SIEMENS EDA

Algorithmic C (AC)
Datatypes
Release Notes

Software Version v4.8.0
October 2023

SIEMENS

Copyright 2004 Siemens

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed

on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

Table of Contents

Table of Contents

Bit-ACCUIAtE DataltyPeS....uuuueiiiiiiiirrrrirrrrrrnrnmmnsssssssssssssssrrrr e e e e s e s s s s nmsmssssssssssssssssseremmmrennnnnnmmnsssssssssssssnssssnsnnsnnnsn 1
(O gT= T oL LTI 58 S 2 1
Update integration of VCD trace API for AC types iN @C_SC.N..........ovmeiiiiiiiiiiiiiiiiieeeeeee e 1
(O o =V o TS 0 1 A O 1
Fixed issues with ac_int::reverse method defined in @C iNt.N.............cooevieuiiiiiiii e, 1
Added a new method, ac_int::reversed method defined in ac_iNt.N.............ccccceeeeeiiiiiiiiiiiiiiii e 1
(O T T LT IR 0 T T 2
Added stack trace on empty CRANNEI FEAU..................coo ettt a e 2
Fixed CdesignChecker iSSue in aC_COMPIEX.N............oooemrmriieiee ettt e et eaiaeaaan 2
New hook to integrate Value Range Analysis feature in ac_fiXed.N............cccceeeeeeiiiiiiiiiiiiiiiiiiiiiieeiiiieeaia, 2
Variadic Template parameter added t0 @C_SYNC.N............ommmmeeiiiiiiiie i 2
(O o =V o [T 1 G O 2
Fixed IEEE floating-point compliance issues for types in ac_std_float.h for operators/methods
add/fma/sqrt with respect to returning +0 VS -0...........coooiooiiiiiieeeeeeee ettt 2
Improved the implementation of the '+' and "' operators for types in ac_std_float.h (ac_std_float,
ac_ieee_float, ac::bfloat16) for better QUAlILY Of RESUILS.............vuuuueeeeeiieeie et a e e e e aaaaaan 3
Replaced implementation for writing bit(s) for ac_int and ac_fixed to more robust version that should not
be incorrectly optimized by compilers when the ac_int or ac_fixed variable is uninitialized....................... 3
CRANGES 1N 4.5.0. ...ttt e e oo oo oo 4ottt et et e e e e e e e e e e e e n e 3
CRANGES 1N 44,2, ettt e oo oo o4 oot ettt et e e e e e e e e e e e e e e e e e 3
(O T T T IR 0 S 3
CRANGES 1N 4.4.0... ettt e e e oo oo o4 oo bbbt et e e ettt et e e e e e e e e e e e e e e e aa e 4
Fixed issues with ac_complex of the types defined in ac_std_float.h...............cccoceeiiiii i, 4
(1T oo LT IR S0 2 4
Added methods and_reduce, or_reduce and xor_reduce t0 ac_fiXed.........ccccevviiiireeeiiiiiieiiiiiiiiiine e 4
Changes to ac_float constructor from ac_float with different parameters................coovviiiiiiiviiiinnnnn, 4
Fixed incorrect behavior for conversion from ac_std_float to another ac_std_float type, but that has
SAME EXPONENT WITTN. ...ttt e e e e e e e e e e e e e e bbbt ettt e et e e e e e e e e e e e e e e e e e e s nnnnnes 4
Added missing constructor for ac_std_float from ac_int..........cc.ooooiiii i 5
(O o =V o TS 1 0 5
Fixed issues standard floating-point types: ac_std_float, ac_ieee_float and ac::bfloat16...................... 5
Added conversion methods to ac_int, int and long long for standard floating-point types: ac_std_float,
ac_ieee_float and ac::bflOAtLB.oouiiiiiiiiiiii a1 5
Fixed issues with python ac_pp.py pretty printing in dgb for ac_compleX.............cccccovivrriiiiiiin e, 5
CRANGES N 4. 1.0, ..ttt et e e oo e e o4 oo e e e et e et e e e e e e e e e e e e e e e nn e 5
Operator+ made const for ac_int, ac_fixed and ac_COMPIEX.......ccceeriiriiiiiiiiiiiin e e 5
Added conversion function to_ac_ieee_float() and unary operator ! to bfloatl6................cccccoeevveniens 5
Fixed incorrect overflow behavior with types in ac_std_float with AC_RND_INF..............cccooeiiiiiiiiinnnns 6
Fixed incorrect behavior of method copysign() for ac_ieee float and ac::bfloatl6.................cccceevennies 6
Fixed missing return for ac_std_float 0perator *=.............ciiiiiiiiii i 6
Updated ostream operator << for classes in ac_std_float.hn..........cccccoeviiiiiiiiicc e, 6

AC Datatypes v4.8.0 October 2023 iii

Table of Contents

Additional argument added to method to_string for ac_int and ac_fixed.............cccccvieiiiiriiiiii e, 6
Fixed ubsan errors on left shift of long long type use iniv_divand iv_remin ac_int.h........................... 7
Fixed Clang Warnings in ac_std_float.N.........cooiiiiiiiiee e 7
CRANGES 1N 4.0.0. ...ttt e e e oot oo oo e ettt e e e et e e e e e e et n e 7
New Standard FIoating-POiNt DALALYPES.uuuuuuueieeieee ettt st et e e e e e e e e e e e e ettt e e e easaaaaees 7
Range methods for ac_int @nNd @C_FIXEU...............eiii e e ettt ettt s et e e e e e e e e aaaaaaaaas 7
(O =T o TSI T T R 8
Joined non blocking read function for aC_CRANNEL......................cooveeeeeiieeee et 8
CANGES 1N B.0.4 et e oottt e et e e e e e e e e e 8
Return type of slc method for ac_int and ac_fiXed.............uuuueiiiiiiiii e 8
CONSEIUCLOrS Of AC COMPIEX....uuueiiiii i e et s s e e e e e e e e e e e e e e eeeaat e e eebanaaaeens 8
(O T T LT TG T8 T F 9
(O g =Yg o TSI T = Vot o1 o1 €= 9
Cleanup related t0 AC VAL MAX ... it e s e e e e e e e e e e e e e e e e e et e e e st e e e estaeeeenes 9
(O T oo LTS TG 78 9
Out of bound array write on ac_int % operator for wide OPErands.............eeeeevviieeeeeeniinniiiiiie e 9
Runtime error reported on Undefined Behavior Sanitizer on left shifts when first operand is of builtin
1077 8 L1 1 SRR 9
(O T g LT 0 TG 78 T O 9
Mixed operators for ac_int and AC_fIXEU........ccoviiiiii i e e e e 9
Detailed desCription Of tNE ISSUE.........iiiiiiiiii i e e e e e e e e s 10
Y= 0 1o P 11
Changes to bit_fill iN AC _INL...........oooiiii e e e e e e e e e e e e e e e e e e eaee 11
Arithmetic assign operators for aC_flOat...........ccoiiiii i e 11
CRANGES 1N 3.9.0. .ttt e e oo o4 4o e ettt e e et e e e e e e e e e e et e e a e e e aeene 12
UpPdates t0 AC_CHANNEL.. ... e e e et e ettt e e e e e e e e e e e e e e eeeae e eeas 12
FIXeS/UPAAtes t0 AC_FlO@L........uuuuiiii it e e e e e 12
Do I O Y = F SR 1 1 F= ol (o PO PP PP PT 12
Added hex and oct handling for oStream OPErator <<...........ciiiiierieiiiiin e e e e eans 12
Fencing for macro defines for true and falSE.........c.uuuii i 13
CLANG WWaIINGS. .t ttttttieeeee ettt e e e e e e e e e e oo e ettt ettt ettt e e e e e e e e e e e e s e n bbb bbb s s e e e e e e e sbb e e e e e 13
(O30 F= o =TS o I 70 T PP PPPTT TP TSPPPPPPN 13
Fixed trace functions to Work with SYStemC 2.3.2........ccciiiiiiiiece e 13
Shift operator for ac_fixed With C INTEGET TYPES........oeeiiiiiiiiiei e e e e e aaans 13
Removed operator %= for ac_fixed With @C_iNt...........ccooiiii oo 13
O O o =T =T 011 g TSI LTS Y g 1T PR 13
(O T T LT TG TR T 13
L D (o] (o 17 o 1Y, =11 o T PP 13
Workaround Fix for Visual C++ 2015 BUQ......cciiiuiiiiieiieiiiii e eeeeeiss e e ee et s e e s e eatas e e st s s et e e ssneeanneeennaeees 13
LAY = T4 1T o =P 14
(O30 F= a0 =TS o T T PSP PPP PP PSSPPPPPPN 14
D (o = Lo o T | T 14
(O T T T TG T 14
Change 10 APACNE LICENSE.coiiiiiiiii ettt ettt et e e e e e e e e e s s s s s bbbt b nereeeeeeees 14
Changes and ENNanCEMENTS 1N 3.6.......cuuuii i e e e et s e e e e et s e e s e etta e e e e e eata e e e e eerenn e eeennaes 14
2 | PP 14
Bt COMPIBIMENL......eeeeeeeeeeeee ettt e et e e oottt ettt e e e e e e e e e e e e e bbb e e e e e e e e e ntnanes 15

AC Datatypes v4.8.0 October 2023 iv

Table of Contents

Restructured and Enhanced Type INfrasStrUCtUre..........cccuuuii i 16
Y= LU (ol @] o S ALY =T 0] o= = P 16

LT Va1 o LT PT TR PPPPPPRPPRRIN 16

[To Yot U1 U= o1 =1 o) o 16
(@0] (= To (=0 [= 0] o] 1=T 1 o 1S PSRRI 16
Changes and ENhanCemMENLS IN 3.5, ...euuiiiiiiiii ittt e e e e e e e e e e e e e e e e e e e aaaaeeeaaa s 17
(O] g =Tod (=10 I = f0] o] [T o 4 1SS 17
Changes and ENhanCEMENTS IN 3.4 .. e oot e e e e e e e e e et et e ettt e e e e e e e e e e aaaaeeeannns 17
Changes and ENhanCemMENTS IN 3.3 i ittt et e e e e e e e e e e e s s e bbbt r e e e e e e e e aeeeeeeeenes 18
FX [0 [=To I= Vo o] o F= U 1 1= N o F= 1S 18
Changes and ENhanCemENTS IN B.2. 1.uuiiiiiiiiei e s bbb e e e e e eeeeeearanans 18
[0] g = T To=T 0 0= o1 £ PP UPPPPPPPT 18
Changes and ENhanCemMENTS IN 3.2,ottt e e e e e e e e e e e r e e e e e e e e eeeeeeeeene 18
(O] g =Tod (=To [e f0] o] [T o 4 1S3 18
Changes and ENhanCeMENTS IN 3.0,t e ettt et e e e e e e e e e e s s e bbbt e e e e e e e e e eaeeeeeeeenes 19
Changes to ac_fixed with Symmetric SAtUratioN.............uuueeiiiiiiiiiiieeeiii e 19
Reducing UnNNecesSary WAaAININGS.uuuuuiiiiiiiiiiieeeeeeeeeeeeeeeeaeaiat s s s e e e e e eaaaeeeeeeseesstrbta e aaaeeaaaaaeas 20
=10V oL a1 T T]] TS 20
(O] g =Tod (=0 I = T0] o] [T o 4 1SS 20
Changes and ENhanCemENtS N 3.0uuuiiiiiiiiiiiiiieeee ettt et e e e e e e s s s r e e e e e e e e aeeeeeeennes 20
(O0] g =Toi(=To [ed 0] o] =T 1 o S PP PP TP PTPPPP 20
Known Problems and WOrKarOUNGS...........cccciiiiiiimimimmmmmmmmmmmssssssssssssmssseesssssssssssssssssssssssssssssssssnmmssssssnsssssses 21
(oI VI O o 4 o1 LT VY= T] T 1 21
ST 0] o T T €= o B0 4 1o 1] =T - 22
LT O O I N o] gl -1 (=] ST 22
MiCrosoft ViSual C+ 2008.........ooiiiiiiiiiiiii ittt a e e e e e e e e e e e e eeeeeeeeeaeeten e e e e e e e e e e e eeeeeeeeeernnanns 22

AC Datatypes v4.8.0 October 2023 v

Bit-Accurate Datatypes
Bit-Accurate Datatypes

Bit-Accurate Datatypes

Changes in 4.8.0
Update integration of VCD trace API for AC types in ac_sc.h.

The sc_trace functions for AC types rely on exposing portions of the System-C kernel only headers to extend
the vcd_trace class for AC types. This update adds the macro SC_TRACING_PHASE_CALLBACKS_ to
enable derivation from sc_object for sc_core::sc_trace_file_base in ac_sc.h.

If the System-C 2.3.1 or newer library was built with the configure option —enable-phase-callbacks then it may
be necessary to define this macro set to “1” when compiling ac_sc.h.

Changes in 4.7.0

Fixed issues with ac_int::reverse method defined in ac_int.h

The issue arises from the mismatch between the semantic of the reverse method implemented in Catapult
and the one provided by the ac_int.h library. For example,

ac_int<w, false> a;
ac_int<W, false> b = a.reverse(); // a was not reversed in ac_int.h, but a was
reversed in hardware generated by Catapult

Corrected the semantics between Catapult and ac_int.h for ac_int::reverse method. Now, ac_int::reverse
method does not return the reversed result, it only updates the object. The proper usage is as follows in the
following example:

ac_int<w, false> a;
a.reverse(); // a is reversed

The semantic of the ac_int::reverse is now compatible with the System C equivalent of sc_bigint::reverse. A
user will now see an explicit compilation error when the return of ac_int::reverse method is used in the
design.

Added a new method, ac_int::reversed method defined in ac_int.h

After modifying the semantic of the ac_int::reverse, a new method, ac_int::reversed, is introduced. The
ac_int::reversed only returns a value without modifying the object.

ac_int<w, false> a;
ac_int<W, false> b = a.reversed(); // the reversed value of a is assigned to b,
a is not reversed

The ac_int::reversed method can be used if the user wants to perform the reverse operation on an ac_int

AC Datatypes v4.8.0 October 2023 1

Changes in 4.7.0
Bit-Accurate Datatypes

value without modifying the current object, and assign the result to another ac_int variable.

Changes in 4.6.3

Added stack trace on empty channel read

Normally in C++ code execution, when an empty ac_channel is read it results in an assert. To figure out
where the offending call to ac_channel::read() exists in your design you would need to run the program in a
debugger. A new compile-time option -DAC_CHANNEL_READ_FAIL_TB allows a call stack to be printed in
the shell transcript that shows the file/line of the offending read. If your design file was named design.cpp, the
command to compile and link with this option would look like this (note the inclusion of the Linux BFD library
which is required for the call stack info):

$MGC_HOME/bin/g++ -g -std=c++11 -DAC_CHANNEL_READ_FAIL_TB design.cpp -lbfd
The bold text shows the options that are added to enable this feature.

Fixed CdesignChecker issue in ac_complex.h

Added an extra typecasting stage to an ac_complex constructor to avoid FXD violations being thrown in
CDesignChecker when a double is assigned to an ac_complex<ac_fixed> variable.

New hook to integrate Value Range Analysis feature in ac_fixed.h
Added a conditional header include that enables Value Range Analysis in Catapult HLS.
Variadic Template parameter added to ac_sync.h

A new variadic template typename parameter was added to the sync_in() and sync_out() functions to allow
shared objects to be passed through the calls.

Changes in 4.6.0

Fixed IEEE floating-point compliance issues for types in ac_std_float.h for
operators/methods add/fmalsqrt with respect to returning +0 vs -0

For the types in ac_std_float.h (ac_std_float, ac_ieee_float and ac::bfloat16), there were operators/methods
that did not fully adhere to the IEEE floating-point standard with respect to returning +0 vs. -0:

1. add: now -0 + -0 returns -0

2. fma: addressed issue above (for add) also issue where the tracking of exact 0 result was not done for
the purpose of figuring out whether result should be +0 or -0.

3. sgrt: now sqrt(-0) returns -0

2 October 2023 AC Datatypes v4.8.0

Changes in 4.6.0
Bit-Accurate Datatypes

Improved the implementation of the '+' and '*' operators for types in
ac_std_float.h (ac_std_float, ac_ieee_float, ac::bfloatl6) for better Quality
of Results

The new implementations should have shorter critical paths. This should be most easily seen when
synthesized as a combination block. In general, it is expected to give better delay/area designs.

Replaced implementation for writing bit(s) for ac_int and ac_fixed to more
robust version that should not be incorrectly optimized by compilers when
the ac_int or ac_fixed variable is uninitialized

The old implementation used x XOR x to set bit(s) (bit assignment, set_slc) in ac_int and ac_fixed. It is
expected to work even if the variable is uninitialized. However, optimizations in compilers such as CLANG++
(LLVM) may treat x XOR x as uninitialized instead of 0 and that can result in behavior that does implement
the intended functionality when the variable is uninitialized.

The changes are based on an alternative implementation proposed by Jeremy Dorfman on github
(hislibs/ac_types) that does not use XOR and is guaranteed to not have the optimization issues when used
on uninitialized variables. Another of his proposals that is also included is the addition of specializations for
some underlying shifting methods to improve runtime.

Changes in 4.5.0

Added methods that return the bit pattern reversed for ac_int:
ac_int<W, false> ac_int<W,S>::reverse() const;

The return type is always unsigned.

Changes in 4.4.2

Added missing type_name methods to classes in ac_std_float.h.

Changes in 4.4.1

Fixed incorrect assert in templated range method assignment when target range spans one more 32-bit
integer (the base implementation of ac_int and ac_fixed is an array of integers) than the source range. For
example the following assignment was triggering an assert:

a.range<71,8>() = b.range<63,0>();

AC Datatypes v4.8.0 October 2023 3

Changes in 4.4.0
Bit-Accurate Datatypes

Changes in 4.4.0

Fixed issues with ac_complex of the types defined in ac_std_float.h

The type infrastructure that determines the return type of operations of ac_complex of the types in
ac_std_float.h was incomplete leading to compilation errors. For example:

ac_complex<ac_ieee_float32> x -}
ac_ieee float32 s = ..;

ac_complex<ac_ieee_float32> z X * s; // complex * scalar resulted in error

The above issue was also present for ac::bfloat16. The infrastructure was missing for ac_std_float<W,E> and
even the operators with both operands being ac_complex would error in compilation.

Changes in 4.3.0

Added methods and _reduce, or reduce and xor_reduce to ac_fixed

The reduce methods were present for ac_int, but not for ac_fixed. It is no longer necessary to go to ac_int
first (using the slc method) to get the reduce functionality.

Changes to ac_float constructor from ac_float with different parameters

The following changes determine whether a full normalization step is called to save on redundant steps of
normalization. The changes may impact behavior when the source ac_float is not normalized. The old
behavior was likely to apply a normalization step, whereas the new behavior does not apply it depending on
the template parameters of the source ac_float and the ac_float being constructed.

1. Added a bool argument force_normalize. If the argument is false, normalization is not done if the
mantissa and exponent for the new ac_float can be derived from the mantissa and exponent of the
source ac_float in a way that preserves the normalization of the source (assuming that the source is
already normalized). The intent is to avoid redundant normalization steps. Calling the constructor
with the argument force_normalize set to true is useful when it is known that the source ac_float
may not be normalized.

2. The constructor was rewritten to identify scenarios were the normalization of the source ac_float can
be preserved without requiring a full explicit normalization step. The scenarios require that the
exponent widths be identical.

The flags assert_on_rounding and assert_on_overflow are now consistently checked.

Fixed incorrect behavior for conversion from ac_std_float to another
ac_std_float type, but that has same exponent width

The incorrect behavior was exercised when the source and target ac_std_float types had the same exponent
width (E template parameter value) and the width (W parameter) of the source was larger than the width of
the target. For example, when constructing an ac_std_float<23,8> from an ac_std_float<32,8>, the
conversion that had the incorrect behavior would be exercised.

4 October 2023 AC Datatypes v4.8.0

Changes in 4.3.0
Bit-Accurate Datatypes

Added missing constructor for ac_std_float from ac_int

The constructor was documented, but was missing from the implementation.

Changes in 4.2.0

Fixed issues standard floating-point types: ac_std_float, ac_ieee_float and
ac::bfloatl6

1. The constructors from ac_fixed were not providing correct results depending on template parameter
values.

2. For the convert<WR,ER,QR> methods, when there is overflow and QR is AC_TRN_ZERO the
result is +/-max() which is consistent with the IEEE floating standard. The old behavior was
producing +/-Inf.

3. The convert_to_ac_fixed<WR,ER,QR,OR>(bool map_inf=false) methods were not correct when
map_inf=true.

Added conversion methods to ac_int, int and long long for standard floating-
point types: ac_std_float, ac_ieee_float and ac::bfloat16

The conversions methods expand on the convert to_ac_fixed<WR,ER,QR,OR>(bool map_inf=false) to add
explicit conversions to ac_int, int and long long. The conversions are equivalent to first going to the equivalent
width ac_fixed with QR setto AC_TRN_ZERO and OR set to AC_WRAP. These settings are consistent with
how float to int conversion occurs in C++ (though overflow behavior is not specified in C++). The new
methods are provided below:

convert_to_ac_int<W,S>(bool Equivalent to: convert_to_fixed<W,W,S,AC_TRN_ZERO,
map_inf=false) AC_WRAP>(map_inf).to_ac_int()

convert_to_int(bool map_inf=false) Equivalent to: convert_to_ac_int<32,true>(map_inf).to_int()
convert_to_int64(bool map_inf=false) Equivalent to: convert_to_ac_int<64,true>(map_inf).to_int64()

Fixed issues with python ac_pp.py pretty printing in dgb for ac_complex

The fields for the real and imaginary were not showing up while pretty printing in gdb.

Changes in 4.1.0

Operator+ made const for ac_int, ac_fixed and ac_complex

The operator+() for ac_int, ac_fixed and ac_complex is now const to prevent incorrect usage.

Added conversion function to_ac_ieee_float() and unary operator ! to bfloat16

Added the conversion function to_ac_ieee_float() and unary operator ! to bfloat16 for completeness.

AC Datatypes v4.8.0 October 2023 5

Changes in 4.1.0
Bit-Accurate Datatypes

Fixed incorrect overflow behavior with types in ac_std_float with AC_RND_INF

Fixed a functional issue when using AC_RND_INF as rounding mode for floating-point types in
ac_std_float.h. The issue could lead to overflow and result in change of sign of the number.

Fixed incorrect behavior of method copysign() for ac_ieee_float and
ac::bfloat16

The copysign() methods for classes ac_ieee_float and ac::bfloat16 were leaving the sign of the object
unchanged. This is now working as intended. This is issue was not present for class ac_std_float.

Fixed missing return for ac_std_float operator *=

The operator *= method for the class ac_std_float (in ac_std_float.h) was not returning a value. This would
lead to a problem in the following example:

c = (a *=b);

Updated ostream operator << for classes in ac_std_float.h

The ostream operator << for the classes in ac_std_float.h now take into account the format flags such as
std::ios::hex and std.:ios::oct. Note however, that for types that go beyond the widths for the type double, the
decimal flag leads to using the hexadecimal format instead.

Some users requested that since the printing in hexadecimal or octal formats is in “raw” format, that the full
width is printed (no assumption of sign extension). For instance the value O for ac_ieee_float32, will be
printed in hexadecimal as 0x00000000 instead of 0x0 as was done before.

This functionality is subject to change as it is not consistent with other types in ac_types and alternative ways
to get printing of raw values could be made available.

Additional argument added to method to_string for ac_int and ac_fixed
An additional argument pad_to_width has been added to the to_string method for ac_int and ac_fixed:

inline std::string to_string(ac_base_mode base_rep, bool sign_mag = false, bool
pad_to_width = false) const;

The default value is false and should allow existing code to produce the same results unchanged. When the
argument is set to true, the string that is returned will be padded to the full width of the type when selecting
either AC_OCT, AC_HEX or AC_BIN (it does not have any effect on AC_DEC).

When pad_to_width is false, the string is reduced to its shortest length assuming zero-padding or sign
extension rules. When pad_to_width is true, the string captures the full length of the type. The sign_mag
argument when set to true first takes the absolute value and prefixes the string with the sign of the value. For
example:

ac_int<14, true> x14s = 0;
std::cout << x14s.to_string(AC_HEX, false, false) << std::endl; // prints 0x0
std::cout << x14s.to_string(AC_HEX, false, true) << std::endl; // prints 0x0000

6 October 2023 AC Datatypes v4.8.0

Changes in 4.1.0
Bit-Accurate Datatypes

std::cout << x14s.to_string(AC_HEX, true, false) << std::endl; // prints +0x0
std::cout << x14s.to_string(AC_HEX, true, true) << std::endl; // prints +0x0000
x1l4s = -1;

std::cout << x14s.to_string(AC_HEX, false, false) << std::endl; // prints OxF
std::cout << x14s.to_string(AC_HEX, false, true) << std::endl; // prints Ox3FFF
(not OXFFFF)

std::cout << x14s.to_string(AC_HEX, true, false) << std::endl; // prints -0x1
std::cout << x14s.to_string(AC_HEX, true, true) << std::endl; // prints -0x0001

Fixed ubsan errors on left shift of long long type use in iv_div and iv_rem in
ac_int.h

The C++ 11 standard now makes the left shift of signed integer types if it causes an overflow (in other words,
a right shift by the same amount of the result would not produce the original number). This is detected by
ubsan as an error. Given that computer hardware generally uses two's complement representation for
integers, this is somewhat of a pedantic error that would only affect portability to an implementation that
would use an alternative representation, such as sign-magnitude, for integers.

When the intention is to do a bit shift without consideration for overflow, the operand needs be cast to

unsigned before performing a left shift. The implementation of iv_div and iv_rem in ac_int.h was updated to
conform to the C++ 11 definition.

Fixed Clang Warnings in ac_std_float.h

Addressed new warnings with clang 11 that were not there with clang 9 related to parentheses.

Changes in 4.0.0
New Standard Floating-Point Datatypes

A new set of classes for Standard (IEEE and IEEE like) synthesizable floating-point numbers is now part of
the package. The new types are implemented with the following three classes:

1. ac_ieee float: |IEEE types of widths 16, 32, 64, 128 and 256.

2. ac_std_float<W,E>: generalization of the ac_ieee_float for overall width W and exponent width E.
For example, ac_std_float<32,8> implements the behavior of ac_ieee_float32. The class
ac_std_float implements arbitrary-length standard floating-point numbers.
3. ac::bfloat16: implements bfloat16 from Google.
Range methods for ac_int and ac_fixed

Range methods have been added to ac_int and ac_fixed to more closely mirror syntax used by HDLs. The
MSB and LSB of the range are specified as template parameters. For example:

ac_int<20,true> x = ..;

AC Datatypes v4.8.0 October 2023 7

Changes in 4.0.0
Bit-Accurate Datatypes

ac_fixed<16,2,false> y = ..;
y.range<9,5>() = x.range<4,0>();

Range length must match for the assignment operator to be available. Reverse ranges (MSB < LSB) are not
supported (will trigger static_assert in C++11). The MSB and LSB need to be within bounds, otherwise it is an
error (will trigger static_assert in C++11).

As with the set_slc method, the variable to be written to needs to be initialized to avoid the potential of

compilers using the uninitialized value as an undef value (Clang) and optimizing the writing of the slice/range
away under some optimization levels.

Changes in 3.9.5

Joined non blocking read function for ac_channel
Added the function

template<typename ...Args>

bool nb_read_join(Args&... args);
implemented with variadic templates (requires C++11 or later standard versions) to take any number of
ac_channels and arrays of ac_channels as arguments along with the variables where the read values are
stored. If all channels have data, they will all be read and the function return true, otherwise none will be read
and the function returns false. Each ac_channel<T> (or array of ac_channel<T>) are paired with the
argument of type T (or array of type T) where the read value is returned by the function. For example:

ac_channel<short> a; short av;
ac_channle<int> b[2]; int bv;

if (nb_read_join(a, av, b, bv)) { .. }

Changes in 3.9.4

Return type of slc method for ac_int and ac_fixed

The return type of the sic method for ac_int and ac_fixed is now const. This prevents incorrect usage where
the returned temporary ac_int is used as a target of an assignment (as a left hand side) which is a no-op.

Constructors of ac_complex

Changed constructors to used constructors instead of assignments to initialize data members.

8 October 2023 AC Datatypes v4.8.0

Changes in 3.9.3
Bit-Accurate Datatypes

Changes in 3.9.3
Change in ac::nbits

The utility ac::nbits<N>::val is now defined to be 1 for N=0. It used to be 0.

Cleanup related to AC_VAL_MAX

Cleaned up a couple of issues in ac_int and ac_fixed related to the use of AC_VAL_MAX that did not impact
functionality.

Changes in 3.9.2

Out of bound array write on ac_int % operator for wide operands

Fixed an out of bound array write access for the % operator of ac_int when the second operand requires
fewer integers to represent than the first operand and at least one of the operands requires more three or
more integers to represent. For example if the first operand is an ac_int<24,true> (requires one integer to
represent) and the second operand is an ac_int<70,true> (requires three integers to represent), then the
issue could be encountered due to an out of bound write on the array that holds the result.

Runtime error reported on Undefined Behavior Sanitizer on left shifts when first
operand is of builtin type int

The ac_int.h and ac_fixed.h implementations have been updated to not use behavior that C++ 11 considers
as undefined for the signed integer left shift operator <<. Prior to C++ 11, shifts were interpreted as a bit
pattern. The fix is to cast the first operand to unsigned before performing the left shift and casting it back to
signed when required.

The new version should not run into the ubsan runtime errors with respect to the undefined behavior for left
shifts.

Changes in 3.9.1

Mixed operators for ac_int and ac_fixed

In previous versions, the mixed operators with ac_int and ac_fixed were defined under the namespace
ac::ops_with_other_types and were made available with "using namespace ac::ops_with_other_types;".

Starting with v3.9.1, the operators are no longer under a hamespace. To revert to the old behavior define the
macros below before including any of the AC Datatype header files:

#define AC_INT_NS_FOR_MIXED_OPERATORS
#define AC_FIXED_NS_FOR_MIXED_OPERATORS

This change fixes very subtle issues on the operators not getting matched and implicit conversions for ac_int
to unsigned/signed long long getting used instead. The old version also exposed a bug in GCC 4.9.2 (GCC

AC Datatypes v4.8.0 October 2023 9

Changes in 3.9.1
Bit-Accurate Datatypes

6.2.0 and above does not have that bug).

Whether the operator is found could affect behavior though in most cases the behavior might be the same.
There are two cases of concern:

1. Shift left: x << n, where x is an ac_int and n is any C++ integer type.
1. If the operator is found:
1. the result of the shift is only as wide as x
2. the result is well defined even for any n
2. If the operator is not found (x is implicitly converted to signed/unsigned long long):

1. the result type is 64 bits wide which means that some bits that otherwise would have been
lost would be kept.

2. the result is undefined for negative n or n > 63
2. Operations that would produce result values that need more than 64 bits. This is only likely with

wide multiplications. If the operator is not found, the result will be returned as a signed/unsigned
long long instead of a wider ac_int.

Detailed description of the issue

It turns out the presence of another unrelated operator << (for example for std::ostream), can stop the
compiler from considering operators defined in other namespaces even if they are made available with the
using statement in a namespace that is being considered for lookup.

Some references on this C++ behavior:

https://en.cppreference.com/w/cpp/language/unqualified_lookup

https://en.cppreference.com/w/cpp/language/adl

The following example exposes the issue with v3.9.0 and earlier versions. When the operator is found, the
program prints fO, when it is not (when macro EXERCISE_ISSUE is defined), the program prints ff0. Starting
with v3.9.1, the operator << (const ac_int<W,S> &, int) is always found and the program prints f0.

namespace ns {
struct my_type {};

#1f EXERCISE_ISSUE

// The presence of the ostream << operator breaks the visibility to

// the function ac::ops_with_other_types::operator << (const ac_int<W,S> &,
int)

10 October 2023 AC Datatypes v4.8.0

https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/unqualified_lookup

Changes in 3.9.1
Bit-Accurate Datatypes

std::ostream& operator<<(std::ostream& os, const my_type& dt) { return os; }
#endif

void foo() {
ac_int<8, false> x = Oxff;
int y = x << 4;
std::cout << std::hex << y << std::endl;
}
}

int main() {
ns::foo();

}
Set Slice

Some compilers like CLANG have optimizations that can treat uninitialized variables as don't cares even
though the result is deterministic. For example x ~ x is always zero even if x is uninitialized. CLANG
optimizations will treat that expression as a don't care instead of zero.

The set_slc methods in ac_int and ac_fixed use XOR to write the appropriate slice. If the full slice is being
assigned, the set_slc now uses the assign operator instead of relying on the XOR functionality to write the
bits. A common example:

ac_fixed<8, 4, true> x;
X.set_slc<8>(0, ac_int<8,true>(127));

For the code above, CLANG optimizations may leave x with the wrong value, with AC Datatypes v3.9.0 and
earlier, because x is uninitialized when the set_slc is performed. Starting with v3.9.1, the result should be
correct since all bits of x are being assigned.

Changes to bit_fill in ac_int

Some users encountered problems due to the mixed operator under the namespace problem described
earlier.

The implementation now has explicit casts to avoid any potential issues in case the macros to revert to the
old behavior are used.

Arithmetic assign operators for ac_float

The arithmetic assign operators +=, -=, *= and /= were missing the return statement. The return type was also
changed to a reference.

AC Datatypes v4.8.0 October 2023 11

Changes in 3.9.0
Bit-Accurate Datatypes

Changes in 3.9.0

Updates to ac_channel
» Added bind methods for binding to SystemC sc_fifo_in<T> and sc_fifo_out<T>.
* Cleaned up implementation to remove SYNTHESIS specific exceptions.

* Changed from calling "throw" to calling ac_assert when the read() method is called on an empty
channel. There are two ways the user may affect this behavior:

1. Define the macro AC_USER_DEFINE_ASSERT to be the name of a function that will be
called:

AC_USER_DEFINED_ASSERT(condition, file, line, ac_channel_exception::msg(code))
Note that this macro is also used in ac_int.h and redefines the behavior of AC_ASSERT.
2. Define the macro AC_ASSERT_THROW_EXCEPTION to change the behavior from the

default assert to a throw. This macro will not have any impact if the macro
AC_USER_DEFINE_ASSERT is defined.

Fixes/Updates to ac_float
* Changed behavior of additive operators/methods to perform normalization before performing

rounding. This is consistent with the IEEE floating point standard. For example the following two
operations give the same answer:

r.add(opl, op2)
r=opl.to_ac_fixed() + op2.to_ac_fixed()

* Fixed issues with constructors from ac_float where ac_float is un-normalized (normalization had not
been attempted).

* Removed the "normalize" argument for the constructor from ac_fixed. The constructor will attempt to
normalize the ac_float that is constructed.

 Factored code that deals with normalization, rounding and overflow saturation. The leading_sign
method of ac_fixed is used instead of the normalize method of ac_fixed.

Fix of AC_ABS macro

Fixed issue with AC_ABS: it should be -(a) instead of (-a) as "a" may contain any expression.

Added hex and oct handling for ostream operator <<

Added handling of std::ios::hex and std::ios::oct for ostream operator <<.

12 October 2023 AC Datatypes v4.8.0

Changes in 3.9.0
Bit-Accurate Datatypes

Fencing for macro defines for true and false

The check if the keywords true and false are macro defined now results on a warning instead of an error. If
either keyword is macro defined, it is explicitly undefined to prevent issues. The reason for this change is that
there are header files from CLANG that have "#define true true". This seems like poor practice from CLANG
as it prevents doing a legitimate check to fence against other macro defines that may have subtle effects.

CLANG Warnings

Fixed clang warnings in ac_int, ac_fixed and ac_float.

Changes in 3.8.1

Fixed trace functions to work with SystemC 2.3.2

The trace functions defined in ac_sc.h where updated to work with SystemC version 2.3.2. The SystemC
standard lacks a general API to trace a class as anything other than tracing its datamembers. For now, the
implementation of trace makes use of some SystemC implementation details that are not exposed in the API,
but have been changing in different versions of SystemC.

Shift operator for ac_fixed with C integer types

The shift operator with the second argument being any of the C integer types, used to return the type of the
first argument, but with default template arguments for the Q (quantization) and O (overflow) modes). Now it
returns the type of the first argument which is consistent with other versions of the shift operator.

Removed operator %= for ac_fixed with ac_int

The mixed operator %= with second argument being ac_int was incorrectly defined and would fail to compile
since the operator %= is not defined for ac_fixed. It has been removed.

GCC parentheses warnings

Addressed GCC warnings related to parentheses.

Changes in 3.7.2

Fix for to_string Method

Fixed width of string returned by to_string for a variable of type ac_int or ac_fixed that can happen when
to_string is called before the variable has been initialized.

Workaround Fix for Visual C++ 2015 Bug

Implemented workaround solution to bug introduced in Visual C++ 2015 that incorrectly errors out on a
typedef that depends on an enumeration in the struct int_range that is part of the ac_int.h implementation.

AC Datatypes v4.8.0 October 2023 13

Changes in 3.7.2
Bit-Accurate Datatypes

Warnings

Addressed new clang++ warnings for ac_int.h and ac_fixed.h that appear with newer versions of clang. Also
addressed warnings that appear with clang -std=c++11. Version 4.0 of clang was used for checking warnings.

Changes in 3.7.1

Fix to ac_float

This version corrects an issue with ac_float that was introduced in v3.6. The ac_float that is needed to
represent an unsigned ac_fixed, ac_int or native C unsigned integer type did not take into account that an
additional bit is required. This issue affects the mixed operators of ac_float with other types.

Changes in 3.7

Change to Apache License

Changed license to Apache License Version 2.0.

Changes and Enhancements in 3.6
Bit Fill

Utility functions to initialize large bitwidth ac_int and ac_fixed with raw bits have been added. What is meant
by “raw bits” is that its argument is treated as an unsigned bit pattern, without a fixed point and no rounding or
overflow handling is performed. The functions are called bit_fill_hex and bit_fill. The bit_fill_hex accepts a hex
string. It should only be used to initialize static constants since it is significantly slower than alternative
methods. The bit_fill accepts and array of integers and it should be the preferred alternative to initialize large
ac_int and ac_fixed with raw bits.

They are available both as member functions of ac_int and ac_fixed and as global functions in the ac
namespace that return the type specified as a template parameter (the type T needs to be either an ac_int or
an ac_fixed):

void ac_int<W,S>::bit_fill hex(const char *str);

void ac_fixed<W,I,S,Q,0>::bit_fill hex(const char *str);

template<typename T> T ac::bit_fill hex(const char *str);

template<int Na> void ac_int<W,S>::bit_fill(const int (&ivec)[Na], bool bigen-
dian=true);

template<int Na> void ac_fixed<W, I,S,Q,0>::bit_fill(const int (&ivec)[Na], bool
bigendian=true);

template<typename T, int N> T ac::bit_fill(const int (&ivec)[N], bool bigen-
dian=true);

14 October 2023 AC Datatypes v4.8.0

Changes and Enhancements in 3.6
Bit-Accurate Datatypes

The bit_fill_hex function accepts a hex string as an argument which could be shorter or longer than what is
required to fill all bits of the ac_int or ac_fixed. If it is shorter, it is zero padded to fill the remaining most
significant bits. If it longer, the extra most significant bits are truncated. The hex string should be a literal
constant string and should only contain hex digit characters (0-9, a-f, A-F). Other characters trigger and
assert. Because the initialization is done at runtime and this initialization technique is inherently slow, its use
to initialize non-static variables is discouraged.

The bit_fill function accepts two arguments:

* The first one is an integer array that contains the bit pattern. It could be longer or shorter than what is
required to fill all bits. If it is shorter then the remaining most significant bits are zero padded. If it is
longer then what would be the extra most significant bits are truncated. The array is not required to be
an array of constants.

* The second is a bool argument bigendian that defaults to true.

which means that the bits in the array element with index 0 become the most significant 32 bits of the bit
pattern. If the argument is false, then the bits in the array element with index 0 become the the least
significant 32 bits of the bit pattern.

The following example illustrates the use of bit_fill_hex and bit_fill that do the equivalent functionality:

typedef ac_int<80,false> i80_t;

i80_t x;

x.bit_fill hex(“a9876543210fedcba987"”); // member funtion

x = ac::bit_fill hex<i80_t>(“a9876543210fedcba987"”); // global function
int vec[] = { 0xa987, 0x6543210f, Oxedcha987 };

x.bit_fill(vec); // member function

x = bit_fill<i80_t>(vec); // global function

// 1inlining the constant array

x.bit_fill((int [3]) { 0xa987,0x6543210f, 0xedcba987 }); // member function
x = bit_fill<i80_t>((int [3]) { 0xa987,0x6543210f,0xedcba987 }); // global
function

Bit Complement
The bit_complement member function has been added for ac_int and ac_fixed:

ac_int<w, false> ac_int<W,S>::bit_complement() const;
ac_fixed<w, I, false> ac_fixed<W,I,S,Q,0>::bit_complement() const;

It returns an unsigned version of the same W (and same | for ac_fixed). This a bit complement of the raw bits
as compared to the complement operator ~ that returns an arithmetic value of -x-1 for ac_int and -x-2"" for
ac_fixed. The following example illustrates the difference:

ac_int<3, false> x = 7; // 111
ac_int<5, true> y;

AC Datatypes v4.8.0 October 2023 15

Changes and Enhancements in 3.6
Bit-Accurate Datatypes

y ~X; // returns - 7 - 1 = -8 (1000) as ac_int<4,true>, y
y x.bit_complement(); // returns 000 as ac_int<3,false>, y
ac_int<4,false> x2 = 7; // 0111

y = ~x2; // returns -7 - 1 = -8 (11000) as ac_int<5,true>, y = 11000
y = x2.bit_complement(); // returns 1000 as ac_int<4,false>, y = 01000

11000
00000

Restructured and Enhanced Type Infrastructure

The following changes were done to improve the separation of functionality that is meant to be exposed to
the user and functionality that is specific of the implementation. Some of the type definition infrastructure was
moved from namespace ac to namespace ac_private. They include all the rt_ac_int_T, rt_ac_fixed_T,
rt_ac_float T and rt_ac_complex_T. The exposed functionality is ac_int::rt_T, ac_fixed::rt_T, ac_float::rt_T
and ac_complex::rt_T and ac::rt_ 2T (renamed from rt2). The trait mechanism for C++ integers and floating
point types c_type, c_type_params, map, c¢_arith, ¢c_prom and rt_c_type_T are now part of namespace
ac_private.

The type definitions for ac_int_represent<T>::type, ac_fixed_represent<T>.:type and
ac_float_represent<T>::type have been added to facilitate finding a minimal destination type that can
represent the source type T.

Static Const Members

For consistency, the static const members e_width was added to ac_int and ac_fixed and the o_mode was
added to ac_float.

Warnings

Warnings that are disabled for GCC and that affect clang are now also disabled for clang.

Documentation

A new section titled Reference Guide for Numerical Algorithmic C Datatypes has been added. This section
summarizes all the user visible available functionality for all the numerical datatypes in a consolidated way.

Corrected Problems

The return type for ac::frexp_f, ac::frexp_d, ac::frexp_sm_f, ac_frexp_sm_d was adjusted to move the fixed-
point one position to the right (the width has not changed). For example the ac::frexp_sm_f now returns the
mantissa as ac_fixed<24,1,false> instead of ac_fixed<24,0,false>. The change was made because while it
was consistent with the system function frexp, it requires an exponent of ac_int<9,true> instead of an
ac_int<8,true> since the exponent has range of -125 to 128. The implementation excluded the exponent
value of 128 (assert in simulation) which was not correct.

The new return type is consistent with the IEEE representation of normalized numbers as 1.m where the
returned mantissa includes the implied most significant '1' bit. With that representation the exponent range is
-126 to 127 which can be stored in an ac_int<8,true>.

The ac_float type that is used to represent a float or a double was also change accordingly. A float is now
represented as an ac_float<25,2,8> instead of an ac_float<25,1,8>.

16 October 2023 AC Datatypes v4.8.0

Changes and Enhancements in 3.5
Bit-Accurate Datatypes

Changes and Enhancements in 3.5

The return type of the << and >> operators for ac_fixed was changed to the type of the first operand. Prior to
3.5, the returned type was that of the first operand, but with default parameters for rounding and overflow
(AC_TRN, AC_WRAP). This makes it consistent with the changes that were done in 3.1 to shift-assign <<=
and >>= operators. For example:

typedef ac_fixed<4, 4, true, AC_TRN, AC_SAT_SYM> fXx_ss; // Symmetrical range
(-7 to 7)

fx_ss a = 1;

fx_ss b a << 3; // a <<3 and b are now 1000 (-8 => not symmetrically sat-
urated)

a <<= 3; // a 1is (since v3.1) 1000 (-8 => not symmetrically
saturated)

Setting bits (using operator [], or set_slc) and the shift and shift-assign operators should be avoided with
AC_SAT_SYM. Forcing symmetric saturation on the example above can be done by casting to non-
symmetrically saturated type:

a = (ac_fixed<4,4,AC_TRN>) a; // -8 is saturated to -7

Corrected Problems

Warnings about parentheses have been addressed. Also the disabling of specific GCC warnings on sections
of ac_int.h and ac_fixed.h have been updated so they will work with GCC versions 5.0 and above.

Changes and Enhancements in 3.4

The following enhancements were made in 3.4:
* Added support for the SystemC 2.3.1 maintenance release.

* The sc_trace() functionality for AC Datatypes has been upgraded to support the System-C 2.3.1
distribution. No changes to user code is required.

* Fixed clang++ warnings in ac_int.h and ac_fixed.h.

* Fixed gdb pretty print (ac_pp.py) to work around an issue with early versions of gdb (for example
gdb7.2-56).

* Changed the constructor of ac_float from ac_fixed (indirectly also affect constructor from ac_int).

The change now takes into account the differences of the | parameter of the source ac_fixed and the
target ac_float. This change enables better normalization that considers not only the range of the target
exponent (given by E of the ac_float), but also the difference between the source and target parameter
I ("exponent bias").

AC Datatypes v4.8.0 October 2023 17

Changes and Enhancements in 3.4
Bit-Accurate Datatypes

* Removed normalization call from the "*' operator since result will be normalized (at most off by one 1-bit
shift) if inputs are normalized. Also removed normalization call from construction from float and double
since it is assigning to ac_float types that are assumed to capture it without loss of precision and the
source is already assumed to be normalized.

Also fixing one constructor when normalization is set to false.
* Fixed issue of ac_float overflowing when getting assigned/constructed from a larger bitwidth ac_float

(could affect constructors from ac_int and ac_fixed as they use the constructor from ac_float). An extra
bit of precision needed to be used to account for rounding in an intermediate computation.

Changes and Enhancements in 3.3

Added ac_channel class

When describing a hierarchical system using C function calls, the AC (Algorithmic C) channel class simplifies
the synthesis and modeling with a minimal impact on coding style and C simulation performance.

The ac_channel class is a C++ template class that enforces a FIFO discipline (reads occur in the same order
as writes.) From a modeling perspective, an ac_channel is implemented as a simple interface to the C++
standard queue (std::deque). That is, for modeling purposes, an ac_channel is infinite in length (writes always
succeed) and attempting to read from an empty channel generates an assertion failure (reads are non-
blocking).

Changes and Enhancements in 3.2.1

Enhancements
The following enhancements were made in 3.2.1:

* The headers were updated to reduce warnings with GCC.

Changes and Enhancements in 3.2

The following enhancements were made in 3.2:

* Added Reduce Methods. Added reduce methods and_reduce(), or_reduce() and xor_reduce() to
ac_int.

» Default Constructor. Added a way to guarantee that un-initialized AC Datatypes (ac_int, ac_fixed,

ac_float) are adjusted to be in their numerical range. It is done by defining the macro
AC_DEFAULT_IN_RANGE before the first inclusion of the AC Datatype header.

Corrected Problems

The following fixes were made in ac_sc.h:

18 October 2023 AC Datatypes v4.8.0

Changes and Enhancements in 3.2
Bit-Accurate Datatypes

* Fixed sc_trace issue with wrong VCD produced for signed AC Datatypes.
* Fixed compilation error when systemc is included rather than systemc.h.

* Fixes for SystemC version check and inclusion.

Changes and Enhancements in 3.1

Changes to ac_fixed with Symmetric Saturation

The constructor of ac_fixed was changed when the overflow mode is set to AC_SAT_SYM and the argument
is also an ac_fixed with overflow mode set to AC_SAT_SYM. This change assumes that if the argument is of
overflow type AC_SAT_SYM, it is already symmetrically saturated and therefore there is no need to repeat
the symmetric saturation.

This should not change the behavior compared to previous releases of this package unless any of the
following operators/methods are used that might invalidate the symmetric saturation property:

* modifying a bit (assigning to a bit reference)
* moadifying a slice (set_slc)
* shift-assign (<<=, >>=)

In order to preserve the symmetric saturation property of ac_fixed with overflow mode set to AC_SAT_SYM, it
is advisable to avoid the above methods on variables of that type. For example:

typedef ac_fixed<8, 8, true, AC_TRN, AC_SAT_SYM> fX;
fx a = 0Q;
a[7] = 1; // No longer symmetrically saturated
X b a; // b remains unsaturated as a is assumed to be saturated and
// has identical type (this is the behavior from v3.1 onwards)

This change was done for the following reasons:

* Minimize the need for symmetric saturation to reduce the overhead in simulation and the hardware
required to implement this functionality. If the above methods are avoided, this saturation was entirely
superfluous.

» The compiler is allowed to optimize copy constructor calls ("constructor elision" or "Return value
optimization") so it was necessary to change the copy constructor to not perform any saturation during
the copy constructor call. The change does not only affect copy constructors, but in more general
situations that is easy to describe (if the argument is ac_fixed with AC_SAT_SYM it is assumed to be
symmetrically saturated).

Another change is that the shift-assign operators will not perform any saturation. This change only affects
scenarios where the first operand is an ac_fixed type with overflow mode set to AC_SAT_SYM. For example:

AC Datatypes v4.8.0 October 2023 19

Changes and Enhancements in 3.1
Bit-Accurate Datatypes

typedef ac_fixed<8, 8, true, AC_TRN, AC_SAT_SYM> fX;

fx a = 1;

a <<= 7; // Value of a is not symmetrically saturated

fx b = 1;

b =Db<<7; // Value of b is symmetrically saturated as return type of

// b << 7 is ac_fixed<8, 8, true, AC_TRN, AC_WRAP>

The reason for the change is that this was the only exception to the rule that shift assign operators do not
have any cost in terms of saturation or rounding.

Reducing Unnecessary Warnings

Certain functionality in ac_int/ac_fixed intentionally uses uninitialized variables to emulate a don't care value
(AC_VAL_DC). This can create many warnings when -Wall is used with GCC. The compiler version GCC4.6
introduced a feature that allows locally disabling warnings on sections of code. The header files ac_int.h and
ac_fixed.h have been enhanced to use this feature.

Pretty print in GDB

Newer versions of GDB allow pretty printers to be provided as python scripts. A file ac_pp.py is now available
that provides pretty printer capabilities for ac_int, ac_fixed, ac_float and ac_complex. Some parameters
provide control on the radix format (decimal, hexadecimal or binary). The header comments in the script
provide the information on how to use it.

Corrected Problems

None.

Changes and Enhancements in 3.0

A new quantization mode, AC_RND_CONV_ODD has been added. This quantization mode rounds towards
odd multiples of the quantization. Refer to the Algorithmic C Datatype documentation for details.

Corrected Problems
The following customer reported problem was fixed in this release.

« DR 756512 GCC4.3 -Wall verbosity increased significantly for Catapult headers. See "Excessive
Compiler Warnings" on page 21.

20 October 2023 AC Datatypes v4.8.0

Known Problems and Workarounds
Known Problems and Workarounds

Known Problems and Workarounds

Excessive Compiler Warnings

Newer versions of GCC and Visual C++ introduce many additional warning messages when the -Wall option
is used.

The header files ac_int.h and ac_fixed.h are updated to avoid such warnings. For example, one of the new
warnings for GCC advises the use of parentheses in expressions such as:

A& B || C
Prior to this change, the workaround was to use the -Wno-parentheses option in GCC.

Warnings in Visual C++ have also been addressed by either a source change or disabling the warning locally
(does not affect code that includes the header files). However, Visual C++ 10 still reports numerous warnings
when using the -Wall option. The warnings are mainly of the type C4514 "unreferenced inline function has
been removed" and appear despite the fact that both ac_int.h and ac_fixed.h explicitly disable that warning
number (appears to be a bug in Visual C++ warning system). Such warnings are also reported for system
header files that are part of Visual C++.

AC Datatypes v4.8.0 October 2023 21

Supported Compilers
Supported Compilers

Supported Compilers

The ac_int, ac_fixed and ac_complex classes rely heavily on template mechanisms to achieve efficient
simulation runtimes. We recommend that you use the following versions of GCC (GNU Compiler Collection)
and Microsoft compilers.

GCC 3.2.3 or later

It is also important to run the compiler with optimizations turned on in order to get the best runtime
performance:

c++ -03 -I$MGC_HOME/shared/include test.cxx -0 test

Optimization level O3 is recommended, although O1 in most cases delivers most of the benefit (20x runtime
improvement has been seen by going from OO0 (no optimization) to O1).

You can obtain gcc compilers from the GNU web site: http://gcc.gnu.org.

Microsoft Visual C++ 2008

To download and install Microsoft Visual C++ 2008, go to the Microsoft web site and follow the instructions on
the web page:

http://msdn.microsoft.com/visualc
You can also download and install a free version called "Visual C++ 2008 Express":

http://www.microsoft.com/express/download/#webInstall

22 October 2023 AC Datatypes v4.8.0

http://gcc.gnu.org/

	Bit-Accurate Datatypes
	Changes in 4.8.0
	Update integration of VCD trace API for AC types in ac_sc.h.

	Changes in 4.7.0
	Fixed issues with ac_int::reverse method defined in ac_int.h
	Added a new method, ac_int::reversed method defined in ac_int.h

	Changes in 4.6.3
	Added stack trace on empty channel read
	Fixed CdesignChecker issue in ac_complex.h
	New hook to integrate Value Range Analysis feature in ac_fixed.h
	Variadic Template parameter added to ac_sync.h

	Changes in 4.6.0
	Fixed IEEE floating-point compliance issues for types in ac_std_float.h for operators/methods add/fma/sqrt with respect to returning +0 vs -0
	Improved the implementation of the '+' and '*' operators for types in ac_std_float.h (ac_std_float, ac_ieee_float, ac::bfloat16) for better Quality of Results
	Replaced implementation for writing bit(s) for ac_int and ac_fixed to more robust version that should not be incorrectly optimized by compilers when the ac_int or ac_fixed variable is uninitialized

	Changes in 4.5.0
	Changes in 4.4.2
	Changes in 4.4.1
	Changes in 4.4.0
	Fixed issues with ac_complex of the types defined in ac_std_float.h

	Changes in 4.3.0
	Added methods and_reduce, or_reduce and xor_reduce to ac_fixed
	Changes to ac_float constructor from ac_float with different parameters
	Fixed incorrect behavior for conversion from ac_std_float to another ac_std_float type, but that has same exponent width
	Added missing constructor for ac_std_float from ac_int

	Changes in 4.2.0
	Fixed issues standard floating-point types: ac_std_float, ac_ieee_float and ac::bfloat16
	Added conversion methods to ac_int, int and long long for standard floating-point types: ac_std_float, ac_ieee_float and ac::bfloat16
	Fixed issues with python ac_pp.py pretty printing in dgb for ac_complex

	Changes in 4.1.0
	Operator+ made const for ac_int, ac_fixed and ac_complex
	Added conversion function to_ac_ieee_float() and unary operator ! to bfloat16
	Fixed incorrect overflow behavior with types in ac_std_float with AC_RND_INF
	Fixed incorrect behavior of method copysign() for ac_ieee_float and ac::bfloat16
	Fixed missing return for ac_std_float operator *=
	Updated ostream operator << for classes in ac_std_float.h
	Additional argument added to method to_string for ac_int and ac_fixed
	Fixed ubsan errors on left shift of long long type use in iv_div and iv_rem in ac_int.h
	Fixed Clang Warnings in ac_std_float.h

	Changes in 4.0.0
	New Standard Floating-Point Datatypes
	Range methods for ac_int and ac_fixed

	Changes in 3.9.5
	Joined non blocking read function for ac_channel

	Changes in 3.9.4
	Return type of slc method for ac_int and ac_fixed
	Constructors of ac_complex

	Changes in 3.9.3
	Change in ac::nbits
	Cleanup related to AC_VAL_MAX

	Changes in 3.9.2
	Out of bound array write on ac_int % operator for wide operands
	Runtime error reported on Undefined Behavior Sanitizer on left shifts when first operand is of builtin type int

	Changes in 3.9.1
	Mixed operators for ac_int and ac_fixed
	Detailed description of the issue
	Set Slice
	Changes to bit_fill in ac_int
	Arithmetic assign operators for ac_float

	Changes in 3.9.0
	Updates to ac_channel
	Fixes/Updates to ac_float
	Fix of AC_ABS macro
	Added hex and oct handling for ostream operator <<
	Fencing for macro defines for true and false
	CLANG Warnings

	Changes in 3.8.1
	Fixed trace functions to work with SystemC 2.3.2
	Shift operator for ac_fixed with C integer types
	Removed operator %= for ac_fixed with ac_int
	GCC parentheses warnings

	Changes in 3.7.2
	Fix for to_string Method
	Workaround Fix for Visual C++ 2015 Bug
	Warnings

	Changes in 3.7.1
	Fix to ac_float

	Changes in 3.7
	Change to Apache License

	Changes and Enhancements in 3.6
	Bit Fill
	Bit Complement
	Restructured and Enhanced Type Infrastructure
	Static Const Members
	Warnings
	Documentation
	Corrected Problems

	Changes and Enhancements in 3.5
	Corrected Problems

	Changes and Enhancements in 3.4
	Changes and Enhancements in 3.3
	Added ac_channel class

	Changes and Enhancements in 3.2.1
	Enhancements

	Changes and Enhancements in 3.2
	Corrected Problems

	Changes and Enhancements in 3.1
	Changes to ac_fixed with Symmetric Saturation
	Reducing Unnecessary Warnings
	Pretty print in GDB
	Corrected Problems

	Changes and Enhancements in 3.0
	Corrected Problems

	Known Problems and Workarounds
	Excessive Compiler Warnings

	Supported Compilers
	GCC 3.2.3 or later
	Microsoft Visual C++ 2008

