, as
long as accurate stutter error parameters are available. It can also be applied
as-is to Pacbio Hifi datasets, which are becoming increasingly widely
available. prancSTR as well as the read simulation method developed here
(simTR) have been packaged into our existing toolkit, TRTools (Mousavi
et al., 2021), enabling easy integration with other TR analysis tools. It
is currently compatible with STR genotypes output by HipSTR (Willems
et al., 2017), but could be easily modified to work downstream of other
STR genotypers provided they output diploid genotypes and read support
for each observed allele.

Application of prancSTR genome-wide to WGS from 460 cell lines
revealed interesting patterns of mSTRs. Our results broadly suggest
mSTRs identified from short reads at non-homopolymers and at sites
with germline heterozygous genotypes are most reliable, whereas
homopolymers remain particularly challenging. Overall, we found an
average of 76 and 577 non-homopolymer and homopolymer mSTRs
per cell line, corresponding to mutation rates of XX and XX mutations
per STR per sample. These rates are broadly similar to those measured
in non-MSI tumors (Fujimoto et al., 2020). Intriguingly, we identified
multiple cell lines from each population with outlier mutation counts, and
found strong correlation between the number of mSTRs at homopolymers
vs. non-homopolymers. This suggests cell lines have higher rates of
STR instability than others, and that these trends are present across a
broad set of loci. Although we could not determine the source of this
variation, but hypothesize it could be due to differences in cell line
passage history, in which cell lines that have been maintained for more
passages accumulate more somatic variation. Alternatively, individual-
level variation in mutation patterns could arise from germline factors such
as mutations in DNA repair genes, which we have observed previously in
mice (Maksimov et al., 2023). Profiling somatic variation in larger sample
sizes is likely needed to identify similar effects in humans.

prancSTR currently faces multiple limitations. First, it relies on an
upstream genotyper (here, HipSTR) to provide accurate germline genotype
calls as input. We identified several scenarios where germline genotype
calls may be problematic. First, in cases where a mosaic allele is present
at high frequency, it may be indistinguishable from a germline allele and
incorrectly genotyped as heterozygous, causing mosaicism to be missed.
Second, particularly at loci with high stutter error rates or low coverage,
a truly heterozygous site may be incorrectly genotyped as homozygous,
causing prancSTR to incorrectly identify the second germline allele as
mosaicism. As a result, mSTRs identified at heterozygous sites are likely
more reliable. We anticipate these challenges will be largely alleviated
by haplotagged long reads, which will make distinguishing heterozygous
vs. homozygous sites easier. Second, prancSTR currently focuses on
identifying mSTRs with a single high frequency mosaic allele. While this

is likely to capture mosaic events at shorter STRs, longer repeats such as
the Huntington’s Disease locus where mosaicism is known to play a role in
disease pathogenesis tend to show a broad range of mosaic allele lengths
(Swami et al., 2009) and will require extensions to the current model
to detect. Third, similar to mosaicism detection tools for other variant
types, prancSTR is limited by the coverage of current datasets, which is
insufficient to detect most mosaic events below 5% frequency.

Overall, prancSTR can serve as a valuable method to characterize
somatic mosaicism at STRs in a range of settings, including in healthy
individuals or in disease settings such as microsatellite instability in
cancer or neurological diseases where mosaicism is known to play a key
role. Profiling mosaicism at population-scale from the large number of
existing WGS datasets may also give insight into inherited factors driving
differences in mSTRs patterns across individuals. We envision future
extensions of this framework can allow for directly incorporating phase
information from haplotagged reads or quantifying mosaicism at highly
unstable repeats such as long Huntington’s alleles, which will further
improve our ability to characterize STR mosaicism and its role in human
health.
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