
 

  
 

Discovering and ranking validation rules in supervisory data 
 
 

Willem Jan Willemse1 and Annick van Ool1 
 
 
Accepted to ”Central bankers go data driven: applications of AI and ML for policy and 
prudential supervision”, organized by De Nederlandsche Bank Amsterdam on 12 - 13 May 
2022 
 
Disclaimer: The views expressed in this paper do not necessarily represent those of De 
Nederlandsche Bank  
 
Abstract 
 
To meet the increasing data quality challenges posed by a data-driven approach to 
supervision, new techniques and tools are needed. In this paper, we introduce the 
Ruleminer software package to discover automatically rules and patterns in regulatory 
data complemented with a statistical machine learning model for their subsequent 
classification and ranking. Our approach was developed and tested on Solvency 2 data 
but is not limited to insurance data. Already available as an open source library and 
confirmed by a number of use cases described in this paper using granular assets data, 
insurance claim data and own funds data, our work could serve as a basis for the 
automatic rule discovery and ranking system with regard to rules optimization and as a 
systemic approach to the development of new rules. 
 

1. Introduction 
 
In a data-driven approach to supervision, central banks and supervisory authorities 
increasingly rely on large (granular) datasets from financial entities. Many reporting 
frameworks contain well-established sets of validation rules defined by statistical experts 
that are embedded in a data point model (taxonomy) that is regularly updated and 
communicated to financial entities. However, when it comes to granular data this 
approach is not always feasible and new techniques and tools are needed to assess the 
data quality. The fast changing financial services landscape in the recent years introduces 
new regulatory challenges. It also requires collection of additional datasets from the 
supervised entities, sometimes on an ad-hoc basis. The most relevant example of such a 
challenge is the Covid-19 pandemic that led central banks to update existing and to 
introduce new reporting frameworks to ensure compliance of supervised entities. 
 
In this paper, we present a method and a publicly available Ruleminer software package2 
to generate automatically large sets of validation rules and discover underlying data 
patterns in (granular) datasets by using so-called association rules mining followed by 
the rule-ranking algorithm to select the most important rules. With this statistical 
machine learning (ML) approach, we identify strong relations between features in 
datasets. We subsequently convert these relations into human readable rules that can be 
enforced to automate data quality compliance and communicated with relevant central 
banks or regulatory authority divisions for subsequent analysis. We focus on two aspects 
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2 We publish the source code for generating validation rules under MIT license as Python package 
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of our approach: applicability and novelty. The datasets forming a basis for this work are 
coming from the Solvency 2 reporting framework.  
 
In the association rules mining approach, data is stored in a so-called a transaction 
database. In this context, we define a transaction as a single reporting line by a specific 
entity at a specific reporting or reference date. The database contains all reporting lines 
by a given number of entities within a reporting period. The approach described in this 
work is applicable not only to simple reports with fixed rows and columns, but also to 
more complex reports with granular data and, so called, “open cells” with non-fixed 
number of entries. We also extend the approach to include results from quantitative 
values by using rule templates proposed by experts or derived from the structure of 
existing validation rules. Rule templates can contain Regular Expressions (regex). Regex 
are a powerful technique developed in computer science and formal language theory 
where a sequence of characters specifies search patterns. This extension is needed 
because association rules mining in its original form is based on categorical data only and 
supervisory reports consist of qualitative data as well as quantitative data. With this 
approach to association rules mining, we are able to generate validation rules 
automatically and calculate a wide range of associated metrics for each rule. We prune 
the set of discovered validations rules to reduce the number of rules that are 
semantically identical (where for example the ordering of data points does not matter for 
the results of the rule).  
 
Automatically discovered validation rules are subsequently ranked by their importance 
with a supervised machine learning algorithm. This algorithm was trained on quantitative 
statistical rules metrics and expert labeling of the test dataset coming from the 
supervisory reporting framework with multiple established rules. The features of the 
model were selected in such a way that the ranking can be applied to various other 
datasets coming from both new and existing reporting frameworks and other sources of 
data. After assessment by supervisors, the most important generated validation rules can 
be submitted for approval. Approved sets of generated validation rules are fully 
transparent and explainable and can be made public, shared with supervisory authorities 
and incorporated within both internal and external data quality processes. 
 
The remainder of this paper is structured as follows. In Section 2 we give a brief 
overview of the literature and discuss academic research that formed a basis for this 
work. We discuss in detail the development of the rule mining approach to the 
supervisory data in Section 3. We start this section with a discussion on principles of 
rules mining – and how it can be seen as a machine learning approach to data pattern 
discovery including the theory and the metrics developed for the purpose of evaluation of 
results. The supervisory data has some unique characteristics. In particular, it includes 
relatively high quality and subject expert availability, which we exploit in the 
development of our rules ranking approach. Section 4 is dedicated to applications of 
Ruleminer to various supervisory datasets. The paper is concluded with Section 5 
discussing possible extensions and our ongoing work and potential extensions of this 
work beyond data quality checks, in particular to anomaly and outlier detection. 

2. Overview of literature 
 
Rules mining is a subset of the wide data mining field of research dedicated to automatic 
discovery of patterns and relationships in large datasets. The problem of mining 
(categorical) association rules was originally introduced by Agrawal et al. (1993) and 
broadened in Agrawal and Srikant (1994). Quantitative association rules were first 
considered by Piatetsky-Shapiro (1991) who also introduced some of the first 
quantitative metrics measuring interestingness of discovered rules. Among the most 



 

  
 

popular rules mining algorithms are Apriori, Eclat and FP-Growth3. See Aumann and 
Lindell (2003) and Salleb-Aouissi et al. (2013) for detailed reviews. We use a statistical 
technique derived from association rules mining where we restrict the set of possible 
association rules. This approach could potentially miss some complex and unusual 
patterns, but it has very significant advantages compared to other algorithms: 

- the computational complexity is much lower; 
- the minimum confidence and support thresholds can be set quite low to discover 

rare rules without significantly slowing down the code. 
 
An important aspect of association rules mining is the ranking and selection of generated 
rules for further implementation in data quality checks. Large numbers of rules can be 
generated but only a small number of these rules are feasible for implementation. The 
ranking techniques discussed in the literature include an optimization approach coming 
from the data envelopment analysis (DEA) (Charnes et al. (1978)) and multiple experts 
ranking (average “collective strength”) incorporated into the linear regression model 
together with quantitative metrics (see for Chen (2007); Bazaldua et al (2014); Toloo et 
al. (2019)). Our approach to rule ranking is derived from both uniqueness of our dataset 
of Solvency 2 returns that has a predefined taxonomy and expert availability. It is based 
on the principles of supervised statistical learning. According to our knowledge, such an 
approach was never applied to rules ranking before, possibly due to the lack of datasets 
and expertise available in the central banking community. 
 
Finally, we refer to the paper of Romano et al. (2021) that has a similar background and 
motivation as our paper. The authors use regression to detect patterns in data and do 
not rank data rules generated by their method. This is a different approach to rule mining 
that we propose in our work. We leave it to the reader to decide what technique is more 
suitable for her or his needs. 
 

3. Applying rule mining to supervisory reports 
 
Rules are discovered automatically using association rules mining algorithms and are 
evaluated based on the quantitative (statistical) metrics. These rules are afterwards 
ranked by their interest/importance based on the subject knowledge. 
 

3.1 Supervisory reports 
 
Supervisory reports are based on so-called reporting frameworks or taxonomies, for 
which often the open XBRL (eXtensible Business Reporting Language) standard is used. A 
taxonomy consists of many individual supervisory reports for all relevant supervisory 
topics. The structure of individual reports can be one-dimensional, with columns only, 
two-dimensional, with, often many, columns and rows, and three-dimensional, with an 
additional z-axis (for example one report per currency). Furthermore, reports can be 
closed (with a fixed number of rows and columns) and open (with a fixed number of 
columns and with a non-fixed number of rows). In this paper we will use the table 
representations of XBRL reports, with the report name plus the so-called row-column-
code to identify a single data point. One report is therefore one line in a dataset. The 
index of the line identifies the reporting entity, the reporting period and, if applicable, 
additional fields for open tables. In this way all reports can be analyzed in the same 
manner. By concatenating reports with the same dimensions, it is possible to analyze 
mutual relations between datapoints from different reports. 
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Reporting taxonomies cover a wide range of relevant supervisory topics and a typically 
relatively comprehensive. The Solvency 2 taxonomy4 consist of 112 reporting templates 
for 22 entry points. Different entry points are used depending of the reporting entity 
type, for example solo or group, and the reporting period, for example annual or 
quarterly. The specific reporting templates might be different between entry points. 
Currently, there are approximately 1.300 explicit validation rules in the taxonomy. Every 
year new validation rules are added to the existing set of rules.  
 
Some limitations that we currently face of in formulating validation rules are the 
following: 

- to embed very large sets of validation rules (> 10.000) within a taxonomy 
based on XBRL is practically not feasible. Especially for the validation of large 
granular datasets this is problematic; 

- the validation of datapoints between two reporting periods is not possible as 
validation rules embedded in an XBRL taxonomy are only applicable within one 
submission, and; 

- validation rules in the XBRL standard do not allow the use of external data 
sources to validate data points, for example data from financial markets and 
data from other supervisory reports (even by the same entity). 

These limitations are understandable given the scope of the current validation rules in 
XBRL (which is to validate a submission before acceptance). However, it now becomes 
increasingly clear that on top of the current validation rules new techniques and tooling 
are needed that meet current data quality demands. This paper presents an approach to 
overcome these limitations and allows for more complicated validation rules based on 
complex mathematical functions and enables validation against external data sets such 
as financial markets data. 
 

3.2 Rule grammar 
 
The academic literature dedicated to data rules mining defines two rule categories: 

- conditional or transactional expressions of the form “IF X THEN Y”. This rule is 
true exactly when it is not the case that X is true and Y is false. Condition X is 
called the antecedent of the rule and Y is called the consequent; and 

- quantitative expressions of the form “sum(A, B) = C”, “A = B”, “A ≥ 1.0”. In 
many cases, conditional rules also include numerical expressions (e.g. “IF A > 0 
and B < 0 THEN D = A + B – C”). 

 
To be able to formulate a wide range of possible rule expressions and to efficiently use 
the expressions we have formulated a rule grammar. Every rule expression has to satisfy 
the rule grammar which is based on basic logical and mathematical functions (see 
Appendix 1). 
 
  

                                                 
4 The data point model, XBRL taxonomies and all related artifacts of Solvency 2 can be found in 
https://www.eiopa.europa.eu/tools-and-data/supervisory-reporting-dpm-and-xbrl_en 



 

  
 

The following table shows some examples of rule expressions using several functions 
available in Ruleminer software package: 
 

EXAMPLE RULE MEANING 

1 {“A”} ≥ 0 The value of column A should be higher 
than zero 

2 {“A”} + {“B”} = {“C”} The sum of the values of column A and 
column B should be equal to the value 
of column C of that transaction 

3 IF {“A”} = “reported” THEN {“B”} = 0 If the value of column A is the string 
“reported” then the value of column B 
should equals zero 

4 ABS({“A”} - {“B”}) ≤ 1.5*10^3 The absolute difference between the 
value of column A and the value of 
column B should be smaller than 1.500 

5 ({“A”} < QUANTILE({"A"}, 0.95)) The value of column A of a transaction 
should be lower than the 95%-quantile 
value of that column of all transactions 

 

Example 1 shows a basic rule that says that the reported value of a column named “A” in 
the report/transaction should be positive. The curly braces around the string “A” are used 
to indicate a column name in the dataset. Similar rule expressions can be found in 
existing validation rules of the Solvency 2 reporting framework, for example to make 
sure that reported values are not negative. 
 
Supervisory reports often contain values that should be the sum of other values, possibly 
from different reports. Often, but not always, validation rules are included in the 
reporting taxonomy to check that one value is the sum or some other mathematical 
function of other values. Example 2 shows a simple form of this rule expression to 
generate validation rules of this form. 
 
Example 3 combines categorical data with quantitative data. In supervisory reports there 
are often relations between the type of a reported item and the specific data that are 
reported for that item. For example, if a reported asset is of type A then columns X and Y 
should be reported, and if the asset is of type B then columns Y and Z should be 
reported. Sometimes, these checks are incorporated in the taxonomy, but if the number 
of possible types is very large or the number of related quantitative columns is large then 
it is not feasible to explicitly formulate these relations into validation rules of the 
reporting taxonomy. 
 

Example 4 is a variation of a rule for checking that the value of two columns should be 
the same. It is not uncommon in supervisory reports that there are small differences, for 
example due to rounding operations of underlying values. In order to ignore these small 
differences example 4 shows how to formulate a rule with a threshold of an absolute 
difference of 1500. 
 
The first four example are based on existing validation rules in the taxonomy. Example 5 
is a rule to detect outliers in a dataset. 
 

3.3 Regular expressions in rules 
 
For strings and column names within rule expressions we can use regular expressions. 
Regular expressions (or regexes, or regex patterns) form a small programming language 
to specify patterns for the set of possible strings that we want to select. 



 

  
 

 
Suppose we have a template with the following column names: “S.01.R010,C010”, 
“S.01.R010,C020”, “S.01.R020,C010”, “S.01,R020,C020” (identifying four datapoints in 
template S.01 with row and column code) and “S.02,R010,C010”. 
 
Table 1: A typical template structure with rc-codes 

Template 
S.01 

S.01.R010
,C010 

S.01.R010
,C020 

S.01.R020
,C010 

S.01.R020
,C020 

S.02.R010
,C010 

Reporting 
entity 1 

. . . . . 

… . . . . . 

 
Then, the table below provides some examples of regexes with their result 
 

EXAMPLE REGEX RESULT 

1 .* S.01,R010,C010, S.01,R010,C020, 
S.01,R020,C010, S.01,R020,C020, 
S.02,R010,C010 

2 S.01,R010,C010 S.01,R010,C010 

3 S.01,R010,C\d+ S.01,R010,C010, S.01,R010,C020 

4 S.\d+,R010,C010 S.01,R010,C010, S.02,R010,C010 

5 \d{4}-\d{2}-\d{2} 2022-01-01 

6 ([A-Z]{2})([A-Z0-9]{9})([0-9]{1}) NL0123456789 (an ISIN) 

 
In example 1 the regex .* expresses zero or more of any character (the dot indicates any 
character and the * means zero or more instance of the preceding regex token). The dot 
and the star are metacharacters of regex. Applying the regex to the columns of a dataset 
results in all columns. Example 2 shows that the regex of a string without regex 
metacharacters matches the string itself. Example 3 and example 4 use the regex 
metacharacters \d+ to indicate one or more decimal digits (the \d matches any decimal 
digits and the plus means one or more times). 
 
Example 5 and 6 show two cases for the string entries in a dataset. Example 5 is a 
simple date string validation rule and example 6 shows a regex to check whether the 
ISIN in a dataset is a true ISIN (International Securities Identification Number). ISINs 
consist of two alphabetic characters (which are the ISO 3166-1 alpha-2 code for the 
issuing country), nine alpha-numeric characters (the National Securities Identifying 
Number, or NSIN, which identifies the security, padded as necessary with leading zeros), 
and one numerical check digit. This structure is expressed in the regex in the example. 
 
In Appendix 2 we listed the most frequently used and basic metacharacters of Regular 
Expressions. 
 

3.4 Rule discovery 
 
For the rule discovery process, we implemented the following algorithm that generates all 
possible rules given the rule expression. First, possible substitutions of the columns and 
strings are determined given the regexes in the template expression, based on the 
column names and string values in the rows of the relevant columns. The Cartesian 
product of these possible substitutions provide all possible antecedents of the rule. Then, 



 

  
 

the possible substitutions of the consequent are determined based on the part of the 
dataset that satisfies the antecedent (this restricts the number of possible substitutions). 
The combination of possible antecedents and possible consequents provide the rules for 
which the metrics are calculated. Metrics are calculated on the basis of the full dataset. 
 
For certain expressions this approach can lead to rules that are syntactically different but 
semantically identical. A simple example of this is based on the commutative properties 
of operators used in an expression. The rules “if A>0 and B<0 then C=0” and “if B<0 and 
A>0 then C=0” are different in form but have the same meaning: changing the order of 
A>0 and B<0 does not change the outcome because of the commutative property of the 
logical and-operator. A pruning algorithm has been implemented that prunes out rules 
that have already been discovered based on the commutative properties of the 
mathematical operators addition and multiplication and logical operators & (and) and | 
(or) and the symmetric properties of equality and inequality. The pruning algorithm is 
applied recursively, so a rule of the form 
 

(({"4"}>{"3"}) & (({"2"}+{"1"})={"0"})) 
 
will be found identical to an already discovered rule 
 

((({"1"}+{"2"})={"0"}) & ({"4"}>{"3"})) 

and consequently will be removed from the list. Before the metrics of a rule of possible 
rules are calculated it is checked whether a semantically identical rule already has been 
evaluated. If that is the case then the rule will be discarded. If not, then the metrics of 
the rule will be calculated and added to the list of discovered rules. 

 

3.5 Rule metrics 
 
A wide range of association rules metrics have already been proposed. The main 
quantitative metrics are support and confidence. Additional and closely related metrics 
are lift, exceptions and coverage. Each metric can be useful in different situations, 
depending on the characteristics of the dataset and the goal of the rule discovery. 
 
The table below contains well-known metrics with their definition and interpretation. 
 

METRIC DEFINITION INTERPRETATION 

absolute 
support count 

𝑛௑ The support count is the number of 
occurrences of a pattern in a dataset, 
i.e. the number of transactions in the 
database that satisfy or confirm the 
pattern 

absolute 
exception count 

𝑛 − 𝑛௑ The exception count is the number of 
transactions in the database that do not 
satisfy the pattern 

support 𝑠𝑢𝑝𝑝(𝑋) =
𝑛௑

𝑛ൗ  Support is an indication of how 
frequently the pattern appears in the 
dataset. It is defined as the proportion 
of transactions in the dataset which 
contains the given pattern. Support is 
often used to represent the significance 
of a pattern 

confidence 𝑐𝑜𝑛𝑓(𝑋 → 𝑌) =
𝑛௑௒

𝑛௑ൗ  Confidence is an indication of how often 
a rule has been found to be true. Thus 



 

  
 

confidence can be interpreted as the 
probability of finding the consequent of 
the rule in transactions under the 
condition that these transactions also 
contain the antecedent. Confidence is 
the proportion of transactions that 
contain the consequent in the set of 
transactions that contain antecedent. It 
is used to measure the accuracy of a 
given rule 

added value 𝑐𝑜𝑛𝑓(𝑋 → 𝑌) − 𝑠𝑢𝑝𝑝(𝑌) The added value quantifies how much 
the probability of the consequent 
increases when conditioning on the 
transactions that contain the antecedent 

casual support 𝑠𝑢𝑝𝑝(𝑋 ∪ 𝑌) + 𝑠𝑢𝑝𝑝(𝑋ത ∪ 𝑌ത) The casual support of a rule is the 
support increased by the support of the 
negatives (based on the number of 
occurrences where the antecedent and 
consequent are not met) 

casual 
confidence 

1

2
൫𝑐𝑜𝑛𝑓(𝑋 → 𝑌) + 𝑐𝑜𝑛𝑓(𝑋ത → 𝑌ത)൯ The casual confidence of a rule takes 

positive evidence as well as negative 
evidence of a rule into account in equal 
weight. It is the confidence of the rule 
increased by negative evidence of the 
rule 

conviction 1 − 𝑠𝑢𝑝𝑝(𝑌)

1 − 𝑐𝑜𝑛𝑓(𝑋 → 𝑌)
 

Conviction is an alternative to 
confidence, which sometimes can 
produce misleading results (for example 
when the support of the consequent is 
higher than the rule confidence) 

lift 𝑐𝑜𝑛𝑓(𝑋 → 𝑌)

𝑠𝑢𝑝𝑝(𝑌)
 

Lift measures how many times more 
often the antecedent and consequent 
occur together than expected if they 
were statistically independent 

rule power 
factor 

𝑠𝑢𝑝𝑝(𝑋 → 𝑌)𝑐𝑜𝑛𝑓(𝑋 → 𝑌) The rule power factor weight the 
confidence of a rule by its support. If 
both confidence and support are high 
then this leads to a high rule power 
factor 

 

A main problem with the quantitative metrics is their correlation in the datasets with 
established rules: if the data is present and the data quality is perfect then confidence is 
equal to relative support. To overcome this problem additional metrics of 
quality/interestingness have been added to the software package including added value 
and rule power. 
 
The amount of generated validation rules depends on the constraints imposed on certain 
metrics. Well-known constraints are minimum thresholds on support and confidence. By 
varying them we could identify both most frequent rules (high confidence and high 
absolute support) and rare albeit interesting rules (high confidence, low absolute 
support). 
 

3.6 Rules ranking 
 
Rules ranking is a critical part of the data patterns discovery and analysis. To the best of 
our knowledge and the analysis of the rule mining literature, there are two approaches 
most often used for the data rules ranking: Data Envelopment Analysis (DEA) and expert 
ranking. Below we discuss both approaches and introduce a new rule-ranking algorithm 
based on a statistical machine learning approach.  



 

  
 

 
Traditional rule mining algorithms cannot classify the infrequent items to interesting 
itemsets since the subjective domain knowledge is ignored. A huge amount of subjective 
domain knowledge may exist, which can be considered as potential subjective constraints 
and measures for evaluating association rules. Following the discovery and reporting of 
some rules, a data miner can select the subjective importance (or interestingness) 
measures. The DEA approach introduces a single score per rule based on the weights 
that combine quantitative metrics with weights that are given by the experts. Then each 
candidate score is calculated with their most favorable weights. The resulting score is a 
preference score for each candidate rule. Constraints are introduced in ensure that the 
vote of the higher place may have a greater importance than that of the lower place. 
After the problems are solved for all candidates, several candidates often achieve the 
maximum attainable score 1. They are called efficient candidates. Then the efficient 
candidates are discriminated to rank them by importance. This method is in fact an 
application of the technique called Linear Programming (a deterministic technique of 
linear optimization aimed at maximizing the objective function under linear constraints).  
 
The expert ranking approach includes multiple experts labelling the same set of rules 
after which the ranking average (“collective strength”) is computed and added as an 
independent variable to the linear regression model together with the quantitative 
metrics. This approach is efficient for a small number of rules and a significant number of 
experts to average their opinions.  
 
Our ML approach is derived from the need to overcome the number of limitations due to 
the data quality and expert availability, but also from the specific features of our 
datasets: a very large number of columns, a relatively many data points and the ground 
truth – multiple existing taxonomy rules. We also approach the problem differently from 
the previous two techniques by looking at the rules ranking not as a linear optimization 
or regression problem, but rather as a classification problem. In the DEA, the goal is to 
find the rules that maximize the linear cost function. In the expert ranking approach, the 
aim is to predict the strength (importance) of the new rule as a linear combination of 
factors. The value of this strength could vary from minus to plus infinity and this makes 
the result very hard to interpret. In our case, we use an expert to label existing rules 
using binary classification (important or not). Our approach to rule ranking is, in fact, 
probabilistic. We take into account that the labelling is subjective and could not be 100% 
accurate.  
 
To rank the rules by their importance a number of steps are taken. First we formed a 
new dataset including existing rules from multiple templates detected by the Ruleminer 
and the features coming from their quantitative properties and statistical metrics. In 
parallel, the rules were labeled as important/not important. In our model, we used the 
following features:  

- number of cells; 
- if the rule is conditional; 
- if it includes fixed numbers; 
- if it is cross-template; 
- confidence; 
- scaled added value (support subtracted from confidence multiplied by the 

square root of support); and 
- rule power (confidence multiplied by support). 

 
Our number of quantitative metrics (model features) is limited due to the fact that 
almost all existing taxonomy rules are so called “blocking rules”, which means that if 
both antecedent (left-hand side) and the consequent (right-hand-side) are present that 



 

  
 

the rule is definitely satisfied, so many metrics suggested in literature show a very strong 
correlation with each other. 
 
The total number of rules used for analysis (individual template and cross template rules) 
was 259. These were all rules discovered by the Ruleminer algorithm. 11 was considered 
as a maximum length of the rules and it was a natural threshold as the next size of the 
rules was 14. Very long rules had a very small support as many of the cells involved in 
them had missing values in most of the returns. The expert labelled dataset was well 
balanced: the number of important rules was 154 and the number of rules considered as 
non-important was 105. 
 
The dataset was randomly divided into two parts: training/testing (75% -- 195 rules) and 
validation (25% -- 64 rules). To build and test the model we used the 10-fold cross-
validation approach that includes multiple random sampling from the training/testing 
dataset and is considered the most efficient approach to develop the ML models for 
medium size datasets. 
  
The variables ranked by their importance are below: 
 

 
 
To build and test the model we considered a number of ML algorithms including logistic 
regression, Support Vector Machine (SVM) and Naïve Bayes. After comparing the various 
methods, the Random Forest was selected as the best performer for both training and 
validation. Our result is a rating (probability) of the rule importance between 0 and 1 that 
we can use that to divide rules into groups and classify as critical, most important, 
useful, least important or using any other qualitative scale.  
 
Next, the model was applied to both the validation dataset to compute the probabilities 
and test its accuracy (and ensure that there is no over-fitting) and to the testing/training 
dataset to rank the rules. Based on the 50% important/non-important threshold, the 
algorithm had 85% accuracy for testing/training and 91% accuracy for validation 
dataset.  
 



 

  
 

Based on our analysis the importance score is driven by the combination of three 
metrics: scaled added value, rule power and confidence. In taxonomy rules, confidence is 
technically equal to support: if the data is in then the rule is true. So the rule power is a 
square of confidence. In general, this measure favors rules with high confidence and high 
support at the same time. The most important metric in the model is a scaled added 
value. This metric is equal to support subtracted from confidence multiplied by the 
square root of support. This metric (if confidence is equal to support) has a critical point, 
a minimum when confidence=4/9. This metric is highly correlated to the interest factor 
metric (see Tan et al. (2004)). Technically the confidence is the main parameter in the 
model and this corresponds to the interestingness of the discovered rule. 
 

4. Applications 
 
The rule mining approach can be applied to various datasets to discover underlying data 
patterns. We will discuss three different use cases: 

1. rule discovery with granular asset data; 
2. rule discovery with actuarial run-off triangles between two periods; and 
3. rule discovery and ranking with Solvency 2 data 

 

4.1 Rule discovery in granular asset data 
 
The rule mining approach was applied to the granular Solvency 2 assets and derivatives 
data from Dutch insurance undertakings. This data contains information of all individual 
assets and derivatives included in the balance sheet of insurance undertakings, for 
example the asset identification code, Solvency 2 value and credit rating. We generated 
several thousands of validation rules for each individual asset that was reported by one 
or more insurance undertakings in the last four quarterly reporting periods. Clearly, the 
number of generated rules went beyond what is feasible to incorporate within the current 
Solvency 2 reporting framework and would be very time consuming to formulate 
individually by statistical experts. 
 
An example is a rule template for the valuation method that was used to measure the 
Solvency 2 value of an asset. When valuing assets in Solvency 2 insurance undertakings 
have to apply a valuation hierarchy: as a default method market prices in active markets 
for the same assets have to be used. If for a specific asset the use of market prices is not 
possible (because market prices are not reliable or not available) then market prices of 
similar assets are to be used. And if this is also not possible, then an alternative 
valuation method has to be used. The Solvency 2 legislation contains criteria for the 
application of the valuation method that has to be satisfied. Of the total assets of Dutch 
insurance undertakings, on average during 2021, 49% of the total asset value was 
measured with the default valuation method, 10% with market prices of similar assets 
and 36% with an alternative valuation method (for rest some less often used methods 
were used). 
 
Due to market circumstances, the valuation method of certain assets could change over 
time, it is however expected that at a certain reporting date an asset is valued in a 
consistent way by all reporting insurance undertakings. To check this, we generate 
validation rules for the valuation method with the following rule template: 
 
if ({"S.06.02,c0040"} = ".*") then ({"S.06.02,c0150"} = ".*") 
 



 

  
 

The column S.06.02,c0040 contains the ISIN code of the asset and column 
S.06.02,c0150 contains the valuation method that was used to value the assets. 
 
An example of a generated rule is: 
 
if ({"S.06.02,c0040"}="ISIN/NL0123456789") then ({"S.06.02,c0150"}="Quoted 
market price in active markets for the same assets") 
 
This validation rule states that if the reported asset has identification code 
ISIN/NL0123456789 (an anonymized number) then the valuation method is Quoted 
market price in active markets for the same assets. We calculated metrics of this rule, 
such as confidence and rule power, to determine how strong this relation is given a 
certain reporting period. The Ruleminer software package generated the following output 
including several metrics:  
 
Rule_definition Rule 

support 
count 

Rule 
exception 
count 

Confidence Casual 
confidence 

if 
({"S.06.02,c0040"}="ISIN/
NL0123456789") then 
({"S.06.02,c0150"}="Quote
d market price in active 
markets for the same 
assets") 
 

93 4 0.958763 0.604052 

Support rule Added 
value 

Conviction Lift Rule power 
factor 

0.000421 0.208013 6.044308 1.277073 0.000404 
 
The absolute support count of this rule equals 93. This means that ISIN code 
ISIN/NL0123456789 with valuation method Quoted market price in active markets for 
the same assets occurred 93 times in the dataset. Moreover, ISIN code 
ISIN/NL0123456789 occurred 4 times in the dataset with another valuation method since 
the absolute number of exceptions equals 4. As a result, the confidence equals 93 / 97 = 
0.958763. This might indicate an error in the data, but could also indicate a discrepancy 
in the interpretation of valuation hierarchy between insurance undertakings of particular 
asset (and by aggregating these results we can look for insurance undertakings that 
might have a prevalence towards alternative valuation methods). The casual confidence 
is the weighted average of the confidence of the rule and the confidence of the negative 
rule, and is for this rule of limited value. The support of the rule, indicating how 
frequently the pattern appears in the dataset, is very low. This makes sense for a rule on 
granular asset data since a single asset only occurs a limited number of times in such a 
large dataset (220.951 assets in total). The added value, equal to 0.208, quantifies how 
much the probability of an asset containing valuation method Quoted market price in 
active markets for the same assets (the consequent) increases when conditioning on 
assets with ISIN code ISIN/NL0123456789 (the antecedent). Conviction (6.044) is an 
alternative to confidence which does not capture the direction of the association 
adequately and can also take values above 1. The lift (1.277) measures how many times 
more often the antecedent and the consequent occur together than expected if they were 
statistically independent where are value of 1 indicates independence. Finally, the rule 
power factor is equal to the support of the rule times the confidence. 
 
Besides the calculation of different metrics one can also impose constraints on metrics to 
restrict the amount of generated validation rules. The best-known constraints are 
minimum thresholds on support and confidence. Of course, the number of generated 



 

  
 

validation rules decreases when the minimum thresholds on support or confidence is 
higher. Figure 1 shows the relation between the number of generated rules and the 
minimum thresholds on confidence (minimum threshold on support is fixed) when 
generating validation rules for the valuation method in a Solvency 2 assets dataset.  
 
In this application we discussed a rule template for the valuation method that was used 
to measure the Solvency 2 value of an asset. Of course, various other rule templates can 
be set up, e.g. rule templates for credit rating, country of issue or issuer sector.  
 
 

 
Figure 1: Relation between number of generated validation rules and minimum 
threshold on confidence 

 

4.2 Rule discovery in actuarial run-off triangles 
 
Another interesting application of rule mining is the discovery of validation rules between 
two periods. This is not possible in most reporting frameworks since they contain 
validation rules applicable to one period only. 
 
Run-off triangles are used to estimate how much or how many insurance claims have 
been incurred in a financial year but are not yet reported and settled; for this a technical 
provision has to be held. This is called an IBNR - incurred but not reported. When a claim 
event occurs it takes some time before it is settled by the insurance undertaking. This is 
known as a claim delay. Table 1 below shows an example of a run-off triangle in which 
the vertical axis represents the accident year and the horizontal axis represents the 
development year. The accident year specifies in which year the claim is reported. The 
development year specifies after how many years the reported claim is getting settled. 
For example, in year n - 3 at time t a claim of 34 has been settled by the insurance 
undertaking belonging to a claim event that also took place in year n - 3. A year after the 
claim event took place (n - 2) another claim of 21 has been settled belonging to accident 
year n - 3. It can take several years before all claims belonging to a certain accident year 
have been settled. 
 



 

  
 

There are clear relations between datapoints in a run-off triangle over time. A claim of 
accident year i that is settled in development year j at time t is also present in the run-
off triangle at time t + 1: at accident year i - 1 in development year j. So claims are 
present in the run-off triangle for a number of years. 
 
Besides the upper-left-side triangle formed with settled claim amounts – shown in table 1 
– one can also estimate a lower-right-side triangle that contains a projection of future 
claim payments. There are several methods available to make such projections, e.g. 
using Mack’s chain-ladder method or the Bornhuetter-Ferguson method. 
 
 
Table 2: Example of two consecutive run-off triangles 

Reported run-off triangle t  

Accident year 
Development year  

n-4 (c010) n-3 (c020) n-2 (c030) n-1 (c040) n (c050)  
n-4 (r010) 60 29 15 6 3  
n-3 (r020) 24 34 21 8   
n-2 (r030) 32 16 11    
n-1 (r040) 19 27     
n (r050) 40      

 
Reported run-off triangle t+1 

Accident year 

Development year 

n-4 (c010) n-3 (c020) n-2 (c030) n-1 (c040) n (c050) 

n-4 (r010) 24 34 21 8 4 

n-3 (r020) 32 16 11 9 

n-2 (r030) 19 27 16   
n-1 (r040) 40 19    
n (r050) 56     

 
We can use rules mining to generate validation rules that capture the relations between 
datapoints in a run-off triangle over time. To generate those rules we first have to 
change the set-up of the dataset. Each datapoint is represented by two columns: value of 
the datapoint in the first period (t) and value of the datapoint in the second period (t+1). 
Subsequently, we can set up a set of rule templates:  
 
if ({"column1 (t)"} != 0)& ({"column2 (t+1)"} != 0) then ({"column1 (t)"} = {" 
column2 (t+1)"}) 
 
where column1 and column2 are iterated over all columns. An example of a generated 
rule is:  
 
if ({"r050c010 (t)"} != 0)& ({"r040c010 (t+1)"} != 0) then ({"r050c010 (t)"} = {" 
r040c010 (t+1)"}) 
 
This is an example of a relation between datapoints in a reporting template over time 
that should in principle be satisfied. With rules mining validation rules for these clear 
relations can be generated automatically that typically need to be satisfied. However, in 
practice there can be cases in which these validation rules are not satisfied (due to for 
example claims corrections, mergers, etc.). Rule mining makes it possible to highlight 
these situations. 
 



 

  
 

Run-off triangles are often part of reporting requirements by insurance undertakings to 
supervisory entities. Under Solvency 2 insurance undertakings have to report multiple 
run-off triangles containing non-life insurance claims for 9 different metrics (e.g. gross 
claims paid, reinsurance recoveries received, Gross Reported but not Settled (RBNS)5. 
For each line of business these run-off triangles should be reported separately. The run-
off triangles that are reported contain 15 periods which implies, given the number of cells 
in a triangle, that 0.5 * 14 * 15 = 105 validation rules can be generated for each run-off 
triangle. This implies that the number of validation rules that is applicable to an 
insurance undertaking with several lines of business is big: for example, for an insurer 
with 12 lines of business 12 * 9 * 105 = 11.450 validation rules are applicable. It would 
be very time consuming to set up validation rules for all these triangles individually. Rule 
mining makes it possible to generate sets of validation rules for multiple templates in an 
efficient way. 
 
 

4.3 Rule discovery, analysis and ranking with Solvency 2 data 
 
In another project we discovered a number of new patterns that could potentially become 
rules. 
 
Examples: 
 
In the template S.25.02, we discovered a pattern that makes a perfect logical sense, but 
it has not been included in the taxonomy rules: ({"S.25.02.01.02,r0110c0100"} + 
{"S.25.02.01.02,r0060c0100"} = {"S.25.02.01.02,r0220c0100"}) 
That can be interpreted as “Total undiversified components + Diversification = Solvency 
capital requirement”. 
 
All taxonomy rules in the template S.23.04 correspond to formatting of the data 
(alphabetic or date). So the pattern: {"S.23.04.01.04,c0445,c0480"} = 
{"S.23.04.01.04,c0445,c0450"} could be used to check the quality of the data even if all 
the formatting is correct.  
 
After generating new validation rules for a set of Solvency 2 templates and computing 
their features and metrics we sorted the rules based on their importance. For example, 
the rule coming from the first example had an importance score of 0.744 and was ranked 
11th among all the rules discovered in this template. 

 

5. Conclusions and extensions 
 
In this paper we have introduced the Ruleminer software package that enables the 
discovery of a wide range of rules with complex mathematical formulations and by using 
data sources from previous submissions and other external datasets. The approach 
presented here allows for the formulation of new validation rules that are not possible or 
feasible within current reporting frameworks. The approach fits within the already mature 
field of association rules mining which allows for the use of a wide range of rule metrics 
as objective measures to rank and select the most relevant rules. Furthermore, machine 
learning models can be trained given subject experts labelling to rank discovered rules in 
an efficient manner. 
                                                 
5 More details about this reporting template (S.19.01) can be found in the annotated templates for 
Solvency 2: https://www.eiopa.europa.eu/tools-and-data/supervisory-reporting-dpm-and-xbrl_en 



 

  
 

 
Rule discovery is a well-established process. However, to the best of our knowledge, this 
work is the first time when it was applied to the supervisory data. The automatic rule 
detection and ranking methodology is a feasible and useful tool for data quality checks. 
The ML rule ranking approach introduced in this work is both a novel and efficient way to 
determine the rule importance that was derived from the uniqueness of the data at our 
disposal. The statistical nature of the approach requires significant number of returns to 
detect and analyze rules in new templates, however, it could be tens rather than 
hundreds or thousands of records. 
 
The Ruleminer software package aims at a wide applicability. It is a pure-Python software 
package and can be applied by data analysts within data science environments. The 
package uses the well-known pandas DataFrame format (similar to the table 
representation of supervisory reports). A range of parameters can be set to steer the rule 
discovery process, for example selection of rule metrics that are to be calculated, filters 
(minimum thresholds discovered rules should satisfy) and precision variables. A 
reasonably fast algorithm has been implemented which makes it possible to apply the 
rule discovery algorithm to very large datasets. 
 
We have discussed a number of relatively straightforward applications of the rule mining 
approach. However, other interesting extensions are possible as well. 
 
Despite being originally developed as a part of the insurance framework, Ruleminer is 
currently also applied to the data coming from the banking sector, for instance. Loan 
Level Data (LLD) is one of the largest sets of the granular data submitted to central 
banks. This data does not have well established taxonomies similar to Solvency 2. So the 
Ruleminer can play an important role in the discovery of new rules and in ongoing data 
quality checks.  
 
Furthermore, with the help of the Ruleminer we could identify the rules that can be 
imposed on the data providers (banks) to ensure the quality of submissions (pre- or 
post-processing) and the rules’ exceptions can be used to identify anomalies due to the 
data quality problems. The approach used to identify the rules follows the direction of the 
data rules project implemented for Solvency 2 data, but it has three distinct features: 

- it comprises of a very large dataset (x15 more records compared to the largest 
Solvency 2 dataset); 

- a significant part of the fields is formed by encoded categorical variables;  
- there are no (or very few) taxonomy requirements, meaning that the quality of 

data is potentially lower and detected rules might have multiple exceptions due 
to the data quality problems. 

 
In addition to applying Ruleminer to other datasets there are also extensions possible 
with respect to the type of patterns that are found. Some patterns in supervisory data 
are specific for certain (types of) financial entities, or are only relevant at a certain point 
during the year or within a certain time period. For example, specific rules can be 
discovered that are only applicable to a small subset of reporting financial entities or 
even a single entity. Time-dependent rules could capture certain developments over time 
and variations during the year, for example if some insurance contracts are yearly 
payable then insurance premiums are reported in one quarterly report and not in the 
other quarterly reports. By adding the type of entity and the time or point during the 
year as features in the dataset, rules can be discovered based on these features. 
 
In number of experiments we observed that exceptions to discovered rules with high 
confidences could be confirmed with the use of outlier detection models. A combined 



 

  
 

approach with association rules mining and quantitative models might be fruitful. For 
example discovered rules could be strengthened by results from unsupervised 
quantitative models for outlier detection, and, vice versa, outliers are explained by more 
transparent rules. 
 
Based on a number of heuristics and rules of thumb, a standard set of default rule 
expressions can be formulated to discovery rules from and assess the data quality of new 
and ad-hoc surveys and reports. For example, rule expressions to discover rules that 
check whether values were reported with inconsistent data types or unit of measures and 
to validate that submitted reports were complete and that no datapoints were missing. 
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Appendix 1: rule grammar of the Ruleminer package 
 
The rule template describes the structure of the rule. Columns and quoted strings in the 
rule template can contain simple regular expressions. The syntax of the template follows 
a grammar defined as follows: 
 
A template is of the form:  
 
if cond_1 then cond_2 
 
or simply a single: 
 
cond_1 
 
A condition is either a combination of comparisons with logical operators ('&' and '|') and 
parenthesis: 
 
( comp_1 & comp_2 | comp_3 ) 
 
or simply a single comparison: 
 
comp_1 
 
A comparison consists of a term, a comparison operator (>=, >, <=, <, != or ==) and a 
term, so: 
 
term_1 > term_2 
 
A term can be a number (e.g. 3.1415 or 9), quoted string (a string with single or double 
quotes), or a function of columns. 
 
A function of columns is either a prefix operator (min, max, quantile, or abs, in lower or 
uppercase) on one or more columns, and of the form, for example: 
 
min(col_1, col_2, col_3) 
 
or infix operators with one or more columns: 
 
(col_1 + col_2 * col_3) 
 
A column is a string with braces, so: 
 
{"Type"} 
 
where "Type" is the name of the column in the DataFrame with the data 
 
A string consists of a-z A-Z 0-9 _ . , ; ; < > * = + - / ? | @ # $ % ^ & ( ) 
 
  



 

  
 

 

Appendix 2: overview of Regular Expressions 
 
We list here the most frequently used metacharacters of Regular Expressions. A full 
description of regular expression operators can be found here 
https://docs.python.org/3/library/re.html. 
 
Character classes 
 
\s  matches any white space 
\S  matches not a white space 
\d  matches any digit 
\D  matches any non-digit 
\w  matches any alphanumeric character 
\W  matches any non-alphanumeric character 
\c  matches a control character 
 
Quantifiers 
 
*  zero or more times 
+  one or more times 
?  zero or one 
{3}  exactly 3 
{3,}  3 or more 
{3, 5}  3,4 or 5 
 
Anchors 
 
^  start of string, or start of line in multiline pattern 
\A  start of string 
$   end of string, or end of line in multiline pattern 
\Z  end of string 
\b  word boundary 
\B  not a word boundary 
\<  start of word 
\>  end of word 
 
POSIX  
 
[:upper:] uppercase letters, similar to [A-Z] 
[:lower:] lowercase letters, similar to [a-z] 
[:alpha:] upper- and lowercase letters, similar to [A-Za-z] 
[:digit:]  digits, similar to [0-9] 
[:alnum:] digits, upper- and lowercase letters, similar to [A-Za-z0-9] 
[:punct:] punctuation (all graphic characters except letters and digits) 
[:blank:] space and TAB characters 
[:space:] blank (whitespace) characters, similar to [\t\n\r\f\v] 
[:word:]  alphanumeric characters with underscore character _ (alnum + _) 
 


