
 SIEMENS EDA

Algorithmic C (AC)
Datatypes
Reference Manual

Software Version v4.7.0
August 2023

Copyright 2004 Siemens

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compli-
ance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

Table of Contents

Table of Contents
Chapter 1: Overview of Algorithmic C Datatypes..2

1.1. Overview of Numerical Algorithmic C Datatypes...2

1.1.1. Usage of Numerical AC Datatypes..3

1.1.2. Usage of Numerical AC Datatypes within SystemC..3

1.1.3. Definition and Implementation Overview...3

1.1.4. Implementation Guidelines...4

1.1.5. Implementation Assumptions..4

1.2. Overview of Interface Algorithmic C Datatypes...5

Chapter 2: Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes..6

2.1. Quantization and Overflow...11

2.2. Using the ac_int and ac_fixed Datatypes..14

2.3. Operators and Methods..15

2.3.1. Binary Arithmetic and Logical Operators...16

2.3.2. Relational Operators...18

2.3.3. Shift Operators..19

2.3.4. Unary Operators: +, -, ~ and !...20

2.3.5. Bit Complement..21

2.3.6. Increment and Decrement Operators..21

2.3.7. Conversion Operators to C Integer Types...22

2.3.8. Explicit Conversion Methods...23

2.3.9. Bit Select Operator: []..24

2.3.10. Slice Read Method: slc...25

2.3.11. Slice Write Method: set_slc...25

2.3.12. Range Method: range<msb,lsb>()..26

2.3.13. The set_val Method..26

2.3.14. Constructors...27

2.3.15. Methods to Fill Bits...27

2.3.16. IO Methods...28

2.3.17. Mixing ac_int and ac_fixed with Other Datatypes..28

2.4. Advanced Utility Functions, Typedefs, etc...28

2.4.1. Accessing Parameter Information...29

2.4.2. Using ac::init_array for Initializing Arrays..29

2.4.3. Static Computation of log2 Functions...31

2.4.4. Return Type for Unary and Binary Operators..32

AC Datatypes v4.7.0 August 2023 iii

Table of Contents

2.5. Methods and Utility Functions for Floating Point...33

2.5.1. Leading Sign and Normalization...34

2.5.2. Utility Function to Extract Exponent/Sign/Mantissa from Literal Constants...................................35

Chapter 3: Arbitrary-Length Bit-Accurate Floating-Point Datatypes...36

3.1.1. Mixed ac_float and other types...39

3.1.2. Shift Operators..39

3.1.3. The set_val Method..39

3.1.4. Constructors...40

3.1.5. Accessing Parameter Information...40

3.1.6. Using ac::init_array for Initializing Arrays..41

Chapter 4: Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes...42

4.1. IEEE Floating-point: ac_ieee_float..42

4.2. Brain Floating-point from Google: ac::bfloat16..50

4.3. General Standard Floating-point: ac_std_float..56

4.4. Overriding with alternative implementations...61

Chapter 5: Complex Datatype...65

5.1. Usage of ac_complex...67

5.2. Advanced utility functions, typedefs, etc for ac_complex..67

5.2.1. Accessing the Underlying (Element) Type...68

5.2.2. Using ac::init_array for Initializing Arrays..68

5.2.3. Return Type for Unary and Binary Operators..68

Chapter 6: Reference Guide for Numerical Algorithmic C Datatypes..69

6.1. Functions and Operators..69

6.1.1. Constructors...69

6.1.2. Conversions..70

6.1.3. Arithmetic, Relational and Shift Operators and Methods...71

6.1.4. Bit and Slice Operators and Methods...71

6.1.5. Logical Operators and Methods..72

6.1.6. Other Functions and Methods...72

6.1.7. Mantissa/Exponent Extraction of float/double...73

6.1.8. SystemC Tracing Functions..73

6.1.9. Explicit conversions to/from SystemC Types..74

6.2. Enumerations, Static Constants and Type Definitions...74

6.2.1. General Enumerations..74

6.2.2. Enumerations for Fixed-point Quantization and Overflow Modes...75

6.2.3. Static Constant Members and Type Definitions to Capture Properties of Types...........................75

6.2.4. Type Definitions for Signed and Unsigned ac_ints..76

6.2.5. Utility Enumerations and Type Definitions Based on Template Arguments...................................76

6.3. Macros.. 79

AC Datatypes v4.7.0 August 2023 iv

Table of Contents

6.3.1. User Definable Macros...79

6.3.2. Utility Macros..79

Chapter 7: Numerical Datatype Migration Guide...81

7.1. General Compilation Issues..81

7.2. SystemC Syntax...81

7.2.1. SystemC to AC Differences in Methods/Operators...83

7.2.2. Support for SystemC sc_trace Methods...84

7.3. Simulation Differences with SystemC types and with C integers..84

7.3.1. Limited Precision vs. Arbitrary Precision...85

7.3.2. Implementation Deficiencies of sc_int/sc_uint...85

7.3.3. Differences Due to Definition..86

7.3.4. Mixing Datatypes..88

Chapter 8: Frequently Asked Questions on Numerical Datatypes...90

8.1.1. Operators ~, &, |, ^, -, !..90

8.1.2. Conversions to double and Operators with double..91

8.1.3. Constructors from strings..91

8.1.4. Shifting Operators...92

8.1.5. Division Operators..92

8.1.6. Compilation Problems...92

8.1.7. Platform Dependencies...93

8.1.8. Purify Reports...93

8.1.9. User Defined Asserts..94

Chapter 9: ac_channel Datatype...95

9.1. The ac_channel Class Definition..95

9.2. ac_channel Member Functions...96

9.2.1. Member Function: ac_channel()...96

9.2.2. Member Function: ac_channel(prefill_num)..96

9.2.3. Member Function: ac_channel(prefill_num, value)..96

9.3. Synthesizable Member and non-Member Functions...97

9.3.1. Member Function: val read() or read(&val)...97

9.3.2. Member Function: bool nb_read(&val)..97

9.3.3. Member Function: write(val)...98

9.3.4. Member Function: bool nb_write(val)..98

9.3.5. Member Function: bool available(num)...98

9.3.6. Member Function: int size()..99

9.3.7. Function: nb_read_join(Args&... args)..99

9.4. Non-synthesizable Member Functions..100

9.4.1. Member Function: bool empty()..100

9.4.2. Member Function: bool operator ==..101

AC Datatypes v4.7.0 August 2023 v

Table of Contents

9.4.3. Member Function: bool operator !=...101

9.4.4. Member Function: val operator[int]...102

9.4.5. Member Function: reset()..102

9.5. Example Design Using Hierarchical Blocks With ac_channel...103

9.6. Example Design Using Non-Blocking size() Method...104

AC Datatypes v4.7.0 August 2023 vi

Table of Contents

Index of Tables
Table 1: Numerical Ranges of ac_int and ac_fixed..6

Table 2: Examples for ac_int and ac_fixed...6

Table 3: Operators defined for ac_int and ac_fixed..7

Table 4: Methods defined for ac_int and ac_fixed..9

Table 5: Reduce Methods defined for ac_int and ac_fixed...10

Table 6: Constructors defined for ac_int and ac_fixed...10

Table 7: Quantization modes for ac_fixed..12

Table 8: Overflow modes for ac_fixed..14

Table 9: Return Types for ac_int Binary Arithmetic and Bitwise Logical Operations.................................16

Table 10: Return Types for ac_fixed Binary Arithmetic and Bitwise Logical Operations...........................17

Table 11: Mixed Expressions Example..18

Table 12: Unary Operators for ac_int<W,S>..20

Table 13: Unary Operators for ac_fixed<W,I,S,Q,O>...20

Table 14: Pre- and Post-Increment/Decrement Operators for ac_int...21

Table 15: Pre- and Post-Increment/Decrement Operators for ac_fixed<W,I,S,Q,O> where q=2I-W........21

Table 16: Conversion to C Integer Types...22

Table 17: Explicit Conversion Methods for ac_int/ac_fixed..23

Table 18: Special values..26

Table 19: Basic Parameters...29

Table 20: Required Include Files for ac::init_array Function...30

Table 21: Syntax for log2 functions..31

Table 22: Return types for operator on T..32

Table 23: Return type for (T1(op1) op T2(op2))...32

Table 24: Operators and methods defined for ac_float..37

Table 25: Operators and methods defined for ac_float..38

Table 26: Special values..39

Table 27: Basic Parameters...40

Table 28: Standard floating-point types..42

Table 29: IEEE floating-point types..43

Table 35: Arithmetic Binary Operators...46

Table 36: Arithmetic Assign Operators...46

Table 37: Relational Operators..47

Table 40: Member Functions to Query Type of Value..47

Table 41: Static Data Members..48

Table 42: Static Member Functions corresponding to std::numeric_limits..48

AC Datatypes v4.7.0 August 2023 vii

Table of Contents

Table 43: Static Member Functions for 0 and 1..49

Table 44: Functions under std namespace for querying the value type..49

Table 45: Other functions under the std namespace..49

Table 46: Constructors...50

Table 74: Macros for overriding arithmetic methods...62

Table 75: Operators defined for ac_complex...66

Table 76: Methods defined for ac_complex<T>...66

Table 77: Constructors Available..69

Table 78: Conversion Operators and Methods...70

Table 79: Arithmetic, Relational and Shift Operators and Methods..71

Table 80: Bit and Slice Operators and Methods...72

Table 81: Operators defined for ac_int::ac_bitref and ac_fixed::ac_bitref...72

Table 82: Logical Operators and Methods...72

Table 83: Other functions/methods..72

Table 84: Functions to extract mantissa/exponent from float/double..73

Table 85: Explicit conversions to/from AC Datatype from/to SystemC Datatype......................................74

Table 86: General Enumerations...74

Table 87: Enumerations for fixed-point quantization and overflow modes..75

Table 88: Static constant members to capture properties of types...75

Table 89: Type definitions to capture properties of types...75

Table 90: Utility enums and typedefs based on template parameters..76

Table 91: Type definitions for Minimal Size Destination Types...76

Table 92: Enumerations defined in type::rt_unary..77

Table 93: Type definitions in type::rt_unary..77

Table 94: Enumerations defined in type::rt...78

Table 95: Type definitions in type::rt...78

Table 96: User Definable Macros...79

Table 97: Utility Macros..80

Table 98: Relation Between SystemC Datatypes and AC Datatypes...81

Table 99: Quantization Modes for ac_fixed and Their Relation to sc_fixed/sc_ufixed..............................82

Table 100: Overflow Modes for ac_fixed and Their Relation to sc_fixed/sc_ufixed..................................82

Table 101: Migration of SystemC Methods to ac_int..83

AC Datatypes v4.7.0 August 2023 viii

AC Datatypes v4.7.0 August 2023 1

Overview of Algorithmic C Datatypes
Overview of Algorithmic C Datatypes

Chapter 1: Overview of Algorithmic C Datatypes

This package provides numerical and interface C++ classes aimed at modeling behavior that is targeted to
the design of hardware. Modeling of bit-accurate arithmetic is crucial for hardware design. The numerical
package provides classes for bit-accurate integer, fixed-point, floating-point and complex numbers. Well-
defined semantics and simulation speed are the focus of this package since they are essential for the
verification of hardware designs. The package currently includes the following files:

File Package Description Class AC Dependencies

ac_int.h Numerical Integer ac_int<W,S>

ac_fixed.h Fixed-point ac_fixed<W,I,S,Q,O> ac_int.h

ac_float.h Floating-point ac_float<W,I,E,Q> ac_fixed.h

ac_complex.h Complex ac_complex<T> ac_float.h

ac_sc.h AC-SystemC
Conversions, Tracing

ac_complex.h

ac_pp.py Pretty-print for gdb gdb with python

ac_channel.h Interface Channel Fifo ac_channel<T>

The parameters for the classes are:

• W: integer representing width of the type. For ac_float it is width of the mantissa.

• S: bool parameter representing signedness of ac_int or ac_fixed type.

• I: integer representing integer width.

• Q,O: enumeration parameter for quantization (rounding) and overflow modes.

• T: type. For ac_complex, T is restricted to AC Numerical types and C++ integer and floating types.

The following sections overview the Numerical and Interface Datatypes.

1.1. Overview of Numerical Algorithmic C Datatypes

The advantages of the Algorithmic C numerical datatypes are the following:

• Arbitrary-Length: This allows a clean definition of the semantics for all operators that is not tied to an
implementation limit. It is also important for writing general IP algorithms that don’t have artificial (and
often hard to quantify and document) limits for precision. Whenever possible, the return type of
operators do not loose any precision. In cases where that is not the case, for example in fixed-point
division, what is kept is fully defined and implementation independent.

 2 August 2023 AC Datatypes v4.7.0

Overview of Numerical Algorithmic C Datatypes
Overview of Algorithmic C Datatypes

• Precise, Uniform and Consistent Definition of Semantics: Special attention has been paid to define and
verify the simulation semantics and to make sure that the semantics are appropriate for synthesis. No
simulation behavior has been left to compiler dependent behavior. Mixed type operators, including
mixed operators with C integer types are fully defined to prevent any ambiguity. Also, asserts have
been introduced to catch invalid code during simulation. See also “User Defined Asserts ”.

• Simulation Speed: The implementation of ac_int uses sophisticated template specialization techniques
so that a regular C++ compiler can generate optimized assembly language that will run much faster
than the equivalent SystemC datatypes. For example, ac_int of bit widths in the range 1 to 32 can run
100x faster than the corresponding sc_bigint/sc_biguint datatype and 3x faster than the corresponding
sc_int/sc_uint datatype. In addition the compilation is faster and produces smaller binary executables.

• Correctness: The simulation and synthesis semantics have been verified for many size combinations
using a combination of simulation and equivalence checking.

1.1.1. Usage of Numerical AC Datatypes

In order to use the Algorithmic C data types, the appropriate header needs to be included in the source. All
the definitions are in the AC header files and there are no object files that need to be linked in. Enabling
compiler optimizations (for example “-O3” in GCC) is critical to the fastest runtime.

1.1.2. Usage of Numerical AC Datatypes within SystemC

Numerical AC Datatypes can be used in SystemC descriptions. If they are used as types for SystemC
sc_signal, then the header file ac_sc.h needs be included after the systemc.h is included. The ac_sc.h file
includes all the other numerical types by including ac_complex.h.

The ac_sc.h header file also provides explicit conversion functions to SystemC integer and fixed-point
datatypes. The “Datatype Migration Guide” chapter presents information about how to convert algorithms
written with SystemC datatypes to Algorithmic C datatypes.

1.1.3. Definition and Implementation Overview

The numerical datatypes were defined and implemented adhering to the following guiding principles:

• Static Bit Widths: all operations and methods return an object with a bit width that is statically
determinable from the bit widths of the inputs and “signedness” (signed vs. unsigned) of the inputs.
Keeping bit-widths static is essential for fast simulation, as it means that memory allocation is
completely avoided. It is also essential for synthesis. For example the left shift operation of an ac_int
returns an ac_int of the same type (width and signedness) as the type of first operand. In contrast, the
left shift for sc_bigint or sc_biguint returns an object with precision that depends on the shift value and
has no practical bound on its bit width.

• Operations Defined Arithmetically: whenever possible, operations are defined arithmetically, that is, the
inputs are treated as arithmetic values and the result value is returned with a type (bitwidth and
signedness) that is capable of representing the value without loss of precision. Exceptions to this rule
are the shift operators (to maintain static bit widths) and division.

AC Datatypes v4.7.0 August 2023 3

Overview of Numerical Algorithmic C Datatypes
Overview of Algorithmic C Datatypes

• Compiler Independent Semantics: the semantics avoid “implementation dependent” behaviors that are
present for some native C integer operations. For example, shift values for a C int needs to be in the
range [0,31] and are otherwise implementation dependent.

• Mixed numerical ac types and C integer type Binary Functions: all binary operators are defined for
mixed ac_int, ac_fixed, ac_float and ac_complex and native C integers for consistency. For example
the expression “1 + a” where a is an ac_int<36,true> will compute “ac_int<32,true> 1 + a” rather than
“1 + (int) a”. This is done to ensure that expressions are carried out without unintentional loss of
precision and to make sure that compiler errors due to ambiguities are avoided.

• Uninitialized by Default: there is no default initialization. This is preferable for both runtime and
synthesis where uninitialized variables are treated as don't care. There is a utility function to uninitialize
static arrays to undo the initialization due to the “static” qualifier.

The types have a public interface. The base class implementation of these types are private. They are part of
the implementation and may be changed. Also any function or class under namespace ac_private should not
be used as it may be subject to change.

1.1.4. Implementation Guidelines

The following guidelines are followed in the implementation:

1. Minimal inclusion of other header files. For example systemc.h should only be included in ac_sc.h. No
inclusion of std libraries, boost etc.

2. No C++11 features or dependencies.

3. No memory allocation is used. Most code is written to be synthesizable. The exceptions are related to
non-synthesizable types such as float and double.

4. No virtual functions used. Given that the types are templatized and fully defined in the header files,
there is no reason for their use.

5. Warnings that need to be turned off are done so only for the header context using the push/pop
mechanisms available in Visual C++ and GCC version 4.6 or higher.

1.1.5. Implementation Assumptions

While the C++ standard does not formally define the bit width and representation of the various integer types,
compilers for general software have converged to both widths and representation that are assumed in this
package. The most important assumption is that the int type is represented in a 32-bit, 2's complement
representation. The width of other integer types are relevant when converting to and from those types and in
the definition of mixed AC and C++ integer types. The assumptions are as follows:

1. Two's complement is used for all signed integer versions.

2. The char, signed char and unsigned char have a bitwidth of 8. The type char is treated as signed.

 4 August 2023 AC Datatypes v4.7.0

Overview of Numerical Algorithmic C Datatypes
Overview of Algorithmic C Datatypes

3. The short and unsigned short have a bitwidth of 16 and is represented in 2's complement.

4. The long and unsigned long have a bitwidth as defined in std::numeric_limits. In general 32-bit
platforms represent them as 32-bit integers and 64-bit platforms represent them as 64-bit integers.

5. The long long and unsigned long long have a bitwidth of 64-bits.

1.2. Overview of Interface Algorithmic C Datatypes

In addition to the numerical datatypes, an interface class ac_channel is also provided. This class simplifies
the modeling and synthesis of hierarchical designs using C++ function calls. The ac_channel class is a C++
template class that enforces a FIFO discipline (reads occur in the same order as writes.) From a modeling
perspective, an ac_channel is implemented as a simple interface to the C++ standard queue (std::deque).
That is, for modeling purposes, an ac_channel is infinite in length (writes always succeed) and attempting to
read from an empty channel generates an assertion failure (reads are nonblocking).

AC Datatypes v4.7.0 August 2023 5

Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

Chapter 2: Arbitrary-Length Bit-Accurate
Integer and Fixed-Point Datatypes

The arbitrary-length bit-accurate integer and fixed-point datatypes provide an easy way to model static bit-
precision with minimal runtime overhead. Operators and methods on both the integer and fixed-point types
are clearly and consistently defined so that they have well defined simulation and synthesis semantics.

The types are named ac_int and ac_fixed and their numerical ranges are given by their template parameters
as shown in Table 1. For both types, the boolean template parameter determines whether the type is
constrained to be unsigned or signed. The template parameter W specifies the number of bits for the integer
or fixed point number and must be a positive integer. For ac_int, the value of the integer number bW-1… b1 b0 is
interpreted as an unsigned integer or a signed (two’s complement) number. The advantage of having the
signedness specified by a template parameter rather than having two distinct types is that it makes it possible
to write generic functions where signedness is just a parameter.

Table 1: Numerical Ranges of ac_int and ac_fixed

Type Description Numerical Range Quantum

ac_int<W, false> unsigned integer 0 to 2W- 1 1

ac_int<W, true> signed integer -2W-1 to 2W-1- 1 1

ac_fixed<W, I, false> unsigned fixed-point 0 to (1 - 2-W) 2I 2I-W

ac_fixed<W, I, true> signed fixed-point (-0.5) 2I to (0.5 - 2-W) 2I 2I-W

For ac_fixed, the second parameter I of an ac_fixed is an integer that determines the location of the fixed-
point relative to the MSB. The value of the fixed-point number bW-1 ...b1 b0 is given by (bW-1 … b1 b0) 2I or
equivalently (bW-1 … b1 b0) 2I-W where bW-1 … b1 b0 is interpreted as an unsigned integer or a signed (two’s
complement) number.

Table 2 shows examples for various integer and fixed-point types with their respective numerical ranges and
quantum values. The quantum is the smallest difference between two numbers that are represented. Note
that an ac_fixed<W,W,S> (that is I==W) has the same numerical range as an ac_int<W,S> where S is a
boolean value that determines whether the type is signed or unsigned. The numerical range of an
ac_fixed<W,I,S> is equal to the numerical range of and ac_int<W,S> (or an ac_fixed<W,W,S>) multiplied by
the quantum.

Table 2: Examples for ac_int and ac_fixed

Type Numerical Range Quantum

ac_int<1, false> 0 to1 1

ac_int<1, true> -1 to 0 1

ac_int<4, false> 0 to 15 1

ac_int<4, true> -8 to 7 1

 6 August 2023 AC Datatypes v4.7.0

Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

ac_fixed<4, 4, false> 0 to 15 1

ac_fixed<4, 4, true> -8 to 7 1

ac_fixed<4, 6, false> 0 to 60 4

ac_fixed<4, 6, true> -32 to 28 4

ac_fixed<4, 0, false> 0 to 15/16 1/16

ac_fixed<4, 0, true> -0.5 to 7/16 1/16

ac_fixed<4,-1, false> 0 to 15/32 1/32

ac_fixed<4,-1, true> -0.25 to 7/32 1/32

It is important to remember when dealing with either an ac_fixed or an ac_int that in order for both +1 and -1
to be in the numerical range, I and W have to be at least 2. For example, ac_fixed<6,1,true> has a range
from -1 to +0.96875 (it does not include +1) while ac_fixed<6,2,true> has a range -2 to +1.9375 (includes +1).

The fixed-point datatype ac_fixed has two additional template parameters that are optional that define the
overflow mode (e.g. saturation) and the quantization mode (e.g. rounding):

ac_fixed<int W, int I, bool S, ac_q_mode Q, ac_o_mode O>

Quantization and overflow occur when assigning (=, +=, etc.) or constructing (including casting) where the
target does not represent the source value without loss of precision (this will be covered more precisely in
“Quantization and Overflow”). In all the examples of Table 2 the default quantization and overflow modes
AC_TRN and AC_WRAP are implied. The default modes simply throw away bits to the right of LSB and to the
left of the MSB which is also the behavior of ac_int:

ac_fixed<1,1,true> x = 1; // range is [-1,0], +1 wraps around to -1
ac_int<1,true> x = 1; // same as above
ac_fixed<4,4,true> x = 9; // range is [-8,7], +9 wraps around to -7
ac_int<4,true> x = 9; // same as above
ac_fixed<4,4,true> x = 3.7; // truncated to 3.0
ac_int<4,true> x = 3.7; // same as above
ac_fixed<4,4,true> x = -3.2; // truncated to -4.0
ac_int<4,true> x = -3.2; // same as above

Table 3 shows the operators defined for both ac_int and ac_fixed

Table 3: Operators defined for ac_int and ac_fixed.

Operators ac_int ac_fixed

Two operand +, -, *, /, %,
|, &, ^

Arithmetic result. First or second
arg may be C INT or ac_fixed
/ truncates towards 0

Arithmetic result. First or second
arg may be ac_int or C INT
/ truncates towards 0.
% NOT DEFINED

AC Datatypes v4.7.0 August 2023 7

Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

>>, << bidirectional
return type is type of first operand
Second arg is ac_int or C INT

bidirectional
return type is type of first operand
Second arg is ac_int or C INT

= assignment quantization, then overflow
handling specified by target

+=, -=, *=, /=, %=, |=, &=,
^=, >>=, <<=

Equiv to op then assign.
First arg is ac_int

Equiv to op then assign

==, !=, >, <, >=, <= First or second arg may be C INT
or ac_fixed

First or second arg may be ac_int
or C INT or C double

Unary +, -, ~ Arithmetic Arithmetic

++x, x++, --x, x-- Pre/post incr/dec by 1 Pre/post incr/dec by 2I-W

! x Equiv to x == 0 Equiv to x == 0

(long long) defined for ac_int<W,true>, W ≤ 64 NOT DEFINED

(unsigned long long) defined for ac_int<W,false>, W ≤
64

NOT DEFINED

x[i] returns ac_int::ac_bitref
index: ac_int, unsigned, int
asserts for index out of bound

returns ac_fixed::ac_bitref
index: ac_int, unsigned, int
asserts for index out of bounds

Note that for convenience the conversion operators to (long long) and signed ac_int and (unsigned long long)
for unsigned ac_int are defined for W ≤ 64. Among other things, this allows for the use of an ac_int as an
index to a C array without any explicit conversion call.

Table 4 shows the methods defined for ac_int and ac_fixed types. The slc and set_slc methods are
templatized to get or set a slice respectively. For slc, the width needs to be explicitly provided as a template
argument. When using the slc method in a templatized function place the keyword template before it as some
compilers may error out during parsing.

For example:

template<int N> // not important whether or not N is used
int f(int x) {
 ac_int<32,true> t = x;
 ac_int<6,true> r = t.template slc<6>(4); // t.slc<6>(4) could error out
 return r.to_int();
}

The set_slc method does not need to have a width specified as a template argument since the width is
inferred from the width of the argument x. Many of the other methods are conversion functions. The length
method returns the width of the type. The set_val method sets the ac_int or ac_fixed to a value that depends

 8 August 2023 AC Datatypes v4.7.0

Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

on the template parameter.

Table 4: Methods defined for ac_int and ac_fixed.

Methods ac_int<W,S> ac_fixed<W,I,S,Q,O>

slc<W2>(int_type i) Returns slice of width W2 starting at bit index i, in other words slice
(W2-1+i downto i).
Slice is returned as an ac_int<W2,S>.
Parameter i needs to be non-negative and could of any of the
following types: ac_int, unsigned, int

set_slc(
 int_type i,
 ac_int<W2,S2> x
)

Bits of x are copied at slice with LSB index i. That is, bits (W2-1+i
downto i) are set with bits of x.
Parameter i needs to be non-negative and could of any of the
following types: ac_int, unsigned, int

range<msb,lsb>() Returns reference to slice from msb down to lsb. The only operation
available with the return type (ac::sliceref) is the assignment
operator. A range can be assigned to another range provided the
width (msb-lsb+1) of source and target of the assignment match. If
either msb or lsb are out of bounds, a static_assert will error out in
C++11.

to_ac_int() NOT DEFINED return an ac_int<WI,S> where WI is max(I,
1). Equiv to AC_TRN quantization. Return
type guarantees no overflows.

to_int(), to_uint(), to_long(),
to_ulong(), to_int64(),
to_uint64()

Conversions to various
C INTs

Conversions to various C INTs
Equiv to to_ac_int() followed by conversion

to_double() Conversion to double Conversion to double

to_string(
 ac_base_mode base_rep,
 bool sign_mag = false,
 bool pad_to_width = false
)

convert to std::string depending on parameters base_rep {AC_HEX,
AC_DEC, AC_OCT, AC_BIN} and bool arguments sign_mag and
pad_to_width.

length() Returns bitwidth (value of template parameter W)

set_val<ac_special_val>() Set to special value specified by template parameter
AC_VAL_DC, AC_VAL_0, AC_VAL_MIN, AC_VAL_MAX,
AC_VAL_QUANTUM. See Table 18 for details.

leading_sign() If unsigned (S==false) returns number of leading zeros. If signed
(S==true) returns number of leading 0/1s minus one. Parameter
all_sign is true if return value is W-S (all 0’s for S==false, all same for
S==true). See Leading Sign and Normalization for details.

leading_sign(
 bool &all_sign
)

AC Datatypes v4.7.0 August 2023 9

Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

normalize(
 ac_int<WE,SE> &exp
)

Treats the ac_int/ac_fixed as a mantissa and attempts to normalize.
The mantissa shifted partially (not normalized) if exp saturates to its
minimum value. See "Leading Sign and Normalization" for details.

normalize_RME(
 ac_int<WE,SE> &exp
)

Same as above but minimum exponent is reserved (Reserve
Minimum Exponent) so exp saturates at minimum exponent plus one.
See "Leading Sign and Normalization" for details.

reverse() Reverses the bit pattern of an ac_int (currently not defined for
ac_fixed) and, this void method updates the value of the ac_int
variable associated with the current object by assigning an unsigned
ac_int of the same width, and does not return any value.

reversed() Reverses the bit pattern of an ac_int (currently not defined for
ac_fixed) and returns an unsigned ac_int of the same width. It does
not modify the ac_int object passed to it.

bit_complement() Returns the raw complemented bits in an unsigned result that has
the same width (and integer width for ac_fixed). It is not equivalent to
the ~ operator which returns an arithmetic result.

bit_fill(
 const int (&ivec)[Na],
 bool bigendian=true
)

Use the raw bits in the integer vector to fill ac_int/ac_fixed. Missing
most significant bits are set to 0. Extra bits are ignored. Element
ivec[0] is treated as the most/least significant bits when bigendian is
true/false.

bit_fill_hex(
 const char *str
)

Use the hex characters 0-9a-fA-F in string to fill ac_int/ac_fixed.
Missing most significant bits are set to 0. Extra bits are ignored.
Asserts on non hex characters.

Table 5 shows the reduce methods for ac_int. They take the W bus of the ac_int and apply the respective
logical operation on them and return bool.

Table 5: Reduce Methods defined for ac_int and ac_fixed

Reduce
Methods

ac_int ac_fixed

and_reduce() AND of bits

or_reduce() OR of bits

xor_reduce() XOR of bits

Table 6 shows the constructors that are defined for ac_int and ac_fixed. When constructing an ac_fixed, its
quantization/overflow mode is taken into account. Initializing an ac_int or ac_fixed from floating-point (float or
double) is not as runtime efficient as initializing from integers.

Table 6: Constructors defined for ac_int and ac_fixed.

Constructor argument ac_int ac_fixed

None: Default does not initialize
ac_int declared static are
init to 0 by C++ before
constructor is called

does not initialize
ac_fixed declared static are init to
0 by C++ before constructor is
called

 10 August 2023 AC Datatypes v4.7.0

Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

bool (1-bit unsigned) quantization/overflow

char (8-bit signed) quantization/overflow

signed/unsigned char
(8-bit signed/unsigned)

quantization/overflow

signed/unsigned short
(16-bit signed/unsigned)

quantization/overflow

signed/unsigned int or long
(32-bit signed/unsigned)

quantization/overflow

signed/unsigned long long
(64-bit signed/unsigned)

quantization/overflow

double Not as efficient quantization/overflow
Not as efficient

ac_int quantization/overflow

ac_fixed NOT DEFINED
Use to_ac_int() instead

quantization/overflow

2.1. Quantization and Overflow
The fixed-point type ac_fixed provides quantization and overflow modes that determine how to adjust the
value when either of the two conditions occur:

• Quantization: bits to the right of the LSB of the target type are being lost. The value may be adjusted by
the following two strategies:

⚬ Rounding: choose the closest quantization level. When the value is exactly half way two
quantization levels, which one is chosen depends on the specific rounding mode as shown in
Table 7.

⚬ Truncation: choose the closest quantization level such that result (quantized value) is less than
or equal the source value (truncation toward minus infinity) or such that the absolute value of the
result is less than or equal the source value (truncation towards zero).

Note that quantization may trigger an overflow so it is always applied before overflow handling.

• Overflow: value after quantization is outside the range of the target as defined in Table 1, except when
the overflow mode is AC_SAT_SYM where the range is symmetric: [-2W-1+1, 2W-1-1] in which case the
most negative number -2W-1 triggers an overflow.

The modes are specified by the 4th and 5th template argument to ac_fixed:

ac_fixed<int W, int I, bool S, ac_q_mode Q, ac_o_mode O>

that are of enumeration type ac_q_mode and ac_o_mode respectively. The enumeration values for
ac_q_mode are shown in Table 7. The enumeration values for ac_o_modes are shown in Table 8. The

AC Datatypes v4.7.0 August 2023 11

Quantization and Overflow
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

quantization and overflow mode default to AC_TRN and AC_WRAP:

ac_fixed<8,4,true> x; // equiv to ac_fixed<8,4,true,AC_TRN,AC_WRAP)

Table 7: Quantization modes for ac_fixed

Modes Behavior
n is integer, q is 2I-W

Simulation/Synthesis cost

AC_TRN (default)
(trunc towards -∞)

Delete bits, no cost except for /=
(div assign) signed

AC_TRN_ZERO
(trunc towards 0)

No cost for /=, or unsigned src
For signed: incrementer, OR for
deleted bits, AND with sign bit

AC_RND
(round towards +∞)

Various forms differ only on the
direction of the rounding for
values that are exactly at half
point.
All require an incrementer, some
require to OR deleted bits, some
only require to look at the MSB of
the deleted bits.

AC_RND_ZERO
(round towards 0)

AC_RND_INF
(rounds towards +/-∞)

AC_RND_MIN_INF
(round towards -∞)

AC_RND_CONV
(round towards even q
multiples)

AC_RND_CONV_ODD
(round towards odd q
multiples)

For unsigned ac_fixed types, AC_TRN and AC_TRN_ZERO are equivalent, AC_RND and AC_RND_INF are
equivalent, and AC_RND_ZERO and AC_RND_MIN_INF are equivalent. The AC_RND_CONV quantization
rounds towards even multiples of the quantization while the AC_RND_CONV_ODD quantization rounds
towards odd multiples of the quantization. The quantization modes that have two columns (different directions
for negative and positive numbers) are symmetric around 0 and are more costly as ac_fixed is represented in
two’s complement arithmetic. On the other hand signed-magnitude representations (for example floating point
numbers) are more costly for asymmetric cases.

Quantization and overflow occur when assigning or constructing.

ac_fixed<8,1,true,Q,O> x = -0.1; // quantization, no overflow
ac_fixed<8,1,false,Q,O> y = x; // overflow (underflow) as y is unsigned
ac_fixed<4,1,true,Q,O> z= x; // quantization (dropping bits on the right)

 12 August 2023 AC Datatypes v4.7.0

Quantization and Overflow
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

(ac_fixed<4,1,true,Q,O>) x; // casting: same as above
ac_fixed<8,4,true,Q,O> a = ...;
ac_fixed<8,4,true,Q,O> b =

The behavior of the overflow modes are shown in Table 8. The default is AC_WRAP and requires no special
handling (same behavior as with an ac_int). The AC_SAT mode saturates to the MIN or MAX limits of the
range (as specified in Table 1) of the target type (different for signed or unsigned targets). The
AC_SAT_ZERO sets the value to zero when an overflow is detected. The AC_SAT_SYM makes only sense
for signed targets. It saturates to +MAX or -MAX (note that -MAX = MIN+q). It not only saturates on overflow,
but also when the value is MIN (it excludes the most negative number that would make the range
asymmetric).

The following operators can destroy the symmetric saturation property of an ac_fixed with AC_SAT_SYM and
should be avoided:

• Changing a bit with operator [].

• Changing bit(s) with the set_slc method.

• Performing a shift assign (<<=, >>=) does not trigger quantization or overflow handling.

• Performing a shift (<<, >>) returns a result of type of the first operand. If the first operand is an ac_fixed
with AC_SAT_SYM, the result type will be an ac_fixed with AC_SAT_SYM, but it is not guaranteed to
be symmetrically saturated.

Once the symmetrical saturation property has been destroyed, assignment to the same type will not trigger
symmetrical saturation as the folllowing example illustrates:

typedef ac_fixed<8,8,true,AC_TRN,AC_SAT_SYM> fx_ss;
typedef ac_fixed<8,8,true> fx;
fx_ss a = 0;
a[7] = 1; // No longer symmetrically saturated

fx_ss b = a; // b remains non symmetrically saturated as a is assumed to be
 // symmetrically saturated and has identical type

a = (fx) a; // forcing saturation by first casting to non-symmetrically
 // saturated type

.A similar example with shifting:

typedef ac_fixed<8,8,true,AC_TRN,AC_SAT_SYM> fx_ss;
fx_ss a = 1;
a <<= 7; // Value of a is not symmetrically saturated
fx_ss b = 1;
b = b << 7; // Value of b is not symmetrically saturated as return type of
 // b << 7 is ac_fixed<8,8,true,AC_TRN,AC_SAT_SYM>
a = b; // Value of a remains non symmetrically saturated

AC Datatypes v4.7.0 August 2023 13

Quantization and Overflow
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

As the above example illustrates a <<= v, is equivalent to a = a << v.

Table 8: Overflow modes for ac_fixed

Mode Behavior
all references are to target type

MIN, MAX are limits as in Table 1

Simulation/Synthesis
cost

AC_WRAP (default) Drop bits to the left of MSB No cost

AC_SAT Saturate to closest of MIN or MAX Overflow checking and
Saturation logic

AC_SAT_ZERO Set to 0 on overflow Overflow checking and
Saturation logic

AC_SAT_SYM For unsigned: treat as AC_SAT,
For signed: on overflow or number is MIN
set to closest of .
Note: if source is of type AC_SAT_SYM, it
will be treated as already symmetrically
saturated.

Overflow checking and
Saturation logic

2.2. Using the ac_int and ac_fixed Datatypes

In order to use the ac_int datatype the following file include should be used:

#include <ac_int.h>

The ac_int type is implemented with two template parameters to define its bitwidth and to indicate whether it
is signed or unsigned:

ac_int<7, true> x; // x is 7 bits signed
ac_int<19, false> y; // y is 19 bits unsigned

In order to use the ac_fixed datatype the following file include should be used:

#include <ac_fixed.h>

The ac_fixed.h includes ac_int.h so it is not necessary to include both ac_int.h and ac_fixed.h.

The ac_fixed type is implemented with 5 template parameters that control the behavior of the fixed point type:

ac_fixed<int W, int I, bool S, ac_q_mode Q, ac_q_mode O>

where W is the width of the fixed point type, I is the number of integer bits, S is a boolean flag that determines
whether the fixed-point is signed or unsigned, and Q and O are the quantization and overflow modes
respectively (as shown in Table 4 and Table 6). The value of the fixed point is given by:

 14 August 2023 AC Datatypes v4.7.0

Using the ac_int and ac_fixed Datatypes
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

For example:

ac_fixed<4,4,true> x; // bbbb signed, AC_TRN, AC_WRAP
ac_fixed<4,0,false> x; // .bbbb unsigned AC_TRN, AC_WRAP
ac_fixed<4,7,false> x; // bbbb000, unsigned, AC_TRN, AC_WRAP
ac_fixed<4,-3,false> x; // .bbbb * pow(2, -3), unsigned, AC_TRN, AC_WRAP

2.3. Operators and Methods

This section provides a more detailed specification of the behavior of operators and methods including
precisely defining return types. The operators and methods that are defined for ac_int and ac_fixed can be
classified in some broad categories:

• Binary (two operand) operators:

⚬ Binary Arithmetic and Logical Operators and arithmetic and logical assign operators: +, -, *, /, %,
&, |, ^, +=, -=, *=, /=, %=, &=, |=, ^=. The modulo operators % and %= are not defined for ac_fixed.
Mixing of ac_int, ac_fixed and native C integers is allowed.

⚬ Relational Operators: the result is a boolean value (true/false): >, <, >=, <=, ==, !=. Mixing of
ac_int, ac_fixed, native C integers and double is allowed.

⚬ Shift Operators and shift assign operators: <<, >>, =<<, =>>. The second argument is an ac_int
or a native C integer.

• Unary Operators: +, -, ~ and ! (one operand). The ! operator returns bool.

• Bit Complement

• Pre/Post Increment and Decrement Operators: ++x, --x, x++, x--.

• Bit Select Operator: [], returns an ac_int::ac_bitref or ac_fixed::ac_bitref. Allows reading and modifying
bits of an ac_int or ac_fixed.

• Slice Read Method: slc and Slice Write Method: set_slc to read and modify a slice in an ac_int or
ac_fixed. A slice of an ac_fixed is an ac_int.

• Range Method: range<msb,lsb>(): allows direct assignment of slices: y.range<7,0>() =
x.range<15,8>().

• Conversion Operators to C Integer Types and Explicit Conversion Methods to C native types.

• The set_val Method

• Constructors from ac_int and C native types.

• Methods to Fill Bits

AC Datatypes v4.7.0 August 2023 15

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

• IO Methods

• Mixing ac_int and ac_fixed with Other Datatypes.

The concatenation operator is not defined for ac_int. Bit reversal may be defined in future releases.

2.3.1. Binary Arithmetic and Logical Operators

The two operand arithmetic and logical operators return an ac_fixed if either operand is an ac_fixed,
otherwise the return type is ac_int. Binary arithmetic operators “+”, “*’, “/” and “%” and logical operators “&”, “|”
and “^” return a signed ac_int/ac_fixed if either of the two operands is of type signed. The “-” operator always
returns an ac_int/ac_fixed of type signed. The result for all operands with the exception of division is
computed arithmetically and the bit width (and integer bit width for ac_fixed) of the result is such that the
result is represented without loss of precision. The “/” operator is defined for both ac_int and ac_fixed and it
returns a type that guarantees that the result does not overflow (see Table 9 and Table 10). The operator “%”
is only defined for ac_int. Division by zero is not defined and will generate an exception.

The binary operators “&”, “|” and “^” return the bitwise “and”, “or” and “xor” of the two operands. The return
type is signed if either of the two operands is signed. The two operands are treated arithmetically. For
instance, if the operands are ac_fixed, the fixed point is aligned just as it is done for addition. Then operands
are extended, if necessary, so that both operands are represented in the same type which is also the return
type.

The arithmetic definition of the “bitwise” operators has the advantage that when mixing ac_int (or ac_fixed)
operands of different lengths and signedness, the operations are associative:

(a | b) | c

returns the same value (and in this case the same type) as

a | (b | c)

Also operators are consistent

~(a | b) == ~a & ~b

Table 9 shows the list of binary (two operand) arithmetic and logical operators for ac_int and the return type
based on the signedness and bit width of the two input operands. All operators shown in the table are defined
arithmetically. The operator & could have been defined to return a more constrained type, SR = S1 & S2 and
WR = abs(min(S1 ? -W1:W1, S2 ? -W2:W2)). For instance, the bitwise AND of a uin1 and an int5 would return a
uint1. However, for simplicity it has been defined to be consistent with the other two logical operators.
Regardless of how the operators are defined, synthesis will reduce it to the smallest size that preserves the
arithmetic value of the result.

Table 9: Return Types for ac_int Binary Arithmetic and Bitwise Logical Operations

Operator Return Type: ac_int<WR,SR>

SR Bit Width: WR

+ S1 | S2 max(W1+!S1&S2,W2+!S2&S1)+1

 16 August 2023 AC Datatypes v4.7.0

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

- true max(W1+!S1&S2,W2+!S2&S1)+1

* S1 | S2 W1+W2

/ S1 | S2 W1+W2

% S1 min(W1, W2+!S2&S1)

& S1 | S2 max(W1+!S1&S2,W2+!S2&S1)

| S1 | S2 max(W1+!S1&S2,W2+!S2&S1)

^ S1 | S2 max(W1+!S1&S2,W2+!S2&S1)

Table 10 shows the binary (two operand) arithmetic and logical operators for ac_fixed and the return type
based on the signedness, bit width and integer bit width of the operands. All operands are defined
consistently with ac_int: if both ac_fixed operands are pure integers (W and I are the same) then the result is
an ac_fixed that is also a pure integer with the same bitwidth and value as the result of the equivalent ac_int
operation. For example: a/b where a is an ac_fixed<8,8> and b is an ac_fixed<5,5> returns an ac_fixed<8,8>.
In SystemC, on the other hand, the result of a/b returns 64 bits of precision (or SC_FXDIV_WL if defined).

Table 10: Return Types for ac_fixed Binary Arithmetic and Bitwise Logical Opera-
tions

Operator Return Type: ac_fixed<WR,IR,SR,AC_TRN,AC_WRAP>

SR Bit Width: WR Integer Bit Width: IR

+ S1 | S2 IR+max(W1-I1,W2-I2) max(I1+!S1&S2,I2+!S2&S1)+1

- true IR+max(W1-I1,W2-I2) max(I1+!S1&S2,I2+!S2&S1)+1

* S1 | S2 W1+W2 I1+I2

/ S1 | S2 W1+max(W2-I2,0)+S2 I1+(W2-I2)+S2

& S1 | S2 IR+max(W1-I1,W2-I2) max(I1+!S1&S2,I2+!S2&S1)

| S1 | S2 IR+max(W1-I1,W2-I2) max(I1+!S1&S2,I2+!S2&S1)

^ S1 | S2 IR+max(W1-I1,W2-I2) max(I1+!S1&S2,I2+!S2&S1)

The assignment operators +=, -=, *=, /=, %=, &=, |= and ^= have the usual semantics:

A1 @= A2

where @ is any of the operators +, -, *, /, %, &, | and ^ is equivalent in behavior to:

A1 = A1 @ A2

From a simulation speed point of view, the assignment version (for instance *=) is more efficient since the
target precision can be taken into account to reduce the computation required.

Mixed ac_int, ac_fixed and C Integer Operators

Binary (two operand) operations that mix ac_int, ac_fixed and native C integer operands are defined to avoid

AC Datatypes v4.7.0 August 2023 17

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

ambiguity in the semantics or compilation problems due to multiple operators matching an operation. For
example, assuming x is an ac_int, 1+x gives the same result as x+1. The return type is determined by the
following rules where c_int is a native C type, width(c_int) is the bitwidth of the C type, and signedness(c_int)
is the signedness of the C type:

• If one of the operands is an ac_fixed in a binary operation or the first operand is an ac_fixed in an
assign operation, the other operand is represented as an ac_fixed:

⚬ ac_int<W,S> gets represented as ac_fixed<W,W,S>

⚬ c_int gets represented as ac_fixed<width(c_int), width(c_int), signedness(c_int)>

• Otherwise, if one of the operands is an ac_int in a binary operation or the first operand is an ac_int in
an assign operation, the other operand (native c integer) gets represented as ac_int<width(c_int),
signedness(c_int)>

The rules above guarantee that precision is not lost. Note that floating point types are not supported for the
operators in this section as the output precision can not be determined by the C compiler. Table 11 shows a
few examples of mixed operations. The variables in this table are defined as:

ac_int<7,true> i_s7;
ac_fixed<20,4,false> fx_s20_4;
signed char c_s8;

Table 11: Mixed Expressions Example

Expression Equivalent Expression

1 + i_s7 (ac_int<32,true>) 1 + i_s7

(bool) 1 + i_s7 (ac_int<1,false>) 1 + i_s7

i_7s + fx_u20_4 (ac_fixed<7,7,true>) i_s7 + fx_u20_4

fx_u20_4 += c_s8 fx_u20_4 += (ac_fixed<8,8,true>) c_s8

c_s8 += fx_u20_4 c_s8 += (signed char) fx_u20_4

Mixed ac_int and C pointer for + and - Operators

The operator + is defined for ac_int and C pointer (and vice versa) so that an ac_int can be added to a C
pointer. The operator - is defined so that an ac_int can be subtracted from a C pointer. The result is, in all
cases, of the same type as the C pointer.

2.3.2. Relational Operators

Relational operators !=, ==, >, >=, < and <= are also binary operations and have some of the same
characteristics described for arithmetic and logical operations: the operations are done arithmetically and
mixed ac_int, ac_fixed and native C integer operators are defined. The return type is bool.

The relational operator for ac_int and ac_fixed with the C floating type double is also defined for convenience,

 18 August 2023 AC Datatypes v4.7.0

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

though for simulation performance reasons it is best to store the double constant in an appropriate ac_int or
ac_fixed variable outside computation loops so that the overhead of converting the double to ac_fixed or
ac_int is minimized.

2.3.3. Shift Operators

Left shift “<<” and right shift “>>” operators return a value of type of the first operand. The left shift operator
shifts in zeros. The right shift operator shifts in the MSB bit for ac_int/ac_fixed of type signed, 0 for
ac_int/ac_fixed integers of type unsigned.

If the shift value is negative the first operand is shifted in the opposite direction by the absolute value of the
shift value (this is also the semantic of sc_fixed/sc_ufixed shifts). Shift values that are greater than W
(bitwidth of first operand) are equivalent to shifting by W.

The second operand is an ac_int integer of bit width less or equal to 32 bits or a signed or unsigned int.

The shift assign operators “<<=” and “>>=” have the usual semantics:

A1 <<= A2; // equiv to A1 = A1 << A2, except for A1 is ac_fixed with
 // AC_SAT_SYM
A1 >>= A2; // equiv to A1 = A1 >> A2, except for A1 is ac_fixed with
 // AC_SAT_SYM and value of A2 < 0

Because the return type is the type of the first operand, the shift assign operators do not carry out any
quantization or overflow.

Mixed ac_int, ac_fixed and C Integer

All shift operators are defined for mixed ac_int, ac_fixed (first operand) and native C integer operands. For
example:

(short int) x << (ac_int<8,true>) y

matches the overloaded operator “<<“ that is implemented as follows:

(ac_int<16,false>) x << (ac_int<8,true>) y

The shift assign operators <<= and >>= are also defined for mixed ac_int (first or second operand), ac_fixed
(first operand) and native C integer (second operand).

Differences with SystemC sc_bigint/sc_biguint Types

• The return type of the left shift for sc_bigint/sc_biguint or sc_fixed/sc_ufixed does not lose bits making
the return type of the left shift data dependent (dependent on the shift value). Shift assigns for
sc_fixed/sc_ufixed may result in quantization or overflow (depending on the mode of the first operand).

• Negative shifts are equivalent to a zero shift value for sc_bigint/sc_biguint

AC Datatypes v4.7.0 August 2023 19

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

Differences with Native C Integer Types

• Shifting occurs on either 32-bit (int, unsigned int) or 64-bit (long long, unsigned long long) integrals. If
the first operand is an integral type that has less than 32 bits (bool, (un)signed char, short) it is first
promoted to int. The return type is the type of the first argument after integer promotion (if applicable).

• Shift values are constrained according to the length of the type of the promoted first operand.

⚬ 0 ≤ s < 32 for 32-bit numbers

⚬ 0 ≤ s < 64 for 64-bit numbers

• The behavior for shift values outside the allowed ranges is not specified by the C++ ISO standard.

2.3.4. Unary Operators: +, -, ~ and !

Unary “+” and “-“ have the usual semantics: “+x” returns x, “-x” returns “0-x”.

The unary operator “~x” returns the arithmetic one’s complement of “x”. The one’s complement is
mathematically defined for integers as -x-1 (that is -x+x == -1). This is equivalent to the bitwise complement
of x of a signed representation of x (if x is unsigned, add one bit to represent it as a signed number). The
return type is signed and has the bitwidth of x if x is signed and bitwidth(x)+1 if x is unsigned.

The ! operator return true if the ac_int/ac_fixed is zero, false otherwise.

Table 12 lists the unary operators and their return types.

Table 12: Unary Operators for ac_int<W,S>

Operator Return Type

+ ac_int<W, S>

- ac_int<W+1, true>

~ ac_int<W+!S, true>

! bool

Table 13 lists the unary operators for ac_fixed and their return types.

Table 13: Unary Operators for ac_fixed<W,I,S,Q,O>

Operator Return Type

+ ac_fixed<W, I, S>

- ac_fixed<W+1, I+1, true>

~ ac_fixed<W+!S, I+!S, true>

! bool

 20 August 2023 AC Datatypes v4.7.0

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

2.3.5. Bit Complement

The bit_complement member function for ac_int and ac_fixed are provided as an alternative to the operator
~ which grows by one bit when applied to an unsigned type. The methods are:

ac_int<W, false> ac_int<W,S>::bit_complement() const;
ac_fixed<W, I, false> ac_fixed<W,I,S,Q,O>::bit_complement() const;

They return an unsigned version of the same W (and same I for ac_fixed). This a bit complement of the raw
bits as compared to the complement operator ~ that returns an arithmetic value of -x-1 for ac_int and -x-2I-W
for ac_fixed. The following example illustrates the difference:

ac_int<3,false> x = 7; // 111
ac_int<5,true> y;
y = ~x; // returns - 7 – 1 = -8 (1000) as ac_int<4,true>, y = 11000
y = x.bit_complement(); // returns 000 as ac_int<3,false>, y = 00000
ac_int<4,false> x2 = 7; // 0111
y = ~x2; // returns -7 – 1 = -8 (11000) as ac_int<5,true>, y = 11000
y = x2.bit_complement(); // returns 1000 as ac_int<4,false>, y = 01000

2.3.6. Increment and Decrement Operators

Pre/Post increment/decrement for ac_int have the usual semantics as shown in Table 14 (T_x is the type of
variable x).

Table 14: Pre- and Post-Increment/Decrement Operators for ac_int

Operator Equivalent Behavior

x++ T_x t = x; x += 1; return t;

++x x += 1; return reference to x;

x-- T_x t = x; x -= 1; return t;

--x x -= 1; return reference to x;

Pre/Post increment/decrement for ac_fixed have the semantics as shown in Table 15 (T_x is the type of
variable x) where q is the quantum value of the representation (the smallest difference between two values
for T_x). This definition is consistent with the definition of ac_int where q is 1.

Table 15: Pre- and Post-Increment/Decrement Operators for ac_fixed<W,I,S,Q,O>
where q=2I-W

Operator Equivalent Behavior

x++ T_x t = x; x += q; return t;

++x x += q; return reference to x;

x-- T_x t = x; x -= q; return t;

AC Datatypes v4.7.0 August 2023 21

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

--x x -= q; return reference to x;

2.3.7. Conversion Operators to C Integer Types

A limited number of conversion operators to C integer types (including bool) are provided by the ac_int
datatype, as described in the following list. The ac_fixed datatype provides no conversion operator to C
integer types.

• ac_int<W,S> for W > 64 has no conversion operators to any C integer type

• ac_int<W,true> for W ≤ 64 has only the "long long" conversion operator

• ac_int<W,false> for W ≤ 64 has only the "unsigned long long" conversion operator

Some coding styles may encounter compilation problems due to the lack of conversion operators. The most
common problem is the absence of the conversion to bool for bit widths beyond 64 for ac_int and for all bit
widths for ac_fixed. Table 16 shows some typical scenarios:

Table 16: Conversion to C Integer Types

ac_int<33,true> k = ...;

 if (k) OK, conversion first to long long then to bool

 if ((bool) k) OK, same as above

 switch (k) OK, operator to long long

 switch (2*k) ERROR: Result of expression is ac_int<65,true> (constant 2
treated as ac_int<32,true>)
No conversion to any C integer from ac_int<65,true>

 switch (2*(int)k) OK, conversion first to long long, then to int

 a[k] OK, operator to long long

 a[2*k] ERROR: Result of expression is ac_int<65,true> (constant 2
treated as ac_int<32,true>)
No conversion to any C integer from ac_int<65,true>

 a[2*(int)k] OK, conversion first to long long, then to int

ac_int<80, true> k = ...;

 if (k); ERROR, no conversion operator defined

 if ((bool) k) ERROR, same as above

 if (!! k) OK, operator ! defined

 if (k != 0) OK, operator != defined

 switch (k) ERROR: No conversion operator defined

 a[k] ERROR: No conversion to any C integer from ac_int<80,true>

 22 August 2023 AC Datatypes v4.7.0

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

ac_fixed<3, 3,true> x = ...;

 if (x) ERROR: No conversion operator defined for any W

 if (!! x) OK, operator ! defined

 if (x != 0) OK, operator != defined

When writing parameterized IP where the bit-widths of some ac_int is parameterized, code that may compile
for some parameters, may not compile for a different set of parameters. In such cases, it is important to not
rely on the conversion operator.

2.3.8. Explicit Conversion Methods

Methods to covert to C signed and unsigned integer types int, long and Slong are provided for both ac_int
and ac_fixed as shown in Table 17. The methods to_int(), to_long(), to_int64(), to_uint(), to_uint64() and
to_ulong() are defined for both ac_int and ac_fixed (same functions are also defined for
sc_bigint/sc_biguint). The method to_double() is also defined for both ac_int and ac_fixed. The method
to_ac_int() is defined for ac_fixed.

Table 17: Explicit Conversion Methods for ac_int/ac_fixed

Method Types Return Type

to_int() ac_int/ac_fixed int

to_uint() ac_int/ac_fixed unsigned int

to_long() ac_int/ac_fixed long

to_ulong() ac_int/ac_fixed unsigned long

to_int64() ac_int/ac_fixed Slong

to_uint64() ac_int/ac_fixed Ulong

to_double() ac_int/ac_fixed double

to_ac_int() ac_fixed only ac_int<max(I,1), S>

The explicit method to covert to a string representation is:

inline std::string to_string(ac_base_mode base_rep, bool sign_mag = false, bool
pad_to_width = false) const;

The first argument is one of {AC_HEX, AC_DEC, AC_OCT, AC_BIN} and will determine the format. For
AC_DEC, the format of the value is always in sign-magnitude form and the second and third arguments don't
apply.

When the base_rep is AC_HEX, AC_OCT or AC_BIN, a prefix of 0x, 0o or 0b are used respectively. In those
cases the two arguments sign_mag and pad_to_width apply. When pad_to_width is false, the string is
reduced to its shortest length assuming zero-padding or sign extension rules. When pad_to_width is true, the
string captures the full length of the type. The sign_mag argument when set to true first takes the absolute

AC Datatypes v4.7.0 August 2023 23

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

value and prefixes the string with the sign of the value. For example:

ac_int<14,true> x14s = 0;
std::cout << x14s.to_string(AC_HEX,false,false) << std::endl; // prints 0x0
std::cout << x14s.to_string(AC_HEX,false,true) << std::endl; // prints 0x0000
std::cout << x14s.to_string(AC_HEX,true,false) << std::endl; // prints +0x0
std::cout << x14s.to_string(AC_HEX,true,true) << std::endl; // prints +0x0000
x14s = -1;
std::cout << x14s.to_string(AC_HEX,false,false) << std::endl; // prints 0xF
std::cout << x14s.to_string(AC_HEX,false,true) << std::endl; // prints 0x3FFF
(not 0xFFFF)
std::cout << x14s.to_string(AC_HEX,true,false) << std::endl; // prints -0x1
std::cout << x14s.to_string(AC_HEX,true,true) << std::endl; // prints -0x0001

2.3.9. Bit Select Operator: []

Bit select is accomplished with the [] operator:

y[k] = x[i];

The [] operator does not return an ac_int, but rather it returns an object of class ac_int::ac_bitref that stores
the index and a reference to the ac_int object that is being indexed.

The conversion function to “bool” (operator bool) is defined so that a bit reference may be used where a bool
type is required:

while(y[k] && z[m]) {}
z = y[k] ? a : b;

A bit reference may be assigned an integer. The behavior is that the least significant bit of the integer is
assigned to the bit reference. For example if n is type int and x is type ac_int then the following three
assignments have the same behavior:

x[k] = n;
x[k] = (ac_int<1,false>) n;
x[k] = 1 & n;

The conversion to any ac_int is provided and it equivalent to first converting to a bool or to a ac_int<1,false>:

ac_int<5,false> x = y[0]; // equivalent to x = (bool) y[0]

The ac_bitref::operator=(int val) returns the bit reference so that assignment chains work as expected:

x[k] = z[m] = true; // assigns 1 to z[m] and to x[k]

 24 August 2023 AC Datatypes v4.7.0

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

Out of Bounds Behavior

It is invalid to access (read or write) a bit outside the range [0, W-1] where W is the width of the ac_int being
accessed. Simulation will assert on such cases. See also “User Defined Asserts” in the Frequently Asked
Questions section.

2.3.10. Slice Read Method: slc

Slice read is accomplished with the template method slc<W>(int lsb):

x = y.slc<2>(5);

which is equivalent to the VHDL behavior:

x := y(6 downto 5);

The two arguments to the slc method are defined as:

• The bit length of slice W: this is template argument (the length of the slice is constrained to be static so
that the length of the slice is known at compile time. The length of the slice must be greater or equal to
1.

• The bit position of the LSB of the slice slc_lsb.

The slc method returns an ac_int of length W and signedness of the ac_int being sliced.

Out of Bounds Slice Reads

Accessing a bit to the left of the MSB of the ac_int<W,S> (index ≤ W) is allowed and is defined as if the
ac_int had been first extended (sign extension for signed, 0 padding for unsigned) so that the index is within
range. This is consistent with treating ac_int as an arithmetic value.

Attempting to access (read) a bit with a negative index has undefined behavior and is considered to be the
product of an erroneous program. If such a negative index read is encountered during execution (simulation)
an assert will be triggered. See also “User Defined Asserts” in the Frequently Asked Questions section.

Differences with SystemC sc_bigint/sc_biguint Types

The range method and the part select operator in SystemC are fundamentally different than the ac_int slc
and set_slc methods in that it allows dynamic length ranges to be specified.

2.3.11. Slice Write Method: set_slc

Slices are written with the method:

set_slc(int lsb, const ac_int<W,S> &slc)

AC Datatypes v4.7.0 August 2023 25

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

where lsb is the index of the LSB of the slice been written and slc is ac_int slice that is assigned to the ac_int:

x.set_slc(7, y);

Out of Bounds Slice Writes

Attempting to assign to a bit that is outside of the range [0, W-1] of the ac_int<W,S> object constitutes an out
of bound write. Such a write is regarded as undefined behavior and is the product of an erroneous program. If
such an write is encountered during execution (simulation) an assert will be triggered. See also “User Defined
Asserts” in the Frequently Asked Questions section.

Differences with Built-in C Integral Types

Accessing a bit or a slice of a C integral type is done by a combination of shift and bit masking. Writing a bit
or a slice of a C integral type is done with a combination of shift and bitwise operations.

2.3.12. Range Method: range<msb,lsb>()

The range method returns a reference to the ac_int or ac_fixed. The range method returns an ac::sliceref that
has the assignment operator defined so that a range can be assigned to another range provided their lengths
match. The msb and lsb need to be in bounds, otherwise a static_assert errors out in C++11. Such an error is
also triggered if lsb is greater than msb.

ac_int<10,true> x = …;
ac_fixed<16,2,false> y = …;
y.range<13,10>() = x.range<7,4>(); // assign bits 7 downto 4 of x to 13
downto 10 of y
y.range<8,8>() = x.range<8,7>(); // no matching assignment operator found
y.range<16,2>(); // error in C++11
y.range<2,-1>(); // error in C++11

2.3.13. The set_val Method

The set_val<ac_special_val>() method sets the ac_int or ac_fixed to one of a set of “special values” specified
by the template parameter as shown in Table 18.

Table 18: Special values

ac_special_val enum Value for ac_int/ac_fixed

AC_VAL_DC Used mainly to un-initialized variables that are already
initialized (by constructor or by being static). Used for
validating that algorithm does not depend on initial value.
Synthesis can treat it as a dont_care value.

AC_VAL_0 0

AC_VAL_MIN Minimum value as specified in Table 1.

 26 August 2023 AC Datatypes v4.7.0

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

AC_VAL_MAX Maximum value as specified in Table 1.

AC_VAL_QUANTUM Quantum value as specified in Table 1.

Direct assignment of the enumeration values should not be used since it will assign the integer value of the
enumeration to the ac_int or ac_fixed.

2.3.14. Constructors

Constructors from all C-types are provided. Constructors from ac_int are also provided. The default
constructor does not initialize ac_int or ac_fixed. Thus non-static variables of type ac_int or ac_fixed will not
be initialized by default. If the AC_DEFAULT_IN_RANGE macro is defined before the first inclusion of the AC
datatype header, then the default constructor will adjust the un-initialized value to force it to be in range:

#define AC_DEFAULT_IN_RANGE
#include <ac_int.h>
…
ac_int<3,false> n; // n will be in range of 0 to 7

Constructors from char *, have not been defined/implemented in the current release. See Methods to Fill Bits
for alternatives.

2.3.15. Methods to Fill Bits

Utility functions bit_fill_hex and bit_fill can be used to initialize large bitwidth ac_int and ac_fixed with raw bits.
What is meant by “raw bits” is that its argument is treated as an unsigned bit pattern, without a fixed point and
no rounding or overflow handling is performed. The bit_fill_hex accepts a hex string. The bit_fill accepts and
array of integers and it should be the preferred alternative to initialize large ac_int and ac_fixed with raw bits.

NOTE: The bit_fill_hex method should only be used to initialize static constants since it is significantly slower
than alternative methods.

They are available both as member functions of ac_int and ac_fixed and as global functions in the ac
namespace that return the type specified as a template parameter (the type T needs to be either an ac_int or
an ac_fixed):

void ac_int<W,S>::bit_fill_hex(const char *str);
void ac_fixed<W,I,S,Q,O>::bit_fill_hex(const char *str);
template<typename T> T ac::bit_fill_hex(const char *str);
template<int Na> void ac_int<W,S>::bit_fill(const int (&ivec)[Na], bool bigen-
dian=true);
template<int Na> void ac_fixed<W,I,S,Q,O>::bit_fill(const int (&ivec)[Na], bool
bigendian=true);
template<typename T, int N> T ac::bit_fill(const int (&ivec)[N], bool bigen-
dian=true);

The bit_fill_hex function accepts a hex string as an argument which could be shorter or longer than what is

AC Datatypes v4.7.0 August 2023 27

Operators and Methods
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

required to fill all bits of the ac_int or ac_fixed. If it is shorter, it is zero padded to fill the remaining most
significant bits. If it longer, the extra most significant bits are truncated. The hex string should be a literal
constant string and should only contain hex digit characters (0-9, a-f, A-F). Other characters trigger and
assert. Because the initialization is done at runtime and this initialization technique is inherently slow, its use
to initialize non-static variables is discouraged.

The bit_fill function accepts two arguments:

• The first one is an integer array that contains the bit pattern. It could be longer or shorter than what is
required to fill all bits. If it is shorter then the remaining most significant bits are zero padded. If it is
longer then what would be the extra most significant bits are truncated. The array is not required to be
an array of constants.

• The second is a bool argument bigendian that defaults to true.

which means that the bits in the array element with index 0 become the most significant 32 bits of the bit
pattern. If the argument is false, then the bits in the array element with index 0 become the least significant
32 bits of the bit pattern.

The following example illustrates the use of bit_fill_hex and bit_fill that do the equivalent functionality:

typedef ac_int<80,false> i80_t;
i80_t x;
x.bit_fill_hex(“a9876543210fedcba987”); // member funtion
x = ac::bit_fill_hex<i80_t>(“a9876543210fedcba987”); // global function
int vec[] = { 0xa987, 0x6543210f, 0xedcba987 };
x.bit_fill(vec); // member function
x = bit_fill<i80_t>(vec); // global function
// inlining the constant array
x.bit_fill((int [3]) { 0xa987,0x6543210f,0xedcba987 }); // member function
x = bit_fill<i80_t>((int [3]) { 0xa987,0x6543210f,0xedcba987 }); // global
function

2.3.16. IO Methods

Methods to performing IO have not been defined/implemented for the current release.

2.3.17. Mixing ac_int and ac_fixed with Other Datatypes

Refer to “Mixing Datatypes“ for information on how to interface ac_int and ac_fixed to other data types.

2.4. Advanced Utility Functions, Typedefs, etc.

The AC datatypes provide additional utilities such as functions and typedefs. Some of them are available in
the ac namespace (ac::), and some of them are available in the scope of the ac datatype itself. The following
utility functions/structs/typedefs/static members are described in this section:

 28 August 2023 AC Datatypes v4.7.0

Advanced Utility Functions, Typedefs, etc.
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

• Static members to capture basic parameter information.

• Function for initializing arrays of supported types to a special value.

• Template structs that provide a mechanism to statically compute log2 related functions.

• Typedefs for finding the return type of unary and binary operators.

2.4.1. Accessing Parameter Information

It is often useful to be able to access the value of various template parameters for the datatypes. In some
cases it is useful to access the width of type T, where T could be either an ac_int or an ac_fixed. In this case
T::width would provide that information. The various parameters that can be accessed are shown in Table 19.

Table 19: Basic Parameters

Static member Description for ac_int Description for ac_fixed

width Value of W template parameter Value of W template parameter

i_width Value of W template parameter Value of I template parameter

sign Value of S template parameter Value of S template parameter

q_mode AC_TRN Value of Q template parameter

o_mode AC_WRAP Value of O template parameter

e_width 0 0

Note that for generality all the static members are defined for ac_int even in the cases where there is no
corresponding template parameter involved as they do capture the numerical behavior of ac_int.

2.4.2. Using ac::init_array for Initializing Arrays

The ac::init_array utility function is provided to facilitate the initialization of arrays to zero, or un-initialization
(initialization to dont_care). The most common usage is to un-initialize an array that is declared static as
shown in the following example:

void foo(...) {
 static int b[200];
 static bool b_dummy = ac::init_array<AC_VAL_DC>(b,200);
 ...
}

The variable b_dummy is declared static so that the initialization of array b to dont_care occurs only once
rather than every time the function foo is invoked. The return value of ac::init_array is always “true”, but in
reality only the side effect to array b is of interest. A similar example to initialize an array to zero that is not
declared static would look like:

void foo(...) {

AC Datatypes v4.7.0 August 2023 29

Advanced Utility Functions, Typedefs, etc.
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

 int b[200];
 ac::init_array<AC_VAL_0>(b, 200);
 ...
}

Warning: The function ac::init_array does not check for array bound violations.

The template argument to ac::init_array is an enumeration that can be any of the following values:
AC_VAL_0, AC_VAL_DC, AC_VAL_MIN, AC_VAL_MAX or AC_VAL_QUANTUM (see Table 18 for details).
The function is defined for the integer and fixed point datatypes shown in Table 20:

Table 20: Required Include Files for ac::init_array Function

Type Required include file

C integer types ac_int.h

ac_int, ac_fixed, ac_complex No additional include

Supported SystemC types ac_int.h, ac_sc.h

The first argument is of type pointer to one of the types in Table 20. Arrays of any dimension may be
initialized using ac::init_array by casting it or taking the address of the first element:

static int b[200][200];
static bool b_dummy = ac::init_array<AC_VAL_DC>((int*) b, 200*200);

or by taking the address of the first element:

static int b[200][200];
static bool b_dummy = ac::init_array<AC_VAL_DC>(&b[0][0], 200*200);

The second argument is the number of elements to be initialized. For example:

int b[200]; ac::init_array<AC_VAL_0>(b+50, 100);

initializes elements b[50] to b[149] to 0.

Other ac::init_array Examples:

// Using ac::init_array inside a constructor
class X {
 sc_int<5> a[10][32][5][7];
public:
 X() { ac::init_array<AC_VAL_DC>(&a[0][0][0][0], 10*32*5*7); }
 ...
};

// Will be inlined with initialization loop: b+i, 100+k are not constants
 int b[200]; ac::init_array<AC_VAL_0>(b+i, 100+k);

 30 August 2023 AC Datatypes v4.7.0

Advanced Utility Functions, Typedefs, etc.
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

// Will be inlined with initialization loop: mult(n1,n2) not recognized as
// a constant at inlining time
 const int n1 = 40;
 const int n2 = 5;
 int a[n1][n2];
 ac::init_array(&a[0][0], mult(n1,n2));

// Uninitialize two ranges of an array
 static int b[2][100];
 static bool b_dummy = ac::init_array<AC_VAL_DC>(&b[0][0], 50);
 static bool b_dummy2 = ac::init_array<AC_VAL_DC>(&b[1][0], 50);

// Alternative to Uninitialize two ranges of an array
 static int b[2][100];
 static bool b_dummy = ac::init_array<AC_VAL_DC>(&b[0][0], 50) &

 ac::init_array<AC_VAL_DC>(&b[1][0], 50);

2.4.3. Static Computation of log2 Functions

This section covers the static computation of the functions ceil(log2(x)), floor(log2(x)) and nbits(x) where x is
an unsigned integer. The nbits(x) function is the minimum number of bits for an unsigned ac_int to represent
the value x.

Static computation of these functions is often useful where x is an integer template parameter and the result
is meant to be used as a template value (thus it needs to be statically determined).

For example, lets assume that we have a template class:

template<int Size, typename T>
class circular_buffer {
 T _buf[Size];
 ac_int< ac::log2_ceil<Size>::val, false> _buf_index;
};

for a circular buffer. The minimum bitwidth of the index variable into the buffer is ceil(log2(Size)) where Size is
the size of the buffer.

The computation of the log2 functions is accomplished using a recursive template class. For the user it
suffices to know the syntax on how to retrieve the desired value as shown in Table 21.

Table 21: Syntax for log2 functions

Function Syntax

ceil(log2(x)) ac::log2_ceil<x>::val

floor(log2(x)) ac::log2_floor<x>::val

AC Datatypes v4.7.0 August 2023 31

Advanced Utility Functions, Typedefs, etc.
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

nbits(x) ac::nbits<x>::val

It is important to note that x needs to be a statically determinable constant (constant or template argument).

2.4.4. Return Type for Unary and Binary Operators

It is often useful to find out the return type of an operator. For example, let’s assume the following scenario:
assume that we have:

Ta a = ...;
Tb b = ...;
Tc c = ...;
T res = a * b + c;

what should the type T be such that there is no loss of precision?

This section provides the mechanism to find T in terms of Ta, Tb and Tc provided they are AC Datatypes. In
addition to return types for binary operations, the return type for unary operators (though the actual operators
are not all provided) such as the magnitude (or absolute value), the square, negation is also provided. It is
also possible to find out the type required to hold the summation of a set of N values of an algorithmic
datatype.

The unary operators are listing in Table 22 (summation is not really an unary operator, but it depends on a
single type).

Table 22: Return types for operator on T.

operator on type T Return type

neg T::rt_unary::neg

mag T::rt_unary::mag

mag_sqr T::rt_unary::mag_sqr

summation of N elements T::rt_unary::set<N>::sum

The binary operators are shown in Table 23.

Table 23: Return type for (T1(op1) op T2(op2))

operator on types T1, T2 Return Type

op1 * op2 T1::rt_T<T2>::mult

op1 + op2 T1::rt_T<T2>::plus

op1 - op2 T1::rt_T<T2>::minus

op1 / op2 T1::rt_T<T2>::div

op1 (&, |, ^) op2 T1::rt_T<T2::logic

op2 - op1 T1::rt_T<T2>::minus2

 32 August 2023 AC Datatypes v4.7.0

Advanced Utility Functions, Typedefs, etc.
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

op2 - op1 T1::rt_T<T2>::div2

The last two rows in Table 23 are mostly there as helper functions to build up the infrastructure and are not in
general needed. For example if both T1 and T2 are AC datatypes then instead of using
T1::rt_T<T2>::minus2, T2::rt_T<T1>::minus could be used. These versions are only there for non-
commutative operators.

Returning to the mult_add example, the type T would be expressed as:

 typedef typename Ta::template rt_T<Tb>::mult a_mult_b;
 typename a_mult_b::template rt_T<Tc>::plus res = a * b + c;

where the keywords typename and template are used when Ta, Tb and Tc are template arguments
(dependent-name lookup). In this case getting to the type was done in two steps by first defining the type
a_mult_b. In the following version, the it is done in one step so that it can be used directly as the return type
of the templatized function mult_add:

template<typename Ta, typename Tb, typename Tc>
typename Ta::template rt_T<Tb>::mult::template rt_T<Tc>::plus mult_add(Ta a, Tb
b, Tc c) {
 typename Ta::template rt_T<Tb>::mult::template rt_T<Tc>::plus res = a * b +
c;
 return res;
}

Note that additional template keywords are used because the lookup of rt_T is a dependent-name lookup,
that is the parser does not know that Ta::rt_T is a templatized class until it knows the type Ta (this happens
only once the function mult_add is instantiated).

An example of the use of the type for summation is given below:

template <int N, typename T>
typename T::rt_unary::template set<N>::sum accumulate(T arr[N]) {
 typename T::rt_unary::template set<N>::sum acc = 0;
 for(int i=0; i < N; i++)
 acc += arr[i];
 return acc;
}

2.5. Methods and Utility Functions for Floating Point

Both ac_int and ac_fixed provide methods to help implementation of floating point or blocking floating point
functionality. The methods implement leading_sign and normalization and are described in detail in this
section. In addition, utility functions are defined to get the sign, mantissa and exponent of C++ constant float
and double literals. They are named after the commonly used frexp function defined in math.h.

AC Datatypes v4.7.0 August 2023 33

Methods and Utility Functions for Floating Point
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

2.5.1. Leading Sign and Normalization

The leading_sign method does not change the ac_int/ac_fixed object.

There are two forms:

typename rt_unary::leading_sign leading_sign() const;
typename rt_unary::leading_sign leading_sign(bool &all_sign) const;

The return type is found so that it has the minimum static bitwidth that can represent the largest value that
maybe returned. For unsigned ac_int/ac_fixed, leading_sign returns the number of leading zeros. For signed
ac_int/ac_fixed, leading_sign returns the number of leading 0/1s minus one. Leading sign thus returns the
largest integer such that:

y = x.leading_sign() then x == (x << y) * 2-y

The second form has the argument all_sign that is set to true if all bits are zeros for unsigned or all bits are
the same for unsigned ac_int/ac_fixed types. The only purpose is to save the extra comparison required to
compute that information from the return value. One use for leading_sign is for computing the shift left for
normalization of a mantissa, though this use is covered by the normalization methods provided for both
ac_int/ac_fixed described next.

The normalization methods treat the ac_int/ac_fixed as a mantissa and has two forms:

bool normalize(ac_int<WE,SE> &exp);
bool normalize_RME(ac_int<WE,SE> &exp);

The first form shifts the mantissa left as much as possible to normalize it such that:

exp = exp_i;
man = main_i;
bool b = man.normalize(exp);

then

man * 2exp == man_i * 2exp_i

which requires that the mantissa does not lose information (see leading_sign description) and the exponent
does not saturate. Depending on the initial exponent and man.leading_sign(), normalize may or may not fully
normalize the mantissa. The return value is true if the mantissa is normalized after the call.

Note that there is no implied leading 1 in the mantissa. Also for sign/magnitude floating representations (such
as IEEE floating point representations), an unsigned mantissa should be used. Note that the minimum
exponent depends on the value of the template parameters WE and SE.

The second form normalize_RME is similar but reserves the minimum exponent. This is useful as the
minimum exponent is often used to encode special numbers (NaN etc.) in commonly used floating point
representations.

 34 August 2023 AC Datatypes v4.7.0

Methods and Utility Functions for Floating Point
Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes

2.5.2. Utility Function to Extract Exponent/Sign/Mantissa from Literal Con-
stants

The following functions in the "ac" namespace provide ways to extract the mantissa, exponent and optionally
sign from C float and double literal constant types:

ac_fixed<54,2,true> frexp_d(double d, ac_int<11,true> &exp);
ac_fixed<25,2,true> frexp_f(float f, ac_int<8,true> &exp);
ac_fixed<53,1,false> frexp_sm_d(double d, ac_int<11,true> &exp, bool &sign);
ac_fixed<24,1,false> frexp_sm_f(float f, ac_int<8,true> &exp, bool &sign);

The first two return the mantissa into a two's complement signed ac_fixed. The mantissa is normalized
(mant[msb] != mant[msb-1]) unless the exponent is saturated to the IEEE standard exponent minimum of
-126 for float or -1022 for double. The mantissa is provided in full (no implied bit).

The last two ("_sm_" in their name) return the result in a sign-magnitude representation: the return value is an
unsigned ac_fixed and the sign is returned as an argument passed by reference.

Example:

 ac_int<8,true> exp;
 ac_fixed<54,2,true> mant = ac::frexp_d(0.1, exp);

AC Datatypes v4.7.0 August 2023 35

Arbitrary-Length Bit-Accurate Floating-Point Datatypes
Arbitrary-Length Bit-Accurate Floating-Point Datatypes

Chapter 3: Arbitrary-Length Bit-Accurate
Floating-Point Datatypes

Floating-point types are used to represent a higher range of values than a fixed-point representation having
the same number of bits. Floating-point types have both a mantissa and an exponent. The mantissa is a
value in a fixed-point representation and the exponent that shifts the point making it a “floating” point. The
type provides a templatized class where values are encoded as a signed mantissa m and an exponent e
such that:

value = m * 2e

where m is a signed fixed-point quantity and e is a signed integer. The class is templatized as:

ac_float<W,I,E,Q>

where the first two parameters W and I define the mantissa as an ac_fixed<W,I,true>, the E defines the
exponent as an ac_int<E,true> and Q defines the rounding mode. For example:

#include <ac_float.h>
...
ac_float<10,1,4,AC_RND> x = ...; // W=10, I=1, E=4, Q=AC_RND
ac_float<10,1,4> y = ...; // Q = AC_TRN (default setting)
...

The definition of ac_float is targeted for algorithms that are intended to be mapped to hardware where the
flexibility of tailoring widths of mantissa and exponents is critical to reduce hardware resources. The I
parameter provides a static exponent offset so that the exponent bit width can be minimized. The use of the I
parameter and the encoding of the mantissa as an ac_fixed provides a more natural transition to and from
ac_fixed.

Currently the typical optimization of the MSB of the mantissa as an implied ‘1’ bit is not implemented in
ac_float. This was done to keep the implementation as simple as possible. Supporting the implied ‘1’ bit
requires using up one exponent value to encode special conditions such as the fact that the number is
denormalized and thus the MSB is not ‘1’. Currently ac_float does no reserve any exponent to encode special
conditions and therefore does not support NaN, +inf, -inf.

The encoding of the mantissa is in two’s complement. This makes it consistent with ac_fixed. Typical
implementations for floating-point use a sign-magnitude representation. Such a representation introduces
some complexities, but may reduce toggling of bits and be beneficial for lowering the power used in a
hardware implementation of the algorithm. Supporting such an sign-magnitude option will be considered as a
future enhancement.

As compared to ac_fixed, saturation (equivalent to AC_SAT) is performed by default. This was done for the
following reasons:

 36 August 2023 AC Datatypes v4.7.0

Arbitrary-Length Bit-Accurate Floating-Point Datatypes
Arbitrary-Length Bit-Accurate Floating-Point Datatypes

• The hardware overhead for saturation logic is relatively small compared to the inherent complexity of
floating-point arithmetic

• Finite precision floating-point addition is not associative. This means that optimizations such as tree
balancing can not be performed without affecting bit-accuracy. Using saturation rather than wrap
around does not worsen this situation.

• The number of template parameters is kept to a minimum on purpose. Additional parameters may be
required for future enhancements.

The ac_float implementation is built in top of the ac_fixed and ac_int types. In principle all parameters could
be set to arbitrary valid values. However the current implementation requires that the sum of exponent values
and offsets (I parameter) fit in a 32-bit integer. Note that a C floating double has 11 bits of exponents, so it is
unlikely that the current limitation is restrictive in most cases. An exponent width of 0 is also not currently
supported.

The numeric range of an ac_float<W,I,E> (the Q parameter has a default of AC_TRN and has no impact on
the range) has a numeric range of:

(-0.5) 2I + max_exp to (0.5 - 2-W) 2I + max_exp where max_exp = 2E-1 - 1

The smallest increment (quantum) is:

2I-W+min_exp where min_exp = -2E-1

Based on the ranges a standard float is covered by ac_float<25,2,8> and double is covered by
ac_float<54,2,11>. These types are provided by the type defines ac::ac_float_represent<T>::type where T
could be float or double.

Note that the overall number of bits (W+E) is 33 and 65 as there is no implied ‘1’ bit in ac_float. There are
differences of rounding between the native C float types (float and double) and the smallest ac_float that
covers them in range. For example, the division operator for ac_float truncates towards zero (the rounding
behavior might be enhanced in the future when both addition and subtraction operators will be implemented).

Table 24 summarizes the characteristic of ac_float and contrasts it to typical floating-point.

Table 24: Operators and methods defined for ac_float

Characteristic Description and comparison to typical floating-point

Zero Represented as all zeros for both mantissa and exponent.

Normalized Numbers No implied ‘1’ bit.

Denormalized Numbers No exception required as there is no implied ‘1’ for normalized
numbers.

Infinity (+inf, -inf) Not represented. Used by typical floating point types to
represent result of a/0 where a!=0.

NaN (not-a-number) Not represented. Used by typical floating point types to
represent inf/inf, inf-inf etc.

AC Datatypes v4.7.0 August 2023 37

Arbitrary-Length Bit-Accurate Floating-Point Datatypes
Arbitrary-Length Bit-Accurate Floating-Point Datatypes

Mantissa Representation Two’s complement (signed). Stored as an ac_fixed<W,I,true>.
Parameter I can be regarded as an exponent bias.

Sign bit Not used as mantissa is signed (two’s complement) already.

Exponent Stored as two’s complement as an ac_int<E,true>. Different
from typical floating point type stored as an unsigned and
requiring an offset to get actual value.

Base Base is 2. Typical floating-point types also have base 2. IEEE
standards do allow for other bases (base 10).

Target Use Algorithmic descriptions that need to be optimized for minimal
hardware. Parameterization of precision and range and mixing
of different types is essential. This is different than typical
floating-point types that are “closed” (result is same type as
operands).

Rounding Done on assignment according to Q parameter.

Overflow Saturation overflow always performed unless target range
covers source range (based on templates).

Operators with non-floats Operators with ac_fixed, ac_int and C integers, first represent
the operand as an ac_float with E=1 (E=0, currently not
supported.

Table 25 shows the operators and methods defined for ac_float

Table 25: Operators and methods defined for ac_float

Operators ac_float

* Arithmetic result (no loss of precision).
Mantissa type is determined by ac_fixed rules for multiplication.
Exponent type is determined by ac_int rules for addition.

/ Mantissa type is determined by ac_fixed rules for division
(truncation towards zero). Exponent type is determined by
ac_int rules for subtraction.

add(op1, op2)
sub(op1, op2)

Methods to add and subtract op2 to/from op1. The result is
stored in the object (“this”). This allows to consider the type of
the target (including the Q parameter of the object) to perform
rounding.

+, - To be defined. Current definition is placeholder and can be
enabled by defining __AC_FLOAT_ENABLE_ALPHA__. It is
only used to test compatibility with ac_complex.
Challenge is that these operate loose precision and thus need to
truncate/round. But it would ideal to avoid two steps of rounding
in an assignment “a = b + c”.

 38 August 2023 AC Datatypes v4.7.0

Arbitrary-Length Bit-Accurate Floating-Point Datatypes
Arbitrary-Length Bit-Accurate Floating-Point Datatypes

>>, << Bidirectional. Mantissa unchanged. Shift value added to (<<) or
subtracted from (>>) exponent. No loss of precision as exponent
grows to accommodate resulting exponent.
Second arg is ac_int or C INT

= quantization (specified by target), then saturation if range of
target does not cover range of source

+=, -=, *=, /=, >>=, <<= Equiv to op then assign where defined.
First arg is ac_float

==, !=, >, <, >=, <= First or second arg may be ac_fixed, ac_int or C INT or C float
or double

Unary +, - Arithmetic

! x Equiv to x == 0

mantissa(), exp() Access methods to mantissa and exponent values

Explicit conversion to
other types

to_double(), to_float(), to_ac_fixed(), to_ac_int(), to_int(),
to_uint(), to_long(), to_ulong(), to_int64() and to_uint64()

Constructors from other
types

from ac_fixed, ac_int, float, double, C integers. Perform
normalization by default (argument to constructor).

%, %=, &, |, ^, &=, |=, ^=,
~, ++, --, []

Not defined.

3.1.1. Mixed ac_float and other types

Mixed operators are defined for ac_int, ac_fixed, C native types to avoid ambiguity in the semantics or
compilation problems due to multiple operators matching an operation. The other type is first represented as
an ac_float of mantissa that can represent the number assuming a zero exponent. The exponent width would
in theory be 0, but currently an exponent width of 1 is minimum to compile, so that is used instead.

3.1.2. Shift Operators

Shift operators have a different behavior than for ac_int and ac_fixed. For ac_float, the shift operators are
arithmetic (no loss of precision).

For minimal hardware, it is best to constrain the type of the second operand to reduce its range.

3.1.3. The set_val Method

The set_val<ac_special_val>() method sets the ac_int or ac_fixed to one of a set of “special values” specified
by the template parameter as shown in Table 26.

Table 26: Special values

ac_special_val enum Value for ac_float

AC Datatypes v4.7.0 August 2023 39

Arbitrary-Length Bit-Accurate Floating-Point Datatypes
Arbitrary-Length Bit-Accurate Floating-Point Datatypes

AC_VAL_DC Used mainly to un-initialized variables that are already
initialized (by constructor or by being static). Used for
validating that algorithm does not depend on initial value.
Synthesis can treat it as a dont_care value.

AC_VAL_0 0

AC_VAL_MIN Minimum value

AC_VAL_MAX Maximum value

AC_VAL_QUANTUM Quantum value

Direct assignment of the enumeration values should not be used since it will assign the integer value of the
enumeration to the ac_float.

3.1.4. Constructors

Constructors from all C-types are provided. Constructors from ac_int and ac_fixed are also provided. The
default constructor does not initialize the ac_float variable. Thus non-static variables of type ac_fixed will not
be initialized by default. If the AC_DEFAULT_IN_RANGE macro is defined before the first inclusion of the AC
datatype header, then the default constructor will adjust the un-initialized value to force it to be in range:

#define AC_DEFAULT_IN_RANGE
#include <ac_float.h>
…
ac_float<4,4,3,false> n; // n will be in range

Constructors from char *, have not been defined/implemented in the current release.

3.1.5. Accessing Parameter Information

It is often useful to be able to access the value of various template parameters for the datatypes. In some
cases it is useful to access the width of type T, where T is an ac_float. In this case T::width would provide that
information. The various parameters that can be accessed are shown in Table 27.

Table 27: Basic Parameters

Static member Description for ac_float

width Value of W template parameter

i_width Value of I template parameter

sign true

q_mode Value of Q template parameter

o_mode AC_SAT

e_width Value of E template parameter

 40 August 2023 AC Datatypes v4.7.0

Arbitrary-Length Bit-Accurate Floating-Point Datatypes
Arbitrary-Length Bit-Accurate Floating-Point Datatypes

3.1.6. Using ac::init_array for Initializing Arrays

The utility function ac::init_array is provided to facilitate the initialization of arrays of ac_float to zero, or un-
initialization (initialization to don't_care). The most common usage is to un-initialize an array that is declared
static as shown in the following example:

void foo(...) {
static ac_float<10,1,3> b[200];
static bool b_dummy = ac::init_array<AC_VAL_DC>(b,200);
...

}

AC Datatypes v4.7.0 August 2023 41

Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

Chapter 4: Arbitrary-Length Bit-Accurate
Standard Floating-Point Datatypes

This chapter covers “standard” (such as IEEE) floating-point types. These types are different from the
ac_float in the following characteristics:

1. The data type of the result of arithmetic operations such as +,-,*,/ is the same as the data type of the
operands: there is no bit growth.

2. The mantissa is encoded with an implied bit for normal numbers. This requires that an exponent value
(all zeros) is treated as special to encode that there is no implied bit for representing zero and
subnormal numbers.

3. Special values such as infinity (+Inf, -Inf) and not-a-number (NaN) are encoded using an exponent
value (all ones).

4. The mantissa is encoded in sign-magnitude instead of two's complement used in ac_float. This implies
that there is a separate sign bit. There are two representations for zero: +0 and -0.

There are three standard floating-point data types that have been added as shown in Table 28.

Table 28: Standard floating-point types

Type Bit widths Description Memory Footprint

ac_ieee_float<Format> 16 Binary format IEEE floats short

32 int (matches float)

64 long long (matches double)

128 long long [2]

256 long long [4]

bfloat16 16 bfloat16 from Google short

ac_std_float<W,E> Arbitrary W is overall width
E is exponent width

ac_int<W,true>
may depend on macros

Note that the memory footprint of ac_ieee_float and bfloat16 is guaranteed while ac_std_float may depend on
macro settings that may add base classes for expanded functionality.

4.1. IEEE Floating-point: ac_ieee_float

The ac_ieee_float provides support for standard IEEE binary floating-point numbers. It is implemented using
ac_std_float with the corresponding W and E settings as shown in Table 29. The table also shows typedef
names for them as well as runtime acceleration using C++ float/double as described in the following sections.

 42 August 2023 AC Datatypes v4.7.0

IEEE Floating-point: ac_ieee_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

Most operators and methods are the same as for ac_std_float (see Section General Standard Floating-point:
ac_std_float) and ac::bfloat16 (see Section Brain Floating-point from Google: ac::bfloat16).

A subset of the math.h functions that are defined for float and double are defined for ac_ieee_float under the
std namespace and member functions variations are also provided.

Table 29: IEEE floating-point types

Type Typedef ac_std_float used Acceleration using C++
float/double (see below)

ac_ieee_float<binary16> ac_ieee_float16 ac_std_float<16,5> Not available
ac_ieee_float<binary32> ac_ieee_float32 ac_std_float<32,8> Available, uses float
ac_ieee_float<binary64> ac_ieee_float64 ac_std_float<64,11> Available, uses double
ac_ieee_float<binary128> ac_ieee_float128 ac_std_float<128,15> Not available
ac_ieee_float<binary256> ac_ieee_float256 ac_std_float<256,19> Not available

Acceleration using C++ float and double

The 32 and 64 bit versions of ac_ieee_float have a mode where the standard float or double C++ types are
used for faster runtime. This is done by defining the compiler macro AC_IEEE_FLOAT_USE_BUILTIN. In
order to get bit-accurate behavior it is important that the default rounding mode is used and that no extended
precision (temporaries extended to 80bit) is used. For example, in the GCC c++ compiler targeting i386/x86-
64, the -mfpmath=sse compiler switch should avoid that source of mismatch:

c++ -mfpmath=sse -DAC_IEEE_FLOAT_USE_BUILTIN …

Constructors

Any constructor other than the copy constructor, the default constructor and the constructor from the
underlying ac_std_float is declared explicit. They are therefore not available in assignments (the assignment
operator is not defined) or for implicit conversions. The constructors that are declared explicit have some cost
in terms of runtime and hardware if targeted for synthesis.

Table 30: Constructors

Constructor Description

ac_ieee_float() Does not initialize value

ac_ieee_float(const ac_ieee_float &f) Copy constructor

ac_ieee_float(const ac_std_float<width,e_width> &f) From underlying ac_std_float (same
width and e_width)

explicit
ac_ieee_float(const ac_std_float<W,E> &f)

From ac_std_float other than the
underlying one.

explicit
ac_ieee_float(const ac_ieee_float<Format2> &f)

Constructor from ac_ieee_float from a
different format

explicit ac_ieee_float(const ac::bfloat16 &f) Constructor from ac::bfloat16

explicit
ac_std_float(const ac_float<W-E+1,2,E,Q> &f)

Constructor from closest equivalent
ac_float
(see Closest Equivalent ac_float)

AC Datatypes v4.7.0 August 2023 43

IEEE Floating-point: ac_ieee_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

explicit ac_std_float(
 const ac_fixed<WFX,IFX,SFX,QFX,OFX> &fx)

Constructor from ac_fixed

(explicit) ac_ieee_float(float f) Constructor from float. For binary32,
the constructor is not declared explicit.

(explicit) ac_ieee_float(double f) Constructor from double. For binary64,
the constructor is not declared explicit.

explicit ac_ieee_float(int x) Constructor from int

explicit ac_ieee_float(long long x) Constructor from long long

Conversion Operators

The following conversion operators are only available for c++11 onwards. They are defined to be explicit
(explicit operators introduced in c++11). They have been made explicit to avoid ambiguities for overloaded
operators.

Table 31: Conversion Operators (only available for c++11 onwards)

Explicit Conversion Member Function Description

explicit operator float() Provided for binary16 and binary32. For binary32
there is not cost in terms of synthesis hardware. For
binary16 there is a cost.

explicit operator double() Provided for binary64. There is no cost in terms of
synthesis hardware.

Explicit Conversion Methods

Table 32: Explicit Conversions

Explicit Conversion Member Function Description

to_ac_float() Conversion to closest equivalent ac_float
(see Closest Equivalent ac_float)

to_ac_std_float() Conversion to underlying ac_std_float

to_ac_ieee_float<Format2>() Conversion to ac_ieee_float<Format2>

convert_to_ac_fixed<W,I,S,Q,O>(
 bool map_inf=false)

Convert to specific ac_fixed type. Values +/-Inf are
mapped to +/-max() if map_inf is true; otherwise
asserts. Values +/-NaN assert.

convert_to_ac_int<W,S>(bool map_inf=false) Equivalent to:
convert_to_fixed<W,W,S,AC_TRN_ZERO,
AC_WRAP>(map_inf).to_ac_int()

convert_to_int(bool map_inf=false) Equivalent to:
convert_to_ac_int<32,true>(map_inf).to_int()

convert_to_int64(bool map_inf=false) Equivalent to:
convert_to_ac_int<64,true>(map_inf).to_int64()

Raw Data Access Methods

Table 33: Raw Data Access Methods

 44 August 2023 AC Datatypes v4.7.0

IEEE Floating-point: ac_ieee_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

Explicit Conversion
Member Function

Description

data_ac_int() Returns raw data as ac_int<width,true>

data() Returns raw data as a const reference to data_t which is implementation
dependent:

• 16 bit: short

• 32 bit: int or float (if AC_IEEE_FLOAT_USE_BUILTIN is defined)

• 64 bit: long long or double (if AC_IEEE_FLOAT_USE_BUILTIN is defined)

• 128 bit: long long[2]

• 256 bit: long long[4]

set_data() Returns raw data as ac_std_float or ac_ieee_float type depending on what type
you want to set it to

Arithmetic Member Functions

Table 34 lists the arithmetic member functions that are provided to have more control over both the rounding
and whether subnormal numbers are flushed to zero in order to reduce its complexity.

Table 34: Arithmetic Member Functions

Returns Description

add<QR,No_SubNormals>(
 const ac_ieee_float &op2)

*this + op2 If No_SubNormals == true then
subnormal operands/result are
flushed to zero

QR is rounding mode. Currently
only supported modes are the
symmetric rounding modes in
ac_fixed:
AC_RND_CONV,
AC_TRN_ZERO,
AC_RND_INF,
AC_RND_CONV_ODD

sub<QR,No_SubNormals>(
 const ac_ieee_float &op2)

*this - op2

mult<QR,No_SubNormals>(
 const ac_ieee_float &op2)

*this * op2

div<QR,No_SubNormals>(
 const ac_ieee_float &op2)

*this / op2

fma<QR,No_SubNormals>(
 const ac_ieee_float &op2,
 const ac_ieee_float &op3)

*this * op2 + op3

sqrt<QR,No_SubNormals>() sqrt(*this)

Currently the only rounding modes that are supported are the symmetric versions defined for ac_fixed:
AC_RND_CONV, AC_TRN_ZERO, AC_RND_INF, AC_RND_CONV_ODD. In terms of IEEE rounding modes
they correspond to roundTiesToEven (AC_RND_CONV) and roundTowardZero (AC_TRN_ZERO). The
remaining IEEE modes roundTowardPositive and roundTowardNegative are asymmetric and are currently not
supported.

AC Datatypes v4.7.0 August 2023 45

IEEE Floating-point: ac_ieee_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

Arithmetic Binary Operators

The arithmetic binary operators are shown in Table 35. There are no overloaded operators defined between
ac_ieee_float<Format> and other C++ integer and floating-point types. However, the operators provided can
be used for float for ac_ieee_float<binary32> since there is a constructor from float. Note that other C++
types don't work with ac_ieee_float<binary32> because the constructor from float is a template function (uses
the c++ technique SFINAE to provide explicit or not explicit constructors for different Format template
argument). Because it is template constructor it is not available for operator overloading that would enable for
example the int->float->ac_ieee_float<binary32> conversion sequence. For example:

ac_ieee_float32 x(2.0); // OK, explicit constructor from double available
ac_ieee_float32 y = x * 2.0; // Error: no matching operator available
y = x * 2.0f; // OK, float is converted to ac_ieee_float32
y = x * 2; // Error: not matching operator available

Likewise, for ac_ieee_float<binary64>, the operators provided can be used for double since there is a (non-
explicit) constructor from double. For example:

ac_ieee_float64 x(2.0f); // OK, explicit constructor from float available
ac_ieee_float64 y = x * 2.0f; // Error: no matching operator available
y = x * 2.0; // OK, double is converted to ac_ieee_float64
y = x * 2; // Error: not matching operator available

For the other formats: binary16, binary128 and binary256, explicit constructors need to be used for C++
integer and floating-point types. For example:

ac_ieee_float16 x(2.0); // OK, explicit constructor from double available
ac_ieee_float16 y = x * 2.0; // Error: no matching operator available
y = x * ac_ieee_float16(2.0); // OK, explicit constructor from double available

Table 35: Arithmetic Binary Operators

Binary Operator Description

+ All operators use default rounding AC_RND_CONV (IEEE:
roundTiesToEven). Support for subnormals.-

*

/

Arithmetic Assign Operators

The arithmetic assign operators are shown in Table 36.

Table 36: Arithmetic Assign Operators

Arithmetic Assign Operator Description

+= All operators use default rounding AC_RND_CONV (IEEE:
roundTiesToEven). Support for subnormals.-=

 46 August 2023 AC Datatypes v4.7.0

IEEE Floating-point: ac_ieee_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

*=

/=

Relational Operators

The relational operators are shown in Table 37. If either operand is NaN, all operands other than != return
false.

Table 37: Relational Operators

Relational Operator Description

== Returns false if either operand is NaN

!= Returns true if either operand is NaN

< Returns false if either operand is NaN

>= Returns false if either operand is NaN

> Returns false if either operand is NaN

<= Returns false if either operand is NaN

Unary Operators

The unary operators are shown in Table 38.
Table 38: Unary Operators

Unary Operator Description

! Equivalent to x == 0

+ Unary plus.

- Unary minus. Equivalent to 0 - x

Member Functions

The member functions in Table 39 are variations of global functions provided for float and double in math.h.
Table 39: Member Functions

Member Function Description

x.abs() Returns absolute value of x

x.copysign(const ac_ieee_float &op2) Return value whose absolute value matches that of x, but
whose sign bit matches that of op2.

Member Functions to Query Type of Value

The functions in Table 40 are member function variations of the global functions provided for float and double
by math.h under the std namespace to query the type of value.

Table 40: Member Functions to Query Type of Value

AC Datatypes v4.7.0 August 2023 47

IEEE Floating-point: ac_ieee_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

Member Function Description

x.fpclassify() Same as provided by math.h. Returns
FP_NAN: if x is not a number
FP_INFINITE: if x is +Inf or -Inf
FP_ZERO: if x is 0
FP_SUBNORMAL: if x is not zero, but smaller than smallest normal value
FP_NORMAL: if none of the above

x.isfinite() x.fpclassify() != FP_NAN && x.fpclassify() != FP_INFINITE

x.isnormal() x.fpclassify() == FP_NORMAL

x.isnan() x.fpclassify() == FP_NAN

x.isinf() x.fpclassify() == FP_INFINITE

Operator to Print

The ostream operator << is defined:

std::ostream& operator << (std::ostream &os, const ac_ieee_float<Format> &x)

For formats binary128 and binary256, the operator prints the raw data by first converting to ac_int. This
functionality might change in the a future release.

For formats binary16 and binary32, it first gets converted to float and then printed. For format binary64, it first
gets converted to double and then printed.

Static Data Members

Table 41: Static Data Members

Static Data Member Description

width Overall width; 16, 32, 64, 128, 256

e_width Exponent width: 5, 8, 11, 15, 19

mant_bits W-E-1

exp_bias 2E-1-1

min_exp -2E-1 + 2

max_exp 2E-1-1

Static Member Functions

The following static member functions are consistent with the definitions used by the C++ standard for
std::numeric_limits.

Table 42: Static Member Functions corresponding to std::numeric_limits

Static Member Function Value Returned

 48 August 2023 AC Datatypes v4.7.0

IEEE Floating-point: ac_ieee_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

nan() not-a-number

inf() +Inf

denorm_min() Smallest positive non zero value (subnormal)

min() Smallest Normal positive non zero value

max() Largest positive finite value

epsilon() Difference between 1.0 and the next value representable by the floating-
point type

The following static member functions are provided for efficiency to return the ac_std_float for 0 and 1.

Table 43: Static Member Functions for 0 and 1

Static Member Function Value Returned

zero() 0

one() 1

Functions under std namespace

The following tables specify the functions available under the std namespace.

Table 44: Functions under std namespace for querying the value type

Function Description

std::fpclassify(x) Same as provided by math.h. Returns
FP_NAN: if x is not a number
FP_INFINITE: if x is +Inf or -Inf
FP_ZERO: if x is 0
FP_SUBNORMAL: if x is not zero, but smaller than smallest normal value
FP_NORMAL: if none of the above

std::isfinite(x) std::fpclassify(x) != FP_NAN && std::fpclassify(x) != FP_INFINITE

std::isnormal(x) std::fpclassify(x) == FP_NORMAL

std::isnan(x) std::fpclassify(x) == FP_NAN

std::isinf(x) std::fpclassify(x) == FP_INFINITE

Table 45: Other functions under the std namespace

Function Description

std::abs(const ac_ieee_float<Format> &x) Returns absolute value of x

std::fabsf(const ac_ieee_float<binary32> &x) 32-bit version for compatibility with math.h
fabsf(float)

std::fabs(const ac_ieee_float<binary64> &x) 64-bit version for compatibility with math.h
fabs(double)

AC Datatypes v4.7.0 August 2023 49

IEEE Floating-point: ac_ieee_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

std::copysign(
 const ac_ieee_float<Format> &x,
 const ac_ieee_float<Format> &y)

Returns value of x with sign of y.

std::copysignf(
 const ac_ieee_float<binary32> &x,
 const ac_ieee_float<binary32> &y)

Returns value of x with sign of y. For
compatibility with math.h copysignf(float, float)

std::signbit(x) Returns sign bit. Note that signbit(-0.0) returns
true.

4.2. Brain Floating-point from Google: ac::bfloat16

The class ac::bfloat16 provides support for the tensorflow::bfloat16 from Google. The two types could be
used interchangeably, but it is important to set the rounding mode to be towards zero when using the
tensorflow version:

assert(!std::fesetround(FE_TOWARDZERO));

Most operators and methods are the same as for ac_std_float (see General Standard Floating-point:
ac_std_float) and ac_ieee_float (see IEEE Floating-point: ac_ieee_float).

A subset of the math.h functions that are defined for float and double are defined for ac::bfloat16 under the
std namespace and member functions variations are also provided.

Constructors

Any constructor other than the copy constructor, the default constructor, the constructor from the underlying
ac_std_float<16,8> and the constructor from float is declared explicit. They are therefore not available in
assignments (the assignment operator is not defined) or for implicit conversions. The constructors that are
declared explicit have some cost in terms of runtime and hardware if targeted for synthesis. Note that the
constructor from float is trivial because the exponent with is the same and the mantissa is truncated.

Table 46: Constructors

Constructor Description

bfloat16() Does not initialize value

Copy constructor

bfloat16(const ac_std_float<16,8> &op) From underlying ac_std_float<16,8>.

explicit
bfloat16(const ac_std_float<W2,8> &f)

From ac_std_float with E=8, W2 != 16

explicit
bfloat16(const ac_std_float<W2,E2> &f)

From ac_std_float with W2 != 16, E2 != 8

explicit
bfloat16(const ac_ieee_float<Format> &f)

Constructor from ac_ieee_float<Format>

explicit
ac_std_float(const ac_float<W-E+1,2,E,Q> &f)

Constructor from closest equivalent ac_float
(see Closest Equivalent ac_float)

 50 August 2023 AC Datatypes v4.7.0

Brain Floating-point from Google: ac::bfloat16
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

explicit bfloat16(
 const ac_fixed<WFX,IFX,SFX,QFX,OFX> &fx)

Constructor from ac_fixed

bfloat16(float f) Constructor from float

Conversion Operators

The only conversion operator is explicit operator float() and it is only provided for c++11 onwards. This has no
cost in terms of hardware that is required to implemented it in synthesis since the exponent and mantissa of a
bfloat16 are already aligned with that of a float type.

Explicit Conversion Methods

Table 47: Explicit Conversions

Explicit Conversion Member Function Description

to_ac_float() Conversion to closest equivalent ac_float
(see Closest Equivalent ac_float)

to_ac_std_float() Conversion to underlying ac_std_float

to_ac_ieee_float<Format2>() Conversion to ac_ieee_float<Format2>

to_float() Conversion to float

to_double() Conversion to double

convert_to_ac_fixed<W,I,S,Q,O>(
 bool map_inf=false)

Convert to specific ac_fixed type. Values +/-Inf are mapped to
+/-max() if map_inf is true; otherwise asserts. Values +/-NaN
assert.

convert_to_ac_int<W,S>(bool
map_inf=false)

Equivalent to: convert_to_fixed<W,W,S,AC_TRN_ZERO,
AC_WRAP>(map_inf).to_ac_int()

convert_to_int(bool map_inf=false) Equivalent to: convert_to_ac_int<32,true>(map_inf).to_int()

convert_to_int64(bool map_inf=false) Equivalent to: convert_to_ac_int<64,true>(map_inf).to_int64()

Raw Data Access Methods

Table 48: Raw Data Access Methods

Explicit Conversion Member Function Description

data_ac_int() Returns raw data as ac_int<16,true>

data() Returns raw data as a const reference to short

set_data() Returns raw data as ac_std_float or ac_ieee_float
type

Arithmetic Member Functions

Table 49 lists the arithmetic member functions that are provided to have more control over both the rounding
(provided as a function template parameter) and whether subnormal numbers are flushed to zero in order to
reduce its complexity.

They are provided for consistency with ac_ieee_float and ac_std_float. They are not part of

AC Datatypes v4.7.0 August 2023 51

Brain Floating-point from Google: ac::bfloat16
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

tensorflow:bfloat16.
Table 49: Arithmetic Member Functions

Returns Description

add<QR,No_SubNormals>(
 const bfloat16 &op2)

*this + op2 If No_SubNormals == true then
subnormal operands/result are
flushed to zero

QR is rounding mode. Currently
only supported modes are the
symmetric rounding modes in
ac_fixed:
AC_RND_CONV,
AC_TRN_ZERO,
AC_RND_INF,
AC_RND_CONV_ODD

sub<QR,No_SubNormals>(
 const bfloat16 &op2)

*this - op2

mult<QR,No_SubNormals>(
 const bfloat16 &op2)

*this * op2

div<QR,No_SubNormals>(
 const bfloat16 &op2)

*this / op2

fma<QR,No_SubNormals>(
 const bfloat16 &op2,
 const bfloat16 &op3)

*this * op2 + op3

sqrt<QR,No_SubNormals>() sqrt(*this)

Currently the only rounding modes that are supported are the symmetric versions defined for ac_fixed:
AC_RND_CONV, AC_TRN_ZERO, AC_RND_INF, AC_RND_CONV_ODD. In terms of IEEE rounding modes
they correspond to roundTiesToEven (AC_RND_CONV) and roundTowardZero (AC_TRN_ZERO). The
remaining IEEE modes roundTowardPositive and roundTowardNegative are asymmetric and are currently not
supported.

Arithmetic Binary Operators

The arithmetic binary operators are given in Table 50. There are no overloaded operators defined between
ac::bfloat16 and other C++ integer and floating-point types. However, the operators provided can be used by
C++ types since there is a constructor from float. For example:

ac::bfloat16 x = 2.0; // double is converted to float and then to bfloat16
ac::bfloat16 y = x * 3; // integer is converted to float and then to bfloat16
y = x + 5.0; // double is converted to float and then to bfloat16

Table 50: Arithmetic Binary Operators

Binary Operator Description

+ All operators use default rounding AC_TRN_ZERO (IEEE:
roundTowardZero). Support for subnormals.-

*

/

Arithmetic Assign Operators

The arithmetic assign operators are shown in Table 51. There are no overloaded operators defined between
ac::bfloat16 and other C++ integer and floating-point types. However, the operators provided can be used by
C++ types since there is a constructor from float. For example:

 52 August 2023 AC Datatypes v4.7.0

Brain Floating-point from Google: ac::bfloat16
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

ac::bfloat16 x = 2.0; // double is converted to float and then to bfloat16
x *= 3; // integer is converted to float and then to bfloat16
x += 5.0; // double is converted to float and then to bfloat16

Table 51: Arithmetic Assign Operators

Arithmetic Assign Operator Description

+= All operators use default rounding AC_TRN_ZERO (IEEE:
roundTowardZero). Support for subnormals.-=

*=

/=

Relational Operators

The relational operators are shown in Table 52. If either operand is NaN, all operands other than != return
false. There are no overloaded operators defined between ac::bfloat16 and other C++ integer and floating-
point types. However, the operators provided can be used by C++ types since there is a constructor from
float. For example:

ac::bfloat16 x = ...;
if(x == 3) { ...} // integer is converted to float and then to bfloat16
bool flag = x == 5.0; // double is converted to float and then to bfloat16

Table 52: Relational Operators

Relational Operator Description

== Returns false if either operand is NaN

!= Returns true if either operand is NaN

< Returns false if either operand is NaN

>= Returns false if either operand is NaN

> Returns false if either operand is NaN

<= Returns false if either operand is NaN

Unary Operators

The unary operators are shown in Table 53.
Table 53: Unary Operators

Unary Operator Description

! Equivalent to x == 0

+ Unary plus.

- Unary minus. Equivalent to 0 - x

Member Functions

The member functions in Table 54 are variations of global functions provided for float and double in math.h.

AC Datatypes v4.7.0 August 2023 53

Brain Floating-point from Google: ac::bfloat16
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

The are also defined for tensorflow::bfloat16.
Table 54: Member Functions

Member Function Description

x.abs() Returns absolute value of x

x.copysign(const bfloat16 &op2) Return value whose absolute value matches that of x,
but whose sign bit matches that of op2.

Member Functions to Query Type of Value

The functions in Table 55 are member function variations of the global functions provided for float and double
by math.h under the std namespace to query the type of value. They are not provided by tensorflow::bfloat16,
but are provided in ac::bfloat16 for consistency with ac_ieee_float and ac_std_float. The tensorflow version of
bfloat16 does provide several of the global functions under the std namespace as described in Section .

Table 55: Member Functions to Query Type of Value

Member Function Description

x.fpclassify() Same as provided by math.h. Returns
FP_NAN: if x is not a number
FP_INFINITE: if x is +Inf or -Inf
FP_ZERO: if x is 0
FP_SUBNORMAL: if x is not zero, but smaller than smallest normal value
FP_NORMAL: if none of the above

x.isfinite() x.fpclassify() != FP_NAN && x.fpclassify() != FP_INFINITE

x.isnormal() x.fpclassify() == FP_NORMAL

x.isnan() x.fpclassify() == FP_NAN

x.isinf() x.fpclassify() == FP_INFINITE

Operator to Print

The ostream << operator is defined and prints the value after converting the bfloat16 to float:

std::ostream& operator << (std::ostream &os, const ac::bfloat16 &x)

Static Data Members

Table 56: Static Data Members

Static Data Member Description

width Overall width = 16

e_width Exponent width = 8

mant_bits W-E-1 = 7

exp_bias 2E-1-1 = 127

min_exp -2E-1 + 2 = -126

max_exp 2E-1-1 = 127

 54 August 2023 AC Datatypes v4.7.0

Brain Floating-point from Google: ac::bfloat16
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

Static Member Functions

The following static member functions are consistent with the definitions used by the C++ standard for
std::numeric_limits.

Table 57: Static Member Functions corresponding to std::numeric_limits

Static Member Function Value Returned

nan() not-a-number

inf() +Inf

denorm_min() Smallest positive non zero value (subnormal)

min() Smallest Normal positive non zero value

max() Largest positive finite value

epsilon() Difference between 1.0 and the next value representable by bfloat16

The following static member functions are provided for efficiency to return the ac_std_float for 0 and 1.
Table 58: Static Member Functions for 0 and 1

Static Member Function Value Returned

zero() 0

one() 1

Functions under std namespace

The following tables specify the functions available under the std namespace. They are consistent with the
versions provided by math.h for float and double. The tensorflow::bfloat16 provides std::isinf, std::isnan and
std::isinf. The ac:bfloat16 version provides the full set for consistency with ac_ieee_float and ac_std_float.

Table 59: Functions in std Namespace to Query Type of Value

Function Description

std::fpclassify(x) Same as provided by math.h. Returns
FP_NAN: if x is not a number
FP_INFINITE: if x is +Inf or -Inf
FP_ZERO: if x is 0
FP_SUBNORMAL: if x is not zero, but smaller than smallest normal value
FP_NORMAL: if none of the above

std::isfinite(x) std::fpclassify(x) != FP_NAN && std::fpclassify(x) != FP_INFINITE

std::isnormal(x) std::fpclassify(x) == FP_NORMAL

std::isnan(x) std::fpclassify(x) == FP_NAN

std::isinf(x) std::fpclassify(x) == FP_INFINITE

Table 60: Other Funtions in the std namespace

Function Description

std::abs(const bfloat16 &x) Returns absolute value of x

AC Datatypes v4.7.0 August 2023 55

Brain Floating-point from Google: ac::bfloat16
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

std::copysign(const bfloat16 &x, const bfloat16 &y) Returns value of x with sign of y.

std::signbit(const bfloat16 &x) Returns sign bit. Note that signbit(-
0.0) returns true.

4.3. General Standard Floating-point: ac_std_float

The general standard ac_std_float<W,E> has overall width W and exponent width E. It is used to implement
the ac_ieee_float and bfloat16 types. It also provides for conversions to and from ac_float.

Most operators and methods are the same as for ac_ieee_float (see IEEE Floating-point: ac_ieee_float) and
ac::bfloat16 (see Brain Floating-point from Google: ac::bfloat16).

A subset of the math.h functions that are defined for float and double are defined for ac::bfloat16 under the
std namespace and member functions variations are also provided.

Constructors

Any constructor other than the copy constructor and the default constructor is declared explicit. They are
therefore not available in assignments (the assignment operator is not defined) or for implicit conversions.
The constructors that are declared explicit have some cost in terms of runtime and hardware if targeted for
synthesis.

Table 61: Constructors

Constructor Description

ac_std_float() Does not initialize value

ac_std_float(const ac_std_float &f) Copy constructor

explicit
ac_std_float(const ac_std_float<W2,E> &f)

Constructor from ac_std_float with same E,
but possibly different W2

explicit
ac_std_float(const ac_std_float<W2,E2> &f)

Constructor from ac_std_float with possibly
different W2 and E2

explicit
ac_std_float(const ac_float<W-E+1,2,E,Q> &f)

Constructor from closest equivalent ac_float
(see Closest Equivalent ac_float)

explicit
ac_std_float(const ac::bfloat16 &f)

Constructor from ac::bfloat16

explicit
ac_std_float(const ac_ieee_float<Format> &f)

Constructor from ac_ieee_float

explicit ac_std_float(
 const ac_fixed<WFX,IFX,SFX,QFX,OFX> &fx)

Constructor from ac_fixed

explicit ac_std_float(float f) Constructor from float

explicit ac_std_float(double f) Constructor from double

explicit ac_std_float(int x) Constructor from int

explicit ac_std_float(long long x) Constructor from long long

 56 August 2023 AC Datatypes v4.7.0

General Standard Floating-point: ac_std_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

Explicit Conversion Methods

Table 62: Explicit Conversions

Explicit Conversion Member Function Description

to_ac_float() Conversion to closest equivalent ac_float
(see Closest Equivalent ac_float)

to_float() Conversion to float

to_double() Conversion to double

convert_to_ac_fixed<W,I,S,Q,O>(
 bool map_inf=false)

Convert to specific ac_fixed type. Values +/-Inf are
mapped to +/-max() if map_inf is true; otherwise
asserts. Values +/-NaN assert.

convert_to_ac_int<W,S>(bool map_inf=false) Equivalent to:
convert_to_fixed<W,W,S,AC_TRN_ZERO,
AC_WRAP>(map_inf).to_ac_int()

convert_to_int(bool map_inf=false) Equivalent to:
convert_to_ac_int<32,true>(map_inf).to_int()

convert_to_int64(bool map_inf=false) Equivalent to:
convert_to_ac_int<64,true>(map_inf).to_int64()

Arithmetic Member Functions

Table 63 lists the arithmetic member functions that are provided to have more control over both the rounding
(provided as a function template parameter) and whether subnormal numbers are flushed to zero in order to
reduce its complexity.

Table 63: Arithmetic Member Functions

Member Function Returns Description

add<QR,No_SubNormals>(
 const ac_std_float &op2)

*this + op2 If No_SubNormals == true then
subnormal operands/result are flushed
to zero

QR is rounding mode. Currently only
supported modes are the symmetric
rounding modes in ac_fixed:
AC_RND_CONV,
AC_TRN_ZERO,
AC_RND_INF, AC_RND_CONV_ODD

sub<QR,No_SubNormals>(
 const ac_std_float &op2)

*this - op2

mult<QR,No_SubNormals>(
 const ac_std_float &op2)

*this * op2

div<QR,No_SubNormals>(
 const ac_std_float &op2)

*this / op2

fma<QR,No_SubNormals>(
 const ac_std_float &op2,
 const ac_std_float &op3)

*this * op2 + op3

sqrt<QR,No_SubNormals>() sqrt(*this)

Currently the only rounding modes that are supported are the symmetric versions defined for ac_fixed:
AC_RND_CONV, AC_TRN_ZERO, AC_RND_INF, AC_RND_CONV_ODD. In terms of IEEE rounding modes
they correspond to roundTiesToEven (AC_RND_CONV) and roundTowardZero (AC_TRN_ZERO). The
remaining IEEE modes roundTowardPositive and roundTowardNegative are asymmetric and are currently not
supported.

AC Datatypes v4.7.0 August 2023 57

General Standard Floating-point: ac_std_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

The methods in Table 57 call by default the core implementation methods with “_generic” in their name
unless a macro to override is defined as described in Section . The methods are only available for class
ac_std_float and are enumerated in Table 64.

Table 64: Arithmetic Member Functions for Generic Implementation

Member Function Description

add_generic<QR,No_SubNormals>(
 const ac_std_float &op2)

Used by add (and indirectly) by sub unless
AC_STD_FLOAT_ADD_OVERRIDE is defined

mult_generic<QR,No_SubNormals>(
 const ac_std_float &op2)

Used by mult unless
AC_STD_FLOAT_MULT_OVERRIDE is defined

div_generic<QR,No_SubNormals>(
 const ac_std_float &op2)

Used by div unless
AC_STD_FLOAT_DIV_OVERRIDE is defined

fma_generic<QR,No_SubNormals>(
 const ac_std_float &op2,
 const ac_std_float &op3)

Used by fma unless
AC_STD_FLOAT_FMA_OVERRIDE is defined

sqrt_generic<QR,No_SubNormals>() Used by sqrt unless
AC_STD_FLOAT_SQRT_OVERRIDE is defined

Arithmetic Binary Operators

Table 65: Arithmetic Binary Operators

Binary Operator Description

+ All operators use default rounding AC_RND_CONV (IEEE:
roundTiesToEven). Support for subnormals.-

*

/

Arithmetic Assign Operators

Table 66: Arithmetic Assign Operators

Arithmetic Assign Operator Description

+= All operators use default rounding AC_RND_CONV (IEEE:
roundTiesToEven). Support for subnormals.-=

*=

/=

Relational Operators

Table 67: Relational Operators

Relational Operator Description

== Returns false if either operand is NaN

!= Returns true if either operand is NaN

< Returns false if either operand is NaN

>= Returns false if either operand is NaN

 58 August 2023 AC Datatypes v4.7.0

General Standard Floating-point: ac_std_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

> Returns false if either operand is NaN

<= Returns false if either operand is NaN

Unary Operators

The unary operators are shown in Table 68.
Table 68: Unary Operators

Unary Operator Description

! Equivalent to x == 0

+ Unary plus.

- Unary minus. Equivalent to 0 - x

Member Functions

The member functions in Table 69 are variations of global functions provided for float and double in math.h.
Table 69: Member Functions

Member Function Description

x.abs() Returns absolute value of x

x.copysign(const ac_std_float &op2) Return value whose absolute value matches that of x,
but whose sign bit matches that of op2.

Member Function to Query Type of Value

The functions in Table 70 are member function variations of the global functions provided for float and double
by math.h under the std namespace to query the type of value.

Table 70: Member Function to Query Type of Value

Member Function Description

x.fpclassify() Same as provided by math.h. Returns
FP_NAN: if x is not a number
FP_INFINITE: if x is +Inf or -Inf
FP_ZERO: if x is 0
FP_SUBNORMAL: if x is not zero, but smaller than smallest normal value
FP_NORMAL: if none of the above

x.isfinite() x.fpclassify() != FP_NAN && fpclassify(x) != FP_INFINITE

x.isnormal() x.fpclassify() == FP_NORMAL

x.isnan() x.fpclassify() == FP_NAN

x.isinf() x.fpclassify() == FP_INFINITE

Operator to Print

The ostream operator << is defined:

AC Datatypes v4.7.0 August 2023 59

General Standard Floating-point: ac_std_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

std::ostream& operator << (std::ostream &os, const ac_std_float<W,E> &x)

The operator prints the raw ac_int<W,true> data. This functionality might change in the a future release.

Static Data Members

Table 71: Static Data Members

Static Data Member Description

width Overall width. Same as W template parameter

e_width Exponent width. Same as E template parameter

mant_bits W-E-1

exp_bias 2E-1-1

min_exp -2E-1 + 2

max_exp 2E-1-1

Static Member Functions

The following static member functions are consistent with the definitions used by the C++ standard for
std::numeric_limits.

Table 72: Static Member Functions corresponding to std::numeric_limits

Static Member Function Value Returned

nan() not-a-number

inf() +Inf

denorm_min() Smallest positive non zero value (subnormal)

min() Smallest Normal positive non zero value

max() Largest positive finite value

epsilon() Difference between 1.0 and the next value representable by the floating-
point type

The following static member functions are provided for efficiency to return the ac_std_float for 0 and 1.
Table 73: Static Member Functions for 0 and 1

Static Member Function Value Returned

zero() 0

one() 1

Closest Equivalent ac_float

The closest equivalent to ac_std_float<W,E> is ac_float<W-E+1, 2, E, AC_RND_CONV> since:

1. The width argument (W) for ac_float<W,I,E,Q> stands for the width of the ac_fixed used as a mantissa,
while the width argument for (W) ac_std_float<W,E>. It captures signedness, but since it does not use
an implied bit it requires an additional bit.

 60 August 2023 AC Datatypes v4.7.0

General Standard Floating-point: ac_std_float
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

2. The I is the number of integer bits of the ac_fixed used as a mantissa. It is encoded in two's
complement so two bits are required to capture +1.x and -1.x.

3. The exponent width (E) is the same width in both cases, but in ac_std_float<W,E> the all 0's and all 1's
exponents are special so it will become subnormal one exponent earlier and it will saturate to infinite
with the highest value of E.

4. The AC_RND_CONV rounding mode is default for ac_std_float.

4.4. Overriding with alternative implementations

There are two override mechanisms available:

1. Override the “fixed-point” division that is used inside the implementations of the floating-point division
functions.

2. Override any of the arithmetic methods in ac_std_float<W,E> to use an alternative implementation.
This affects the corresponding operator. For instance, if method div is overridden, the operator “/” will
also be affected.

Note the above overrides will affect the methods and corresponding operators for all types: ac_std_float,
ac_ieee_float and ac::bfloat16.

Overriding core division function

The fixed-point division used in the implementation of the floating-point division currently relies on the
ac::fx_div function for synthesis and the ac::fx_div_sim for simulation. The ac::fx_div function is based on a
non restoring algorithm that computes one bit of the quotient for every iteration of a loop. The loop has W-
E+2 iterations. For example, for ac_float_ieee32, the loop has 26 iterations. The implementation leverages
the property that the second operand has '1' as the MSB since it is normalized. Synthesis directives may be
changed on this function according to the desired performance.

The ac::fx_div_sim uses both the '/' for the quotient and '%' to determine if the division is exact (no remainder)
and is used for simulation since it can leverage the integer operations in the processor.

Users may want to provide alternative C++ implementations that provide more optimized synthesis results.
The macro needs to be defined before the inclusion of ac_std_float.h to override which fixed-point division
function is called:

template<int W>
void my_fix_div(ac_int<W,false> op1, ac_int<W,false> op2, ac_int<W+2,false>
"ient, bool &exact);
#define AC_STD_FLOAT_FX_DIV_OVERRIDE my_fix_div
#include <ac_std_float.h>

The quotient argument that is returned is the result of op1*2W+1/op2 and the argument exact is true if the
division was exact (remainder is zero). The MSB of op2 is assumed to be '1'.

AC Datatypes v4.7.0 August 2023 61

Overriding with alternative implementations
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

Overriding the floating-point arithmetic methods

The arithmetic methods: add, sub, mult, div, fma and sqrt can have their implementations overridden with the
macros in Table 74. Note that overriding the add also affects the sub method so there is no separate override
for sub.

The type of the argument and return type are all assumed to be ac_std_float<W,E>. The template parameters
are:

template<ac_q_mode QR, bool No_SubNormals, int W, int E>

Table 74: Macros for overriding arithmetic methods

Macro for function name Number of arguments
ac_std_float<W,E>

AC_STD_FLOAT_ADD_OVERRIDE 2

AC_STD_FLOAT_MULT_OVERRIDE 2

AC_STD_FLOAT_DIV_OVERRIDE 2

AC_STD_FLOAT_FMA_OVERRIDE 3

AC_STD_FLOAT_SQRT_OVERRIDE 1

A namespace for those functions can be specified with the macro:

AC_STD_FLOAT_OVERRIDE_NAMESPACE

Defining any of the macros for the function override will declare the template function with that name
specified in the macro in ac_std_float.h so that they are available in the implementations of the various
methods for class ac_std_float. The definitions of the correspond function is expected to be provided after
inclusion of ac_std_float.h if the implementation of the version in ac_std_float.h is required: for instance if the
override is applied for some combinations of template parameters. An example is show next.

Assume that some alternative implementations are provided in a header alt_impls.h that contains:

 #pragma once
 // OVERRIDE MACROs needs to be defined before inclusion of ac_std_float.h
 // Actual implementation of override functions defined after inclusion of
ac_std_float.h

 #include <ac_std_float.h>

 // definitions
 namespace my_override_tech1 {
 template<ac_q_mode QR, bool No_SubNormals, int W, int E>
 inline ac_std_float<W,E> add(const ac_std_float<W,E> &op, const
ac_std_float<W,E> &op2) { … }
 template<ac_q_mode QR, bool No_SubNormals, int W, int E>

 62 August 2023 AC Datatypes v4.7.0

Overriding with alternative implementations
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

 inline ac_std_float<W,E> mult(const ac_std_float<W,E> &op, const
ac_std_float<W,E> &op2) { … }
 template<ac_q_mode QR, bool No_SubNormals, int W, int E>
 inline ac_std_float<W,E> div(const ac_std_float<W,E> &op, const
ac_std_float<W,E> &op2) { … }
 template<ac_q_mode QR, bool No_SubNormals, int W, int E>
 inline ac_std_float<W,E> fma(const ac_std_float<W,E> &op, const
ac_std_float<W,E> &op2, const ac_std_float<W,E> &op3) { … }
 template<ac_q_mode QR, bool No_SubNormals, int W, int E>
 inline ac_std_float<W,E> sqrt(const ac_std_float<W,E> &op) { … }
}

Then one can select any of them to be used as an override:

 // OVERRIDE MACROs needs to be defined before inclusion of ac_std_float.h
 #ifdef __AC_STD_FLOAT_H
 #error “file ac_std_float.h already included, overrides below will have no ef-
fect
 #endif

 #define AC_STD_FLOAT_MULT_OVERRIDE mult
 #define AC_STD_FLOAT_OVERRIDE_NAMESPACE my_override_tech1

#include “alt_impls.h”

int main() {
 ac_ieee_float32 a = …;
 ac_ieee_float32 b = …;
 ac_ieee_float32 c = a * b; // override will apply
 c = a.mult<AC_TRN_ZERO,true>(b); // override will apply

 ac_ieee_float32 d = a + b; // no override was chosen
}

In the definitions in alt_impls.h, the override could be applied to specific combinations of template parameters
using template specialization:

 namespace my_override_tech1 {
 template<ac_q_mode QR, bool No_SubNormals, int W, int E>
 inline ac_std_float<W,E> mult(const ac_std_float<W,E> &op, const
ac_std_float<W,E> &op2) {
 // use generic implementation provided in ac_std_float for default case
 return op.template mult_generic<QR,No_SubNormals>(op2);
 }
 // specialization
 template<> mult<AC_RND_CONV,false,32,8>(const ac_std_float<W,E> &op, const

AC Datatypes v4.7.0 August 2023 63

Overriding with alternative implementations
Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes

ac_std_float<W,E> &op2) {
 …
 }

 64 August 2023 AC Datatypes v4.7.0

Complex Datatype
Complex Datatype

Chapter 5: Complex Datatype

The algorithmic datatype ac_complex is a templatized class for representing complex numbers. The template
argument defines the type of the real and imaginary numbers and can be any of the following:

• Algorithmic C integer type: ac_int<W,S>

• Algorithmic C fixed-point type: ac_fixed<W,I,S,Q,O>

• Native C integer types: bool, (un)signed char, short, int, long and long long

• Native C floating-point types: float and double

For example, the code:

ac_complex<ac_fixed<16,8,true> > x (2.0, -3.0);

declares the variable x of type ac_complex based on ac_fixed<16,8,true> and initializes it to have a real part
of 2.0 and imaginary part of -3.0 (note: the space between the two ‘>’ is required by C++).

An important feature of the ac_complex type is that operators return the types according to the rules of the
underlying type. For example, operators on ac_complex types based on ac_int and ac_fixed will return results
for the operators ‘+’, ‘-’ and ‘*’ with no loss of precision (‘/’ will follow the rules for ac_int and ac_fixed).
Likewise, operators on ac_complex types based on native C integer and floating-point types will return results
according to the C rules for arithmetic promotion and conversion.

A second important feature of the ac_complex type is that binary operators are defined for ac_complex types
that are based on different types, provided the underlying types have the necessary operators defined. For
instance to implement complex multiplication, it is necessary to have addition and multiplication defined for
the underlying types. As the examples below illustrate, the only issue is combining native floating-point types
(float and double) with algorithmic types:

ac_complex<ac_int<5,true> > i(2, 1);
ac_complex<ac_fixed<8,3,false> f(1, 5);
ac_complex<unsigned short> s(1, 0);
ac_complex<double> d(3.5, 3.14);

i * f; // OK: ac_int and ac_fixed can be mixed
s * f; // OK: native int type can be mixed with ac_fixed
i * s; // OK: ac_int and native int type can be mixed
s * d; // OK: native int type can be mixed w/native floating-point type
i * d; // ERROR: ac_int and native floating-point types don’t mix
i == d; // ERROR: ac_int/double comparison operators is not defined
f * d; // ERROR: ac_fixed/double + and * operators are not defined
f == d; // OK: ac_fixed/double comparison operators is defined

AC Datatypes v4.7.0 August 2023 65

Complex Datatype
Complex Datatype

Operators for multiplying a variable of type ac_complex by a real number also are defined with the same
restrictions as outlined above. For example:

ac_complex<ac_int<5,true> > i(2, 1);
ac_complex<ac_fixed<8,3,false> f(1, 5);
ac_fixed<8,3,false> f_r = 3;
unsigned short s_r = 5;
double d_r = 3.5

i * f_r; // OK: ac_int and ac_fixed can be mixed
s_r * i; // OK: native int type can be mixed with ac_int
i * d_r; // ERROR: ac_int/double + and * operators are not defined
i * 0.1; // ERROR: ac_int/float + and * operators are not defined
i == d_r; // ERROR: ac_int/double comparison operator is not defined
f == d_r; // OK: ac_fixed/double comparison operator is defined
i == 0.1; // ERROR: ac_int/float comparison operators is not defined
f == 0.1; // OK: ac_fxed/double comparison operator is defined

Table 75 shows the operators defined for both ac_complex.

Table 75: Operators defined for ac_complex

Operators ac_complex

Two operand +, -, *, /, Arithmetic result. First or second arg may be C INT or
ac_fixed

= assignment

+=, -=, *=, /= Equiv to op then assign.
First arg is ac_complex

==, != First or second arg may be C INT, ac_int, ac_fixed or C
double (comparison of ac_int with double/float not
defined)

Unary +, - Arithmetic

! x Equiv to x == 0

Table 76 shows the methods defined for the ac_complex type.

Table 76: Methods defined for ac_complex<T>

 66 August 2023 AC Datatypes v4.7.0

Complex Datatype
Complex Datatype

Methods ac_complex

r(), real() return real part (const T&, or T&)

i(), imag() return imaginary part (const T& or T&)

set_r(const T2 &r) assign r to real part

set_i(const T2 &i) assign i to imaginary part

conj() complex conjugate

sign_conj() returns (sign(real), sign(imag))) as an
ac_complex<ac_int<2,true> >

mag_sqr() returns sqr(real) + sqr(imag)

to_string convert to std::string depending on parameter AC_HEX,
AC_DEC, AC_OCT, AC_BIN

type_name() returns “name” of the type as a std::string

5.1. Usage of ac_complex

In order to use the ac_complex datatype the following header file must be included in the C++ source:

#include <ac_complex.h>

The following list includes recommendations for using the ac_complex datatype:

• Do not use native C type unsigned (unsigned int) as the return type (and the arithmetic) is defined
according to the promotion/arithmetic rules of the C language. That is the resulting complex type will
based on the type unsigned. For example:

ac_complex<unsigned> x(0,1);
cout << x*x; // result is (2^32 - 1, 0)

• Pay special attention on the return type when performing division. For example, if two ac_complex
based on native C type int are divided, the result will be an ac_complex based on int and truncation will
take place.

5.2. Advanced utility functions, typedefs, etc for
ac_complex

The AC datatypes provide additional utilities such as functions and typedefs. Some of them are available in
the ac namespace (ac::), and some of them are available in the scope of the ac datatype itself. The following
utility functions/structs/typedefs are described in this section:

• Typedef to capture the underlying type.

AC Datatypes v4.7.0 August 2023 67

Advanced utility functions, typedefs, etc for ac_complex
Complex Datatype

• Function for initializing arrays of ac_complex to a special value.

• Typedefs for finding the return type of unary and binary operators.

5.2.1. Accessing the Underlying (Element) Type

The type of the real and imaginary elements can be accessed as

T::element_type

where T is the ac_complex type.

5.2.2. Using ac::init_array for Initializing Arrays

The utility function “ac::init_array” is provided to facilitate the initialization of arrays to zero, or un-initialization
(initialization to dont_care). For more details about the basic AC Datatypes, refer to the examples in
“Arbitrary-Length, Bit-Accurate Integer and Fixed-Point Datatypes” section. The initialization value is applied
to both the real and imaginary components.

5.2.3. Return Type for Unary and Binary Operators

Refer to corresponding sections in “Arbitrary-Length, Bit-Accurate Integer and Fixed-Point Datatypes” for the
basic AC Datatypes.

 68 August 2023 AC Datatypes v4.7.0

Reference Guide for Numerical Algorithmic C Datatypes
Reference Guide for Numerical Algorithmic C Datatypes

Chapter 6: Reference Guide for Numerical Algo-
rithmic C Datatypes

This chapter provides a high-level view of the numerical AC Datatype package. It provides a high-level
reference for the following items that are exposed to the user:

• All public functions, member functions

• Enumerations, Static Constants and Type Definitions

• Macros

Anything that is not covered in this chapter is implementation specific and is subject to change.

6.1. Functions and Operators

The tables in this section capture all the public functions, member functions and operators that are available
for the different types.

6.1.1. Constructors

 The following table lists all the constructors available for the AC numerical types.

Table 77: Constructors Available

Constructor ac_int ac_fixed ac_float ac_complex

Default 1 ✔ ✔ ✔ ✔

Copy NA ✔ ✔ NA

Constructor from same
type name but any
parameter

✔ ✔ ✔ 2 ✔

Constructor from each
bool and integer type

✔ ✔ ✔ NA 4

Constructor from float NA NA ✔ 2 NA 4

Constructor from double ✔ ✔ ✔ 2 NA 4

Constructor from
template T type

NA NA NA ✔

Constructor from
template T1, T2 type pair

NA NA NA ✔

AC Datatypes v4.7.0 August 2023 69

Functions and Operators
Reference Guide for Numerical Algorithmic C Datatypes

Constructor from other
AC Numerical Type

NA ✔
ac_int

 ✔
ac_int,
ac_fixed 3

6.1.2(ac_fixed,
ac_int) 3

NA 4

Notes:

1. The default constructors leave the datatypes un-initialized. If the AC_DEFAULT_IN_RANGE macro is
defined, it will be un-initialized, but guaranteed to be within range.

2. The ac_float constructors have additional arguments to assert on rounding or overflow.

3. The ac_float constructors have an additional argument to normalize.

4. The general template constructor from template T type covers these cases.

6.1.2. Conversions

Conversions can be classified in conversion operators and explicit conversion methods. The only operators
that is available is for ac_int with parameter restrictions that guarantee that there is no loss of precision. The
explicit conversion methods ac_float::to_ac_fixed does not lose precision. Otherwise all other explicit
conversions may lose precision depending on the parameter values of the types.

Table 78: Conversion Operators and Methods

Operators and Methods ac_int ac_fixed ac_float ac_complex

operator long long ✔
W <= 64
S = true

NA NA NA

operator unsigned long
long

 ✔
W <= 64
S = false

NA NA NA

to_int ✔ ✔ ✔ NA

to_uint ✔ ✔ ✔ NA

to_long ✔ ✔ ✔ NA

to_ulong ✔ ✔ ✔ NA

to_int64 ✔ ✔ ✔ NA

to_uint64 ✔ ✔ ✔ NA

to_float NA NA ✔ NA

to_double ✔ ✔ ✔ NA

to_ac_int NA ✔ ✔ NA

to_ac_fixed NA NA ✔ NA

to_string ✔ ✔ ✔ NA

 70 August 2023 AC Datatypes v4.7.0

Functions and Operators
Reference Guide for Numerical Algorithmic C Datatypes

6.1.3. Arithmetic, Relational and Shift Operators and Methods

The operators and methods covers both binary (two operand) operations and unary (single operand)
operations. The binary operations have also mixed AC type and C++ integer types global operators defined
for them.

Table 79: Arithmetic, Relational and Shift Operators and Methods

Operators and Methods ac_int ac_fixed ac_float ac_complex

+, -, /, +=, -=, /= ✔ 1 ✔ ✔ 2,4 ✔ 5

add, sub 2 NA NA ✔ NA

%, %= ✔ NA NA NA

==, != ✔ ✔ 3 ✔ 4 ✔ 5

>, <, >=, <= ✔ ✔ 3 ✔ 4 NA

>>, <<, >>=, <<= ✔ 6 ✔ 6 ✔ NA

Unary +, -, ! 7 ✔ ✔ ✔ ✔

++, -- ✔ ✔ NA NA

abs NA NA ✔ NA

conj NA NA NA ✔

mag_sqr NA NA NA ✔

sign_conj NA NA NA ✔

Notes:

1. The + operator is also defined for ac_int and C pointer (and vice versa) so that an ac_int can be added
to a C pointer. The operator - is defined so that an ac_int can be subtracted from a C pointer. In all
cases, the result is of the same type as the C pointer.

2. The add and sub methods for ac_float provide control over the desired return type and are alternatives
for the + and – operators that are still subject to change.

3. The relational operators are defined for mixed ac_fixed with C++ double.

4. Operators are defined for mixed ac_float with with C++ float and double.

5. Operators are defined for mixed ac_complex with another type that is a template parameter.

6. Shift operators >> and << for ac_int and ac_fixed return the type of the first argument.

7. The unary ~ operator is covered in Logical Operators and Methods.

6.1.4. Bit and Slice Operators and Methods

The bit and slice operators and methods are defined for ac_int and ac_fixed. The slc method can read a slice

AC Datatypes v4.7.0 August 2023 71

Functions and Operators
Reference Guide for Numerical Algorithmic C Datatypes

out of range.

Table 80: Bit and Slice Operators and Methods

Operators and Methods ac_int ac_fixed ac_float ac_complex

slc ✔ ✔ NA NA

set_slc ✔ ✔ NA NA

operator [] ✔ ✔ NA NA

There are const and non const versions of the [] operator and the index argument can be int, unsigned, and
ac_int. There are asserts to check that index is in range.

The ac_int::operator [] returns an ac_int::ac_bitref and the ac_fixed::operator [] returns an ac_fixed::ac_bitref.
Both ac_int::ac_bitref and ac_fixed::ac_bitref have identical definitions as shown in Table 81. The ac_bitref
classes are not meant to be used explicitly by the user.

Table 81: Operators defined for ac_int::ac_bitref and ac_fixed::ac_bitref

Operators Description

operator bool bit returned as bool

operator ac_int<W2, S2> First call operator bool and then constructs ac_int

ac_bitref operator = (int val) LSB of int is written to bit

ac_bitref operator = (const ac_bitref &val) Assignment for ac_bitref for identical type

6.1.5. Logical Operators and Methods

The ~ operator has an arithmetic definition as compared to the bit_complement method listed in Table 82
which returns the unsigned bitwise complement of the ac_int or ac_fixed.

Table 82: Logical Operators and Methods

Operators and Methods ac_int ac_fixed ac_float ac_complex

&, |, ^, &=, |=, ^= ✔ ✔ NA NA

Unary operator ~ ✔ ✔ NA NA

bit_complement ✔ ✔ NA NA

and_reduce, or_reduce,
xor_reduce

✔ NA NA NA

6.1.6. Other Functions and Methods

The table below lists functions string related functions, filling them with bit patterns, setting the types to
special values, provide functionality useful for floating-point and for accessing data members for ac_float and
ac_complex. The length function returns the W parameter value for ac_int and ac_fixed.

Table 83: Other functions/methods

 72 August 2023 AC Datatypes v4.7.0

Functions and Operators
Reference Guide for Numerical Algorithmic C Datatypes

Functions and Methods ac_int ac_fixed ac_float ac_comple
x

std::ostream & operator << ✔ ✔ ✔ ✔

type_name ✔ ✔ ✔ ✔

bit_fill ✔ ✔ NA NA

ac::bit_fill ✔ ✔ NA NA

bit_fill_hex ✔ ✔ NA NA

ac::bit_fill_hex ✔ ✔ NA NA

set_val ✔ ✔ ✔ NA

ac::value ✔ ✔ ✔ ✔

ac::init_array ✔ ✔ ✔ ✔

leading_sign ✔ ✔ NA NA

normalize ✔ ✔ ✔ NA

normalize_RME ✔ ✔ NA NA

mantissa, exp NA NA ✔ NA

set_mantissa, set_exp NA NA ✔ NA

i, r, real, imag NA NA NA ✔

set_i, set_r NA NA NA ✔

length ✔ ✔ NA NA

6.1.7. Mantissa/Exponent Extraction of float/double

The following table lists functions for extracting mantissa, exponent and sign information out of C++ float and
double floating-point types.

Table 84: Functions to extract mantissa/exponent from float/double

Function Header Description

ac::frexp_f ac_fixed.h Exponent and 2's complement mantissa for float

ac::frexp_d ac_fixed.h Exponent and 2's complement mantissa for double

ac::frexp_sm_f ac_fixed.h Exponent, unsigned mantissa and sign for float

ac::frexp_sm_d ac_fixed.h Exponent, unsigned mantissa and sign for double

6.1.8. SystemC Tracing Functions

All numerical types have the sc_trace function defined. They are defined in the ac_sc.h header file.

AC Datatypes v4.7.0 August 2023 73

Functions and Operators
Reference Guide for Numerical Algorithmic C Datatypes

6.1.9. Explicit conversions to/from SystemC Types

The explicit conversions functions to and from the SystemC datatypes sc_bigint, sc_biguint, sc_fixed and
sc_ufixed are shown in Table 85. They are defined in the ac_sc.h header file.

Table 85: Explicit conversions to/from AC Datatype from/to SystemC Datatype

From To Function

sc_bigint ac_int, S=true ac_int<W, true> to_ac(const sc_bigint<W> &)

sc_biguint ac_int, S=false ac_int<W, false> to_ac(const sc_biguint<W> &)

sc_fixed ac_fixed, S=true ac_fixed<W,I, true> to_ac(const sc_fixed<W,I,Q,O,nbits> &)

sc_ufixed ac_fixed, S=false ac_fixed<W,I, false> to_ac(const sc_ufixed<W,I,Q,O,nbits> &)

ac_int, S=true sc_bigint sc_bigint<W> to_sc(const ac_int<W,true> &)

ac_int, S=false sc_biguint sc_biguint<W> to_sc(const ac_int<W,false> &)

ac_fixed, S=true sc_fixed sc_fixed<W,I> to_sc(const ac_fixed<W,I,true,Q,O> &

ac_fixed, S=false sc_ufixed sc_ufixed<W,I> to_sc(const ac_fixed<W,I,false,Q,O> &

6.2. Enumerations, Static Constants and Type Defini-
tions

This section covers the enumerations, static constants and type definitions (typedefs) that are defined in the
numerical AC header types.

6.2.1. General Enumerations

The following table defines general enumeration values and which functions uses them.

Table 86: General Enumerations

Enumeration Value Enumeration
Type

Description Used by

AC_BIN ac_base_mode Binary format to_string

AC_OCT Octal format

AC_DEC Decimal format

AC_HEX Hexadecimal format

AC_VAL_DC ac_special_val Don't Care (un-initialized) set_val
ac::value
ac::init_array

AC_VAL_0 Zero

AC_VAL_MIN Minimum val for type

AC_VAL_MAX Maximum val for type

AC_VAL_QUANTUM Smallest increment for type

 74 August 2023 AC Datatypes v4.7.0

Enumerations, Static Constants and Type Definitions
Reference Guide for Numerical Algorithmic C Datatypes

6.2.2. Enumerations for Fixed-point Quantization and Overflow Modes

The following enumerations are used to define the quantization and overflow modes for ac_fixed, but are
forward declared in ac_int.h. They are template parameters for ac_fixed with default settings as indicated.

Table 87: Enumerations for fixed-point quantization and overflow modes.

Enumeration Value Enumeration Type Description

AC_TRN (default) ac_q_mode
(Quantization)

truncate toward minus infinity

AC_RND round towards plus infinity

AC_TRN_ZERO truncate towards zero

AC_RND_ZERO round towards zero

AC_RND_INF round towards infinity

AC_RND_MIN_INF round towards minus infinity

AC_RND_CONV round towards even

AC_RND_CONV_ODD round towards odd

AC_WRAP (default) ac_o_mode
(Overflow)

wrap

AC_SAT saturate to max and min

AC_SAT_ZERO saturate to zero

AC_SAT_SYM saturate to +/- max

6.2.3. Static Constant Members and Type Definitions to Capture Proper-
ties of Types

The following table lists the static data members to query the type for properties that are dependent on
template parameters. If a type lacks that parameter it may either depend on another parameter or be
implicitly behave as having a constant value for that parameter. For example an ac_int behaves as an
ac_fixed that has identical width and i_width and has AC_TRN and AC_WRAP.

Table 88: Static constant members to capture properties of types.

Static Data Member ac_int ac_fixed ac_float ac_complex

width ✔ ✔ ✔ NA

i_width width✔ ✔ ✔ NA

e_width 0✔ 0✔ ✔ NA

sign ✔ ✔ true✔ NA

q_mode AC_TRN✔ ✔ ✔ NA

o_mode AC_WRAP✔ ✔ AC_SAT✔ NA

The following table lists the type definitions that are dependent on the template parameters.

Table 89: Type definitions to capture properties of types.

AC Datatypes v4.7.0 August 2023 75

Enumerations, Static Constants and Type Definitions
Reference Guide for Numerical Algorithmic C Datatypes

Static Data Member ac_int ac_fixed ac_float ac_complex

mant_t NA NA ✔ NA

exp_t NA NA ✔ NA

element_type NA NA NA ✔

6.2.4. Type Definitions for Signed and Unsigned ac_ints

Under the ac_intN namespace, there are typedefs for ac_int<W,S> for 1 ≤ W ≤ 63 for S={false,true}. The type
names are int or uint followed by the width. For example:

uint6 a = 7;
ac_intN::int17 b = 45676;

The ac_intN namespace is made available in the global namespace unless the macro
AC_NOT_USING_INTN is defined.

6.2.5. Utility Enumerations and Type Definitions Based on Template Argu-
ments

Static Computation of Bit-width and Type Based on Range

The following table lists utility enum for the compile-time computation of log2-like functions. They are useful to
determine the minimum bit-widths of types that can represent a number or a range of numbers.

Table 90: Utility enums and typedefs based on template parameters

struct enum/typedef Header Type or enum Description

ac::nbits<unsigned>::val ac_int.h enum Number of bits required for unsigned ac_int to
store value of template parameter

ac::log2_floor<int>::val ac_int.h enum Floor of log2 of template parameter

ac::log2_ceil<int>::val ac_int.h enum Ceeling of log2 of template parameter

ac::int_range<int, int>::type ac_int.h ac_int ac_int type that can represent close integer
range given by template parameters

Minimal Size Destination Type to Represent a Source Type

The type defines ac_int_represent<T>::type, ac_fixed_represent<T>::type and ac_float_represent<T>::type
provide the minimal destination ac_int, ac_fixed and ac_float type respectively that is required to store the
source type T as shown in Table 91. Note that while it would be possible to provide an ac_fixed to represent
a float or double, its size would be impractically large so it is not provided.

Table 91: Type definitions for Minimal Size Destination Types.

Source Type ac_int_represent<T>
::type

ac_fixed_represent<T>
::type

ac_float_represent<T>
::type

 76 August 2023 AC Datatypes v4.7.0

Enumerations, Static Constants and Type Definitions
Reference Guide for Numerical Algorithmic C Datatypes

C++ integer types ✔ ✔ ✔

C++ float/double NA NA ✔

ac_int ✔ ✔ ✔

ac_fixed NA ✔ ✔

ac_float NA NA ✔

 Return Type Infrastructure for Unary Operators and Methods

The rt_unary struct defined in each of the types provides parameter and type information to obtain the return
type when it is solely dependent on the template parameters of the type. The enumerations only make sense
for scalar values (not for ac_complex), but the typedefs are available for all types for which the function that
requires that return type is defined.

Table 92: Enumerations defined in type::rt_unary.

Enumeration ac_int ac_fixed ac_float ac_comple
x

neg_w, neg_s ✔ ✔ ✔ NA

neg_i NA ✔ ✔ NA

neg_e NA NA ✔ NA

mag_sqr_w, mag_sqr_s ✔ ✔ ✔ NA

mag_sqr_i NA ✔ ✔ NA

mag_sqr_e NA NA ✔ NA

mag_w, mag_s ✔ ✔ ✔ NA

mag_i NA ✔ ✔ NA

mag_e NA NA ✔ NA

set<N>::sum_w, set<N>::sum_s ✔ ✔ ✔ NA

set<N>::sum_i NA ✔ ✔ NA

set<N>::sum_e NA NA ✔ NA

leading_sign_w, leading_sign_s ✔ ✔ NA NA

to_fx_w, to_fx_i, to_fx_s NA NA ✔ NA

to_i_w, to_i_s NA NA ✔ NA

Table 93: Type definitions in type::rt_unary.

typedef ac_int ac_fixed ac_float ac_comple
x

neg ✔ ✔ ✔ ✔

mag_sqr ✔ ✔ ✔ ✔

mag ✔ ✔ ✔ ✔

set<N>::sum ✔ ✔ ✔ ✔

AC Datatypes v4.7.0 August 2023 77

Enumerations, Static Constants and Type Definitions
Reference Guide for Numerical Algorithmic C Datatypes

leading_sign ✔ ✔ NA NA

to_ac_fixed_t NA NA ✔ NA

to_ac_int_t NA NA ✔ NA

Return Type Infrastructure for Binary Operators and Methods

The rt and rt_T structs defined in each of the types provides parameter and type information to obtain the
return type when it is dependent on the template parameters of the type and of a second operand. The rt
structure is used for ac_int, ac_fixed and ac_float to determine the return type when the second operand is of
the same class, but potentially different parameter values. The rt_T struct is used to specify the type directly
as a template parameter (T stands for template type). The ac_complex type uses the cross type infrastructure
as described to figure out the return types where the operands are ac_complex<T1> and ac_complex<T2>.

The rt struct has template parameters as follows

• ac_int<W,S>::rt<int W2, bool S2>

• ac_fixed<W,I,S,Q,O>::rt<int W2, int I2, bool S2>

• ac_float<W,I,E,Q>::rt<int W2, int I2, int E2>

Table 94: Enumerations defined in type::rt.

Enumeration ac_int ac_fixed ac_float

mult_w, mult_s ✔ ✔ ✔

mult_i NA ✔ ✔

mult_e NA NA ✔

plus_w, plus_s ✔ ✔ ✔

plus_i NA ✔ ✔

plus_e NA NA ✔

minus_w, minus_s ✔ ✔ ✔

minus_i NA ✔ ✔

minus_e NA NA ✔

div_w, div_s ✔ ✔ ✔

div_i NA ✔ ✔

div_e NA NA ✔

mod_w, mod_s ✔ NA NA

logic_w, logic_s ✔ ✔ ✔

logic_i NA ✔ ✔

logic_e NA NA ✔

Table 95: Type definitions in type::rt.

 78 August 2023 AC Datatypes v4.7.0

Enumerations, Static Constants and Type Definitions
Reference Guide for Numerical Algorithmic C Datatypes

typedefs ac_int ac_fixed ac_float

mult ✔ ✔ ✔

plus ✔ ✔ ✔

minus ✔ ✔ ✔

div ✔ ✔ ✔

mod ✔ NA NA

logic ✔ ✔ ✔

arg1 ✔ ✔ ✔

The rt_T struct provides the same typedefs as in Table 95 but exclude the mod typedef since ac_complex
does not provide the % operator. For operations that are not commutative it also provides minus2 and div2
which are for the operator types swapped. For example, when ac_complex queries the type of an ac_int
minus an ac_fixed, it queries the ac_int::rt_T<ac_fixed>::div which gets the type from
ac_fixed::rt_T<ac_int>::div2.

The rt_2T struct has two template parameters T and T2. For Numerical AC types, it is equivalent to
T::rt_T<T2>. Use of the rt_2T struct is more flexible than the rt_T struct in that T could be a native C++
integer type.

6.3. Macros

This section covers the macros that are available in the numerical AC header types.

6.3.1. User Definable Macros

Table 96: User Definable Macros

Macro Description

AC_DEFAULT_IN_RANGE If defined, default constructors will guarantee a value that is in range
even though it is un-initialized.

AC_USER_DEFINED_ASSERT Can be defined to be a call to user defined assert function with
arguments:
bool condition,
const char *file,
int line,
const char *msg

AC_NOT_USING_INTN If defined, disables the “using” of namespace ac_intN. See Type
Definitions for Signed and Unsigned ac_ints.

6.3.2. Utility Macros

The following macros are defined in ac_int.h. All Numerical AC Datatype headers include ac_int.h directly or
indirectly so these macro definitions should be available by inclusion of any of the numerical header files.

AC Datatypes v4.7.0 August 2023 79

Macros
Reference Guide for Numerical Algorithmic C Datatypes

Table 97: Utility Macros

Macro Description

AC_MAX(a,b) Max of arguments

AC_MIN(a,b) Min of arguments

AC_ABS(a) Absolute value of argument

AC_ASSERT(cond, msg) Assert. Affected by AC_USER_DEFINED_ASSERT

 80 August 2023 AC Datatypes v4.7.0

Numerical Datatype Migration Guide
Numerical Datatype Migration Guide

Chapter 7: Numerical Datatype Migration Guide

This chapter provides detailed explanations on differences between the Algorithmic numerical datatypes and
the built-in C integer types and the SystemC integer and fixed-point types.

7.1. General Compilation Issues

When porting algorithms written with either C integer or SystemC datatypes a compilation error may be
encountered when the choices for the question mark operator are ac_int or ac_fixed types. For instance the
expression:

b ? x : -x;

works when x is a C integer or a SystemC data type but will error out when x is an ac_int or ac_fixed because
x and -x don’t have the same type (their bitwidths are different). Explicit casting may be needed for the
question mark operator so that both choices have the exact same type. For example, in the examples below
the expressions in the left (using sc_int) are re-coded with ac_int as follows:

• (c ? a_5s : b_7u) becomes (c ? (ac_int<8,true>) a_5s : (ac_int<8,true>) b_7u)

• (c ? a_5s : - a_5s) becomes (c ? (ac_int<6,true>) a_5s : - a_5s)

• (c ? a_5s : 1) becomes (c ? a_5s : (ac_int<5,true>) 1), or (c ? (int) a_5s : 1)

where variable a_5s is a 5-bit wide signed sc_int or ac_int and so on.

The SystemC datatypes don’t require casting because they share the same base class that contains the
actual value of the variable. Note that an integer constant such as 1 is of type int and will be represented as
an ac_int<32, true>, so an expression such as a_4s + 1 will have type ac_int<33,true> instead of
ac_int<5,true>.

7.2. SystemC Syntax

Table 98 shows the SystemC bit-accurate datatypes that ac_int and ac_fixed can replace. Using ac_int and
ac_fixed it is possible to write generic algorithms that work for any bitwidth and that simulate faster than the
“fast” (but limited) SystemC types sc_int, sc_uint, sc_fixed_fast, and sc_ufixed_fast.

Table 98: Relation Between SystemC Datatypes and AC Datatypes

SystemC Datatype New Datatype Comments

sc_int<W> ac_int<W,true> sc_int limited to 64 bits

sc_uint<W> ac_int<W,false> sc_uint limited to 64 bits

AC Datatypes v4.7.0 August 2023 81

SystemC Syntax
Numerical Datatype Migration Guide

sc_bigint<W> ac_int<W,true>

sc_biguint<W> ac_int<W,false>

sc_fixed_fast<W,I,Q,O> ac_fixed<W,I,true,Q,O> sc_fixed_fast limited to
mantissa of double

sc_ufixed_fast<W,I,Q,O> ac_fixed<W,I,false,Q,O> sc_ufixed_fast limited to
mantissa of double

sc_fixed<W,I,Q,O> ac_fixed<W,I,true,Q,O>

sc_ufixed<W,I,Q,O> ac_fixed<W,I,false,Q,O>

The ac_int and ac_fixed types have the same parameters with the same interpretation as the corresponding
SystemC type. The difference is an extra boolean parameter S that defines whether the type is signed
(S==true) or unsigned (S==false). Using a template parameter instead of different type names makes it
easier to write generic algorithms (templatized) that can handle both signed and unsigned types. The other
difference is that ac_fixed does not use the “nbits” parameter that is used for the SystemC fixed-point
datatypes.

The template parameters Q and O are enumerations of type ac_q_mode and ac_o_mode respectively. All
SystemC quantization modes are supported as shown in Table 99. Most commonly used overflow modes are
supported as shown in Table 100.

Table 99: Quantization Modes for ac_fixed and Their Relation to sc_fixed/sc_ufixed

ac_fixed sc_fixed/sc_ufixed

AC_TRN (default) SC_TRN (default)

AC_RND SC_RND

AC_TRN_ZERO SC_TRN_ZERO

AC_RND_ZERO SC_RND_ZERO

AC_RND_INF SC_RND_INF

AC_RND_MIN_INF SC_RND_MIN_INF

AC_RND_CONV SC_RND_CONV

AC_RND_CONV_ODD Not available

Table 100: Overflow Modes for ac_fixed and Their Relation to sc_fixed/sc_ufixed

ac_fixed sc_fixed/sc_ufixed

AC_WRAP (default) SC_WRAP, nbits = 0 (default)

AC_SAT SC_SAT

AC_SAT_ZERO SC_SAT_ZERO

AC_SAT_SYM SC_SAT_SYM

All operands are defined consistently with ac_int: if both ac_fixed operands are pure integers (W and I are the

 82 August 2023 AC Datatypes v4.7.0

SystemC Syntax
Numerical Datatype Migration Guide

same) then the result is an ac_fixed that is also a pure integer with the same bitwidth and value as the result
of the equivalent ac_int operation. For example: a/b where a is an ac_fixed<8,8> and b is an ac_fixed<5,5>
returns an ac_fixed<8,8>. In SystemC, on the other hand, the result of a/b returns 64 bits of precision (or
SC_FXDIV_WL if defined).

7.2.1. SystemC to AC Differences in Methods/Operators

There are methods that have a different name, syntax and semantic. The main one is the range method
range(int i, int j) or operator (int i, int j). There are two different methods in ac_int for accessing or modifying
(assigning to) a range. Note that ac_int does not support a dynamic length range.

Methods: range in SystemC to slc and set_slc in ac_int or ac_fixed

For accessing a range:

x.range(i+W-1, i) (or x(i+W-1, i)) becomes x.slc<W>(i)

where x.slc<W>(i) returns an ac_int<W, SX> where SX is the signedness of variable x. The slice method
returns an ac_int for both ac_int and ac_fixed. Also note that W must be a constant. For instance x.range(i, j)
would translate into x.slc<i-j+1>(j) provided both i and j are constants.

For assigning a range:

x.range(i+W-1,i) = y (or x.(i+W-1,i) = y) becomes x.set_slc(i, y)

this assumes that y is of type either ac_int<W, false> or ac_int<W, true>, otherwise it needs to be cast to
either type.

Concatenation

The concatenation operator (the “,” operator in sc_int/sc_uint and sc_bigint/sc_biguint) is not defined in
ac_int or ac_fixed. The solution is to rewrite it using set_slc:

y = (x, z); becomes y.set_slc(WZ, x); y.set_slc(0, z);
where WZ is the width of z.

Other Methods

Table 101 shows other less frequently used methods in SystemC datatypes that would require rewriting in
ac_int.

Table 101: Migration of SystemC Methods to ac_int

SystemC ac_int

iszero operator !

sign x < 0

AC Datatypes v4.7.0 August 2023 83

SystemC Syntax
Numerical Datatype Migration Guide

bit x[i]

reverse no equivalent

test x[i]

set x[i] = 1

clear x[i] = 0

invert x[i] = !x[i]

Constructors from char *, are not defined/implemented for ac_int and ac_fixed.

7.2.2. Support for SystemC sc_trace Methods

The Algorithmic C Datatypes package was updated in 2010 to provide support for using SystemC sc_trace
methods on the AC datatypes. In order to use the sc_trace method in your SystemC design, you must include
the following headers in the following order:

#include <systemc.h>
#include <ac_fixed.h> (or ac_int.h or ac_complex.h or ac_float.h)
#include <ac_sc.h>

Failing to include them in the above order will result in compile errors. In addition to proper include file
ordering, you can only trace using VCD format files (i.e. using the sc_create_vcd_trace_file() function in
SystemC). Using any other trace file format may result in a crash during simulation.

7.3. Simulation Differences with SystemC types and
with C integers

In this section the simulation semantics of the bit-accurate datatypes sc_int/sc_uint, sc_bigint/sc_biguint, and
ac_int will be compared and contrasted. For simplicity of discussion the shorthand notation int<bw> and
uint<bw> will be used to denote a signed and unsigned integer of bitwidth bw respectively. Also Slong and
Ulong will be used to denote the C 64-bit integer types long long and unsigned long long respectively.

The differences between limited and arbitrary length integer datatypes can be group in several categories as
follows:

• Limited precision (64 bit) vs. arbitrary precision

• Differences due to implementation deficiencies of sc_int/sc_uint

• Differences due to definition

 84 August 2023 AC Datatypes v4.7.0

Simulation Differences with SystemC types and with C integers
Numerical Datatype Migration Guide

7.3.1. Limited Precision vs. Arbitrary Precision

Both sc_int/sc_uint use the 64-bit C types long long and unsigned long long as the underlying type to
efficiently their operators. In more mathematical terms, that means that the arithmetic is accurate modulo 264.
As long as every value is representable in 2’s complement 64-bit signed, the limited precision should not
affect the computation and should agree with the equivalent expression using arbitrary precision integers.

7.3.2. Implementation Deficiencies of sc_int/sc_uint

At first glance, it would appear that the only difference between limited and arbitrary length datatypes is that
arithmetic is limited to 64-bit. However, there are a number of additional issues that have to do with how the
sc_int/sc_uint are implemented.

The implementations of the limited precision bit-accurate integer types suffer from a number of deficiencies:

• Mixing signed and unsigned can lead to unexpected results. Many operators are not defined so they
fall back to the underlying C types Slong and Ulong. Conversion rules in C change the signed operand
to unsigned when a binary operation has mixed Slong and Ulong operands. This leads to the following
non intuitive results:

(uint<8>) 1 / (int<8>) -1 = (Ulong) 1 / (Slong) -1 = (Ulong) 1 / (Ulong) -1 = 0
(uint<6>) 1 > (int<6>) -1 = (Ulong) 1 > (Slong) -1 = (Ulong) 1 / (Ulong) -1 =
false
(int<6>) -1 >> (uint<6>) 1 = (Slong) -1 >> (Ulong) 1 = -1

Note however, that operations such as +, -, and *, |, &, ^ provided the result is assigned to an integer
type of length 64 or less, or is used in expressions that are not sensitive to the signedness of the result:

// OK
w_u20 = a_u8 * b_s9 + x_u13 & y_s4;

// Bad, assigning Ulong to 67 signed
sc_bigint<67> i = a_u8 * b_s9 + x_u13 & y_s4;

// Bad, s/s div should be ok, but numerator is Ulong
w_u20 = (a_u8 * b_s9) / c_s6;

// Bad if both f(Ulong) and f(Slong) are defined
f(a_u8 * b_s9);

• Shifting has the same limitations as in C. The C language only defines the behavior of integer shifts on
a Slong or Ulong when the shift value is in the range [0, 63]. The behavior outside that range is
compiler dependent. Also some compilers (Visual C 6.0 for example) incorrectly convert the shift value
from Slong to Ulong if the first operand is Ulong.

AC Datatypes v4.7.0 August 2023 85

Simulation Differences with SystemC types and with C integers
Numerical Datatype Migration Guide

7.3.3. Differences Due to Definition

The previous two sections covered the high-level and most often encountered differences among the bit-
accurate integer datatypes. This section will cover more detailed differences.

Initialization

The SystemC integer datatypes are initialized by default to 0 by the default constructor, whereas ac_int is not
initialized by the default constructor. If the algorithm relies on this behavior, the initialization needs to be done
explicitly when migrating from SystemC integer datatypes to ac_int. This issue is not there for fixed-point
datatypes as neither the sc_fixed/sc_ufixed nor ac_fixed initializes by default.

Note that non local variables (that is global, namespace, and static variables) don’t have this issue as they
are initialized by virtue of how C/C++ is defined.

Shift Operators

The ac_int and ac_fixed shift operators are described in the Shift Operators section. Shift operations present
the most important differences between the Algorithmic C types and the SystemC types.

SystemC Types

• The return type of the left shift for sc_bigint/sc_biguint or sc_fixed/sc_ufixed does not lose bits making
the return type of the left shift data dependent (dependent on the shift value). Shift assigns for
sc_fixed/sc_ufixed may result in quantization or overflow (depending on the mode of the first operand).

• Negative shifts are equivalent to a zero shift value for sc_bigint/sc_biguint

• The shift operators for the limited precision versions is only defined for shift values in the range [0, 63]
(see Implementation Deficiencies of sc_int/sc_uint on page 85).

Differences with Native C Integer Types

• Shifting occurs on either 32-bit (int, unsigned int) or 64-bit (long long, unsigned long long) integrals. If
the first operand is an integral type that has less than 32 bits (bool, (un)signed char, short) it is first
promoted to int. The return type is the type of the first argument after integer promotion (if applicable).

• Shift values are constrained according to the length of the type of the promoted first operand.

⚬ 0 ≤ s < 32 for 32-bit numbers

⚬ 0 ≤ s < 64 for 64-bit numbers

• The behavior for shift values outside the allowed ranges is not specified by the C++ ISO standard.

The shift left operator of ac_int returns an ac_int of the same type (width and signedness) of the first
argument and it is not equivalent to the left shift of sc_int/sc_uint or sc_bigint/sc_biguint. To get the equivalent

 86 August 2023 AC Datatypes v4.7.0

Simulation Differences with SystemC types and with C integers
Numerical Datatype Migration Guide

behavior using ac_int, the first argument must be of wide enough so that is does not overflow. For example

(ac_int<1,false>) 1 << 1 = 0
(ac_int<2,false>) 1 << 1 = 2

Both the right and left shift operators of ac_int return an ac_fixed of the same type (width, integer width and
signedness) of the first argument and is not equivalent to the corresponding operator in sc_fixed/sc_ufixed.
Despite the fact that there might be loss of precision when shifting an ac_fixed, no quantization or overflow is
performed. The first argument must be large enough width and integer width to guarantee that there is no
loss of precision.

Differences for the range/slice Methods

It is legal to access bits to the left of the MSB of an ac_int or an ac_fixed using the slc method. The operation
is treated arithmetically (as if the value had been represented in the appropriate number of bits).

The following operations are invalid and will generate a runtime error (assert) during C simulation:

• Attempting to access negative indices with the slc method

• Attempting to access or modify indices outside the 0 to W-1 range for set_slc or the [] operator

The behavior for indices outside the 0 to W-1 range for SystemC datatypes is not consistent. For example
sc_int/sc_uint and sc_fixed/sc_ufixed don’t allow it (runtime error) while sc_bigint/sc_biguint allow even
negative indices (changed to a 0 index).

Conversion Methods

The conversion methods to_int(), to_long(), to_int64(), to_uint(), to_uint64() and to_ulong() for
sc_fixed/sc_ufixed are implemented by first converting to double. For instance:

sc_fixed<5,3> x = ...;
int t = x.to_int(); // equiv to (int)(double)x

 // not equiv to (int)(sc_int<32>)x

ac_fixed<5,3,true> y = ...;
int t = y.to_int(); // equiv to x.to_ac_int().to_int();

The difference in most cases will be subtle (double has a signed-magnitude representation so it truncates
towards zero instead of truncating towards minus infinity) but could be very different if the number would
overflow the int or long long C types.

Neither ac_int nor ac_fixed provide a conversion operator to double (an explicit to_double method is
provided). SystemC datatypes do provide that conversion. There are a number of cases where that can lead
to non intuitive semantics:

sc_fixed<7,4> x = ...;
int t = (int) x; // equiv to (int)(double) x

AC Datatypes v4.7.0 August 2023 87

Simulation Differences with SystemC types and with C integers
Numerical Datatype Migration Guide

bool b = !x; // equiv to ! (double) x

Unary Operators ~, - and Binary Operators &, |, ^

The unary operators ~ and - for ac_int and ac_fixed will return a signed typed. This behavior is consistent
with the SystemC integer types but inconsistent with the SystemC fixed-point types.

A common issue when migrating from C/C++ that uses shifting and masking is the following:

unsigned int x = 0;
unsigned mask = ~x >> 24; // mask is 0xFF

ac_int<32,false> x = 0;
ac_int<32,false> mask = ~x >> 24; // mask is 0xFFFFFFFF

The reason for this discrepancy is that for C integers the return type for the unary operators ~ and - is the
type of the promoted type for the operand. If the argument is signed/unsigned int, long or long long, integer
promotion does not change the type. For example, when the operand is unsigned int, then the return type of
either ~ or - will be unsigned int. Note however that unsigned char and unsigned short get promoted to int
which makes the behavior consistent with ac_int:

unsigned short x = 0;
unsigned short mask = ~x >> 8; // mask is 0xFFFF, not 0xFF

ac_int<16,false> x = 0;
ac_int<16,false> mask = ~x >> 8; // mask is 0xFFFF

The arithmetic definition of the operator ~ makes the value result independent of the bit-width of the operand:

if x == y, then ~x == ~y // x and y may be different bitwidths

Also the arithmetic definition is consistent with the arithmetic definition of the binary (two operand) logical
operators &, |, and ^. For instance:

~(a | b) == ~a & ~b

The arithmetic definition of the logical operators &, |, ^ is necessary since signed and unsigned operands of
various bit-widths may be combined.

7.3.4. Mixing Datatypes

This section describes the conversion functions that are used to interface between the bit-accurate integer
datatypes.

Conversion Between sc_int/sc_uint and ac_int

Use the C integer conversions to go from sc_int/sc_uint to ac_int and vice versa:

 88 August 2023 AC Datatypes v4.7.0

Simulation Differences with SystemC types and with C integers
Numerical Datatype Migration Guide

ac_int<54,true> x = (Slong) y; // y is sc_int<54>
sc_int<43> y = (Slong) x; // x is ac_int<43, true>

Conversion Between sc_bigint/sc_biguint and ac_int

The C integer datatypes can be used to convert between integer datatypes without loss of precision provided
the bitwidth does not exceed 64 bits:

ac_int<54,true> x = y.to_int64(); // y is sc_bigint<54>
sc_bigint<43> y = (Slong) x; // x is ac_int<43,true>
ac_int<20,true> x = y.to_int(); // y is sc_bigint<20>

Explicit conversion functions are provided between the datatypes sc_bigint/sc_biguint and ac_int and
between sc_fixed/sc_ufixed and ac_fixed. They are provided in a different include file:

<ac_datatype_install>/include/ac_sc.h

which define the following functions:

template<int W> ac_int<W, true> to_ac(const sc_bigint<W> &val);

template<int W> ac_int<W, false> to_ac(const sc_biguint<W> &val);

template<int W> sc_bigint<W> to_sc(const ac_int<W, true> &val);

template<int W> sc_biguint<W> to_sc(const ac_int<W, false> &val);

template<int W, int I, sc_q_mode Q, sc_o_mode O, int nbits>
ac_fixed<W, I, true> to_ac(const sc_fixed<W, I, Q, O, nbits> &val);

template<int W, int I, sc_q_mode Q, sc_o_mode O, int nbits>
ac_fixed<W, I, false> to_ac(const sc_ufixed<W, I, Q, O, nbits> &val);

template<int W, int I, ac_q_mode Q, ac_o_mode O>
sc_fixed<W,I> to_sc(const ac_fixed<W, I, false, Q, O> &val);

template<int W, int I, ac_q_mode Q, ac_o_mode O>
sc_ufixed<W,I> to_sc(const ac_fixed<W, I, true, Q, O> &val);

For example:

sc_bigint<123> x = to_sc(y); // y is ac_int<123, true>

AC Datatypes v4.7.0 August 2023 89

Frequently Asked Questions on Numerical Datatypes
Frequently Asked Questions on Numerical Datatypes

Chapter 8: Frequently Asked Questions on Nu-
merical Datatypes

This section contains answers to some frequently asked questions. These questions are divided into the
following sections:

• Operators ~, &, |, ^, -, !

• Conversions to double and Operators with double

• Constructors from strings

• Shifting Operators

• Division Operators

• Compilation Problems

• Platform Dependencies

• Purify Reports

• User Defined Asserts

8.1.1. Operators ~, &, |, ^, -, !

The following section describes common issues with these operators.

Why does ~ and - for an unsigned return signed?

For a table of return values, refer to the Unary Operator section.

Why are operators &, |, ^ “arithmetically” defined?

The two operands may have different signedness, have different bit-widths or have non aligned fixed-points
(for ac_fixed). An arithmetic definition makes the most sense in this case.

Why does operator ! return different results for ac_fixed and sc_fixed?

The ! operator is not defined for sc_fixed or sc_ufixed. The behavior for sc_fixed is then equivalent to first
casting it to double and then applying the ! operator which is not correct.

 90 August 2023 AC Datatypes v4.7.0

Frequently Asked Questions on Numerical Datatypes
Frequently Asked Questions on Numerical Datatypes

8.1.2. Conversions to double and Operators with double

The following section describes common issues with using double datatypes.

Why is the implicit conversion from ac_fixed to double not defined?

The reason that there is no implicit conversion function to double is that it is impractical to define mixed
ac_fixed and double operators. For example, if there was an implicit conversion to double the expression “x +
0.1” would be computed as (double) x + 0.1 even when x is has more bits of precision than the double, thus
resulting in an unintended loss of precision.

Why are most binary operations not defined for mixed ac_fixed and double ar-
guments?

Consider the expression “x + 0.1” where x is of type ac_fixed. Arithmetic operators such as + are defined in
such a way that they return a result that does not loose precision. In order to accomplish that with a mixed
fixed-point and double operator +, the double would have to be converted to a fixed-point that is able to
represent all values that a double can assume. This would require an impractically large ac_fixed. Note that
the actual value of the constant is not used by a C++ compiler to determine the template parameters for the
minimum size ac_fixed that can hold it.

Comparison operators are defined for mixed ac_fixed and double arguments as the result is a bool and there
is no issue about losing precision. However, the comparison operator is much less efficient in terms of
runtime than using a comparison to the equivalent ac_fixed:

while(...) {
if(x > 0.5) // less efficient
...

}

could be made more efficient by storing the constant in an ac_fixed so that the overhead of converting from
double to ac_fixed is incurred once (outside the loop):

ac_fixed<1,0,false> c0_5 = 0.5;
while(...) {

if(x > c0_5) // more efficient
...

}

8.1.3. Constructors from strings

The following section describes common issues with strings.

AC Datatypes v4.7.0 August 2023 91

Frequently Asked Questions on Numerical Datatypes
Frequently Asked Questions on Numerical Datatypes

Why are constructors from strings not defined?

They would be very runtime inefficient.

8.1.4. Shifting Operators

The following section describes common issues with shifting operators.

Why does shifting gives me unexpected results?

The shift operation for ac_int/ac_fixed differs from the shift operations in SystemC and native (built-in) C
integers. See Shift Operators section. The main difference is that the shift operation for ac_int/ac_fixed
returns the type of the first operand.

ac_int<2,false> x = 1;
x << 1; // returns ac_int<2,false> (2), value is 2
x << 2; // returns ac_int<2,false> (4), value is 0
(ac_int<3,false>) x << 2; // returns ac_int<3,false> (4), value is 4

The main reason for this semantic is that for an arbitrary-length type, a definition that returns a fully arithmetic
value requires a floating return type which violates the condition that the return type should an ac_int or an
ac_fixed type. Supporting a floating return type creates a problem both for simulation speed and synthesis.
For example the type of the expression

a * ((x << k) + y)

can not be statically determined.

8.1.5. Division Operators

The following section describes common issues with division operators.

Why does division return different results for ac_fixed and sc_fixed?

Division for sc_fixed/sc_ufixed returns 64 bits of precision (or whatever SC_FXDIV_WL is defined as). The
return type for ac_fixed is defined depending on the parameters of both the dividend and divisor (refer to the
return type table for ac_fixed).

8.1.6. Compilation Problems

The following section describes common compilation issues.

Why aren’t older compilers supported?

The support of templates is not adequate in older compilers.

 92 August 2023 AC Datatypes v4.7.0

Frequently Asked Questions on Numerical Datatypes
Frequently Asked Questions on Numerical Datatypes

Why doesn’t the slc method compile in some cases?

When using the slc method in a templatized function place the keyword template before it as some compilers
may error out during parsing. For example:

template<int N>
int f(int x) {

ac_int<N,true> t = x;
ac_int<6,true> r = t.template slc<N>(4); // t.slc<N>(4) could error out
return r.to_int();

}

Without the keyword template the “t.slc<N>(4)” is parsed as “t.slc < N” since it does not know whether slc is a
data member or a method (this is known once template function f and therefore ac_int<N,true> is
instantiated).

Why do I get compiler errors related to template parameters?

If this happen while using the GCC compiler, the error might be related to the template bug on GCC that was
fixed in version 4.0.2 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23789). This compiler bug rarely showed
up when using previous versions of ac_int/ac_fixed and is even less likely on the current version of
ac_int/ac_fixed.

8.1.7. Platform Dependencies

The following section describes the supported platforms.

What platforms are supported?

The current implementation assumes that an int is 32 bits and that a long long is 64-bits, both in 2’s
complement representation. These assumptions need to be met for correct simulation of the data types. In
addition a long is assumed to be 32 bits wide, a short is assume to be 16 bits and a char is assumed to be 8
bits wide. A plain char (neither signed or unsigned) is assumed to be signed. These assumptions are only
relevant if the types are used to initialize/construct an ac_int or ac_fixed or they are used in expressions with
ac_int or ac_fixed.

8.1.8. Purify Reports

The following section describes common issues with using Purify with the AC datatypes.

Why do I get UMRs for ac_int/ac_fixed in purify?

The following code will report a UMR in purify:

AC Datatypes v4.7.0 August 2023 93

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23789

Frequently Asked Questions on Numerical Datatypes
Frequently Asked Questions on Numerical Datatypes

ac_int<2,false> x;
x[0] = 0; // UMR
x[1] = 1;

The UMR occurs because x is not initialized, but setting a bit (or a slice) requires accessing the original (un-
initialized) value of x.

A second source of UMRs is explicit calls to un-initialize an ac_int/ac_fixed that were declared static (see
section using the ac:init_array function.). This is used mostly for algorithms written for hardware design.

8.1.9. User Defined Asserts

The following section describes common issues with using asserts.

Can I control what happens when an assert is triggered?

Control over what happens when a assert is triggered is accomplished by defining the compiler directive
AC_USER_DEFINED_ASSERT to a user defined assert function before the inclusion of the AC Datatype
header(s). The following example illustrates this:

void my_assert(bool condition, const char *file=0, int line=0, const char
*msg=0);
#define AC_USER_DEFINED_ASSERT(cond, file,line,msg)
my_assert(cond,file,line,msg)
#include <ac_int.h>

When AC_USER_DEFINED_ASSERT is defined, the system header <ostream> is included instead of
<iostream>, as std::cerr is no longer required by ac_assert in that case. This feature was introduced to
reduce the application startup time penalty that can occur when including iostream for some compilers that
don't support "#pragma once". That startup time penalty is proportional on the number of translation units
(static constructor for each *.o file that includes it).

 94 August 2023 AC Datatypes v4.7.0

ac_channel Datatype
ac_channel Datatype

Chapter 9: ac_channel Datatype

Several synthesis and modeling problems become apparent when attempting to use C function calls to
describe a hierarchical system. The purpose of the AC (Algorithmic C) channel class is to simplify both
synthesis and modeling with a minimal impact on coding style and C simulation performance.

The first problem is primarily a synthesis problem. To build a streaming interface, you need to be able to
guarantee that the data communicated between two blocks is read and written in the same order. Since an
ac_channel enforces a FIFO discipline, it guarantees that the hardware can build for streaming interfaces.

The second problem is that systems are often made up of blocks that run using different amounts of data.
The first block in a system might produce data 100 values at a time, while the reader may have been written
to consume data 128 elements at a time. AC Channels automate the connection of these blocks.

Finally, many systems have feedback and the length of the feedback path must be defined in the C source.
Changing the feedback path length during synthesis would result in a design that simulates differently, which
would violate the most fundamental rule of Algorithmic Synthesis. AC Channels provide a way to define a
feedback path so it can be easily simulated and synthesized.

9.1. The ac_channel Class Definition

The fundamental operation that High Level Synthesis performs is to convert a single-threaded C/C++ model
into a high-performance, multiple-process RTL model. Each hierarchical function in the C/C++ model
becomes a process in the RTL model. To allow for more efficient synchronization of the data among
processes, the ac_channel class may be used. The restrictions are necessary to insure that the C/C++ model
and the RTL model have the same functionality while allowing the RTL to be efficiently implemented.

The ac_channel class is a C++ template class that enforces a FIFO discipline (reads occur in the same order
as writes.) From a modeling perspective, an ac_channel is implemented as a simple interface to the C++
standard queue (std::deque). That is, for modeling purposes, an ac_channel is infinite in length (writes always
succeed) and attempting to read from an empty channel generates an assertion failure (reads are non-
blocking).

Within the C/C++ model, an instance of an ac_channel may be written by a single hierarchical function and
read by a single, different, hierarchical function. In the resulting hardware, the FIFO corresponding to an
ac_channel will be written from a single process and read by a single process - thus implementing point-to-
point communication. For purposes of this discussion, the external world counts as a process. If a channel
appears in the top-level interface of a design and is only written by the design, then the external environment
is assumed to be the unique reader. Likewise, the external environment is assumed to be the writer of a
channel which is only read.

AC Datatypes v4.7.0 August 2023 95

ac_channel Member Functions
ac_channel Datatype

9.2. ac_channel Member Functions

The ac_channel constructor includes the ability to add a set of values that are read before the inputs to the
channel are read. This is most commonly used to set the size of the feedback path, but also has other
applications in the feed-forward path to control the ramp-up of the system.

9.2.1. Member Function: ac_channel()

Example usage:

ac_channel<ac_fixed<12,6> > my_channel;

Description:

Note: You must put a space between any two ">" characters or you will get a compiler error because the
parser treats ">>" as a right shift operator.

This will construct a channel with a 6.6 fixed-point datatype. No other information is required to create a
channel.

9.2.2. Member Function: ac_channel(prefill_num)

Example usage:

ac_channel<int> my_channel(16);

Description:

This constructs a channel with a 32-bit value and pre-fills the channel with 16 values. For the built-in C++
datatypes char, short, int, unsigned, long, float and double the value in the channel is a different random
number for each element in the fifo. For all other datatypes, the default constructor is called to set the values.

9.2.3. Member Function: ac_channel(prefill_num, value)

Example usage:

typedef struct { int re; int im; } complex;
const complex init_complex = {4,5};
ac_channel <complex> my_channel(16, init_complex);

Description:

This will construct a channel and pre-fill the channel with 16 complex variables where "re" is 4 and "im" is 5.
This channel is most commonly used for designs with feedback to set the depth of the feedback path while
still providing valid data.

 96 August 2023 AC Datatypes v4.7.0

Synthesizable Member and non-Member Functions
ac_channel Datatype

9.3. Synthesizable Member and non-Member Functions

These functions can be synthesized into hardware. All constructor member functions are also synthesizable.
The specific hardware that is created for each of these member functions will be discussed when the different
design styles are covered.

9.3.1. Member Function: val read() or read(&val)

Example usage:

ac_channel<int> my_channel(16);
…
int first_value = my_channel.read();
int second_value;
my_channel.read(second_value);

Description:

The read member functions are equivalent and two member functions are only provided to allow different
coding styles. The code above would read two values, the first would be put into first_value and the second
would be put into second_value.

NOTE: Do not call the read() function multiple times for the same channel in a single statement. This is
because the order in which expressions and subexpressions are evaluated (left-to-right, right-to-left or other)
is undefined by C/C++ language standards, and consequently varies from one compiler to another.
Unexpected results can occur if a code statement contains order dependent (sub)expressions in which a
variable is both read and modified. For example, the following statement is potentially problematic because it
is left to the compiler to decide the order in which the read() functions are evaluated:

 output->write(input1->read()*5 + input1->read()*7)

9.3.2. Member Function: bool nb_read(&val)

Example usage:

ac_channel<uint8> &pri0, &pri1;
uint8 read_out1, read_out2;
…
if (pri0.nb_read(read_out1))
 out.write(read_out1);
else if (pri1.nb_read(read_out2))
 out.write(read_out2);

Description:

AC Datatypes v4.7.0 August 2023 97

Synthesizable Member and non-Member Functions
ac_channel Datatype

The “bool nb_read(T &val)” function will test for the presence of data in the channel and read that data if it is
available. This function returns boolean false if no data is available. Otherwise it returns true, pops the first
value in the channel and assigns it to the “val” argument. It is capable of completing in one cycle in hardware.

NOTE: When you are verifying the behavior of the C++ design against the resulting RTL netlist, the non-
blocking read execution order may be different between the C++ and the RTL. The RTL will implement a
viable schedule of the C++ but the C++ testbench is not guaranteed to provide data in a way that causes the
C++ execution to exactly match the RTL execution.

9.3.3. Member Function: write(val)

Example usage:

ac_channel<int> my_channel(16);
…
int temp = f(x);
my_channel.write(temp);

Description:

Write a new value into the channel. Since channels are typed, the value written must be convertible to the
type stored in the channel.

9.3.4. Member Function: bool nb_write(val)

Example usage:

if (out.nb_write(temp)) {
 temp = in.read();
}

Description:

The nb_write member function will test for the ability to write data to an output port and will write the val
argument to the output and return true if the data can be written. The function returns false if no data can be
written. It is capable of completing in one cycle in hardware.

NOTE: When you are verifying the behavior of the C++ design against the resulting RTL netlist, the non-
blocking write execution order may be different between C++ and RTL. The RTL will implement a viable
schedule of the C++ but the C++ testbench is not guaranteed to provide data in a way that causes the C++
execution to exactly match the RTL execution.

9.3.5. Member Function: bool available(num)

Example usage:

if (my_channel.available(N)) {

 98 August 2023 AC Datatypes v4.7.0

Synthesizable Member and non-Member Functions
ac_channel Datatype

 acc = 0;
 for (int i = 0; i < N; i++)
 acc += my_channel.read();
}

Description:

The available member function is used to guard reads from a channel. This check must be done at the start
of any function where you cannot predict the amount of data in the input channel.

You may pass an integer variable to the available function. During synthesis, the “available()” function is
always considered to return true and the read from the channel is changed to be a blocking read. This
transformation allows fast C simulation while still providing good hardware performance.

9.3.6. Member Function: int size()

Example usage:

ac_channel<uint8> &pri0;
…
if (pri0.size() > 0)
 out.write(pri0.read());

Description:

This member function returns the number of data elements currently in the ac_channel. It synthesizes as
non-blocking.

Notes:

• Currently size() is supported only for reading channels, not for writing.

• You may not read the size of the channel and also read data in the channel in a single cycle. For
example, the following statement requires two cycles:

if (input.size() > 0)
 data = input.read();

• Do not use “==” operator to test the return value of size() because it could create a deadlock situation.
For example, if the code is testing for “size == 1" and size grows to 2 before the test, then the
statement will never be true and the design will deadlock. Use other relational operators (>, >=, !=, and
so on) instead.

9.3.7. Function: nb_read_join(Args&... args)

This global function allows the “joining” of any number of ac_channel non-blocking reads so that the read

AC Datatypes v4.7.0 August 2023 99

Synthesizable Member and non-Member Functions
ac_channel Datatype

succeeds only if all ac_channels have data available. This function is only available with C++11 or later as it
is implemented with variadic templates.

template<typename ...Args>
bool nb_read_join(Args&... args);

The function takes any number of ac_channels and arrays of ac_channels as arguments along with the
variables where the read values are stored. If all channels have data, they are all read and the function
returns true, otherwise none are read and the function returns false. Each ac_channel<T> (or array of
ac_channel<T>) are paired with the argument of type T (or array of type T) where the read values are
returned by the function. For example:

ac_channel<short> a; short av;
ac_channle<int> b[2]; int bv;
…
if (nb_read_join(a, av, b, bv)) {
 // all channels a, b[0] and b[1] are read. Values are stored in av, bv[0] and
bv[1]
} else {
 // none of the channels are read
}

9.4. Non-synthesizable Member Functions

These member functions may only be used in testbenches or other areas of the C++ code that will not be
synthesized.

9.4.1. Member Function: bool empty()

Example usage:

ac_channel<int> my_channel;
my_channel.write(10);
my_channel.write(45);
consume_data(my_channel); // This function reads from the channel
if (my_channel.empty())
 cout << "All values were read from my_channel and it is now empty" << endl;

Description:

This function returns true if there are no values stored in the channel. This is equivalent to checking if size()
returned zero.

 100 August 2023 AC Datatypes v4.7.0

Non-synthesizable Member Functions
ac_channel Datatype

9.4.2. Member Function: bool operator ==

Example usage:

#include <ac_channel.h>
#include <ac_int.h>

int main (void) {

 ac_channel<int> chan1;
 ac_channel<int> chan2;

 chan1.write(10);
 chan2.write(10);

 if (chan1 == chan2)
 std::cout << "EQUAL" << std::endl;
 else
 std::cout << "NOT EQUAL" << std::endl;

 return 0;
}

Description:

This function compares every element in a channel to verify that the two channels have exactly the same
contents. This function requires that the base type (in this case, int) be the same for both operands. This
function will return false if any element in the two channels is different or if the number of elements in the
channels is different.

9.4.3. Member Function: bool operator !=

Example usage:

#include <ac_channel.h>
#include <ac_int.h>

int main (void) {

 ac_channel<int> chan1;
 ac_channel<int> chan2;

 chan1.write(10);
 han2.write(15);

AC Datatypes v4.7.0 August 2023 101

Non-synthesizable Member Functions
ac_channel Datatype

 if (chan1 != chan2)
 std::cout << "EQUAL" << std::endl;
 else
 std::cout << "NOT EQUAL" << std::endl;

 return 0;
}

Description:

This function compares two channels and returns true if the number of the channels have a different number
of elements or if the contents of the channels are different. This is equivalent to the negation of the ==
operator.

9.4.4. Member Function: val operator[int]

Example usage:

#include <ac_channel.h>
#include <ac_int.h>

int main (void) {

 ac_channel<int> chan1;

 …
 // This loop prints the values from the channel without popping/destroying
 for (int j = 0; j < chan1.size(); j++)
 std::cout << chan1[j];
 return 0;
}

Description:

The [] operator returns a value that is stored in the channel without popping the value from the channel (i.e. it
is a peek). If you think of the channel as an array with element zero being the next one to be read, then this
operator returns an element from that array. For example, my_chan[0] is the value the would be read next
from the FIFO and my_chan[my_chan.size()-1] is the last value written into the channel.

9.4.5. Member Function: reset()

Example usage:

ac_channel<int> my_channel(16);
…
if (clear_chan_condition)

 102 August 2023 AC Datatypes v4.7.0

Non-synthesizable Member Functions
ac_channel Datatype

 my_channel.reset();

Description:

This function will set the channel to the same state that it was in immediately after construction. So, if the
channel has a set of initial values, then the same values will be in the channel after reset(). All data currently
in the channel is lost.

NOTE: This function may cause simulation mismatches when used on any channel implemented in the RTL
or directly connected to the RTL. Calling reset on these channels will cause the state of the C simulation to
mismatch with the hardware simulation and may cause the testbench to report a failure on a correct design.

9.5. Example Design Using Hierarchical Blocks With
ac_channel

The most common use of ac_channels is as a communication pipe between two hierarchical blocks in a
design. In this case, the blocks are assumed to run continuously and only stall when there is insufficient input.
In the example design below, the block “block_add_avg()” reads two input values from each input channel,
computes their average and returns the sum of the averages. The second block “block_mult()” returns the
product of the two input values.

void block_add_avg(
 ac_channel<int> &op1,
 ac_channel<int> &op2,
 ac_channel<int> &ret)
{
#ifndef __SYNTHESIS__
 while (op1.available(2) && op2.available(2))
#endif
 {
 int avg1 = (op1.read()+op1.read())/2; // average 2 samples from op1
 int avg2 = (op2.read()+op2.read())/2; // average 2 samples from op2
 ret.write(avg1+avg2); // return sum of averages
 }
}

void block_mult(
 ac_channel<int> &op1,
 ac_channel<int> &op2,
 ac_channel<int> &ret)
{
#ifndef __SYNTHESIS__
 while (op1.available(1) && op2.available(1))
#endif
 {

AC Datatypes v4.7.0 August 2023 103

Example Design Using Hierarchical Blocks With ac_channel
ac_channel Datatype

 ret.write(op1.read() * op2.read());
 }
}

void top(
 ac_channel<int> &add1,
 ac_channel<int> &add2,
 ac_channel<int> &coeff,
 ac_channel<int> &result)
{
 static ac_channel<int> sum;
 block_add_avg(add1, add2, sum);
 block_mult(sum, coeff, result);
}

In this example, the execution of the body of block_add_avg() and block_mult() is guarded by calls to the
channel available() functions. This allows the C++ simulation to continue running a block as long as there is
data in the channel. When the channels are empty, the C++ design basically does nothing until the testbench
pushes more data into the channels. Likewise, in the resulting hardware the available() calls are filtered out
and each blocks runs continuously as long as the input channel/pipe has data to feed.

9.6. Example Design Using Non-Blocking size() Method

This example arbiter design contains four processes that are all trying to write to a shared resource, the
output bus. The arbiter function implements a rotation-based (or round robin) arbitration algorithm to read
from each process, one after the other. Using non-blocking reads, if no data is available when the read is
attempted, the arbiter moves on to the next process. Illustration 1 illustrates the major features of the design.

The C++ code implementation is shown in the following example. In, top.cpp, blocks A,B,C,D implement the
client processes trying to access the output bus. Each of these blocks reads its input ac_channel using the
blocking read() method, then writes the modified data to its output FIFO on each successful read.

 104 August 2023 AC Datatypes v4.7.0

Illustration 1: Graphics View of Design Example

Example Design Using Non-Blocking size() Method
ac_channel Datatype

The arbiter block first uses the non-blocking size() method to check for data availability in the output FIFO of
each process block. Second, for those processes that have data in their FIFOs, the arbiter selects one
process to be served based on the rotation arbitration algorithm. Third, it reads the selected process FIFO
(blocking method) and writes the data to the bus. Finally, the arbiter updates the serving priority based on
rotation algorithm.

Example 1 Arbiter Example Using Non-Blocking size() Method

#include <ac_channel.h>
#include <ac_int.h>

#pragma hls_design
void block_A(ac_channel<uint8> &in, uint8 &offset, ac_channel<uint8> &out)
{
#ifndef __SYNTHESIS__
 while (in.available(1))
#endif
 {
 out.write(in.read()+offset);
 }
}

#pragma hls_design
void block_B(ac_channel<uint8> &in, uint8 &offset, ac_channel<uint8> &out)
{
#ifndef __SYNTHESIS__
 while (in.available(1))
#endif
 {
 out.write(in.read()+offset);
 }
}

#pragma hls_design
void block_C(ac_channel<uint8> &in, uint8 &offset, ac_channel<uint8> &out)
{
#ifndef __SYNTHESIS__
 while (in.available(1))
#endif
 {
 out.write(in.read()+offset);
 }
}

#pragma hls_design
void block_D(ac_channel<uint8> &in, uint8 &offset, ac_channel<uint8> &out)

AC Datatypes v4.7.0 August 2023 105

Example Design Using Non-Blocking size() Method
ac_channel Datatype

{
#ifndef __SYNTHESIS__
 while (in.available(1))
#endif
 {
 out.write(in.read()+offset);
 }
}

#pragma hls_design
void arbiter(ac_channel<uint8> &pri0,
 ac_channel<uint8> &pri1,
 ac_channel<uint8> &pri2,
 ac_channel<uint8> &pri3,
 ac_channel<uint8> &out)
{
 static uint4 priority = 1;
 ac_int<4,false> p_rdy;

 // Non-blocking “size()” function is used here to
 // check for output data in all process block FIFOs */
 p_rdy[0] = pri0.size() > 0;
 p_rdy[1] = pri1.size() > 0;
 p_rdy[2] = pri2.size() > 0;
 p_rdy[3] = pri3.size() > 0;

 uint4 temp_priority=priority;
 for (int i=0;i<4;i++){
 if (p_rdy & temp_priority){
 p_rdy = p_rdy & temp_priority;
 break;
 }
 uint1 temp = temp_priority[3];
 temp_priority = temp_priority << 1;
 temp_priority[0] = temp;
 }

 // Arbiter read data from the selected process block
 // and write it to the bus (arbiter output FIFO)
 if (p_rdy[0])
 { out.write(pri0.read()); }
 else if (p_rdy[1])
 { out.write(pri1.read()); }
 else if (p_rdy[2])
 { out.write(pri2.read()); }

 106 August 2023 AC Datatypes v4.7.0

Example Design Using Non-Blocking size() Method
ac_channel Datatype

 else if (p_rdy[3])
 { out.write(pri3.read()); }

 // Update priority setting for next cycle.
 if (p_rdy) {
 priority = temp_priority;
 uint1 temp = priority[3];
 priority <<= 1;
 priority[0] = temp;
 }
}

#pragma hls_design top
void top(uint8 & offset1,
 uint8 & offset2,
 uint8 & offset3,
 uint8 & offset4,
 ac_channel <uint8> &in_A,
 ac_channel <uint8> &in_B,
 ac_channel <uint8> &in_C,
 ac_channel <uint8> &in_D,
 ac_channel <uint8> &out)
{
 static ac_channel<uint8> pri0, pri1, pri2, pri3;
 block_A(in_A, offset1, pri0);
 block_B(in_B, offset2, pri1);
 block_C(in_C, offset3, pri2);
 block_D(in_D, offset4, pri3);
 arbiter(pri0,pri1,pri2,pri3,out);
}

Using the following testbench, you can verify the arbiter design.

NOTE: Because this design uses non-blocking reads, the simulation that compares the RTL against the C++
may produce mismatches due to the execution order of the non-blocking reads in the C++ design. The RTL
will produce a viable implementation but the simulation may not match the C++ design.

Example 2 Testbench for Arbiter Example Design

#include <ac_channel.h>
#include <ac_int.h>

int tb_arbiter(int argc, char *argv[]) {
 static ac_channel<uint8> in_A, in_B, in_C, in_D;
 static ac_channel<uint8> out;

AC Datatypes v4.7.0 August 2023 107

Example Design Using Non-Blocking size() Method
ac_channel Datatype

 uint8 tmp;
 uint8 offset = 0;
 for (int i=0; i<10;i++) {
 in_A.write(rand() % 255);
 in_B.write(rand() % 255);
 in_C.write(rand() % 255);
 in_D.write(rand() % 255);

 top(offset, offset, offset, offset,
 in_A, in_B, in_C, in_D, out);

 while(out.available(1)) { // dump outputs
 tmp = out.read();
 printf("out = %d\n",tmp.to_int());
 }
 }
 return 0;
}

 108 August 2023 AC Datatypes v4.7.0

	Chapter 1: Overview of Algorithmic C Datatypes
	1.1. Overview of Numerical Algorithmic C Datatypes
	1.1.1. Usage of Numerical AC Datatypes
	1.1.2. Usage of Numerical AC Datatypes within SystemC
	1.1.3. Definition and Implementation Overview
	1.1.4. Implementation Guidelines
	1.1.5. Implementation Assumptions

	1.2. Overview of Interface Algorithmic C Datatypes

	Chapter 2: Arbitrary-Length Bit-Accurate Integer and Fixed-Point Datatypes
	2.1. Quantization and Overflow
	2.2. Using the ac_int and ac_fixed Datatypes
	2.3. Operators and Methods
	2.3.1. Binary Arithmetic and Logical Operators
	Mixed ac_int, ac_fixed and C Integer Operators
	Mixed ac_int and C pointer for + and - Operators

	2.3.2. Relational Operators
	2.3.3. Shift Operators
	Mixed ac_int, ac_fixed and C Integer
	Differences with SystemC sc_bigint/sc_biguint Types
	Differences with Native C Integer Types

	2.3.4. Unary Operators: +, -, ~ and !
	2.3.5. Bit Complement
	2.3.6. Increment and Decrement Operators
	2.3.7. Conversion Operators to C Integer Types
	2.3.8. Explicit Conversion Methods
	2.3.9. Bit Select Operator: []
	Out of Bounds Behavior

	2.3.10. Slice Read Method: slc
	Out of Bounds Slice Reads
	Differences with SystemC sc_bigint/sc_biguint Types

	2.3.11. Slice Write Method: set_slc
	Out of Bounds Slice Writes
	Differences with Built-in C Integral Types

	2.3.12. Range Method: range<msb,lsb>()
	2.3.13. The set_val Method
	2.3.14. Constructors
	2.3.15. Methods to Fill Bits
	2.3.16. IO Methods
	2.3.17. Mixing ac_int and ac_fixed with Other Datatypes

	2.4. Advanced Utility Functions, Typedefs, etc.
	2.4.1. Accessing Parameter Information
	2.4.2. Using ac::init_array for Initializing Arrays
	Other ac::init_array Examples:

	2.4.3. Static Computation of log2 Functions
	2.4.4. Return Type for Unary and Binary Operators

	2.5. Methods and Utility Functions for Floating Point
	2.5.1. Leading Sign and Normalization
	2.5.2. Utility Function to Extract Exponent/Sign/Mantissa from Literal Constants

	Chapter 3: Arbitrary-Length Bit-Accurate Floating-Point Datatypes
	3.1.1. Mixed ac_float and other types
	3.1.2. Shift Operators
	3.1.3. The set_val Method
	3.1.4. Constructors
	3.1.5. Accessing Parameter Information
	3.1.6. Using ac::init_array for Initializing Arrays

	Chapter 4: Arbitrary-Length Bit-Accurate Standard Floating-Point Datatypes
	4.1. IEEE Floating-point: ac_ieee_float
	Acceleration using C++ float and double
	Constructors
	Conversion Operators
	Explicit Conversion Methods
	Raw Data Access Methods
	Arithmetic Member Functions
	Arithmetic Binary Operators
	Arithmetic Assign Operators
	Relational Operators
	Unary Operators
	Member Functions
	Member Functions to Query Type of Value
	Operator to Print
	Static Data Members
	Static Member Functions
	Functions under std namespace

	4.2. Brain Floating-point from Google: ac::bfloat16
	Constructors
	Conversion Operators
	Explicit Conversion Methods
	Raw Data Access Methods
	Arithmetic Member Functions
	Arithmetic Binary Operators
	Arithmetic Assign Operators
	Relational Operators
	Unary Operators
	Member Functions
	Member Functions to Query Type of Value
	Operator to Print
	Static Data Members
	Static Member Functions
	Functions under std namespace

	4.3. General Standard Floating-point: ac_std_float
	Constructors
	Explicit Conversion Methods
	Arithmetic Member Functions
	Arithmetic Binary Operators
	Arithmetic Assign Operators
	Relational Operators
	Unary Operators
	Member Functions
	Member Function to Query Type of Value
	Operator to Print
	Static Data Members
	Static Member Functions
	Closest Equivalent ac_float

	4.4. Overriding with alternative implementations
	Overriding core division function
	Overriding the floating-point arithmetic methods

	Chapter 5: Complex Datatype
	5.1. Usage of ac_complex
	5.2. Advanced utility functions, typedefs, etc for ac_complex
	5.2.1. Accessing the Underlying (Element) Type
	5.2.2. Using ac::init_array for Initializing Arrays
	5.2.3. Return Type for Unary and Binary Operators

	Chapter 6: Reference Guide for Numerical Algorithmic C Datatypes
	6.1. Functions and Operators
	6.1.1. Constructors
	6.1.2. Conversions
	6.1.3. Arithmetic, Relational and Shift Operators and Methods
	6.1.4. Bit and Slice Operators and Methods
	6.1.5. Logical Operators and Methods
	6.1.6. Other Functions and Methods
	6.1.7. Mantissa/Exponent Extraction of float/double
	6.1.8. SystemC Tracing Functions
	6.1.9. Explicit conversions to/from SystemC Types

	6.2. Enumerations, Static Constants and Type Definitions
	6.2.1. General Enumerations
	6.2.2. Enumerations for Fixed-point Quantization and Overflow Modes
	6.2.3. Static Constant Members and Type Definitions to Capture Properties of Types
	6.2.4. Type Definitions for Signed and Unsigned ac_ints
	6.2.5. Utility Enumerations and Type Definitions Based on Template Arguments
	Static Computation of Bit-width and Type Based on Range
	Minimal Size Destination Type to Represent a Source Type
	Return Type Infrastructure for Binary Operators and Methods

	6.3. Macros
	6.3.1. User Definable Macros
	6.3.2. Utility Macros

	Chapter 7: Numerical Datatype Migration Guide
	7.1. General Compilation Issues
	7.2. SystemC Syntax
	7.2.1. SystemC to AC Differences in Methods/Operators
	Methods: range in SystemC to slc and set_slc in ac_int or ac_fixed
	Concatenation
	Other Methods

	7.2.2. Support for SystemC sc_trace Methods

	7.3. Simulation Differences with SystemC types and with C integers
	7.3.1. Limited Precision vs. Arbitrary Precision
	7.3.2. Implementation Deficiencies of sc_int/sc_uint
	7.3.3. Differences Due to Definition
	Initialization
	Shift Operators
	SystemC Types
	Differences with Native C Integer Types
	Differences for the range/slice Methods
	Conversion Methods
	Unary Operators ~, - and Binary Operators &, |, ^

	7.3.4. Mixing Datatypes
	Conversion Between sc_int/sc_uint and ac_int
	Conversion Between sc_bigint/sc_biguint and ac_int

	Chapter 8: Frequently Asked Questions on Numerical Datatypes
	8.1.1. Operators ~, &, |, ^, -, !
	Why does ~ and - for an unsigned return signed?
	Why are operators &, |, ^ “arithmetically” defined?
	Why does operator ! return different results for ac_fixed and sc_fixed?

	8.1.2. Conversions to double and Operators with double
	Why is the implicit conversion from ac_fixed to double not defined?
	Why are most binary operations not defined for mixed ac_fixed and double arguments?

	8.1.3. Constructors from strings
	Why are constructors from strings not defined?

	8.1.4. Shifting Operators
	Why does shifting gives me unexpected results?

	8.1.5. Division Operators
	Why does division return different results for ac_fixed and sc_fixed?

	8.1.6. Compilation Problems
	Why aren’t older compilers supported?
	Why doesn’t the slc method compile in some cases?
	Why do I get compiler errors related to template parameters?

	8.1.7. Platform Dependencies
	What platforms are supported?

	8.1.8. Purify Reports
	Why do I get UMRs for ac_int/ac_fixed in purify?

	8.1.9. User Defined Asserts
	Can I control what happens when an assert is triggered?

	Chapter 9: ac_channel Datatype
	9.1. The ac_channel Class Definition
	9.2. ac_channel Member Functions
	9.2.1. Member Function: ac_channel()
	9.2.2. Member Function: ac_channel(prefill_num)
	9.2.3. Member Function: ac_channel(prefill_num, value)

	9.3. Synthesizable Member and non-Member Functions
	9.3.1. Member Function: val read() or read(&val)
	9.3.2. Member Function: bool nb_read(&val)
	9.3.3. Member Function: write(val)
	9.3.4. Member Function: bool nb_write(val)
	9.3.5. Member Function: bool available(num)
	9.3.6. Member Function: int size()
	9.3.7. Function: nb_read_join(Args&... args)

	9.4. Non-synthesizable Member Functions
	9.4.1. Member Function: bool empty()
	9.4.2. Member Function: bool operator ==
	9.4.3. Member Function: bool operator !=
	9.4.4. Member Function: val operator[int]
	9.4.5. Member Function: reset()

	9.5. Example Design Using Hierarchical Blocks With ac_channel
	9.6. Example Design Using Non-Blocking size() Method

